Identification

Classification

Identity Uncertainty

Entity Resolution
Record Linkage

Idiot’s Bayes

Naive Bayes

Immune Computing

Artificial Immune Systems

Immune Network

A proposed theory that the immune system is
capable of achieving immunological memory by
the existence of a mutually reinforcing network
of B-cells. This network of B-cells forms due to
the ability of the paratopes, located on B-cells,

© Springer Science+Business Media New York 2017

to match against the idiotopes on other B-cells.
The binding between the idiotopes and paratopes
has the effect of stimulating the B-cells. This is
because the paratopes on B-cells react to the id-
iotopes on similar B-cells, as it would an antigen.
However, to counter the reaction there is a certain
amount of suppression between the B-cells which
acts as a regulatory mechanism. This interaction
of the B-cells due to the network was said to con-
tribute to a stable memory structure and account
for the retainment of memory cells, even in the
absence of antigen. This interaction of cells forms
the basis of inspiration for a large number of AIS
algorithms, for example aiNET.

Immune-Inspired Computing

Artificial Immune Systems

Immunocomputing

Artificial Immune Systems

Immunological Computation

Artificial Immune Systems

C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,

DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_81
http://dx.doi.org/10.1007/978-1-4899-7687-1_712
http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_919
http://dx.doi.org/10.1007/978-1-4899-7687-1_919
http://dx.doi.org/10.1007/978-1-4899-7687-1_919
http://dx.doi.org/10.1007/978-1-4899-7687-1_919

634

Implication

Entailment

Improvement Curve

Learning Curves in Machine Learning

Incremental Learning

Paul E. Utgoff
University of Massachusetts, Amherst, MA,
USA

Definition

Incremental learning refers to any » online learn-
ing process that learns the same model as would
be learned by a » batch learning algorithm.

Motivation and Background

Incremental learning is useful when the input to
a learning process occurs as a stream of distinct
observations spread out over time, with the need
or desire to be able to use the result of learning
at any point in time, based on the input observa-
tions received so far. In principle, the stream of
observations may be infinitely long, or the next
observation long delayed, precluding any hope
of waiting until all the observations have been
received. Without the ability to forestall learning,
one must commit to a sequence of hypotheses
or other learned artifacts based on the inputs
observed up to the present. One would rather not
simply accumulate and store all the inputs and,
upon receipt of each new one, apply a batch learn-
ing algorithm to the entire sequence of inputs
received so far. It would be preferable computa-
tionally if the existing hypothesis or other artifact
of learning could be updated in response to each
newly received input observation.

Implication

Theory

Consider the problem of computing the balance
in one’s checkbook account. Most would say that
this does not involve learning, but it illustrates
an important point about incremental algorithms.
One procedure, a batch algorithm based on the
fundamental definition of balance, is to compute
the balance as the sum of the deposits less the
sum of the checks and fees. As deposit, check,
and fee transactions accumulate, this definition
remains valid. There is an expectation that there
will be more transactions in the future, and there
is also a need to compute the balance periodically
to ensure that no contemplated check or fee will
cause the account to become overdrawn. We
cannot wait to receive all of the transactions and
then compute the balance just once.

One would prefer an incremental algorithm for
this application, to reduce the cost of computing
the balance after each transaction. This can be
accomplished by recording and maintaining one
additional piece of information, the balance after
the nth transaction. It is a simple matter to prove
that the balance after n transactions added to
the amount of transaction n + 1 provides the
balance after n + 1 transactions. This is because
the sums of the fundamental definition for n 4 1
transactions can be rewritten as the sums of the
fundamental definition for n transactions plus the
amount of the nth transaction. This incremental
algorithm reduces the computation necessary to
know the balance after each transaction, but it
increases the bookkeeping effort somewhat due
to the need for an additional variable.

Now consider the problem of learning the
mean of a real-valued variable from a stream of
observed values of this variable. Though simple,
most would say that this does involve learning,
because one estimates the mean from observa-
tions, without ever establishing the mean defini-
tively. The fundamental definition for the mean
requires summing the observed values and then
dividing by the number of observed values. As
each new observation is received, one could com-
pute the new mean. However, one can reduce the
computational cost by employing an incremental
algorithm. For n observations, we could just as

http://dx.doi.org/10.1007/978-1-4899-7687-1_253
http://dx.doi.org/10.1007/978-1-4899-7687-1_452
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_58

Incremental Learning

well have observed exactly the n occurrences of
the mean. The sum of these observations divided
by n would produce the mean. If we were to be
provided with an n + 1 observation, we could
compute the new sum of the n 4+ 1 observations
as n cases of the mean value plus the new obser-
vation, divided by n + 1. This reduces the cost
of computing the mean after each observation to
one multiplication, two addition, and one division
operations. There is a small increase in bookkeep-
ing in maintaining the counter n of how many
observations have been received and the mean m
after n observations.

In both of the above examples, the need to
record the fundamental data is eliminated. Only
a succinct summary of the data needs to be
retained. For the checkbook balance, only the
balance after n transactions needs to be stored,
making the specific amounts for the individual
transactions superfluous. For the mean of a vari-
able, only the mean m after n observations and
the number n of observations need to be retained,
making the specific values of the individual ob-
servations superfluous. Due to this characteristic,
incremental algorithms are often characterized as
memoryless, not because no memory at all is
required but because no memory of the original
data items is needed. An incremental algorithm
is not required to be memoryless, but the in-
cremental algorithm must operate by modifying
its existing knowledge, not by hiding the appli-
cation of the corresponding batch algorithm to
the accumulated set of observations. The criti-
cal issue is the extent to which computation is
reduced compared to starting with all the data
observations and nothing more. An essential as-
pect for an incremental algorithm is that the ob-
tained result be identical to that indicated by the
fundamental definition of the computation to be
performed.

A point of occasional confusion is whether
to call an algorithm incremental when it makes
adjustments to its data structures in response to
a new data observation. The answer depends on
whether the result is the same that one would
obtain when starting with all the observations in
hand. If the answer is no, then one may have
an online learning algorithm that is not an incre-

635

mental learning algorithm. For example, consider
two alternative formulations of the problem men-
tioned above of learning the mean of a variable.
Suppose that the count of observations, held in
the variable n, is not permitted to exceed some
constant, say 100. Then the mean after n observa-
tions coupled with the minimum of n and 100 no
longer summarizes all n observations accurately.
Consider a second reformulation. Suppose that
the most recent 100 observations are held in a
queue. When a new observation is received, it
replaces the oldest of the 100 observations. Now
the algorithm can maintain a moving average, but
not the overall overage. These may be desirable,
if one wishes to remain responsive to drift in
the observations, but that is another matter. The
algorithm would not be considered incremental
because it does not produce the same result for
all n observations that the corresponding batch
algorithm would for these same n observations.
The algorithm would be online, and it would be
memoryless, but it would not be computing the
same learned artifact as the batch algorithm.

These two latter reformulations raise the issue
of whether the order in which the observations
are received is relevant. It is often possible to
determine this by looking at the fundamental
definition of the computation to be performed.
If the operator that aggregates the observations
is commutative, then order is not important. For
the checking account balance example above, the
fundamental aggregation is accomplished in the
summations, and addition is commutative, so the
order of the transactions is not relevant to the
resulting balance. If a fundamental algorithm op-
erates on a set of observations, then aggregation
of a new observation into a set of observations
is accomplished by the set union operator, which
is commutative. Can one have an incremental
algorithm for which order of the observations is
important? In principle, yes, provided that the
result of the incremental algorithm after obser-
vation 7 is the same as that of the fundamental
algorithm for the first n observations.

A final seeming concern for an incremental
learning algorithm is whether the selection of fu-
ture observations (7 + 1 and beyond) is influenced
by the first n observations. This is a red herring,

636

because for the n observations, the question of
whether the learning based on these observations
can be accomplished by a batch algorithm or a
corresponding incremental algorithm remains. Of
course, if one needs to use the result of learning
on the first k instances to help select the k + 1
instance, then it would be good sense to choose
an incremental learning algorithm. One would
rather not apply a batch algorithm to each and
every prefix of the input stream. This would
require saving the input stream and it would
require doing much more computation than is
necessary.

We can consider a few learning scenarios
which suit incremental learning. An
learner uses its current knowledge to select
the next observation. For a learner that is
inducing a classifier, the observation would be an
unclassified instance. The active learner selects
an unclassified instance, which is passed to an
oracle that attaches a correct class label. Then
the oracle returns the labeled instance as the next
observation for the learner. The input sequence
is no longer one of instances for which each was
drawn independently according to a probability
distribution over the possible instances. Instead,
the distribution is conditionally dependent
on what the learner currently believes. The
learning problem is sequential in its nature. The
observation can be delivered in sequence, and
an incremental learning algorithm can modify its
hypothesis accordingly. For the n observations
received so far, one could apply a corresponding
batch algorithm, but this would be unduly
awkward.

Reinforcement learning is a kind of online
learning in which an agent makes repeated trials
in a simulated or abstracted world in order to
learn a good, or sometimes optimal, policy that
maps states to actions. The learning artifact is
typically a function V' over states or a function
Q over state-action pairs. As the agent moves
from state to state, it can improve its function
over time. The choice of action depends on the
current V' or Q and on the reward or punishment
received at each step. Thus, the sequence of ob-
servations consists of state-reward pairs or state-
action-reward triples. As with active learning,

active

Incremental Learning

the sequence of observations can be seen as be-
ing conditionally dependent on what the learner
currently believes at each step. The function V' or
Q can be modified after each observation, with-
out retaining the observation. When the function
is approximated in an unbiased manner, by using
a lookup table for discrete points in the function
domain, there is an analogy with the problem
of computing a checkbook balance, as described
above. For each cell of the lookup table, its value
is its initial value plus the sum of the changes,
analogously for transactions. One can compute
the function value by computing this sum, or
one can store the sum in the cell, as the net
value of all the changes. An incremental algo-
rithm is preferable both for reasons of time and
space.

A k-nearest classifier (see » Instance-Based
Learning) is defined by a set of training in-
stances, the observations, and a distance metric
that returns the numeric distance between any
two instances. The difference between the batch
algorithm and the incremental algorithm is slight.
The batch algorithm accepts all the observations
at once, and the incremental algorithm simply
adds each new observation to the set of obser-
vations. If, however, there were data structures
kept in the background to speed computation,
one could distinguish between building those data
structures once (batch) and updating those data
structures (incremental). One complaint might be
that all of the observations are retained. However,
these observations do not need to be revisited
when a new one arrives. There is an impact on
space, but not on time.

A » decision tree classifier may be correct for
the n observations observed so far. When the n+1
observation is received, an incremental algorithm
will restructure the tree as necessary to produce
the tree that the batch algorithm would have built
for these n + 1 observations. To do this, it may
be that no restructuring is required at all or that
restructuring is needed only in a subtree. This is
a case in which memory is required for saving
observations in the event that some of them may
be needed to be reconsidered from time to time.
There is a great savings in time over running the
corresponding batch algorithm repeatedly.

http://dx.doi.org/10.1007/978-1-4899-7687-1_916
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_409
http://dx.doi.org/10.1007/978-1-4899-7687-1_66

Induction

Applications

Incremental learning is pervasive, and one can
find any number of applications described in the
literature and on the web. This is likely due to
the fact that incremental learning offers computa-
tional savings in both time and space. It is also
likely due to the fact that human and animal
learning takes place over time. There are sound
reasons for incremental learning being essential
to development.

Future Directions

Increasingly, machine learning is confronted with
the problem of learning from input streams that
contain many millions, or more, of observations.
Indeed, the stream may produce millions of ob-
servations per day. Streams with this many in-
stances need to be handled by methods whose
memory requirements do not grow much or at
all. Memoryless online algorithms are being de-
veloped that are capable of handling this much
throughput. Consider transaction streams, say of
a telephone company, or a credit card company,
or a stock exchange, or a surveillance camera,
or eye-tracking data, or mouse movement data.
For such a rich input stream, one could sample it,
thereby reducing it to a smaller stream. Or, one
could maintain a window of observations, giving
a finite sample that changes but does not grow
over time. There is no shortage of applications
that can produce rich input streams. New methods
capable of handling such heavy streams have al-
ready appeared, and we can expect to see growth
in this area.

Cross-References

Active Learning
Cumulative Learning
Online Learning

Recommended Reading

Domingos P, Hulten G (2003) A general framework for
mining massive data streams. J] Comput Graph Stat
12:945-949

637

Giraud-Carrier C (2000) A note on the utility of incre-
mental learning. AI Commun 13:215-223

Utgoff PE, Berkman NC, Clouse JA (1997) Decision
tree induction based on efficient tree restructuring.
Mach Learn 29:5-44

Indirect Reinforcement Learning

Model-Based Reinforcement Learning

Induction

James Cussens
University of York, Heslington, UK

Definition

Induction is the process of inferring a general
rule from a collection of observed instances.
Sometimes it is used more generally to refer
to any inference from premises to conclusion
where the truth of the conclusion does not follow
deductively from the premises, but where the
premises provide evidence for the conclusion.
In this more general sense, induction includes
abduction where facts rather than rules are in-
ferred. (The word “induction” also denotes a
different, entirely deductive form of argument
used in mathematics.)

Theory

Hume’s Problem of Induction

The problem of induction was famously set out by
the great Scottish empiricist philosopher David
Hume (1711-1776), although he did not actually
use the word “induction” in this context. With
characteristic bluntness, he argued that:

there can be no demonstrative arguments to prove
that those instances of which we have had no
experience resemble those of which we have had
experience (Hume 1739, Part 3, Section 6).

Since scientists (and machine-learning algo-
rithms) do infer future-predicting general laws
from past observations, Hume is led to the

http://dx.doi.org/10.1007/978-1-4899-7687-1_916
http://dx.doi.org/10.1007/978-1-4899-7687-1_191
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_561

638

following unsettling conclusion concerning
human psychology (and statistical inference):

It is not, therefore, reason, which is the guide of
life, but custom. That alone determines the mind,
in all instances, to suppose the future conformable
to the past (Hume 1740).

That general laws cannot be demonstrated
(i.e., deduced) from data is generally accepted.
Hume, however, goes further: he argues that past
observations do not even affect the probability of
future events:

Nay, I will go farther, and assert, that he could not
so much as prove by any probable arguments, that
the future must be conformable to the past. All
probable arguments are built on the supposition,
that there is this conformity betwixt the future and
the past, and therefore can never prove it. This
conformity is a matter of fact, and if it must be
proved, will admit of no proof but from experience.
But our experience in the past can be a proof of
nothing for the future, but upon a supposition, that
there is a resemblance betwixt them. This therefore
is a point, which can admit of no proof at all,
and which we take for granted without any proof
(Hume 1740).

Induction and Probabilistic Inference

Hume’s unwavering skepticism concerning pre-
diction appears at variance with the predictive
accuracy of machine learning algorithms: there
is much experimental evidence that ML algo-
rithms, once trained on “past observations,” make
predictions on unseen cases with an accuracy far
in excess of what can be expected by chance.
This apparent discrepancy between Hume’s phi-
losophy and practical experience of statistical
inference can be explored using a familiar ex-
ample from the literature on induction. Let e be
the statement that all swans seen so far have
been white and let / be the general rule that all
swans are white. Since & implies e it follows that
P(e|lh) = 1 and so, using Bayes’ theorem, we
have that

P(h)P(elh) _ P(h)
Pe) P(e)’

P(hle) = (h
So P(hle) > P(h) as long as P(e) < 1 and
P(h) > 0. This provides an explanation for the
predictive accuracy of hypotheses supported by

Induction

data: given supporting data they just have in-
creased probability of being true. Of course, most
machine learning outputs are not “noise-free”
rules like /; almost always hypotheses claim
a certain distribution for future data where no
particular observation is ruled out entirely — some
are just more likely than others. The same basic
argument applies: if P(h) > O then as long
as the observed data is more likely given the
hypothesis than it is a priori, that is, as long as
P(e|h)/P(e) > 1, then the probability of & will
increase. Even in the (common) case where each
hypothesis in the hypothesis space depends on
real-valued parameters and so P(h) = 0 for all
h, Bayes theorem still produces an increase in
the probability density in the neighborhoods of
hypotheses supported by the data.

In all these cases, it appears that e is giving
“inductive support” to . Consider, however, A/
which states that all swans until now have been
white and all future swans will be black. Even
in this case, we have that P(h'|e) > P(h') as
long as P(e) < 1 and P(h') > 0, though h
and i’ make entirely contradictory future predic-
tions. This is a case of Goodman’s paradox. The
paradox is the result of confusing probabilistic
inference with inductive inference. Probabilistic
inference, of which Bayes theorem is an instance,
is entirely deductive in nature — the conclusions
of all probabilistic inferences follow with abso-
lute certainty from their premises (and the axioms
of probability). P(h|e) > P(h) for P(e) < 1 and
P(h) > 0 essentially because e has (deductively)
ruled out some data that might have refuted /, not
because a “conformity betwixt the future and the
past” has been established.

Good performance on unseen data can still
be explained. Statistical models (equivalently
machine learning algorithms) make assumptions
about the world. These assumptions (so far!)
often turn out to be correct. Hume noted
that the principle “that like objects, placed
in like circumstances, will always produce
like effects” (Hume 1739, Part 3, Section 8)
although not deducible from first principles, has
been established by “sufficient custom.” This is
called the uniformity of nature principle in the
philosophical literature. It is this principle which

Induction

informs machine learning systems. Consider the
standard problem of predicting class labels for
attribute-value data using labeled data as training.
If an unlabeled test case has attribute values
which are “close” to those of many training
examples all of which have the same class label
then in most systems the test case will be labeled
also with this class. Different systems differ
in how they measure “likeness”: they differ in
their » inductive bias. A system which posited 4’
above on the basis of e would have an inductive
bias strongly at variance with the uniformity of
nature principle.

These issues resurfaced within the machine
learning community in the 1990s. This ML work
focused on various “» no-free-lunch theorems.”
Such a theorem essentially states that a unifor-
mity of nature assumption is required to justify
any given inductive bias. This is how Wolpert
puts in one of the earliest “no-free-lunch” papers:

This paper proves that it is impossible to justify
a correlation between reproduction of a training
set and generalization error off of the training set
using only a priori reasoning. As a result, the use
in the real world of any generalizer which fits a
hypothesis function to a training set (e.g., the use
of back-propagation) is implicitly predicated on an
assumption about the physical universe (Wolpert
1992).

Note that in Bayesian approaches inductive
bias is encapsulated in the prior distribution: once
a prior has been determined all further work in
Bayesian statistics is entirely deductive. There-
fore it is no surprise that inductivists have sought
to find “objective” or “logical” prior distributions
to provide a firm basis for inductive inference.
Foremost among these is Rudolf Carnap (1891-
1970) who followed a logical approach — defining
prior distributions over “possible worlds” (first-
order models) which were in some sense uniform
(Carnap 1950). A modern extension of this line
of thinking can be found in Bacchus et al. (1996).

Popper

Karl Popper (1902-1994) accepted the Humean
position on induction yet sought to defend sci-
ence from charges of irrationality (Popper 1934).
Popper replaced the problem of induction by

639

the problem of criticism. For Popper, scientific
progress proceeds by conjecturing universal laws
and then subjecting these laws to severe tests
with a view to refuting them. According to the
verifiability principle of the logical positivist tra-
dition, a theory is scientific if it can be experi-
mentally confirmed, but for Popper confirmation
is a hopeless task, instead a hypothesis is only
scientific if it is falsifiable. All universal laws
have prior probability of zero, and thus will
eternally have probability zero of being true, no
matter how many tests they pass. The value of a
law can only be measured by how well-tested it
is. The degree to which a law has been tested is
called its degree of corroboration by Popper. The
P(e|h)/P(e) term in Bayes theorem will be high
if a hypothesis / has passed many severe tests.

Popper’s critique of inductivism continued
throughout his life. In the Popper—Miller
argument (Popper and Miller 1984), as it became
known, it is observed that a hypothesis & is
logically equivalent to:

(h<e)n(hVe)

for any evidence e. We have that e - h Ve (where
F means “logically implies”) and also that (under
weak conditions) p(h < ele) < p(h <« e).
From this Popper and Miller argue that

... we find that what is left of 4 once we discard
from it everything that is logically implied by e,
is a proposition that in general is counterdependent
on e (Popper and Miller 1987)

and so.

Although evidence may raise the probability of a
hypothesis above the value it achieves on back-
ground knowledge alone, every such increase in
probability has to be attributed entirely to the de-
ductive connections that exist between the hypoth-
esis and the evidence (Popper and Miller 1987).

In other words if P(hle) > P(h) this is
only because ¢ F h Vv e. The Popper-Miller
argument found both critics and supporters. Two
basic arguments of the critics were that (1) de-
ductive relations only set limits to probabilistic
support; infinitely many probability distributions

http://dx.doi.org/10.1007/978-1-4899-7687-1_390
http://dx.doi.org/10.1007/978-1-4899-7687-1_592

640

can still be defined on any given fixed system of
propositions and (2) Popper—Miller are mischar-
acterizing induction as the absence of deductive
relations, when it actually means ampliative in-
ference: concluding more than the premises entail
(Cussens 1996).

Causality and Hempel’'s Paradox

The branch of philosophy concerned with how
evidence can confirm scientific hypotheses is
known as » confirmation theory. Inductivists
take the position (against Popper) that observing
data which follows from a hypothesis not only
fails to refute the hypothesis, but also confirms it
to some degree: seeing a white swan confirms the
hypothesis that all swans are white, because

Vx : swan(x) — white(x), swan(white_swan)

F swan(white_swan).

But, by the same argument it follows that observ-
ing any nonwhite, nonswan (say a black raven)
also confirms that all swans are white, since:

Vx : swan(x) — white(x), ~white(black_reven)

F —(black_reven).

This is Hempel’s paradox to which there are
a number of possible responses. One option is
to accept that the black raven is a confirming
instance, as one object in the universe has been
ruled out as a potential refuter. The degree of
confirmation is however of “a miniscule and
negligible degree” (Howson and Urbach 1989,
p- 90). Another option is to reject the formulation
of the hypothesis as a material implication where
Vx : swan(x) — white(x) is just another way
of writing Vx : —swan(x)V white(x). Instead,
to be a scientific hypothesis of any interest the
statement must be interpreted causally. This is
the view of Imre Lakatos (1922—-1974), and since
any causal statement has a (perhaps implicit)
ceteris paribus (“‘all other things being equal”)
clause this has implications for refutation also.

... “all swans are white,” if true, would be a mere
curiosity unless it asserted that swanness causes

Induction as Inverted Deduction

whiteness. But then a black swan would not refute
this proposition, since it may only indicate other
causes operating simultaneously. Thus “all swans
are white” is either an oddity and easily disprovable
or a scientific proposition with a ceteris paribus
clause and therefore easily undisprovable (Lakatos
1970, p. 102).

Cross-References

Abduction
Classification

Recommended Reading

Bacchus F, Grove A, Halpern JY, Koller D (1996) From
statistical knowledge bases to degrees of belief.
Artif Intell 87(1-2):75-143

Carnap R (1950) Logical foundations of probability.
University of Chicago Press, Chicago

Cussens J (1996) Deduction, induction and probabilis-
tic support. Synthese 108(1):1-10

Howson C, Urbach P (1989) Scientific reasoning: the
Bayesian approach. Open Court, La Salle

Hume D (1739) A treatise of human nature, book one
(Anonymously published)

Hume D (1740) An abstract of a treatise of human
nature. (Anonymously published as a pamphlet).
Printed for C. Borbet, London

Lakatos I (1970) Falsification and the methodology of
scientific research programmes. In: Lakatos I, Mus-
grave A (eds) Criticism and the growth of knowl-
edge. Cambridge University Press, Cambridge,
pp 91-196

Popper KR (1959) The logic of scientific discov-
ery. Hutchinson, London (Translation of Logik der
Forschung, 1934)

Popper KR, Miller D (1984) The impossibility of
inductive probability. Nature 310:434

Popper KR, Miller D (1987) Why probabilistic support
is not inductive. Philos Trans R Soc Lond 321:
569-591

Wolpert DH (1992) On the connection between in-
sample testing and generalization error. Complex
Syst 6: 47-94

Induction as Inverted Deduction

Logic of Generality

http://dx.doi.org/10.1007/978-1-4899-7687-1_156
http://dx.doi.org/10.1007/978-1-4899-7687-1_1
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_489

Inductive Database Approach to Graphmining

Inductive Bias
Synonyms

Learning bias; Variance hint

Definition

Most ML algorithms make predictions concern-
ing future data which cannot be deduced from
already observed data. The inductive bias of an
algorithm is what choses between different possi-
ble future predictions. A strong form of inductive
bias is the learner’s choice of hypothesis/model
space which is sometimes called declarative bias.
In the case of Bayesian analysis, the inductive
bias is encapsulated in the prior distribution.

Cross-References

Induction
Learning as Search

Inductive Database Approach to
Graphmining

Stefan Kramer
Technische Universitit Miinchen, Garching b.
Miinchen, Germany

Overview

The inductive database approach to graph min-
ing can be characterized by (1) the concept of
querying for (subgraph) patterns in databases of
graphs, and (2) the use of specific data structures
representing the space of solutions. For the for-
mer, a query language for the specification of
the patterns of interest is necessary. The latter
aims at a compact representation of the solution
patterns.

641

Pattern Domain

In contrast to other graph mining approaches,
the inductive database approach to graph mining
(De Raedt and Kramer 2001; Kramer et al. 2001)
focuses on simple patterns (paths and trees) and
complex queries (see below), not on complex
patterns (general subgraphs) and simple queries
(minimum frequency only). While the first ap-
proaches were restricted to paths as patterns in
graph databases, they were later extended toward
unrooted trees (Riickert and Kramer 2003, 2004).
Most of the applications are dealing with struc-
tures of small molecules and structure—activity
relationships (SARs), that is, models predicting
the biological activity of chemical compounds.

Query Language

The conditions on the patterns of interest are
usually called constraints on the solution space.
Simple constraints are specified by so-called
query primitives. Query primitives express
frequency-related or syntactic constraints. As
an example, consider the frequency-related
query primitive f(p, D) > t, meaning that a
subgraph pattern p has to occur with a frequency
of at least ¢ in the database of graphs D.
Analogously, other frequency-related primitives
demand a maximum frequency of occurrence,
or a minimum agreement with the target class
(e.g., in terms of the information gain or the y?
statistic). Answering frequency-related queries
generally requires database access. In contrast
to frequency-related primitives, syntax-related
primitives only restrict the syntax of solution
(subgraph) patterns, and thus do not require
database access. For instance, we may demand
that a pattern p is more specific than “c:c-CI”
(formally p > c:c-Cl) or more general than “C-
c:c:e:xc:e-Cl” (formally p < C-c:c:c:c:c-Cl). The
strings in the primitive contain vertex (e.g., “C,’
“c,” “CI’...) and edge labels (e.g., “:,)” “7...)
of a path in a graph. Many constraints on patterns
can be categorized as either monotonic or anti-
monotonic. Minimum frequency constraints,
for instance, are anti-monotonic, because all

http://dx.doi.org/10.1007/978-1-4899-7687-1_100246
http://dx.doi.org/10.1007/978-1-4899-7687-1_100500
http://dx.doi.org/10.1007/978-1-4899-7687-1_388
http://dx.doi.org/10.1007/978-1-4899-7687-1_444

642

subpatterns (in our case: subgraphs) are frequent
as well, if a pattern is frequent (according to
some user-defined threshold) in a database.
Vice versa, maximum frequency is monotonic,
because if a pattern is not too frequent, then all
superpatterns (in our case: supergraphs) are not
too frequent either. Anti-monotonic or monotonic
constraints can be solved by variants of level-
wise search and APriori (De Raedt and Kramer
2001; Kramer et al. 2001; Mannila and Toivonen
1997). Other types of constraints involving
convex functions, for example, related to the
target class, can be solved by branch-and-bound
algorithms (Morishita and Sese 2000). Typical
query languages offer the possibility to combine
query primitives conjunctively or disjunctively.

Data Structures

It is easy to show that solutions to conjunctions of
monotonic and anti-monotonic constraints can be
represented by version spaces, and in particular,
borders of the most general and the most spe-
cific patterns satisfying the constraints (De Raedt
and Kramer 2001; Mannila and Toivonen 1997).
Version spaces of patterns can be represented in
data structures such as version space trees (De
Raedt et al. 2002; Riickert and Kramer 2003).
For sequences, data structures based on suffix
arrays are known to be more efficient than data
structures based on version spaces (Fischer et al.
2006). Query languages allowing disjunctive nor-
mal forms of monotonic or anti-monotonic prim-
itives yield multiple version spaces as solutions,
represented by generalizations of version space
trees (Lee and De Raedt 2003). The inductive
database approach to graph mining can also be
categorized as constraint-based mining, as the
goal is to find solution patterns satisfying user-
defined constraints.

Recommended Reading

De Raedt L, Kramer S (2001) The levelwise version
space algorithm and its application to molecular
fragment finding. In: Proceedings of the seventeenth

Inductive Inference

international joint conference on artificial intelli-
gence (IJCAI 2001). Morgan Kaufmann, San Fran-
cisco

De Raedt L, Jaeger M, Lee SD, Mannila H (2002) A
theory of inductive query answering. In: Proceed-
ings of the 2002 IEEE international conference on
data mining (ICDM 2002). IEEE Computer Society,
Washington, DC

Fischer J, Heun V, Kramer S (2006) Optimal string
mining under frequency constraints. In: Proceedings
of the tenth European conference on the principles
and practice of knowledge discovery in databases
(PKDD 2006). Springer, Berlin

Kramer S, De Raedt L, Helma C (2001) Molecular
feature mining in HIV data. In: Proceedings of the
seventh ACM SIGKDD international conference on
knowledge discovery and data mining (KDD 2001).
ACM, New York

Lee SD, De Raedt L (2003) An algebra for inductive
query evaluation. In: Proceedings of the third IEEE
international conference on data mining (ICDM
2003). IEEE Computer Society, Washington, DC

Mannila H, Toivonen H (1997) Levelwise search and
borders of theories in knowledge discovery. Data
Min Knowl Discov 1(3):241-258

Morishita S, Sese J (2000) Traversing itemset lat-
tice with statistical metric pruning. In: Proceed-
ings of the nineteenth ACM SIGMOD-SIGACT-
SIGART symposium on principles of database sys-
tems (PODS 2000). ACM, New York

Riickert U, Kramer S (2003) Generalized version space
trees. In: Boulicaut J-F, Dzeroski S (eds) Pro-
ceedings of the second international workshop on
knowledge discovery in inductive databases (KDID-
2003). Berlin, Springer

Riickert U, Kramer S (2004) Frequent free tree discov-
ery in graph data. In: Proceedings of the ACM sym-
posium on applied computing (SAC 2004). ACM,
New York

Inductive Inference

Sanjay Jain'! and Frank Stephan?

School of Computing, National University of
Singapore, Singapore, Singapore

2Department of Mathematics, National
University of Singapore, Singapore, Singapore

Definition
Inductive inference is a theoretical framework

to model learning in the limit. The typical sce-
nario is that the learner reads successively datum

Inductive Inference

do,dy,d,,... about a concept and outputs in
parallel hypotheses ey, e;, ez, ... such that each
hypothesis e, is based on the preceding data
do,dy, ..., dy—1. The hypotheses are expected to
converge to a description for the data observed;
here the constraints on how the convergence has
to happen depend on the learning paradigm con-
sidered. In the most basic case, almost all e, have
to be the same correct index e, which correctly
explains the target concept. The learner might
have some preknowledge of what the concept
might be, that is, there is some class C of possible
target concepts — the learner has only to find out
which of the concepts in C is the target concept;
on the other hand, the learner has to be able to
learn every concept which is in the class C.

Detail

The above given scenario of learning is
essentially the paradigm of inductive inference
introduced by Gold (1967) and known as Ex
(explanatory) learning. Usually one considers
learning of recursive functions or recursively
enumerable languages. Intuitively, using coding,
one can code any natural phenomenon into
subsets of N, the set of natural numbers. Thus,
recursive functions from N to N or recursively
enumerable subsets of N (called languages here)
are natural concepts to be considered.

Here we will mainly consider language learn-
ing. Paradigms related to function learning can
be similarly defined and we refer the reader to
Osherson et al. (1986) and Jain et al. (1999).

One normally considers data provided to the
learner to be either full positive data (i.e., the
learner is told about every element in the tar-
get language, one element at a time, but never
told anything about elements not in the target
language) or full positive data and full negative
data (i.e., the learner is told about every element,
whether it belongs or does not belong to the target
language). Intuitively, the reason for considering
only positive data is that in many natural situa-
tions, such as language learning by children and
scientific exploration (such as in astronomy), one
gets essentially only positive data.

643

A text is a sequence of elements over N U {#}.
Content of a text 7', denoted ctnt(7T'), is the set
of natural numbers in the range of 7. For a
finite sequence o over N U {#}, one can similarly
define ctnt(c) as the set of natural numbers in
the range of 0. A text T is said to be for a
language L if ctnt(7) = L. Intuitively, a text
T for L represents sequential presentation of all
elements of L, with #’s representing pauses in
the presentation. For example, the only text for
@ is #°°. T'[n] denotes the initial sequence of T of
length n. Thatis, T'[n] = T(0)T(1)...T(n —1).
We let SEQ denote the set of all finite sequences
over N U {#}. An informant I is a sequence
of elements over N x {0, 1} U {#}, where for
each x € N, exactly one of (x,0) or (x,1) is
in the range of /. An informant [is for L if
range(l) — {#} = {(x, yr(x)) : x € N}, where
x L denotes the characteristic function of L.

Alearner M is a mapping from SEQ to NU{?}.
Intuitively, output of ? denotes that the learner
does not wish to make a conjecture on the cor-
responding input. The output of e denotes that
the learner conjectures hypothesis W,, where
Wo, Wi, ... is some acceptable numbering of all
the recursively enumerable languages. We say
that a learner M converges on 7T to e if, for all
but finitely many n, M(T [n]) = e.

Explanatory Learning

A learner M TxtEx identifies a language L iff,
for all texts 7" for L, M converges to an index e
such that W, = L. Learner M TxtEx identifies a
class £ of languages if M TxtEx identifies each
language in the class £. Finally, one says that
a class £ is TxtEx learnable if some learner
TxtEx identifies £. TxtEx denotes the collection
of all TxtEx-learnable classes. One can similarly
define InfEx identification, for learning from
informants instead of texts. The following classes
are important examples:

RE = {L : L is recursively enumerable};
FIN = {L : L is a finite subset of N};
KFIN = {L : L=KUH forsome H € FIN};

644

SD = {L : Wpinr) = L};
COFIN = {L : N — L is finite};
SDSIZE ={{e+ x:x =0V x < |W,|}
: We is finite};
SDALL = {{e +x : x e N} : e € N}.

Here, in the definition of KFIN, K is the halting
problem, a standard example of a set which is
recursively enumerable but not recursive. The
classes FIN, SD, SDSIZE, and SDALL are TxtEx
learnable (Case and Smith 1983; Gold 1967):
The learner for FIN always conjectures the set
of all data observed so far. The learner for SD
conjectures the least datum seen so far as, even-
tually, the least observed datum coincides with
the least member of the language to be learned.
The learner for SDSIZE as well as the learner
for SDALL also find in the limit the least datum
e to occur and translate it into an index for the
e-th set to be learned. The class KFIN is not
TxtEx learnable, mainly for computational rea-
sons. It is impossible for the learner to determine
if the current input datum belongs to K or not;
this forces a supposed learner either to make
infinitely many mind changes on some text for
K or to make an error on K U {x}, for some
x ¢ K. The union SDSIZE U SDALL is also
not TxtEx learnable, although it is the union of
two learnable classes; so it is one example of
various nonunion theorems. Gold (1967) gave
even a more basic example: FIN U {N} is not
TxtEx learnable. Furthermore, the class COFIN
is also not TxtEx learnable. However, except
for RE, all the classes given above are InfEx
learnable, so when being fed the characteristic
function in place of only an infinite list of all
elements, the learners become, in general, more
powerful.

Note that the learner never knows when it has
converged to its final hypothesis. If the learner is
required to know when it has converged to the
final hypothesis, then the criterion of learning is
the same as finite learning. Here a finite learner is
defined as follows: the learner keeps outputting
the symbol ? while waiting for enough data to
appear and, when the data observed are sufficient,

Inductive Inference

the learner outputs exactly one conjecture differ-
ent from ?, which then is required to be an index
for the input concept in the hypothesis space. The
class of singletons {{n} : n € N} is finitely
learnable; the learner just waits until the unique
element n of {n} has appeared and then knows
the language. In contrast to this, the classes FIN
and SD are not finitely learnable.

Blum and Blum (1975) obtained the follow-
ing fundamental result: Whenever M learns L
explanatorily from text, then L has a locking
sequence for M. Here, a sequence o is said to be a
locking sequence for M on L if (a) ctnt(o) C L,
(b) for all t such that ctnt(z) € L, M(o) =
M(ot), and (c) Wme) = L. If only the first
two conditions are satisfied, then the sequence is
called a stabilizing sequence for M on L (Fulk
1990). It was shown by Blum and Blum (1975)
that if a learner M TxtEXx identifies L, then there
exists a locking sequence o for M on L. One can
use this result to show that certain classes, such
as FIN U {N}, are not TxtEx learnable.

Beyond Explanatory Learning

While TxtEx learning requires that the learner
syntactically converges to a final hypothesis,
which correctly explains the concept, this is no
longer required for the more general criterion
of behaviorally correct learning (called TxtBe
learning). Here, the learner may not syntactically
converge, but it is still required that all its
hypothesis after sometime are correct; see
Barzdins (1974b), Case and Lynes (1982), Case
and Smith (1983), Osherson et al. (1986), and
Osherson and Weinstein (1982). So there is
semantic convergence to a final hypothesis. Thus,
a learner M TxtBc identifies a language L if
for all texts T for L, for all but finitely many
n, Waerinp) = L. One can similarly define
TxtBc learnability of classes of languages and
the collection TxtBe. Every TxtEx-learnable
class is Be learnable, but the classes KFIN and
SDSIZE U SDALL are TxtBc learnable but not
TxtEx learnable. Furthermore, InfEx ¢ TxtBc,
for example, FIN U {N} is InfEx learnable but
not TxtBc learnable. On the other hand, every

Inductive Inference

class that is finitely learnable from informant is
also TxtEx learnable (Sharma 1998).

An intermediate learning criterion is TxtFex
learning (Case 1999) or vacillatory learning,
which is similar to TxtBc learning except that
we require that the number of distinct hypotheses
output by the learner on any text is finite. Here
one says that the learner TxtFex, learns the
language L if the number of distinct hypotheses
that appears infinitely often on any text 7' for L
is bounded by n. Note that TxtFex, = TxtFex.
Case (1999) showed that

TxtEx = TxtFex; C TxtFex, C TxtFex;

C ... C TxtFex, C TxtBc.

For example, the class SD U SDALL is actu-
ally TxtFex, learnable and not TxtEx learn-
able. The corresponding notion has also been
considered for function learning, but there the
paradigms of explanatory and vacillatory learning
coincide (Case and Smith 1983).

Blum and Blum (1975), Case and Lynes
(1982), and Case and Smith (1983) also
considered allowing the final (or final sequence
of) hypothesis to be anomalous; Blum and Blum
(1975) considered * anomalies, and (Case and
Lynes 1982; Case and Smith 1983) considered
the general case. Here the final grammar for
the input language may not be perfect, but
may have up to a anomalies. A grammar n
is @ anomalous for L (written W, =% L) iff
card ((L—W,) U (W,—L)) < a. Here one
also considers finite anomalies, denoted by
x-anomalies, where card(S) < * just means that
S is finite. Thus, a learner M TxtEx? identifies
a language L iff, for all texts 7" for all L, M
on T converges to a hypothesis e such that
W, =% L. One can similarly define TxtBc®-
learning criteria. It can be shown that

TxtEx = TxtEx’ C TxtEx' C TxtEx®> C ...
C TxtEx*
and

TxtBe = TxtBc® C TxtBe' C TxtBe? C ...
C TxtBc*.

645

Let SD, = {L Whincy =" L}. Then
one can show (Case and Lynes 1982; Case
and Smith 1983) that SD,,; € TxtEx""! —
TxtEx". However, there is a trade-off between
behaviorally correct learning and explanatory
learning for learning with anomalies. On one
hand, TxtBe ¢ TxtEx*, but on the other hand
TxtEx*"T! ¢ TxtBc" and TxtEx”" C TxtBc”.
However, for learning from informants, we have
InfEx* C InfBc (see Case and Lynes (1982) for
the above results).

Consistent and Conservative
Learning

Besides the above basic criteria of learning, re-
searchers have also considered several properties
that are useful for the learner to satisfy.

A learner M is said to be consistent on L iff,
for all texts T for L, ctnt(T[n]) S Wm(r[n)-
That is, the learner’s hypothesis is consistent with
the data seen so far. There are three notions
of consistency considered in the literature: (a)
TCons, in which the learner is expected to be
consistent on all inputs, irrespective of whether
they represent some concept from the target class
or not (Wiehagen and Liepe 1976); (b) Cons, in
which the learner is just expected to be consistent
on the languages in the target class being learned,
though the learner may be inconsistent or even
undefined on the input outside the target class
(Barzdin$ 1974a); and (c) RCons, in which the
learner is expected to be defined on all inputs, but
required to be consistent only on the languages in
the target class (Jantke and Beick 1981). It can be
shown that TCons C RCons C Cons C TxtEx
(Jantke and Beick 1981; Wiehagen and Liepe
1976; Barzdin$ 1974a; Wiehagen and Zeugmann
1995).

A learner M is said to be conservative (An-
gluin 1980) if it does not change its mind unless
the data contradicts its hypothesis. That is, M
conservatively learns L iff, for all texts T for L,
if M(T'[n]) # M(T[n + 1]), then ctnt(T'[n +
1]) € Wamrn)- It can be shown that conserva-
tiveness 1is restrictive, that is, there are classes
of languages, which can be TxtEx identified

646

but not conservatively identified. An example
of a class that can be identified explanatorily
but not conservatively is the class containing all
sets from SDALL, that is, the sets of the form
{e,e +1,e +2,...}, and all sets with minimum
ks and up to s elements where ko, kq,ks,...
is a recursive one-one enumeration of K. The
general idea why this class is not conservatively
learnable is that when the learner reads the data
e,e + 1,e + 2,..., it will, after some finite
time based on data e,e + l,e + 2,...,e + s,
output a conjecture which contains these data
plus e 4+ s + 1; but conservative learning would
then imply that e € K iff e = k, for some r <'s,
contradicting the non-recursiveness of K.

Monotonicity

Related notions to conservativeness are the var-
ious notions on monotonic learning that impose
certain conditions on whether the previous hy-
pothesis is a subset of the next hypothesis or not.
The following notions are the three main ones.

* A learner M is said to be strongly mono-
tonic (Jantke 1991) on L iff, for all
texts T for L, Waerpp S Wwm@m+1-
Intuitively, strong monotonicity requires
that the hypothesis of the learner grows
with time.

e A learner M is said to be monotonic (Wieha-
gen 1990) on L iff, for all texts T for L,
Wumaany N L S Wam@m+1p N L. In mono-
tonicity, the growth of the hypothesis is re-
quired only with respect to the language being
learned.

* A learner M is said to be weakly mono-
tonic (Jantke 1991) on L iff, for all texts T’
for L, if ctnt(T'[n + 1]) S Wi(ra)), then
Wamain) € WsmTn+1))- That is, the learner
behaves strongly monotonically, as long as the
input data is consistent with the hypothesis.

An example for a strong monotonically learn-
able class is the class SDALL. When the learner
currently conjectures {e,e + 1l,e + 2,...} and

Inductive Inference

it sees a datum d < e, then it makes a mind
change to {d,d + 1,d + 2,...} which is a
superset of the previous conjecture; it is easy
to see that all mind changes are of this type.
It can be shown that strong monotonic learning
implies monotonic learning and weak monotonic
learning, though monotonic learning and weak
monotonic learning are incomparable (and thus
both are proper restrictions of TxtEx learning).
For example, consider the class C consisting of
the set {0,2,4,...} of all even numbers and,
for each n, the set {0,2,4,...,2n} U {2n + 1}
consisting of the even numbers below 27 and the
odd number 21 + 1. Then, C is monotonically but
not strong monotonically learnable.

Lange et al. (1992) also considered the dual
version of the above criteria, where dual strong
monotonicity learning of L requires that, for all
texts 7' for L, WM(T[n]) 2 WM(T[n+l])§ dual
monotonicity requires that, for all texts 7' for
L, Wury N (N = L) 2 Wap+p N (N -
L), and dual weak monotonicity requires that,
if ctnt(T'[n + s]) S Wa(rny, then Wyrpay) 2
WM(T[n+s])-

In a similar fashion, various other properties of
learners have been considered. For example, reli-
ability (Blum and Blum 1975; Minicozzi 1976)
postulates that the learner does not converge on
the input text unless it learns it; prudence (Fulk
1990; Osherson et al. 1986) postulates that the
learner outputs only indices of languages, which
it also learns; and confidence (Osherson et al.
1986) postulates that the learner converges on
every text to some index, even if the text is for
some language outside the class of languages to
be learned.

Indexed Families

Angluin (1980) initiated a study of learning in-
dexed families of recursive languages. A class of
languages (along with its indexing) Lo, L1, ... is
an indexed family if membership questions for
the languages are uniformly decidable, that is,
x € L; can be recursively decided in x and
i. Angluin gave an important characterization of
indexed families that are TxtEx learnable.

Inductive Inference

Suppose aclass £L = {Lg, L, ...} (along with
the indexing) is given. Then, S is said to be a tell-
tale set (Angluin 1980) of L; iff S is finite, and
forall j,if SC L;andL; € L;,thenL; = L.
It can be shown that for any class of languages
that are learnable (in TxtEx or TxtBec sense),
there exists a tell-tale set for each language in the
class. Moreover, Angluin showed that for indexed
families, £L = Ly, L1, ..., one can TxtEx learn £
iff one can recursively enumerate a tell-tale set for
each L;, effectively from i. Within the framework
of learning indexed families, a special emphasis
is given to the hypothesis space used; so the
following criteria are considered for defining the
learnability of a class £ in dependence of the hy-
pothesis space H = Hy, Hy, Theclass L is

* Exactly learnable iff there is a learner using
the same hypothesis space as the given class,
that is, H,, = L,, for all n;

e Class-preservingly learnable iff there is a
learner using a hypothesis space H with
{Lo,Li,...} = {Hy, Hy,...} — here the
order and the number of occurrences in the
hypothesis space can differ, but the hypothesis
space must consist of the same languages as
the class to be learned, and no other languages
are allowed in the hypothesis space;

e Class-comprisingly learnable iff there is a
learner using a hypothesis space H with
{Lo, Lq,.. } - {H(), Hy, .. } — here the
hypothesis space can also contain some
further languages not in the class to be learned
and the learner does not need to identify these
additional languages;

* Prescribed learnable iff for every hypothesis
space H containing all the languages from L,
there is a learner for £ using this hypothesis
space;

* Uniformly learnable iff for every hypothesis
space ‘H with index e containing all the lan-
guages from L one can synthesize a learner
M, which succeeds to learn £ using the hy-
pothesis space H.

Note that in all five cases H only ranges over
indexed families. This differs from the standard
case where H is an acceptable numbering of

647

all recursively enumerable sets. We refer the
reader to the survey of Lange et al. (2008) for
an overview on work done on learning indexed
families (TxtEx learning, learning under various
properties of learners, as well as characterizations
of such learning criteria) and to (Jain et al. 2008;
Lange and Zeugmann 1993). While for explana-
tory learning and every class £, all these five no-
tions coincide, these notions turn out to be differ-
ent for other learning notions like those of conser-
vative learning, monotonic learning, and strong
monotonic learning. For example, the class of all
finite sets is not prescribed conservatively learn-
able: one can make an adversary hypothesis space
where some indices contain large spurious ele-
ments, so that a learner is forced to do nonconser-
vative mind change to obtain correct indices for
the finite sets. The same example as above works
for showing the limitations of prescribed learning
for monotonic and strong monotonic learning.

The interested reader is referred to the
textbook Systems that Learn (Jain et al. 1999;
Osherson et al. 1986) and the papers below as
well as the references found in these papers for
further reading. Complexity issues in inductive
inference like the number of mind changes
necessary to learn a class or oracles needed to
learn some class can be found under the entries
Computational Complexity of Learning and
Query-Based Learning. The entry Connections
between Inductive Inference and Machine
Learning provides further information on this
topic.

Cross-References

Connections Between Inductive Inference and
Machine Learning

Acknowledgements Sanjay Jain was supported in part
by NUS grant numbers C252-000-087-001, R146-000-
181-112, R252-000-534-112. Frank Stephen was sup-
ported in part by NUS grant numbers R146-000-181-112,
R252-000-534-112.

Recommended Reading

Angluin D (1980) Inductive inference of formal lan-
guages from positive data. Inf Control 45:117-135

http://dx.doi.org/10.1007/978-1-4899-7687-1_52

648

Barzdins J (1974a) Inductive inference of automata,
functions and programs. In: Proceedings of the
international congress of mathematics, Vancouver,
pp 771-776

Barzdins J (1974b) Two theorems on the limiting
synthesis of functions. In: Theory of algorithms
and programs, vol 1. Latvian State University, Riga,
pp 82-88 (In Russian)

Blum L, Blum M (1975) Toward a mathematical theory
of inductive inference. Inf Control 28:125-155

Case J (1999) The power of vacillation in language
learning. SIAM J Comput 28:1941-1969

Case J, Lynes C (1982) Machine inductive
inference and language identification. In:
Nielsen M, Schmidt EM (eds) Proceedings of
the 9th international colloquium on automata,
languages and programming. Lecture notes in
computer science, vol 140. Springer, Heidelberg,
pp 107-115

Case J, Smith C (1983) Comparison of identifica-
tion criteria for machine inductive inference. Theor
Comput Sci 25:193-220

Fulk M (1990) Prudence and other conditions on for-
mal language learning. Inf Comput 85:1-11

Gold EM (1967) Language identification in the limit.
Inf Control 10:447-474

Jain S, Osherson D, Royer J, Sharma A (1999) Systems
that learn: an introduction to learning theory, 2nd
edn. MIT Press, Cambridge

Jain S, Stephan F, Ye N (2008) Prescribed learning of
indexed families. Fundam Inf 83:159-175

Jantke KP (1991) Monotonic and non-monotonic in-
ductive inference. New Gener Comput 8:349-360

Jantke KP, Beick H-R (1981) Combining postulates
of naturalness in inductive inference. J Inf Process
Cybern (EIK) 17:465-484

Lange S, Zeugmann T (1993) Language learn-
ing in dependence on the space of hypotheses.
In: Proceedings of the sixth annual conference
on computational learning theory, Santa Cruz,
pp 127-136

Lange S, Zeugmann T, Kapur S (1992) Class preserv-
ing monotonic language learning. Technical report
14/92, GOSLER-Report, FB Mathematik und Infor-
matik, TH Leipzig

Lange S, Zeugmann T, Zilles S (2008). Learn-
ing indexed families of recursive languages from
positive data: a survey. Theor Comput Sci 397:
194-232

Minicozzi E (1976) Some natural properties of strong
identification in inductive inference. Theor Comput
Sci 2:345-360

Osherson D, Weinstein S (1982) Criteria of language
learning. Inf Control 52:123-138

Osherson D, Stob M, Weinstein S (1986) Systems that
learn, an introduction to learning theory for cog-
nitive and computer scientists. Bradford—-The MIT
Press, Cambridge

Sharma A (1998) A note on batch and incremental
learnability. J Comput Syst Sci 56:272-276

Inductive Inference Rules

Wiehagen R (1990) A thesis in inductive inference. In:
Dix J, Jantke K, Schmitt P (eds) Nonmonotonic and
inductive logic, 1st international workshop. Lecture
notes in artificial intelligence, vol 543. Springer,
Berlin, pp 184-207

Wiehagen R, Liepe W (1976) Charakteristische Eigen-
schaften von erkennbaren Klassen rekursiver Funk-
tionen. J Inf Process Cybern (EIK) 12:421-438

Wiehagen R, Zeugmann T (1995) Learning and con-
sistency. In: Jantke KP, Lange S (eds) Algorithmic
learning for knowledge-based systems (GOSLER),
final report. Lecture notes in artificial intelligence,
vol 961. Springer, Heidelberg, pp 1-24

Inductive Inference Rules

Logic of Generality

Inductive Learning
Synonyms

Statistical learning

Definition

Inductive learning is a subclass of machine learn-
ing that studies algorithms for learning knowl-
edge based on statistical regularities. The learned
knowledge typically has no deductive guarantees
of correctness, though there may be statistical
forms of guarantees.

Inductive Logic Programming

Luc De Raedt
Department of Computer Science, Katholieke
Universiteit Leuven, Heverlee, Leuven, Belgium

Abstract

Inductive logic programming is the subfield
of machine learning that uses » First-Order
Logic to represent hypotheses and data.

http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_100445
http://dx.doi.org/10.1007/978-1-4899-7687-1_103

Inductive Logic Programming

Because first-order logic is expressive and
declarative, inductive logic programming
specifically targets problems involving
structured data and background knowledge.
Inductive logic programming tackles a wide
variety of problems in machine learning,
including classification, regression, clustering,
and reinforcement learning, often using
“upgrades” of existing propositional machine
learning systems. It relies on logic for
knowledge representation and reasoning
purposes. Notions of coverage, generality,
and operators for traversing the space of
hypotheses are grounded in logic; see
also » Logic of Generality. Inductive logic
programming systems have been applied to
important applications in bio- and chemo-
informatics, natural language processing, and
web mining.

Synonyms

Learning in logic; Multi-relational data mining;
Relational data mining; Relational learning

Motivation

The first motivation and most important moti-
vation for using inductive logic programming is
that it overcomes the representational limitations
of attribute-value learning systems. Such systems
employ a table-based representations where the
instances correspond to rows in the table, the
attributes to columns, and for each instance, a sin-
gle value is assigned to each of the attributes. This
is sometimes called the single-table single-tuple
assumption. Many problems, such as the Bon-
gard problem shown in Fig. 1, cannot elegantly
be described in this format. Bongard (1970) in-
troduced about a hundred concept learning or
pattern recognition problems, each containing six
positive and six negative examples. Even though
Bongard problems are toy problems, they are
similar to real-life problems such as structure—
activity relationship prediction, where the goal

649

is to learn to predict whether a given molecule
(as represented by its 2D graph structure) is
active or not. It is hard — if not, impossible — to
squeeze this type of problem into the single-table
single-tuple format for various reasons. Attribute-
value learning systems employ a fixed number of
attributes and also assume that these attributes are
present in all of the examples. This assumption
does not hold for the Bongard problems as the
examples possess a variable number of objects
(shapes). The singe-table single-tuple representa-
tion imposes an implicit order on the attributes,
whereas there is no natural order on the objects
in the Bongard problem. Finally, the relationships
between the objects in the Bongard problem are
essential and must be encoded as well. It is un-
clear how to do this within the single-table single-
tuple assumption. First-order logic and relational
representations allow one to encode problems
involving multiple objects (or entities) as well as
the relationships that hold them in a natural way.

The second motivation for using inductive
logic programming is that it employs logic,
a declarative representation. This implies that
hypotheses are understandable and interpretable.
By using logic, inductive logic programming
systems are also able to employ background
knowledge in the induction process. Background
knowledge can be provided in the form of
definitions of auxiliary relations or predicates
that may be used by the learner. Finally,
logic provides a well-understood theoretical
framework for knowledge representation and
reasoning. This framework is also useful for
machine learning, in particular, for defining and
developing notions such as the covers relation,
generality, and refinement operators; see also

Logic of Generality.

Theory

Inductive logic programming is usually defined
as concept learning using logical representations.
It aims at finding a hypothesis (a set of rules) that
covers all positive examples and none of the neg-
atives, while taking into account a background
theory. This is typically realized by searching a

http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_100257
http://dx.doi.org/10.1007/978-1-4899-7687-1_573
http://dx.doi.org/10.1007/978-1-4899-7687-1_100405
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_489

650

Inductive Logic Programming

Inductive Logic
Programming, Fig.1 A
complex classification
problem: Bongard problem
47, developed by the

A|[%e

o O

Russian scientist Bongard
(1970). It consists of 12

scenes (or examples), 6 of
class @ and 6 of class ©.

The goal is to discriminate
between the two classes \V4

O

A v

A®| | 1006

space of possible hypotheses. More formally, the
traditional inductive logic programming defini-
tion reads as follows:

Given

* A language describing hypotheses L,

* A language describing instances L;

* Possibly a background theory B, usually in the
form of a set of (definite) clauses

* The covers relation that specifies the relation
between L and L;, that is, when an example
e is covered (considered positive) by a hy-
pothesis &, possibly taking into account the
background theory B

* A set of positive and negative examples £ =
PUN

Find a hypothesis & € L such that for all p €
P :covers(B,h, p) =true andforalln € N :
covers(B,h,n) = false.

This definition can, as for » Concept-Learning
in general, be extended to cope with noisy data
by relaxing the requirement that all examples be
classified correctly.

There exist different ways to represent learn-
ing problems in logic, resulting in different learn-
ing settings. They typically use definite clause
logic as the hypothesis language £; but differ in
the notion of an example. One can learn from

©

entailment, from interpretations, or from proofs,
cf. » Logic of Generality. The most popular set-
ting is learning from entailment, where each
example is a clause and covers(B, h,e) = true
ifandonlyif BUK = e.

The top leftmost scene in the Bongard problem
of Fig. 1 can be represented by the clause:

positive :-

triangl
in(ol, o

The other scenes can be encoded in the same
way. The following hypothesis then forms a solu-
tion to the learning problem:

positive :- object (X),
object (Y),
circle(X),
triangle (Y),

in(X,Y).

It states that those scenes having a circle inside
a triangle are positive. For some more complex
Bongard problems, it could be useful to employ
background knowledge. It could, for instance,
state that triangles are polygons.

polygon(X) :- triangle (X).

http://dx.doi.org/10.1007/978-1-4899-7687-1_154
http://dx.doi.org/10.1007/978-1-4899-7687-1_489

Inductive Logic Programming

Using this clause as background theory, an
alternative hypothesis covering all positives and
none of the negatives is

positive :- object (X),
object (Y),
circle (X)
polygon(Y
n(X,Y).

An alternative for using long clauses as exam-
ples is to provide an identifier for each example
and to add the corresponding facts from the
condition part of the clause to the background
theory. For the above example, the facts such as

)

object (el,0l) .
object (el,02).
circle(el,ol).
triangle (el,02).
n(el,ol,o2).
large (el,o02) .

would be added to the background theory, and the
positive example itself would then be represented
through the fact positive (el), where el is
the identifier. The inductive logic programming
literature typically employs this format for exam-
ples and hypotheses.

Whereas inductive logic programming origi-
nally focused on concept learning — as did the
whole field of machine learning — it is now being
applied to virtually all types of machine learn-
ing problems, including regression, clustering,
distance-based learning, frequent pattern mining,
reinforcement learning, and even kernel methods
and graphical models.

A Methodology

Many of the more recently developed inductive
logic programming systems have started from
an existing attribute-value learner and have
upgraded it toward the use of first-order logic
(Van Laer and De Raedt 2001). By examining
state-of-the-art inductive logic programming
systems, one can identify a methodology for
realizing this (Van Laer and De Raedt 2001). It
starts from an attribute-value learning problem
and system of interest and takes the following

651

two steps. First, the problem setting is upgraded
by changing the representation of the examples,
the hypotheses as well as the covers relation
toward first-order logic. This step is essentially
concerned with defining the learning setting,
and possible settings to be considered include
the already mentioned learning from entailment,
interpretations, and proofs settings. Once the
problem is clearly defined, one can attempt
to formulate a solution. Thus, the second step
adapts the original algorithm to deal with
the upgraded representations. While doing
so, it is advisable to keep the changes as
minimal as possible. This step often involves
the modification of the operators used to traverse
the search space. Different operators for realizing
this are introduced in the entry on the » Logic of
Generality.

There are many reasons why following
the methodology is advantageous. First, by
upgrading a learner that is already effective for
attribute-value representations, one can benefit
from the experiences and results obtained in
the propositional setting. In many cases, for
instance, decision trees, this implies that one can
rely on well-established methods and findings,
which are the outcomes of several decades
of machine learning research. It will be hard
to do better starting from scratch. Second,
upgrading an existing learner is also easier than
starting from scratch as many of the components
(such as heuristics and search strategy) can
be recycled. It is therefore also economic in
terms of man power. Third, the upgraded system
will be able to emulate the original one, which
provides guarantees that the output hypotheses
will perform well on attribute-value learning
problems. Even more important is that it will
often also be able to emulate extensions of the
original systems. For instance, many systems
that extend frequent item-set mining toward
using richer representations, such as sequences,
intervals, the use of taxonomies, graphs, and so
on, have been developed over the past decade.
Many of them can be emulated using the
inductive logic programming upgrade of Apriori
(Agrawal et al. 1996) called Warmr (Dehaspe
and Toivonen 2001). The upgraded inductive

http://dx.doi.org/10.1007/978-1-4899-7687-1_489

652

logic programming systems will typically be
more flexible than the systems it can emulate
but typically also less efficient because there is
a price to be paid for expressiveness. Finally,
it may be possible to incorporate new features
in the attribute-value learner by following the
methodology. One feature that is often absent
from propositional learners and may be easy to
incorporate is the use of a background theory.

It should be mentioned that the methodol-
ogy is not universal, that is, there exist also
approaches, such as Muggleton’s Progol (1995),
which have directly been developed in first-order
logic and for which no propositional counterpart
exists. In such cases, however, it can be inter-
esting to follow the inverse methodology, which
would specialize the inductive logic program-
ming system.

FOIL: An lllustration

One of the simplest and best-known inductive
logic programming systems is FOIL (Quinlan
1990). It can be regarded as an upgrade of a
rule learner such as CN2 (Clark and Niblett
1989). FOIL’s problem setting is an instance of
the learning from entailment setting introduced
above (though it restricts the background theory
to ground facts only and does not allow functors).

Like most rule-learning systems, FOIL em-
ploys a separate-and-conquer approach. It starts
from the empty hypothesis, and then repeatedly
searches for one rule that covers as many positive
examples as possible and no negative example,
adds it to the hypothesis, removes the positives
covered by the rule, and then iterates. This pro-
cess is continued until all positives are covered.
To find one rule, it performs a hill-climbing
search through the space of clauses ordered ac-
cording to generality. The search starts at the
most general rule, the one stating that all exam-
ples are positive, and then repeatedly specializes
it. Among the specializations, it then selects the
best one according to a heuristic evaluation based
on information gain. A heuristic, based on the
minimum description length principle, is then
used to decide when to stop specializing clauses.

Inductive Logic Programming

The key differences between FOIL and its
propositional predecessors are the representation
and the operators used to compute the special-
izations of a clause. It employs a refinement op-
erator under 6-subsumption (Plotkin 1970) (see
also » Logic of Generality). Such an operator
essentially refines clauses by adding atoms to the
condition part of the clause or applying substitu-
tions to a clause. For instance, the clause

positive :- triangle (X),
in(X,Y),

color (X,C) .
can be specialized to

positive :- triangle (X),
in(X,Y),

color (X, red) .

positive :- triangle(X),
in(X,Y),
color (X,C),
large (X) .
triangle (X),
in(X,Y),
color(X,C),
rectangle (Y) .

positive :-

The first specialization is obtained by substituting
the variable C by the constant red, the
other two by adding an atom (large (X),
rectangle (Y), respectively) to the condition
part of the rule. Inductive logic programming
systems typically also employ syntactic
restrictions — the so-called — that specify which
clauses may be used in hypotheses. For instance,
in the above example, the second argument of
the color predicate belongs to the type Color,
whereas the arguments of in are of type Object
and consist of object identifiers.

Application
Inductive logic programming has been suc-

cessfully applied to many application domains,
including bio- and chemo-informatics, ecology,

http://dx.doi.org/10.1007/978-1-4899-7687-1_489

Inductive Logic Programming

network mining, software engineering, infor-
mation retrieval, music analysis, web mining,
natural language processing, toxicology, robotics,
program synthesis, design, architecture, and
many others. The best-known applications
are in scientific domains. For instance, in
structure—activity relationship prediction, one
is given a set of molecules together with their
activities, and background knowledge encoding
functional groups, that is particular components
of the molecule, and the task is to learn rules
stating when a molecule is active or inactive.
This is illustrated in Fig.2 (after Srinivasan
et al. 1996), where two molecules are active
and two are inactive. One then has to find
a pattern that discriminates the actives from
the inactives. Structure—activity relationship
(SAR) prediction is an essential step in, for
instance, drug discovery. Using the general
purpose inductive logic programming system
Progol (Muggleton 1995) structural alerts, such
as that shown in Fig.2, have been discovered.
These alerts allow one to distinguish the actives
from the inactives — the one shown in the
figure matches both of the actives but none of
the inactives — and at the same time they are
readily interpretable and provide useful insight
into the factors determining the activity. To

Active

o=N ©O CH=N-NH-CI-INH2
|
o~ (0]

nitrofurazone

4-nitropentalcd]pyrene

653

solve structure—activity relationship prediction
problems using inductive logic programming,
one must represent the molecules and hypotheses
using the logical formalisms introduced above.
The resulting representation is very similar to
that employed in the Bongard problems: the
objects are the atoms and relationships the bonds.
Particular functional groups are encoded as
background predicates.

State-of-the-Art

The upgrading methodology has been applied
to a wide variety of machine learning systems
and problems. There exist now inductive logic
programming systems that:

* Induce logic programs from examples under
various learning settings. This is by far the
most popular class of inductive logic program-
ming systems. Well-known systems include
Aleph (Srinivasan 2007) and Progol (Mug-
gleton 1995) as well as various variants of
FOIL (Quinlan 1990). Some of these systems,
especially Progol and Aleph, contain many
features that are not present in propositional
learning systems. Most of these systems focus

Structural alert:

Inactive

6-nitro-7,8,9,10-tetrahydrobenzo[a]pyrene

N Y=Z
N+

4-nitroindole

Inductive Logic Programming, Fig. 2 Predicting mutagenicity (Srinivasan et al. 1996)

654

on a classification setting and learn the defini-
tion of a single predicate.

* Induce logical decision trees from examples.
These are binary decision trees containing
conjunctions of atoms (i.e., queries) as tests.
If a query succeeds, then one branch is taken,
else the other one. Decision tree methods for
both classification and regression exist (see
Blockeel and De Raedt 1998; Kramer and
Widmer 2001).

* Mine for frequent queries, where queries are
conjunctions of atoms. Such queries can be
evaluated on an example. For instance, in the
Bongard problem, the query ?- triangle
(X),in (X, Y) succeeds on the leftmost
scenes and fails on the rightmost ones. There-
fore, its frequency would be 6. The goal is then
to find all queries that are frequent, that is,
whose frequencies exceed a certain threshold.
Frequent query mining upgrades the popular
local pattern mining setting due to Agrawal
et al. (1996) to inductive logic programming
(see Dehaspe and Toivonen 2001).

e Learn or revise the definitions of theories,
which consist of the definitions of multiple
predicates, at the same time (cf. Wrobel 1996),
and the entry in this encyclopedia. Several of
these systems have their origin in the model
inference system by Shapiro (1983) or the
work by Angluin (1987).

Current Trends and Challenges

There are two major trends and challenges in
inductive logic programming. The first challenge
is to extend the inductive logic programming
paradigm beyond the purely symbolic one. Im-
portant trends in this regard include:

* The combination of inductive logic program-
ming principles with graphical and probabilis-
tic models for reasoning about uncertainty.
This is a field known as statistical relational
learning, probabilistic logic learning, or prob-
abilistic inductive logic programming. At the
time of writing, this is a very popular re-
search stream, attracting a lot of attention in

Inductive Logic Programming

the wider artificial intelligence community,
cf. the entry » Statistical Relational Learn-
ing in this encyclopedia. It has resulted in
many relational or logical upgrades of well-
known graphical models including Bayesian
networks, Markov networks, hidden Markov
models, and stochastic grammars.

e The use of relational distance measures for
classification and clustering (Ramon and
Bruynooghe 1998; Kirsten et al. 2001). These
distances measure the similarity between two
examples or clauses, while taking into account
the underlying structure of the instances.
These distances are then combined with
standard classification and clustering methods
such as k-nearest neighbor and k-means.

* The integration of relational or logical repre-
sentations in reinforcement learning, known
as » Relational Reinforcement Learning (Dze-
roski et al. 2001).

The power of inductive logic programming
is also its weakness. The ability to represent
complex objects and relations and the ability to
make use of background knowledge add to the
computational complexity. Therefore, a key chal-
lenge of inductive logic programming is tackling
this added computational complexity. Even the
simplest method for testing whether one hypoth-
esis is more general than another — that is, 6-
subsumption (Plotkin 1970) — is NP-complete.
Similar tests are used for deciding whether a
clause covers a particular example in systems
such as FOIL. Therefore, inductive logic pro-
gramming and relational learning systems are
computationally much more expensive than their
propositional counterparts. This is an instance
of the expressiveness versus efficiency trade-off
in computer science. Because of these computa-
tional difficulties, inductive logic programming
has devoted a lot of attention to efficiency is-
sues. On the theoretical side, there exist vari-
ous results about the polynomial learnability of
certain subclasses of logic programs (cf. Cohen
and Page 1995, for an overview). From a prac-
tical perspective, there is quite some work on
developing efficient methods for searching the

http://dx.doi.org/10.1007/978-1-4899-7687-1_786
http://dx.doi.org/10.1007/978-1-4899-7687-1_726

Inductive Logic Programming

hypothesis space and especially for evaluating the
quality of hypotheses. Many of these methods
employ optimized inference engines based on
Prolog or database technology or constraint sat-
isfaction methods (cf. Blockeel and Sebag 2003
for an overview).

Cross-References

Multi-Relational Data Mining

Recommended Reading

A comprehensive introduction to inductive
logic programming can be found in the book
by De Raedt (2008) on logical and relational
learning. Early surveys of inductive logic
programming are contained in Muggleton and
De Raedt (1994) and Lavrac and DZeroski (1994)
and an account of its early history is provided
in Sammut (1993). More recent collections on
current trends can be found in the proceedings
of the annual Inductive Logic Programming
Conference (published in Springer’s Lectures
Notes in Computer Science Series) and special
issues of the Machine Learning Journal. A
summary of some key future challenges is
given in Muggleton et al. (2012). An interesting
collection of inductive logic programming and
multi-relational data mining works are provided
in DZeroski and Lavra¢ (2001). The upgrading
methodology is described in detail in Van Laer
and De Raedt (2001). More information on
logical issues in inductive logic programming are
given in the entry » Logic of Generality in this
encyclopedia, whereas the entries » Statistical
Relational Learning and » Graph Mining are
recommended for those interested in frameworks
tackling similar problems using other types of
representations.

Agrawal R, Mannila H, Srikant R, Toivonen H,
Verkamo AI (1996) Fast discovery of association
rules. In: Fayyad U, Piatetsky-Shapiro G, Smyth
P, Uthurusamy R (eds) Advances in knowledge
discovery and data mining. MIT Press, Cambridge,
pp 307-328

655

Angluin D (1987) Queries and concept-learning. Mach
Learn 2:319-342

Blockeel H, De Raedt L (1998) Top-down induction
of first order logical decision trees. Artif Intell
101(1-2):285-297

Blockeel H, Sebag M (2003) Scalability and efficiency
in multi-relational data mining. SIGKDD Explor
5(1):17-30

Bongard M (1970) Pattern recognition. Spartan Books,
New York

Clark P, Niblett T (1989) The CN2 algorithm. Mach
Learn 3(4):261-284

Cohen WW, Page D (1995) Polynomial learnability
and inductive logic programming: methods and re-
sults. New Gener Comput 13:369-409

De Raedt L (2008) Logical and relational learning.
Springer, Berlin

Dehaspe L, Toivonen H (2001) Discovery of relational
association rules. In: DZeroski S, Lavra¢ N (eds) Re-
lational data mining. Springer, Berlin/Heidelberg,
pp 189-212

Dzeroski S, De Raedt L, Driessens K (2001) Relational
reinforcement learning. Mach Learn 43(1/2): 5-52

Dzeroski S, Lavrac N (eds) (2001) Relational data
mining. Springer, Berlin/New York

Kirsten M, Wrobel S, Horvath T (2001) Distance based
approaches to relational learning and clustering. In:
DZeroski S, Lavra¢ N (eds) Relational data mining.
Springer, Berlin/Heidelberg, pp 213-232

Kramer S, Widmer G (2001) Inducing classification
and regression trees in first order logic. In: DZeroski
S, Lavra¢ N (eds) Relational data mining. Springer,
Berlin/Heidelberg, pp 140-159

Lavra¢ N, DZeroski S (1994) Inductive logic program-
ming: techniques and applications. Ellis Horwood,
Chichester

Muggleton S (1995) Inverse entailment and Progol.
New Gener Comput 13:245-286

Muggleton S, De Raedt L (1994) Inductive logic
programming: theory and methods. J Log Program
19(20):629-679

Muggleton S, De Raedt L, Poole D, Bratko I, Flach P,
Inoue K, Srinivasan A (2012) ILP Turns 20. Mach
Learn 86:2-23

Plotkin GD (1970) A note on inductive generalization.
In: Machine intelligence, vol 5. Edinburgh Univer-
sity Press, Edinburgh, pp 153-163

Quinlan JR (1990) Learning logical definitions from
relations. Mach Learn 5:239-266

Ramon J, Bruynooghe M (1998) A framework for
defining distances between first-order logic objects.
In: Page D (ed) Proceedings of the eighth interna-
tional conference on inductive logic programming.
Lecture notes in artificial intelligence, vol 1446.
Springer, Berlin/Heidelberg, pp 271-280

Sammut C (1993) The origins of inductive logic pro-
gramming: a prehistoric tale. In: Muggleton S (ed)
Proceedings of the third international workshop on
inductive logic programming. J. Stefan Institute,
Ljubljana, pp 127-148

http://dx.doi.org/10.1007/978-1-4899-7687-1_573
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_786
http://dx.doi.org/10.1007/978-1-4899-7687-1_350

656

Shapiro EY (1983) Algorithmic program debugging.
MIT Press, Cambridge

Srinivasan A (2007) The Aleph Manual. http://www.
comlab.ox.ac.uk/oucl/research/areas/machlearn/
Aleph/aleph_toc.html

Srinivasan A, Muggleton S, Sternberg MIJE, King
RD (1996) Theories for mutagenicity: a study in
first-order and feature-based induction. Artif Intell
85(1/2):277-299

Van Laer W, De Raedt L (2001) How to upgrade
propositional learners to first order logic: a case
study. In: DZeroski S, Lavra¢ N (eds) Relational data
mining. Springer, Berlin/Heidelberg, pp 235-261

Wrobel S (1996) First-order theory refinement. In:
De Raedt L (ed) Advances in inductive logic
programming. Frontiers in artificial intelligence
and applications, vol 32. IOS Press, Amsterdam,
pp 14-33

Inductive Process Modeling

Ljupco Todorovski
University of Ljubljana, Ljubljana, Slovenia

Synonyms

Process-based modeling

Definition

Inductive process modeling is a machine learn-
ing task that deals with the problem of learning
quantitative process models from » time series
data about the behavior of an observed dynamic
system. Process models are models based on or-
dinary differential equations that add an explana-
tory layer to the equations. Namely, scientists and
engineers use models to both predict and explain
the behavior of an observed system. In many do-
mains, models commonly refer to processes that
govern system dynamics and entities altered by
those processes. Ordinary differential equations,
often used to cast models of dynamic systems,
offer one way to represent these mechanisms and
can be used to simulate and predict the system
behavior, but fail to make the processes and
entities explicit. In response, process models tie

Inductive Process Modeling

Inductive Process Modeling, Table 1 A process
model of Predatory—Prey interaction between foxes and
rabbits. The notation d [X, #] indicates the time deriva-
tive of variable X

model predation;

entities fox{population}, rabbit{population};
process rabbit_growth;

entites rabbit;

equations d[rabbit.conc,t] = 1.81 * rabbit.conc *
(1 —0.0003 * rabbit.conc),

process fox_death;

entites fox;

equations dffox.conc,t] = —1.04 * fox.conc;
process fox_rabbit_predation;

entities fox, rabbit;

equations
d[fox.conc,t] = 0.03 * rabbit.conc * fox.conc;
d[rabbit.conc,t] = —1 * 0.3 * rabbit.conc * fox.conc;

the explanatory information about processes and
entities to the mathematical formulation, based
on equations, that enables simulation.

Table 1 shows a process model for a
predator—prey interaction between foxes and
rabbits. The three processes explain the dynamic
change of the concentrations of both species
(represented in the model as two population
entities) through time. The rabbit_growth process
states that the reproduction of rabbit is limited
by the fixed environmental capacity. Similarly,
the fox_death process specifies an unlimited
exponential mortality function for the fox
population. Finally, the fox_rabbit_predation
process refers to the predator—prey interaction
between foxes and rabbits that states that the
prey concentration decreases and the predator
one increases proportionally with the sizes of the
two populations. The process model makes the
structure of the model explicit and transparent to
scientists; while at the same time it can be easily
transformed in to a system of two differential
equations by additively combining the equations
for the time derivatives of the system variables
fox.conc and rabbit.conc. Given initial values for
these variables, one can simulate the equations
to produce trajectories that correspond to the
population dynamics through time.

The processes from Table 1 instantiate more
general generic processes, that can be used for

http://www. comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_ toc.html
http://www. comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_ toc.html
http://www. comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_ toc.html
http://dx.doi.org/10.1007/978-1-4899-7687-1_100378
http://dx.doi.org/10.1007/978-1-4899-7687-1_972

Inductive Process Modeling

modeling any ecological system. For example:
is a general form of the fox_rabbit_predation
process from the example model in Table 1. Note
that in the generic process, the parameters are
replaced with numeric ranges and the entities
with identifiers of generic entities (i.e., Predator
and Prey are identifiers that refer to instances of
the generic entity population).

generic process predation;
entities Predator{population}, Prey{population},
parameters ar[0.01, 10], ef[0.001, 0.8];
equations
d[Predator.conc,t] = ef * ar * Prey.conc *
Predator.conc;
d[Prey.conc,t] = —1 * ar * Prey.conc * Preda-
tor.conc;

Having defined entities and processes on an
example, one can define the task of inductive
process modeling as: Given

* Time series observations for a set of numeric
system variables as they change through time

* A set of entities that the model might include

* Generic processes that specify casual relations
among entities

* Constraints that determine plausible relations
among processes and entities in the model

Find a specific process model that explains the
observed data and the simulation of which closely
matches observed time series.

There are two approaches for solving the
task of inductive process modeling. The first is
the transformational approach that transforms
the given knowledge about entities, processes,
and constraints to » language bias for equation
discovery and uses the Lagramge method for

equation discovery in turn (Todorovski and
Dzeroski 1997, 2007). The second approach
performs search through the space of candidate
process models to find the one that matches the
given time series data best.

Inductive process modeling methods IPM
(Bridewell et al. 2008) and HIPM (Todorovski
et al. 2005) follow the second approach. IPM is
a naive method that exhaustively searches the

657

space of candidate process models following
the » learning as search paradigm. The search
space of candidate process models is defined
by the sets of generic processes and of entities
in the observed system specified by the user.
IPM first matches the type of each entity
against the types of entities involved in each
generic process and produces a list of all
possible instances of that generic process.
For example, the generic process predation,
from the example above, given two population
entities fox and rabbit, can be instantiated
in four different ways (fox_fox_predation,
fox_rabbit_predation, rabbit_fox_predation,
and rabbit_rabbit_predation). The IPM search
procedure collects the set of all possible instances
of all the generic processes and uses them
as a set of candidate model components. In
the search phase, all combinations of these
model components are being matched against
observed » time series. The matching involves
the employment of gradient-descent methods for
nonlinear optimization to estimate the optimal
values of the process model parameters. As
output, IPM reports the process models with
the best match.

Trying out all components’ combinations
is prohibitive in many situations since it
obviously leads to combinatorial explosion.
HIPM employs constraints that limit the space
of combinations by ruling-out implausible or
forbidden combinations. Examples of such
constraints in the predator—prey example above
include rules that a proper process model of
population dynamics should include a single
growth and a single mortality process per
species, the predator—prey process should relate
two different species, and different predator—
prey interaction should refer to different
population pairs. HIPM specifies the rules in
a hierarchy of generic processes where each
node in the hierarchy specifies a rule for proper
combination/selection of process instances.

Cross-References

Equation Discovery

http://dx.doi.org/10.1007/978-1-4899-7687-1_440
http://dx.doi.org/10.1007/978-1-4899-7687-1_258
http://dx.doi.org/10.1007/978-1-4899-7687-1_444
http://dx.doi.org/10.1007/978-1-4899-7687-1_972
http://dx.doi.org/10.1007/978-1-4899-7687-1_258

658

Recommended Reading

Bridewell W, Langley P, Todorovski L, DZeroski S
(2008) Inductive process modeling. Mach Learn
71(1):1-32

Todorovski L, Dzeroski S (1997) Declarative bias in
equation discovery. In: Fisher DH (ed) Proceedings
of the fourteenth international conference on ma-
chine learning,Nashville

Todorovski L, Dzeroski S (2007) Integrating domain
knowledge in equation discovery. In: DZeroski S,
Todorovski L (eds) Computational discovery of
scientific knowledge. LNCS, vol 4660. Springer,
Berlin

Todorovski L, Bridewell W, Shiran O, Langley P
(2005) Inducing hierarchical process models in dy-
namic domains. In: Veloso MM, Kambhampati S
(eds) Proceedings of the twentieth national confer-
ence on artificial intelligence, Pittsburgh

Inductive Program Synthesis

Inductive Programming

Inductive Programming

Pierre Flener' and Ute Schmid?

'Department of Information Technology,
Uppsala University, Uppsala, Sweden
2Faculty of Information Systems and Applied
Computer Science, University of Bamberg,
Bamberg, Germany

Abstract

Inductive programming is introduced as a
branch of program synthesis which is based on
inductive inferece where recursive, declarative
programs are constructed from incomplete
specifications, especially from input/output
examples. Inductive logic programming as
well as inductive functional programming are

Most of the work by this author was done while on
leave of absence in 2006/07 as a Visiting Faculty
Member and Erasmus Exchange Teacher at Sabanci
University, Turkey.

Inductive Program Synthesis

addressed. Central concepts such as predicate
invention and background knowledge are
defined. Two worked-out examples are
presented to illustrate inductive logic as well
as inductive functional programming.

Synonyms

Example-based programming; Inductive program
synthesis; Inductive synthesis; Programming by
examples; Program synthesis from examples

Definition

Inductive programming is the inference of an
algorithm or program featuring recursive calls or
repetition control structures, starting from infor-
mation that is known to be incomplete, called
the evidence, such as positive and negative input-
output examples or clausal constraints. The in-
ferred program must be correct with respect to
the provided evidence, in a generalization sense:
it should be neither equivalent to it nor inconsis-
tent. Inductive programming is guided explicitly
or implicitly by a language bias and a search
bias. The inference may draw on background
knowledge or query an oracle. In addition to in-
duction, abduction may be used. The restriction
to algorithms and programs featuring recursive
calls or repetition control structures distinguishes
inductive programming from concept learning
or classification.

We here restrict ourselves to the inference
of declarative programs, whether functional
or logic, and dispense with repetition control
structures in the inferred program in favor of
recursive calls.

Motivation and Background

Inductive program synthesis is a branch of the
field of program synthesis, which addresses a
cognitive question as old as computers, namely,
the understanding of the human act of computer

http://dx.doi.org/10.1007/978-1-4899-7687-1_137
http://dx.doi.org/10.1007/978-1-4899-7687-1_100158
http://dx.doi.org/10.1007/978-1-4899-7687-1_100216
http://dx.doi.org/10.1007/978-1-4899-7687-1_100217
http://dx.doi.org/10.1007/978-1-4899-7687-1_100381
http://dx.doi.org/10.1007/978-1-4899-7687-1_100379

Inductive Programming

programming, to the point where a computer can
be made to help in this task (and ultimately to
enhance itself). See Flener (2002) and Gulwani
et al. (2014) for surveys; the other main branches
of program synthesis are based on deductive in-
ference, namely, constructive program synthesis
and transformational program synthesis. In such
deductive program synthesis, the provided infor-
mation, called the specification, is assumed to be
complete (in contrast to inductive program syn-
thesis where the provided information is known
to be incomplete), and the presence of repetitive
or recursive control structures in the synthesized
program is not imposed.

Research on the inductive synthesis of
recursive functional programs started in the early
1970s and was brought onto firm theoretical
foundations with the seminal THESYS system
of Summers (1977) and work of Biermann
(1978), where all the evidence is handled non-
incrementally. Essentially, the idea is first to
infer computation tfraces from input-output
examples (instances) and then to use a trace-
based programming method to fold these traces
into a recursive program. The main results until
the mid-1980s were surveyed in Smith (1984).
Due to limited progress with respect to the
range of programs that could be synthesized,
research activities decreased significantly in the
next decades. However, a new approach that
formalizes functional program synthesis in the
term rewriting framework and that allows the
synthesis of a broader class of programs than the
classical approaches is pursued in Kitzelmann
and Schmid (20006).

The advent of logic programming brought a
new lan but also a new direction in the early
1980s, especially due to the MIS system of
Shapiro (1983), eventually spawning the new
field of inductive logic programming (ILP).
Most of this ILP work addresses a wider class of
problems, as the focus is not only on recursive
logic programs: more adequate designations
are inductive theory revision and declarative
program debugging, as an additional input is a
possibly empty initial theory or program that is
incrementally revised or debugged according to
each newly presented piece of evidence, possibly

659

in the presence of background knowledge or
an oracle. The main results on the inductive
synthesis of recursive logic programs were
surveyed in Flener and Yilmaz (1999).

Structure of Learning System

The core of an inductive programming system is
a mechanism for constructing a recursive gen-
eralization for a set of input/output examples
(instances). Although we use the vocabulary of
logic programming, this method also covers the
synthesis of functional programs.

The input, often a set of input/output exam-
ples, is called the evidence. Further evidence may
be queried from an oracle. Additional informa-
tion, in the form of predicate symbols that can
be used during the synthesis, can be provided
as background knowledge. Since the hypothesis
space — the set of legal recursive programs —
is infinite, a language bias is introduced. One
particularly useful and common approach in in-
ductive programming is to provide a statement
bias by means of a program schema.

The evidential synthesis of a recursive pro-
gram starts from the provided evidence for some
predicate symbol and works essentially as fol-
lows. A program schema is chosen to provide
a template for the program structure, where all
yet undefined predicate symbols must be instan-
tiated during the synthesis. Predefined predicate
symbols of the background knowledge are then
chosen for some of these undefined predicate
symbols in the template. If it is deemed that the
remaining undefined predicate symbols cannot all
be instantiated via purely structural generaliza-
tion by non-recursive definitions, then the method
is recursively called to infer recursive definitions
for some of them (this is called predicate in-
vention and amounts to shifting the vocabulary
bias); otherwise the synthesis ends successfully
right away. This generic method can backtrack
to any choice point for synthesizing alternative
programs.

In the rest of this section, we discuss this ba-
sic terminology of inductive programming more
precisely. In the next section, instantiations of this

660

generic method by some well-known methods are
presented.

The Evidence and the Oracle

The evidence is often limited to ground positive
examples of the predicate symbols that are to
be defined. Ground negative examples are conve-
nient to prevent overgeneralization, but should be
used constructively and not just to reject candi-
date programs. A useful generalization of ground
examples is evidence in the form of a set of (non-
recursive) clauses, as variables and additional
predicate symbols can then be used.

Example 1 The delOdds(L, R) relation, which
holds if and only if R is the integer list L without
its odd elements, can be incompletely described
by the following clausal evidence:

delOdds([1,[]) < true
delOdds([X],[]) < odd(X)
delOdds([X], [X]) < —odd(X)
delOdds([X,Y1,[Y]) < o0dd(X), —odd(Y)
delOdds([X,Y],[X,Y]) < —odd(X), —odd(Y)
false < delOdds([X],[X]), odd(X)
(1

The first clause is a ground positive example,
whereas the second and third clauses generalize
the infinity of ground positive examples, such
as delOdds([5],[1) and delOdds([22],[22]),
for handling singleton lists, while the fourth and
fifth clauses summarize the infinity of ground
positive examples for handling lists of two ele-
ments, the second one being even: these clauses
make explicit the underlying filtering relation
(odd) that is intrinsic to the problem at hand
but cannot be provided via ground examples and
would otherwise have to be guessed. The sixth
clause summarizes an infinity of ground negative
examples for handling singleton lists, namely,
where the only element of the list is odd but not
filtered.

In some methods, especially for the induction
of functional programs, the first n positive input-
output examples with respect to the underlying
data type are presented (e.g., for linear lists, what
to do with the empty list, with a one-element list,

Inductive Programming

up to a list with three elements); because of this
ordering of examples, no explicit presentation of
negative examples is then necessary.

Inductive program synthesis should be mono-
tonic in the evidence (more evidence should never
yield a less complete program, and less evidence
should not yield a more complete program) and
should not be sensitive to the order of presenta-
tion of the evidence.

Program Schemas

Informally, a program schema contains a tem-
plate program and a set of axioms. The fem-
plate abstracts a class of actual programs, called
instances, in the sense that it represents their
dataflow and control flow by means of placehold-
ers, but does not make explicit all their actual
computations nor all their actual data structures.
The axioms restrict the possible instances of the
placeholders and define their interrelationships.
Note that a schema is problem independent. Let
us here take a first-order logic approach and
consider templates as open logic programs (i.e.
programs where some placeholder predicate sym-
bols are left undefined or open; a program with no
open predicate symbols is said to be closed) and
axioms as first-order specifications of these open
predicate symbols.

Example 2 Most methods of inductive synthesis
are biased by program schemas whose templates
have clauses of the forms in the following generic
template:

r(X,Y,Z2) < c(X,Y, 2),

p(X,Y, Z)

r(X,Y,Z) < dX,H,X\,...,X:, Z),
r(X.,Y.,2), ..., r(X¢, Y1, 2),
q(H,Y\,....Y:,Z2,Y)

(@)
where ¢, d, p, q are open predicate symbols,
X is a nonempty sequence of terms, and Y, Z
are possibly empty sequences of terms. The in-
tended semantics of this generic template can be
informally described as follows. For an arbitrary
relation r over parameters X, Y, Z, an instance
of this generic template is to determine the values
of result parameter Y corresponding to a given

Inductive Programming

value of induction parameter X, considering the
value of auxiliary parameter Z. Two cases arise:
either the ¢ test succeeds and X has a value for
which Y can be easily directly computed through
p, or X has a value for which Y cannot be
so easily directly computed and the divide-and-
conquer principle is applied:

1. divide X through d into a term H and ¢ terms
Xi,..., Xy of the same type as X but smaller
than X according to some well-founded rela-
tion;

2. conquer through ¢ recursive calls to r to deter-
mine the values of Yi,...,Y; corresponding
to Xi,..., X, respectively, considering the
value of Z;

3. combine through ¢ the terms H, Y1, ..
tobuild Y.

'aYIaZ

Enforcing this intended semantics must be done
manually, as any instance template by itself has
no semantics, in the sense that any program
is an instance of it (it suffices to define ¢ by
a program that always succeeds and p by the
given program). One way to do this is to attach
to a template some axioms (see Smith (1985)
for the divide-and-conquer axioms), namely,
the set of specifications of its open predicate
symbols: these specifications refer to each other,
including the one of r, and are generic (because
even the specification of r is unknown), but
can be manually abduced once and for all
according to the informal semantics of the
schema.

Predicate Invention

Another important language bias is the available
vocabulary, which is here the set of predicate
symbols mentioned in the evidence set or actu-
ally defined in the background knowledge (and
possibly mentioned by the oracle). If an inductive
synthesis fails, other than backtracking to a differ-
ent program schema (i.e., shifting the statement
bias), one can try and shift the vocabulary bias
by inventing new predicate symbols and inducing
programs for them in the extended vocabulary;

661

this is also known as performing constructive
induction. Only the invention of recursively de-
fined predicate symbols is necessary, as a non-
recursive definition of a predicate symbol can be
eliminated by substitution (under resolution) for
its calls in the induced program (even though that
might make the program longer).

In general, it is undecidable whether predicate
invention is necessary to induce a finite program
in the vocabulary of its evidence and background
knowledge (as a consequence of Rice’s theorem,
1953), but introducing new predicate symbols
always allows the induction of a finite program
(as a consequence of a result by Kleene), as
shown in Stahl (1995). The necessity of shifting
the vocabulary bias is only decidable for some
restricted languages (but the bias shift attempt
might then be unsuccessful), so in practice one
often has to resort to heuristics. Note that an
inductive synthesizer of recursive algorithms may
be recursive itself: it may recursively invoke itself
for a necessary new predicate symbol.

Other than the decision problem, the difficul-
ties of predicate invention are as follows. First,
adequate formal parameters for a new predicate
symbol have to be identified among all the vari-
ables in the clause using it. This can be done
instantaneously by using precomputations done
manually once and for all at the template level.
Second, evidence for a new predicate symbol has
to be abduced from the current program using
the evidence for the old predicate symbol. This
usually requires an oracle for the old predicate
symbol, whose program is still unfinished at that
moment and cannot be used. Third, the abduced
evidence may be less numerous than for the old
predicate symbol (note that if the new predicate
symbol is in a recursive clause, then no new
evidence might be abduced from the old evidence
that is covered by the base clauses) and can be
quite sparse, so that the new synthesis is more dif-
ficult. This sparseness problem can be illustrated
by an example.

Example 3 Given the positive ground examples
factorial(0, 1), factorial(1,1), factorial(2,2),
factorial(3, 6), and factorial(4,24) and given the
still open program:

662

factorial(N,F) < N =0, F =1

factorial(N, F) < add(M,1, N),
factorial(M, G),
product(N, G, F)

where add is known but product was just invented
(and named so only for the reader’s convenience),
the abduceable examples are product(1,1,1),
product(2,1,2), product(3,2,6), and product
(4,6,24), which is hardly enough for inducing
a recursive program for product; note that
there is one less example than for factorial.
Indeed, examples such as product(3,6,18),
product(2, 6, 12), product(1, 6, 6), etc. are miss-
ing, which puts the given examples more than
one resolution step apart, if not on different res-
olution paths. This is aggravated by the absence
of an oracle for the invented predicate symbol,
which is not necessarily intrinsic to the task at
hand (although product actually is intrinsic to]
factorial).

Background Knowledge

In an inductive programming context, back-
ground knowledge is particularly important,
as the inference of recursive programs is more
difficult than the inference of classifiers. For
the efficiency of synthesis, it is crucial that
this collection of definitions of the predefined
predicate symbols be annotated with information
about the fypes of their arguments and about
whether some well-founded relation is being
enforced between some of their arguments,
so that semantically suitable instances for the
open predicate symbols of any chosen program
schema can be readily spotted. (This requires
in turn that the types of the arguments of the
predicate symbols in the provided evidence are
declared as well.) The background knowledge
should be problem independent, and an inductive
programming method should be able to perform
knowledge mobilization, namely organizing it
dynamically according to relevance to the current
task.

In data-driven, analytical approaches,
background knowledge is used in combination
with explanation-based learning (EBL)
methods, such as abduction (see Exam-

Inductive Programming

ple 4) or systematic rewriting of input/output
examples into computational traces (see
Example 5).

Background knowledge can also be given in
the form of constraints or an explicit inductive
bias as in meta-interpretative learning (Muggle-
ton and Lin 2013) or in using higher-order pat-
terns (Katayama 2006).

Programs and Data

Example 4 The DIALOGS (Dialogue-based
Inductive-Abductive LOGic program Synthe-
sizer) method (Flener 1997) is interactive. The
main design objective was to take all extra
burden from the specifier by having the method
ask for exactly and only the information it
needs, default answers being provided wherever
possible. As a result, no evidence needs to be
prepared in advance, as the method invents
its own candidate evidence and queries the
oracle about it, with an opportunity to declare
(at the oracle/specifier’s risk) that enough
information has been provided. All answers by
the oracle are stored as judgments, to prevent
asking the same query twice. This is suitable
for all levels of expertise of human users, as
the queries are formulated in the specifier’s
initially unknown conceptual language, in a way
such that the specifier must know the answers
if she really feels the need for the wanted
program. The method is schema-biased, and the
current implementation has two schemas. The
template of the divide-and-conquer schema has
the generality of the generic template (2). The
template of the accumulate schema extends this
by requiring an accumulator in the sequence Z
of auxiliary parameters. The evidence language
(observation language) is (non-recursive) logic
programs with negation. Type declarations are
provided as a language bias. The program
language (hypothesis language) is recursive
logic programs with negation, with possibly
multiple base cases and recursive cases.

For instance, starting from the empty pro-
gram for the relation delOdds in Example 1, the
algorithm design choices of using the divide-

Inductive Programming

and-conquer schema with R as result parame-
ter and L as induction parameter decomposed
(with ¢ = 1) through head-tail decomposition
by d lead to the following intermediate open
program:

delOdds(L, R) <c(L,R), p(L.,R)

delOdds(L,R) <d(L,H,L,),
delOdds(L1, R;),
(3
‘I(H, Rla R)
c(,,) <«true
d(L,H,T) <L =[H|T]

The first five evidential clauses for del/Odds
in (1) are then implicitly interactively acquired
from the oracle/specifier by the following
question and answer dialogue, leading the
specifier to reveal the intrinsic predicate symbol
odd:

DIALOGS:
Specifier:
DIALOGS:
Specifier:

When does delOdds([], R) hold?
IfR=1]

When does delOdds([X], R) hold?
If (odd(X) and R = []) or
(—odd(X) and R = [X]).

When does delOdds([X, Y], R)
hold, assuming odd(Y)?

If (odd(X) and R = []) or
(—odd(X) and R = [X]).

When does delOdds([X, Y], R)
hold, assuming —odd(Y)?

If (odd(X) and R = [Y]) or
(—odd(X) and R = [X,Y]).

DIALOGS:
Specifier:
DIALOGS:

Specifier:

Next, abduction infers the following evidence
set for the still open predicate symbols p
and ¢:

p([1.[D <« true
P(X].[] < odd(X)

p([X], [X]) < —odd(X)
p(X,Y],[Y]) < odd(X), —odd(Y)
p(X,Y],[X,Y]) < —odd(X), —odd(Y)

q(X,[].[]) < odd(X)
q(X,[].[X]) < —odd(X)

q(X,[Y].[Y] < odd(X)
q(X,[Y].[X,Y]) < —odd(X)

663

From this, induction infers the following
closed programs for p and g:

p(LLID <« true
q(H,L,[H|L]) <« —odd(H) (4
q(H,L,L) <« odd(H)

The final closed program is the union of
the programs (3) and (4), as no predicate
invention is deemed necessary. Sample syn-
theses with predicate invention are presented
in Flener (1997) and Flener and Yilmaz
(1999).

Example 5 The THESYS method (Summers
1977) was one of the first methods for
the inductive synthesis of functional (Lisp)
programs. Although it has a rather restricted
scope, it can be seen as the methodological
foundation of many later methods for inducing
functional programs. The noninteractive method
is schema biased, and the implementation has
two schemas. Upon adaptation to functional
programming, the template of the linear
recursion schema is the instance of the generic
template (2) obtained by having X as a sequence
of exactly one induction parameter and Z as the
empty sequence of auxiliary parameters, and by
dividing X into t = 1 smaller value X;, so that
there is only ¢ 1 recursive call. The template
of the accumulate schema extends this by
having Z as a sequence of exactly one auxiliary
parameter, playing the role of an accumulator.
The evidence language (observation language)
is sets of ground positive examples. The program
language (hypothesis language) is recursive
functional programs, with possibly multiple
base cases, but only one recursive case. The
only primitive functions are nil, cons, head,
tail, and empty, because the implementation is
limited to the list data type, inductively defined

by list = nil | cons(x, list), under the axioms
empty(nil) = true, head(cons(x,y)) = x,
and tail(cons(x,y)) = y. There is no function
invention.

For instance, from the following examples of
a list unpacking function:

664
unpack(nil) = nil
unpack((A)) = ((4)
unpack((A B)) = ((4) (B))

unpack((A B C)) = ((4) (B) (C))

the abduced traces are:

empty(X) — nil
empty(tail(X)) — cons(X, nil)
empty(tail(tail(X)))

Inductive Programming

— cons(cons(head(X), nil), cons(tail(X), nil))

empty(tail(tail(tail(X)))) — cons(cons(head(X), nil), cons(cons(head(tail(X)), nil),
cons(tail(tail(X)), nil)))

and the induced program is:

unpack(X) = empty(X) — nil,

empty(tail(X)) — cons(X, nil),

true

— cons(cons(head(X), nil), unpack(tail(X)))

A modern extension of THESYS is the IGOR
method (Kitzelmann and Schmid 2006). The un-
derlying program template describes the set of all
functional programs with the following restric-
tions: built-in functions can only be first-order,
and no nested or mutual recursion is allowed.
IGOR adopts the two-step approach of THESYS.
Synthesis is still restricted to structural problems,
where only the structure of the arguments mat-
ters, but not their contents, such as in list re-
versing. Nevertheless, the scope of synthesizable
programs is considerably larger. For instance,
tree-recursive functions and functions with hid-
den parameters can be induced. Most notably,
programs consisting of a calling function and an
arbitrary set of further recursive functions can be
induced. The first step of synthesis (trace con-
struction) is therefore expanded such that traces
can contain nestings of conditions. The second
step is expanded such that the synthesis of a
function can rely on the invention and synthesis
of other functions (i.e., IGOR uses a technique of
function invention in correspondence to the con-
cept of predicate invention introduced above).
An extension, IGOR2, relies on constructor term
rewriting techniques. The two synthesis steps are
merged into one and make use of background
knowledge. Therefore, the synthesis of programs

for semantic problems, such as list sorting, be-
comes feasible.

Applications

In the framework of software engineering, induc-
tive programming is defined as the inference of
information that is pertinent to the construction
of a generalized computational system for which
the provided evidence is a representative sam-
ple (Flener and Partridge 2001). In other words,
inductive programming does not have to be a
panacea for software development in the large
and infer a complete software system in order to
be useful: it suffices to induce, for instance, a self-
contained system module while programming in
the small, problem features and decision logic
for specification acquisition and enhancement or
support for debugging and testing. Inductive pro-
gramming is then not always limited to programs
with repetitive or recursive control structures.
There are opportunities for synergy with manual
programming and deductive program synthesis,
as there are sometimes system modules that no
one knows how to specify in a complete way,
or that are harder to specify or program in a
complete way, and yet where incomplete infor-

Inductive Programming

mation such as input-output examples is readily
available. More examples and pointers to the
literature are given in Flener (2002, Section 5)
and Flener and Partridge (2001).

In the context of end-user programming,
inductive programming methods can be used
to enable nonexpert users to take advantage of
the more sophisticated functionalities offered
by their software. This kind of application is in
the focus of programming by demonstration
(PBD).

Finally, it is worth having an evidential syn-
thesizer of recursive algorithms invoked by a
more general-purpose machine learning method
when necessary predicate invention is detected or
conjectured, as such general methods require a lot
of evidence to infer reliably a recursively defined
hypothesis.

Future Directions

Inductive programming is still mainly a topic
of basic research, exploring how the intellectual
ability of humans to infer generalized recursive
procedures from incomplete evidence can be cap-
tured in the form of synthesis methods. Already
a variety of promising methods are available. A
necessary step should be to compare and analyze
the current methods. A first extensive compari-
son of different ILP methods for inductive pro-
gramming was presented some years ago (Flener
and Yilmaz 1999). An up-to-date analysis should
take into account not only ILP methods but also
methods for the synthesis of functional programs,
using classical (Kitzelmann and Schmid 2006)
as well as evolutionary (Olsson 1995) methods.
The methods should be compared with respect to
the required quantity of evidence, the kind and
amount of background knowledge, the scope of
programs that can be synthesized, and the effi-
ciency of synthesis. Such an empirical compari-
son should result in the definition of characteris-
tics that describe concisely the scope, usefulness,
and efficiency of the existing methods in different
problem domains. A first step toward such a sys-
tematic comparison was presented in Hofmann
et al. (2009).

665

Since only a few inductive programming
methods can deal with semantic problems, it
should be useful to investigate how inductive
programming methods can be combined with
other machine learning methods, such as kernel-
based classification.

Finally, the existing methods should be
adapted to a broad variety of application areas
in the context of programming assistance,
as well as in other domains where recursive
data structures or recursive procedures are
relevant.

Cross-References

Explanation-Based Learning
Inductive Logic Programming
Programming by Demonstration
Programming by Example (PBE)
Trace-Based Programming

Recommended Reading

* Online Platform of the Inductive Program-
ming Community: http://www.inductive-
programming.org/.

e Journal of Automated Software Engineering,
Special Issue on Inductive Programming,
April 2001: Flener and Partridge (2001),
http://user.it.uu.se/~pierref/ase/.

e Biannual Workshops on Approaches and Ap-
plications of Inductive Programming: http://
WWWw.cogsys.wiai.uni-bamberg.de/aaip/.

e Journal of Machine Learning Research,
Special Topic on Approaches and Applications
of Inductive Programming, February/March
2006: http://jmlr.csail.mit.edu/papers/topic/
inductive_programming.html.

e Dagstuhl Report 3/12 on Approaches and Ap-
plications of Inductive Programming http://
drops.dagstuhl.de/opus/volltexte/2014/4507/.

Biermann AW (1978) The inference of regular LISP
programs from examples. IEEE Trans Syst Man
Cybern 8(8):585-600

http://dx.doi.org/10.1007/978-1-4899-7687-1_96
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_679
http://dx.doi.org/10.1007/978-1-4899-7687-1_100380
http://dx.doi.org/10.1007/978-1-4899-7687-1_844
http://www.inductive-programming.org/
http://www.inductive-programming.org/
http://user.it.uu.se/~pierref/ase/
http://www.cogsys.wiai.uni-bamberg.de/aaip/
http://www.cogsys.wiai.uni-bamberg.de/aaip/
http://jmlr.csail.mit.edu/papers/topic/inductive_programming.html
http://jmlr.csail.mit.edu/papers/topic/inductive_programming.html
http://drops.dagstuhl.de/opus/volltexte/2014/4507/
http://drops.dagstuhl.de/opus/volltexte/2014/4507/

666

Flener P (1997) Inductive logic program synthesis
with DIALOGS. In: Muggleton SH (ed) Revised
selected papers of the 6th international workshop
on inductive logic programming (ILP 1996), Stock-
holm. Volume 1314 of lecture notes in artificial
intelligence. Springer, pp 175-198

Flener P (2002) Achievements and prospects of pro-
gram synthesis. In: Kakas A, Sadri F (eds) Com-
putational logic: logic programming and beyond;
essays in honour of Robert A. Kowalski. Vol-
ume 2407 of lecture notes in artificial intelligence.
Springer, Berlin/New York, pp 310-346

Flener P, Partridge D (2001) Inductive programming.
Autom Softw Eng 8(2):131-137

Flener P, Yilmaz S (1999) Inductive synthesis of recur-
sive logic programs: achievements and prospects. J
Log Program 41(2-3):141-195

Gulwani S, Kitzelmann E, Schmid U (2014) Ap-
proaches and Applications of Inductive Program-
ming (Dagstuhl Seminar 13502). Dagstuhl Reports
3/12, Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, Dagstuhl

Hofmann M, Kitzelmann E, Schmid U (2009) A unify-
ing framework for analysis and evaluation of induc-
tive programming systems. In: Goerzel B, Hitzler
P, Hutter M (eds) Proceedings of the second con-
ference on artificial general intelligence (AGI-09,
Arlington, Virginia, 6-9 March 2009), Amsterdam.
Atlantis Press, pp 55-60

Katayama S (2005) Systematic search for lambda ex-
pressions. In: Trends in functional programming.
Intellect, Bristol, pp 111-126

Kitzelmann E, Schmid U (2006) Inductive synthesis of
functional programs — an explanation based gener-
alization approach. J Mach Learn Res 7(Feb): 429—
454

Muggleton SH, Lin D (2013) Meta-interpretive learn-
ing of higher-order dyadic datalog: predicate
invention revisited. In: Rossi F (ed) IJCAI 2013,
proceedings of the 23rd international joint confer-
ence on artificial intelligence, Beijing, 3-9 Aug
2013. ICAIVAAAL pp 1551-1557

Olsson JR (1995) Inductive functional programming
using incremental program transformation. Artif In-
tell 74(1):55-83

Shapiro EY (1983) Algorithmic program debugging.
The MIT Press, Cambridge

Smith DR (1984) The synthesis of LISP programs from
examples: a survey. In: Biermann AW, Guiho G,
Kodratoff Y (eds) Automatic program construction
techniques. Macmillan, New York, pp 307-324

Smith DR (1985) Top-down synthesis of divide-
and-conquer algorithms. Artificial Intelligence,
27(1):43-96

Stahl I (1995) The appropriateness of predicate in-
vention as bias shift operation in ILP. Mach Learn
20(1-2):95-117

Summers PD (1977) A methodology for LISP pro-
gram construction from examples.] ACM 24(1):
161-175

Inductive Synthesis

Inductive Synthesis

Inductive Programming

Inductive Transfer

Ricardo Vilalta!, Christophe Giraud-Carrier?,
Pavel Brazdil®, and Carlos Soares®»*
'Department of Computer Science, University of
Houston, Houston, TX, USA

’Department of Computer Science, Brigham
Young University, Provo, UT, USA
SLIAAD-INESC Tec/Faculdade de Economia,
University of Porto, Porto, Portugal
4LIAAD-INESC Porto L.A./Faculdade de
Economia, University of Porto, Porto, Portugal

Abstract

We describe different scenarios where a learn-
ing mechanism is capable of acquiring expe-
rience on a source task, and subsequently ex-
ploit such experience on a target task. The core
ideas behind this ability to transfer knowledge
from one task to another have been studied in
the machine learning literature under different
titles and perspectives. Here we describe some
of them under the names of inductive trans-
fer, transfer learning, multitask learning, meta-
searching, meta-generalization, and domain
adaptation.

Synonyms

Domain adaptation; Multitask learning; Transfer
learning; Transfer of knowledge across domains

Definition

Inductive transfer refers to the ability of a learn-
ing mechanism to improve performance on the
current or farget task after having learned a dif-
ferent but related concept or skill on a previ-

http://dx.doi.org/10.1007/978-1-4899-7687-1_137
http://dx.doi.org/10.1007/978-1-4899-7687-1_100121
http://dx.doi.org/10.1007/978-1-4899-7687-1_100322
http://dx.doi.org/10.1007/978-1-4899-7687-1_100487
http://dx.doi.org/10.1007/978-1-4899-7687-1_100488

Inductive Transfer

ous source task. Transfer may additionally occur
between two or more learning tasks that are
being undertaken concurrently. The object being
transferred may refer to instances, features, a
particular form of search bias, an action policy,
background knowledge, etc.

Motivation and Background

Learning is not the result of an isolated task
that starts from scratch with every new problem.
Instead, a learning algorithm should exhibit the
ability to adapt through a mechanism dedicated
to transfer knowledge gathered from previous ex-
perience. The problem of transfer of knowledge
is central to the field of machine learning and
is also known as inductive transfer. In this case,
knowledge can be understood as a collection of
patterns observed across tasks. One view of the
nature of patterns across tasks is that of invariant
transformations. For example, image recognition
of a target object is simplified if the object is
invariant under rotation, translation, scaling, etc.
A learning system should be able to recognize a
target object on an image even if previous images
show the object in different sizes or from different
angles. Hence, inductive transfer studies know
how to improve learning by detecting, extracting,
and exploiting (meta)knowledge in the form of
invariant transformations across tasks.

Similarly, in competitive games involving
teams of robots (e.g., RoboCup Soccer),
transferring knowledge learned from one task to
another task is crucial to acquire skills necessary
to beat the opponent team. Specifically, imagine a
situation where a team of robots has been taught
to keep a soccer ball away from the opponent
team. To achieve that goal, robots must learn to
keep the ball, pass the ball to a close teammate,
etc., always trying to remain at a safe distance
from the opponents. Now let us assume that we
wish to teach the same team of robots to be
efficient at scoring against a team of defending
robots. Knowledge gained during the first activity
can be transferred to the second one. Specifically,
arobot can prefer to perform an action learned in
the past over actions proposed during the current

667

task, because the past action has a significant
higher merit value. For example, a robot under
the second task may learn to recognize that
it is preferable to shoot than to pass the ball
because the goal is very close. This action can
be learned from the first task by recognizing that
the precision of a pass is contingent upon the
proximity of the teammate.

Structure of the Learning System

The main idea behind a learning architecture
using knowledge transfer is to produce a source
model from which knowledge can be extracted
and transferred to a target model. This allows
for multiple scenarios (Brazdil et al. 2009; Pratt
and Thrun 1997). For example, the target and
source models can be trained at different times
in such a way that the transfer takes place after
the source model has been trained. In this case
there is an explicit form of knowledge transfer,
also called representational transfer. In contrast,
we use the term functional transfer to denote
the case where two or more models are trained
simultaneously; in this case the models share
(part of) their internal structure during learning
(see Neural Networks below). Under representa-
tional transfer, we denote as literal transfer the
case when the source model is left intact and
as nonliteral transfer the case when the source
model is modified before knowledge is trans-
ferred to the target model. In nonliteral transfer
some processing takes place on the source model
before it is used to initialize the target model (see
Fig. 1).

Neural Networks. A learning paradigm
amenable to test the feasibility of knowledge
transfer is that of neural networks (Caruana
1993). A popular form of (functional) knowledge
transfer is effected through multitask learning,
where the output nodes in the multilayer network
represent more than one task. In such a scenario,
internal nodes are shared by different tasks
dynamically during learning. As an illustration,
consider the problem of learning to classify
astronomical objects from images mapping

668

Inductive Transfer, Fig. 1
A taxonomy of inductive
transfer

Inductive Transfer

[Knowledge Transfer]

/\

Representational Transfer
(trained sequentially)

Functional Transfer
(trained concurrently)

Literal Transfer
(direct transfer)

(indirect transfer)

J |

Non-Literal Transfer]

the sky into multiple classes. One task may
be in charge of classifying a star into several
classes (e.g., main sequence, dwarf, red giant,
neutron, pulsar, etc.). Another task can focus on
galaxy classification (e.g., spiral, barred spiral,
elliptical, irregular, etc.). Rather than separating
the problem into different tasks where each task
is in charge of identifying one type of luminous
object, one can combine the tasks together into
a single parallel multitask problem where the
hidden layer of a neural network shares patterns
that are common to all classification tasks (see
Fig.2). The reasons explaining why learning
often improves in accuracy and speed in this
context is that training with many tasks in parallel
on a single neural network induces information
that accumulates in the training signals; if
there exists properties common to several tasks,
internal nodes can serve to represent common
sub-concepts simultaneously.

Other Paradigms. Knowledge transfer can be
performed using other learning and data analysis
paradigms —mainly in the form of representa-
tional transfer— such as kernel methods, prob-
abilistic methods, clustering, etc. (Raina et al.
2006; Evgeniou et al. 2005). For example, induc-
tive transfer can take place in learning methods
that assume a probabilistic distribution of the data
by guaranteeing a form of relatedness among the
distributions adopted across tasks (Raina et al.
2006). As an illustration, if learning to classify
stars and galaxies both assume a mixture of
normal densities to model the input-output or
example-class distribution, one can force both

distributions to have sets of parameters that are as
similar as possible while preserving good gener-
alization performance. In that case, shared knowl-
edge can be interpreted as a set of assumptions
about the data distribution for all tasks under
analysis. The concept of knowledge transfer is
also related to the problem of introducing new
intermediate concepts during rule induction. In
the inductive logic programming (ILP) setting,
this is referred to as predicate invention (Stahl
1995).

Meta-Searching for Problem Solvers. A
different research direction in inductive transfer
explores complex scenarios where the software
architecture itself evolves with experience
(Schmidhuber 1997). The main idea is to
divide a program into different components
that can be reused during different stages of
the learning process. As an illustration, one
can work within the space of (self-delimiting
binary) programs to propose an optimal ordered
problem solver. The goal is to solve a sequence of
problems, deriving one solution after the other, as
optimally as possible. Ideally the system should
be capable of exploiting previous solutions and
of incorporating them into the solution to the
current problem. This can be done by allocating
computing time to the search for previous
solutions that, if useful, become transformed
into building blocks. We assume the current
problem can be solved by copying or invoking
previous pieces of code (i.e., building blocks
or knowledge). In that case the mechanism will
accept those solutions with substantial savings in
computational time.

Inductive Transfer

669

Inductive Transfer, Fig. 2 Stars Galaxies
Example of multitask ' .
Main Giants and .) -
leaming (functional sequence Red Giants White Dwarfs Spiral Elliptical Irregular
transfer) applied to
astronomical images
Stars Galaxies

Domain Adaptation. A recent research direc-
tion in representational transfer seeks to adjust
the model obtained in a source domain to account
for differences exhibited in a new target domain.
Unlike traditional studies in classification where
both training and testing sets are assumed as
realizations of the same joint input-output distri-
bution, this domain adaptation approach either
weakens or completely disregards such assump-
tion (Ben-David et al. 2007, Daumé, et al. 2006,
Storkey 2009). In addition, domain adaptation
commonly assumes an abundance of labeled ex-
amples in the source domain, but little or no class
labels in the target domain.

An example of these concepts lies in light
curve classification from star samples obtained
from different galaxies. A classification task
set to differentiate different types of stars in
a nearby source galaxy —where class labels
are available- will experience a change in
distribution as it moves to a target galaxy lying
farther away —where class labels are unavailable.
A major reason for such change is that at greater
distances, less luminous stars fall below the
detection threshold and more luminous stars
are preferentially detected. The corresponding

dataset shift (Quinonero-Candela et al. 2009)
precludes the direct utilization of one single
model across galaxies; it calls for a form of
model adaptation to compensate for the change
in the data distribution.

Domain adaptation has gained much attention
recently, mainly due to the pervasive character of
problems where distributions change over time. It
assumes that the learning task remains constant,
but the marginal and class posterior distributions
between source and target domain may differ
(as opposed to traditional transfer learning where
tasks can in addition exhibit different input rep-
resentations, i.e., different input spaces). Domain
adaptation has been attacked from different an-
gles: by searching for a single representation that
unifies both source and target domains (Glorot
et al. 2011); by proving error bounds as a func-
tion of empirical error and the distance between
source and target distributions (Ben-David et al.
2010), within a co-training framework where
target vectors are incorporated into the source
training set based on confidence (Chen et al.
2011), by re-weighting source instances (Man-
sour et al. 2009), by using regularization terms
to learn models that perform well on both source

670

and target domains (Daumé et al. 2010), and
several others.

Theoretical Work

Several studies have provided a theoretical analy-
sis of the case where a learner uses experience
from previous tasks to learn a new task. This
process is often referred to as meta-learning or
meta-generalization. The aim is to understand the
conditions under which a learning algorithm can
provide good generalizations when embedded in
an environment made of related tasks. Although
the idea of knowledge transfer is normally made
implicit in the analysis, it is clear that the meta-
learner extracts and exploits knowledge on every
task to perform well on future tasks. Theoretical
studies fall within a Bayesian model and within
a probably approximately correct (PAC) model.
The idea is to find not only the right hypothesis in
a hypothesis space (base learning), but in addition
to find the right hypothesis space in a family of
hypothesis spaces (meta-learning).

We briefly review the main ideas behind these
studies (Baxter 2000). We begin by assuming
that the learner is embedded in a set of related
tasks that share certain commonalities. Going
back to the problem where a learner is designed
for recognition of astronomical objects, the idea
is to classify objects (e.g., stars, galaxies, nebu-
lae, and planets) extracted from images mapping
certain region of the sky. One way to transfer
learning experience from one astronomical cen-
ter to another is by sharing a meta-learner that
carries a bias toward recognition of astronom-
ical objects. In traditional learning, we assume
a probability distribution p that indicates which
examples are more likely to be seen in such a
task. Now we assume that there is a more gen-
eral distribution P over the space of all possible
distributions. In essence, the meta-distribution P
indicates which tasks are more likely to be found
within the sequence of tasks faced by the meta-
learner (distribution p indicates which examples
are more likely to be seen in one task). In our
example, the meta-distribution P peaks over tasks
corresponding to classification of astronomical

Inductive Transfer

objects. Given a family of hypothesis spaces {H},
the goal of the meta-learner is to find a hypothesis
space H* that minimizes a functional risk corre-
sponding to the expected loss of the best possible
hypothesis in each hypothesis space. In practice,
since we ignore the form of P, we need to draw
samples Ty, T,,...,Ty to infer how tasks are
distributed in our environment. To summarize, in
the transfer learning scenario, our input is made
of samples T = {T;}, where each sample T; is
composed of examples. The goal of the meta-
learner is to output a hypothesis space with a
learning bias that generates accurate models for
a new task.

Future Directions

The research community faces several challenges
on how to efficiently transfer knowledge across
tasks. One challenge involves devising learning
architectures with an explicit representation of
knowledge about models and algorithms, i.e.,
meta-knowledge. Most systems that integrate
knowledge transfer mechanisms make an implicit
assumption about the type of knowledge being
transferred. This is indeed possible when strong
assumptions are made on the relationship
between the source and target tasks. For example,
most approaches to domain adaptation work
under strong assumptions about the similarity
between the source and target tasks, imposing
similar class posterior distributions, marginal
distributions, or both. Ideally we would like to
track the evolution of the source task to the target
task to be able to justify any assumptions about
their differences.

From a global perspective, it seems clear that
proper treatment of the inductive transfer prob-
lem requires more than just statistical or math-
ematical techniques. Inductive transfer can be
embedded in a complex artificial intelligence sys-
tem that incorporates important components such
as knowledge representation, search, planning,
reasoning, etc. Without the incorporation of ar-
tificial intelligence components, we are forced
to work with a large hypothesis space and a set

Information Retrieval

of stringent assumptions about the nature of the
discrepancy between the source and target tasks.

Cross-References

Metalearning

Recommended Reading

Baxter J (2000) A model of inductive learning bias. J
Artif Intell Res 12:149-198

Ben-David S, Blitzer J, Crammer K, Pereira F (2007)
Analysis of representations for domain adaptation.
Adv Neural Inf Process Syst 19:137-144

Ben-David S, Blitzer J, Crammer K, Kulesza A,
Pereira F, Wortman J (2010) A theory of learning
from different domains. Mach Learn Spec Issue
Learn Mult Sources 79:151-175

Brazdil P, Giraud-Carrier C, Soares C, Vilalta R (2009)
Metalearning: applications to data mining. Springer,
Berlin

Caruana R (1993) Multitask learning: a knowledge-
based source of inductive bias. In: Proceedings of
the 10th international conference on machine learn-
ing (ICML), Ambherst, pp 41-48

Chen M, Weinberger KQ, Blitzer J (2011) Co-training
for domain adaptation. In: Advances in neural infor-
mation processing systems (NIPS), Granada

Dai W, Yang Q, Xue G, Yu Y (2007) Boosting for
transfer learning. In: Proceedings of the 24th inter-
national conference on machine learning (ICML),
Corvallis, pp 193-200

Daumé H, Marcu D (2006) Domain adaptation for
statistical classifiers.] Mach Learn Res 26:102-126

Daumé H, Kumar A, Saha A (2010) Co-regularization
based semi-supervised domain adaptation. In: Ad-
vances in neural information processing systems
(NIPS), Whistler

Evgeniou T, Micchelli CA, Pontil M (2005) Learning
multiple tasks with kernel methods. J Mach Learn
Res 6:615-637

Glorot X, Bordes A, Bengio Y (2011) Domain adapta-
tion for large-scale sentiment classification: a deep
learning approach. In: Proceedings of the 28th in-
ternational conference on machine learning ICML),
Bellevue, pp 513-520

Mansour Y, Mohri M, Rostamizadeh A (2009) Do-
main adaptation with multiple sources. In: Advances
in neural information processing systems (NIPS),
Whistler, pp 1041-1048

Mihalkova L, Huynh T, Mooney RJ (2007) Mapping
and revising markov logic networks for transfer
learning. In: Proceedings of the 22nd AAAI confer-
ence on artificial intelligence, Vancouver, pp 608—
614

671

Oblinger D, Reid M, Brodie M, de Salvo Braz R (2002)
Cross-training and its application to skill-mining.
IBM Syst J 41(3):449-460

Pratt L, Thrun S (1997) Second special issue on induc-
tive transfer. Mach Learn 28:4175

Quinonero-Candela J, Sugiyama M, Schwaighofer A,
Lawrence ND (2009) Dataset shift in machine learn-
ing. MIT Press, Cambridge

Raina R, Ng AY, Koller D (2006) Constructing in-
formative priors using transfer learning. In: Pro-
ceedings of the 23rd international conference on
machine learning (ICML), Pittsburgh, pp 713-720

Reid M (2004) Improving rule evaluation using mul-
titask learning. In: Proceedings of the 14th interna-
tional conference on ILP, Porto, pp 252-269

Schmidhuber J (1997) Shifting inductive bias with
success-story algorithm, adaptive levin search, and
incremental self-improvement. Mach Learn 28:
105-130

Stahl I (1995) Predicate invention in inductive logic
programming. In: De Raedt L (ed) Advances in
inductive logic programming. I0S Press, Amster-
dam/Washington, DC, pp 34-47

Storkey A (2009) When training and test sets are
different. In: Quinonero-Candela J, Sugiyama M,
Schwaighofer A, Lawrence ND (eds) Dataset
shift in machine learning. MIT Press, Cambridge,
pp 3-28

Inequalities

Generalization Bounds

Information Retrieval

Information retrieval (IR) is a set of techniques
that extract from a collection of documents those
that are relevant to a given query. Initially ad-
dressing the needs of librarians and specialists,
the field has evolved dramatically with the ad-
vent of the World Wide Web. It is more general
than data retrieval, whose purpose is to deter-
mine which documents contain occurrences of
the keywords that make up a query. Whereas
the syntax and semantics of data retrieval frame-
works is strictly defined, with queries expressed
in a totally formalized language, words from a
natural language given no or limited structure are
the medium of communication for information

http://dx.doi.org/10.1007/978-1-4899-7687-1_543
http://dx.doi.org/10.1007/978-1-4899-7687-1_328

672

retrieval frameworks. A crucial task for an IR
system is to index the collection of documents
to make their contents efficiently accessible. The
documents retrieved by the system are usually
ranked by expected relevance, and the user who
examines some of them might be able to provide
feedback so that the query can be reformulated
and the results improved.

In-Sample Evaluation
Synonyms

Within-sample evaluation

Definition

In-sample evaluation is an approach to » algorithm
evaluation whereby the learned model is
evaluated on the data from which it was learned.

This provides a biased estimate of learning
performance, in contrast to » holdout evaluation.

Cross-References

Algorithm Evaluation

Instance
Synonyms

Case; Example; Item; Object

Definition

An instance is an individual object from the
universe of discourse. Most learners create a
model by analyzing a » training set of instances.
Most machine learning models take the form of
a function from an » instance space to an output

In-Sample Evaluation
space. In » attribute-value learning, each instance
is often represented as a vector of » attribute

values, each position in the vector corresponding
to a unique attribute.

Instance Language

Observation Language

Instance Space
Synonyms

Example space; Item space; Object space

Definition

An instance space is the space of all pos-
sible » instances for some learning task. In
attribute-value learning, the instance space
is often depicted as a geometric space, one
dimension corresponding to each attribute.

Instance-Based Learning

Eamonn Keogh
University of California-Riverside, Riverside,
CA, USA

Synonyms
Analogical reasoning; Case-based learning;
Memory-based; Nearest neighbor methods;

Non-parametric methods

Definition

Instance-based learning refers to a family of
techniques for » classification and » regression,
which produce a class label/predication based

http://dx.doi.org/10.1007/978-1-4899-7687-1_100503
http://dx.doi.org/10.1007/978-1-4899-7687-1_18
http://dx.doi.org/10.1007/978-1-4899-7687-1_369
http://dx.doi.org/10.1007/978-1-4899-7687-1_18
http://dx.doi.org/10.1007/978-1-4899-7687-1_100044
http://dx.doi.org/10.1007/978-1-4899-7687-1_100156
http://dx.doi.org/10.1007/978-1-4899-7687-1_100225
http://dx.doi.org/10.1007/978-1-4899-7687-1_100340
http://dx.doi.org/10.1007/978-1-4899-7687-1_974
http://dx.doi.org/10.1007/978-1-4899-7687-1_408
http://dx.doi.org/10.1007/978-1-4899-7687-1_43
http://dx.doi.org/10.1007/978-1-4899-7687-1_954
http://dx.doi.org/10.1007/978-1-4899-7687-1_608
http://dx.doi.org/10.1007/978-1-4899-7687-1_100157
http://dx.doi.org/10.1007/978-1-4899-7687-1_100226
http://dx.doi.org/10.1007/978-1-4899-7687-1_100344
http://dx.doi.org/10.1007/978-1-4899-7687-1_406
http://dx.doi.org/10.1007/978-1-4899-7687-1_43
http://dx.doi.org/10.1007/978-1-4899-7687-1_100012
http://dx.doi.org/10.1007/978-1-4899-7687-1_100045
http://dx.doi.org/10.1007/978-1-4899-7687-1_100296
http://dx.doi.org/10.1007/978-1-4899-7687-1_100325
http://dx.doi.org/10.1007/978-1-4899-7687-1_100336
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_716

Instance-Based Reinforcement Learning

on the similarity of the query to its nearest
neighbor(s) in the training set. In explicit contrast
to other methods such as » decision trees and

neural networks, instance-based learning
algorithms do not create an abstraction from
specific instances. Rather, they simply store all
the data, and at query time derive an answer
from an examination of the query’s » nearest
neighbor (s).

Somewhat more generally, instance-based
learning can refer to a class of procedures for
solving new problems based on the solutions of
similar past problems.

Motivation and Background

Most instance-based learning algorithms can
be specified by determining the following four
items:

1. Distance measure: Since the notion of
similarity is being used to produce class
label/prediction, we must explicitly state what
similarity/distance measure to use. For real-
valued data, Euclidean distance is a popular
choice and may be optimal under some
assumptions.

2. Number of neighbors to consider: It is possible
to consider any number from one to all neigh-
bors. This number is typically denoted as k.

3. Weighting function: It is possible to give each
neighbor equal weight, or to weight them
based on their distance to the query.

4. Mapping from local points: Finally, some
method must be specified to use the (possibly
weighted) neighbors to produce an answer.
For example, for regression the output can be
the weighted mean of the k nearest neighbors,
or for classification the output can be the
majority vote of the k nearest neighbors (with
some specified tie-breaking procedure).

Since instance-based learning algorithms de-
fer all the work until a query is submitted, they
are sometimes called lazy algorithms (in contrast
to eager learning algorithms, such as decision
trees). Beyond the setting of parameters/distance

673

measures/mapping noted above, one of the main
research issues with instance-based learning al-
gorithms is mitigating their expensive classifica-
tion time, since a naive algorithm would require
comparing the distance for the query to every
point in the database. Two obvious solutions are
indexing the data to achieve a sublinear search,
and numerosity reduction (data editing) (Wilson
and Martinez 2000).

Further Reading

The best distance measure to use with an
instance-based learning algorithms is the subject
of active research. For the special case of time
series data alone, there are at least one hundred
methods (Ding et al. 2008). Conferences such
as ICML, SIGKDD, etc. typically have several
papers each year which introduce new distance
measures and/or efficient search techniques.

Recommended Reading

Aha DW, Kibler D, Albert MK (1991) Instance-based
learning algorithms. Mach Learn 6:37-66

Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh
EJ (2008) Querying and mining of time series data:
experimental comparison of representations and dis-
tance measures. PVLDB 1(2):1542-1552

Wilson DR, Martinez TR (2000) Reduction tech-
niques for exemplar-based learning algorithms.
Mach Learn 38(3):257-286

Instance-Based Reinforcement
Learning

William D. Smart

Washington University in St. Louis, St. Louis,
MO, USA

Synonyms

Kernel-based reinforcement learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_100235

674

Definition

Traditional reinforcement-learning (RL) algo-
rithms operate on domains with discrete state
spaces. They typically represent the value
function in a table, indexed by states, or by
state—action pairs. However, when applying
RL to domains with continuous state, a tabular
representation is no longer possible. In these
cases, a common approach is to represent
the value function by storing the values of a
small set of states (or state—action pairs), and
interpolating these values to other, unstored,
states (or state—action pairs). This approach is
known as instance-based reinforcement learning
(IBRL). The instances are the explicitly stored
values, and the interpolation is typically done
using well-known instance-based supervised
learning algorithms.

Motivation and Background

Instance-Based Reinforcement Learning (IBRL)
is one of a set of value-function approximation
techniques that allow standard RL algorithms to
deal with problems that have continuous state
spaces. Essentially, the tabular representation of
the value function is replaced by an instance-
based supervised learning algorithm and the rest
of the RL algorithm remains unaltered. Instance-
based methods are appealing because each stored
instance can be viewed as analogous to one cell
in the tabular representation. The interpolation
method of the instance-based learning algorithm
then blends the value between these instances.
IBRL allows generalization of value across
the state (or state—action) space. Unlike tabular
representations it is capable of returning a value
approximation for states (or state—action pairs)
that have never been directly experienced by the
system. This means that, in theory, fewer experi-
ences are needed to learn a good approximation
to the value function and, hence, a good con-
trol policy. IBRL also provides a more compact
representation of the value function than a table
does. This is especially important in problems
with multi-dimensional continuous state spaces.

Instance-Based Reinforcement Learning

A straightforward discretization of such a space
results in an exponential number of table cells.
This, in turn, leads to an exponential increase in
the amount of training experiences needed to ob-
tain a good approximation of the value function.

An additional benefit of IBRL over other
value-function approximation techniques, such as
artificial neural networks, is the ability to bound
the predicted value of the approximation. This
is important, since it allow us to retain some of
the theoretical non-divergence results for tabular
representations.

Structure of Learning System

IBRL can be used to approximate both the state
value function and the state-action value func-
tion. For problems with discrete actions, it is
common to store a separate value function for
each action. For continuous actions, the (con-
tinuous) state and action vectors are often con-
catenated, and VFA is done over this combined
domain. For clarity, we will discuss only the
state value function here, although our comments
apply equally well to the state—action value func-
tion.

The Basic Approach

IBRL uses an instance-based supervised learn-
ing algorithm to replace the tabular value func-
tion representation of common RL algorithms.
It maintains a set of states, often called basis
points, and their associated values, using them to
provide a value-function approximation for the
entire state space. These exemplar states can be
obtained in a variety of ways, depending on the
nature of the problem. The simplest approach is
to sample, either regularly or randomly, from the
state space. However, this approach can result
in an unacceptably large number of instances,
especially if the state space is large, or has high
dimension. A better approach is to use states
encountered by the learning agent as it follows
trajectories in the state space. This allows the
representational power of the approximation al-
gorithm to be focused on areas of the space in
which the learning agent is likely to be. This, too,

Instance-Based Reinforcement Learning

can result in a large number of states, if the agent
is long-lived. A final approach combines the
previous two by sub-sampling from the observed
states.

Each stored instance state has a value asso-
ciated with it, and an instance-based supervised
learning algorithm is used to calculate the value
of all other states. While any instance-based algo-
rithm can be used, kernel-based algorithms have
proven to be popular. Algorithms such as locally
weighted regression (Smart and Kaelbling 2000),
and radial basis function networks (Kretchmar
and Anderson 1997) are commonly seen in the
literature. These algorithms make some implicit
assumptions about the form of the value function
and the underlying state space, which we discuss
below. For a state s, the kernel-based value-
function approximation V'(s) is

Vo) = 2 gV, ()
i=1

where the s; values are the n stored basis points,
n is a normalizer,

n=7_ ¢(ss),)
i=l1

and ¢ is the kernel function. A common choice
for ¢ is an exponential kernel,

(s—1)?

P(s.1) =e o°, 3

where o is the kernel bandwidth. The use
of kernel-based approximation algorithms is
well motivated, since they respect Gordon’s
non-divergence conditions (Gordon 1995),
and also Szepesvari and Smart’s convergence
criteria (Szepesvari and Smart 2004).

As the agent gathers experience, the value
approximations at each of the stored states and,
optionally, the location and bandwidth of the
states must be updated. Several techniques, often
based on the temporal difference error, have been
proposed, but the problem remains open. An
alternative to on-line updates is a batch approach,
which relies on storing the experiences generated

675

by the RL agent, composing these into a discrete
MDP, solving this MDP exactly, and then using
supervised learning techniques on the states and
their associated values. This approach is known
as fitted value iteration (Szepesvari and Munos
2005).

Examples of IBRL Algorithms

Several IBRL algorithms have been reported in
the literature. Kretchmar and Anderson (1997)
presented one of the first IBRL algorithms. They
used a radial basis function (RBF) network to
approximate the state—action value function for
the well-known mountain-car test domain. The
temporal difference error of the value update is
used to modify the weights, centers, and vari-
ances of the RBF units, although they noted that it
was not particularly effective in producing good
control policies.

Smart and Kaelbling (2000) used locally
weighted learning algorithms and a set of
heuristic rules to approximate the state—action
value function. A set of states, sampled from
those experienced by the learning agent, were
stored along with their associated values. One
approximation was stored for each discrete
action. Interpolation between these exemplars
was done by locally weighted averaging or
locally weighted regression, supplemented with
heuristics to avoid extrapolation and over-
estimation. Learning was done on-line, with
new instances being added as the learning agent
explored the state space. The algorithm was
shown to be effective in practice, but offered
no theoretical guarantees.

Ormoneit and Sen (2002) presented an offline
kernel-based reinforcement-learning algorithm
that stores experiences (si,a,-,r,-,slf) as the
instances, and uses these to approximate the
state—action value function for problems with
discrete actions. For a given state s and action a,
the state—action value Q(s, a) is approximated as

O = Y ¢ (42

Ns,a o

ilaj=a

[r,- +ymax O (s, a’)} L@

676

where ¢ is a kernel function, o is the kernel
bandwidth, y is the RL discount factor, and 7y,
is a normalizing term,

d(s,s;
Na= Y & (%) (5)

ilaj=a

They showed that, with enough basis points,
this approximation converges to the true value
function, under some reasonable assumptions.
However, they provide no bound on the number
of basis points needed to provide a good approx-
imation to the value function.

Assumptions

IBRL makes a number of assumptions about the
form of the value function, and the underlying
state space. The main assumptions are that state
similarity is well measure by (weighted) Eu-
clidean distance. This implicity assumes that the
underlying state space be metric, and is a topo-
logical disk. Essentially, this means that stattes
that are close to each other in the state space have
similar value. This is clearly not true for states
between which the agent cannot move, such as
those on the opposite sides of a thin wall. In this
case, there is a discontinuity in the state space,
introduced by the wall, which is not well modeled
by the instance-based algorithm.

Instance-based function approximation algo-
rithms assume that the function they model is
smooth and continuous between the basis points.
Any discontinuities in the function tend to get
“smoothed out” in the approximation. This as-
sumption is especially problematic for value-
function approximation, since it allows value on
one side of the discontinuity to affect the ap-
proximation on the other. If the location of the
discontinuity is known, and we are able to allo-
cate an arbitrary number of basis points, we can
overcome this problem. However, in practical ap-
plications of RL, neither of these is feasible, and
the problem of approximating the value function
at or near discontinuities remains an open one.

Problems and Drawbacks

Although IBRL has been shown to be effec-
tive on a number of problems, it does have a
number of drawbacks that remain unaddressed.

Instance-Based Reinforcement Learning

Instance-based approximation algorithms are of-
ten expensive in terms of storage, especially for
long-lived agents. Although the literature con-
tains many techniques for editing the basis set of
instance-based approximators, these techniques
are generally for a supervised learning setting,
where the utility of a particular edit can be easily
evaluated. In the RL setting, we lack the ground
truth available to supervised learning, making the
evaluation of edits considerably more difficult.
Additionally, as the number of basis points in-
creases, so does the time needed to perform an
approximation. This limitation is significant in
the RL setting, since many such value predictions
are needed on every step of the accompanying RL
algorithm.

The value of a particular state, s, is calculated
by blending the values from other nearby states,
s;. This is problematic if it is not possible to
move from state s to each of the states s;. The
value of s should only be influenced by the value
of states reachable from s, but this condition is
not enforced by standard instance-based approx-
imation algorithms. This leads to problems when
modeling discontinuities in the value function, as
noted above, and in situations where the system
dynamics constrain the agent’s motion, as in the
case of a “one-way door” in the state space.

IBRL also suffers badly from the curse of
dimen-sionality; the number of points needed to
adequately represent the value function is expo-
nential in the dimensionality of the state space.
However, by using only states actually experi-
enced by the learning agent, we can lessen the
impact of this problem. By using only observed
states, we are explicitly modeling the manifold
over which the system state moves. This manifold
is embedded in the full state space and, for many
real-world problems, has a lower dimensional-
ity than the full space. The Euclidean distance
metric used by many instance-based algorithms
will not accurately measure distance along this
manifold. In practice, the manifold over which
the system state moves will be locally Euclidean
for problems with smooth, continuous dynamics.
As a result, the assumptions of instance-based
function approximators are valid locally and the
approximations are of reasonable quality.

Inverse Entailment

Cross-References

Curse of Dimensionality
Instance-Based Learning
Locally Weighted Learning
Reinforcement Learning

Value Function Approximation

Recommended Reading

Gordon GJ (1995) Stable function approximation
in dynamic programming. In: Proceedings of the
twelfth international conference on machine learn-
ing, Tahoe City, pp 261-268

Kretchmar RM, Anderson CW (1997) Comparison of
CMAC: and radial basis functions for local function
approximators in reinforcement learning. In: Inter-
national conference on neural networks, Houston,
vol 2, pp 834-837

Ormoneit D, Sen $ (2002) Kernel-based reinforcement
learning. Mach Learn 49(2-3):161-178

Smart WD, Kaelbling LP (2000) Practical reinforce-
ment learning in continuous spaces. In: Proceedings
of the seventeenth international conference on ma-
chine learning (ICML 2000), Stanford, pp 903-910

Szepesvari C, Munos R (2005) Finite time bounds for
sampling based fitted value iteration. In: Proceed-
ings of the twenty-second international conference
on machine learning (ICML 2005), Bonn, pp 880—
887

Szepesvari C, Smart WD (2004) Interpolation-based
Q-learning. In: Proceedings of the twenty-first in-
ternational conference on machine learning (ICML
2004), Banff, pp 791-798

Intelligent Backtracking
Synonyms

Dependency directed backtracking

Definition

Intelligent backtracking is a general class of
techniques used to enhance search and constraint
satisfaction algorithms. Backtracking is a general
mechanism in search where a problem solver
encounters an unsolvable search state and
backtracks to a previous search state that
might be solvable. Intelligent backtracking

677

mechanisms provide various ways of selecting
the backtracking point based on past experience
in a way that is likely to be fruitful.

Intent Recognition

Inverse Reinforcement Learning

Internal Model Control
Synonyms

Certainty equivalence principle; Model-based
control

Definition

Many advanced controllers for nonlinear systems
require knowledge of the model of the dynam-
ics of the system to be controlled. The system
dynamics is often called an “internal model,”
and the resulting controller is model-based. If
the model is not known, it can be learned with
function approximation techniques. The learned
model is subsequently used as if it were correct
in order to synthesize a controller — the con-
trol literature calls this assumption the “certainty
equivalence principle.”

Interval Scale

An interval measurement scale ranks the data,

and the differences between units of measure can

be calculated by arithmetic. However, zero in the

interval level of measurement means neither “nil”

nor “nothing” as zero in arithmetic means. See
Measurement Scales.

Inverse Entailment

Definition

Inverse entailment is a » generality relation
in inductive logic programming. More
specifically, when learning from entailment using

http://dx.doi.org/10.1007/978-1-4899-7687-1_192
http://dx.doi.org/10.1007/978-1-4899-7687-1_409
http://dx.doi.org/10.1007/978-1-4899-7687-1_100273
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_100109
http://dx.doi.org/10.1007/978-1-4899-7687-1_142
http://dx.doi.org/10.1007/978-1-4899-7687-1_100051
http://dx.doi.org/10.1007/978-1-4899-7687-1_100310
http://dx.doi.org/10.1007/978-1-4899-7687-1_529
http://dx.doi.org/10.1007/978-1-4899-7687-1_100179
http://dx.doi.org/10.1007/978-1-4899-7687-1_135

678

a background theory B, a hypothesis H covers an
example e, relative to the background theory B if
and only if B A H [e, that is, the background
theory B and the hypothesis H together entail
the example (see » entailment). For instance,
consider the background theory B:

bird
bird

:- blackbird.
:- ostrich.

and the hypothesis H:

flies :- bird.

Together B A H entail the example e:

flies :- blackbird, normal.

This can be decided through deductive inference.
Now when learning from entailment in inductive
logic programming, one starts from the example
e and the background theory B, and the aim is
to induce a rule H that together with B entails
the example. Inverting entailment is based on
the observation that B A H = e is logically
equivalent to BA—e = —H, which in turn can be
used to compute a hypothesis H that will cover
the example relative to the background theory.
Indeed, the negation of the example is —e:

blackbird.
normal.
:-flies.

and together with B this entails —H :

bird.
:-flies.

The principle of inverse entailment is typically
employed to compute the » bottom clause, which
is the most specific clause covering the example
under entailment. It can be computed by gener-
ating the set of all facts (true and false) that are
entailed by B A —e and negating the resulting
formula —H.

Cross-References

Bottom Clause

Entailment

Inductive Logic Programming
Logic of Generality

Inverse Optimal Control

Inverse Optimal Control

Inverse Reinforcement Learning

Inverse Reinforcement Learning

Pieter Abbeel' and Andrew Y. Ng?

'EECS Department, UC Berkeley, Stanford, CA,
USA

2Computer Science Department, Stanford
University, Stanford, CA, USA

3Stanford University, Stanford, CA, USA

Synonyms

Intent recognition; Inverse optimal control; Plan
recognition

Definition

Inverse reinforcement learning (inverse RL) con-
siders the problem of extracting a reward function
from observed (nearly) optimal behavior of an
expert acting in an environment.

Motivation and Background

The motivation for inverse RL is twofold:

e For many RL applications, it is difficult
to write down an explicit reward function
specifying how different desiderata should
be traded off exactly. In fact, engineers
often spend significant effort tweaking the
reward function such that the optimal policy
corresponds to performing the task they have
in mind. For example, consider the task of
driving a car well. Various desiderata have
to be traded off, such as speed, following
distance, lane preference, frequency of
lane changes, distance from the curb, etc.
Specifying the reward function for the task of
driving requires explicitly writing down the
trade-off between these features.

http://dx.doi.org/10.1007/978-1-4899-7687-1_253
http://dx.doi.org/10.1007/978-1-4899-7687-1_936
http://dx.doi.org/10.1007/978-1-4899-7687-1_936
http://dx.doi.org/10.1007/978-1-4899-7687-1_253
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_142
http://dx.doi.org/10.1007/978-1-4899-7687-1_100220
http://dx.doi.org/10.1007/978-1-4899-7687-1_100221
http://dx.doi.org/10.1007/978-1-4899-7687-1_100362

Inverse Reinforcement Learning

Inverse RL algorithms provide an efficient
solution to this problem in the apprenticeship
learning setting — when an expert is available
to demonstrate the task. Inverse RL algorithms
exploit the fact that an expert demonstration
implicitly encodes the reward function of the
task at hand.

* Reinforcement learning and related frame-
works are often used as computational models
for animal and human learning (Watkins 1989;
Schmajuk and Zanutto 1997; Touretzky and
Saksida 1997). Such models are supported
both by behavioral studies and by neurophys-
iological evidence that reinforcement learning
occurs in bee foraging (Montague et al.
1995) and in songbird vocalization (Doya
and Sejnowski 1995). It seems clear that
in examining animal and human behavior,
we must consider the reward function as an
unknown to be ascertained through empirical
investigation, particularly when dealing with
multiatttribute reward functions. Consider,
for example, that the bee might weigh nectar
ingestion against flight distance, time, and
risk from wind and predators. It is hard to
see how one could determine the relative
weights of these terms a priori. Similar
considerations apply to human economic
behavior, for example. Hence, inverse
reinforcement learning is a fundamental
problem of theoretical biology, econometrics,
and other scientific disciplines that deal with
reward-driven behavior.

Structure of the Learning System

Preliminaries and Notation
A Markov decision process (MDP) is a tuple
(S,A,T,y, D, R), where S is a finite set of states,
A is a set of actions, T = {Ps,} is a set
of state-transition probabilities (here, P, is the
state transition distribution upon taking action a
in state 5), y € [0,1) is a discount factor, D
is the distribution over states for time zero, and
R : S — R is the reward function.

A policy & is a mapping from states to proba-
bility distributions over actions. We let IT denote

679

the set of all stationary policies (We restrict atten-
tion to stationary policies, since it is well known
that there exists a stationary policy that is optimal
for infinite horizon MDPs.). The value of a policy
7 is given by

V(r) =e¢ |:Z th(s,)|71:| .

t=0

The expectation is taken with respect to the ran-
dom state sequence So, Sy, $2, . . . drawn by start-
ing from a state s, ~ D and picking actions
according to 7.

Let ps () be the discounted distribution over
states when acting according to the policy 7. In
particular, for a discrete state space, we have that
s (I(s) = Y22,y Prob(s; = s|x). (In the
case of a continuous state space, we replace
Prob(s; = s|m) by the appropriate probability
density function.) Then, we have that

V(r) = R jus ().

Thus, the value of a policy w when starting from
a state sg is linear in the reward function.

Often the reward function R can be repre-
sented more compactly. Let ¢ : S — R” be a
feature map. A typical assumption in inverse RL
is to assume the reward function R is a linear
combination of the features ¢: R(s) = w'¢(s).
Then, we have that the value of a policy 7 is
linear in the reward function weights w:

V(m) = E[};20v" R(se)|7]
= E[720 v w (sl]
= WTE[Z?io Y ¢ (se)lm]
=w' g (). ey

Here, we used linearity of expectation to bring w
outside of the expectation. The last equality de-
fines the vector of feature expectations Ly(7w) =
E[Y32, 1" ¢(s0)lm].

We assume access to demonstrations by some
expert. We denote the expert’s policy by m*.
Specifically, we assume the ability to observe
trajectories (state sequences) generated by the

680

expert starting from so ~ D and taking actions
according to 7 *.

Characterization of the Inverse RL

Solution Set

A reward function R is consistent with the policy

7* being optimal if and only if the value obtained

when acting according to the policy 7* is at

least as high as the value obtained when acting

according to any other policy m, or equivalently:
U(x*) > U(r) Vrr T)

Using the fact that U(x) = R s (), we can

equivalently write the conditions of Eq.(2) as a
set of linear constraints on the reward function R:

RTpus(r*) = R ps(m) Ve el (3)
The state distribution s (77) does not depend on
the reward function R. Thus, Eq.(3) is a set of
linear constraints in the reward function, and we
can use a linear program (LP) solver to find a
reward function consistent with the policy 7* be-
ing optimal. Strictly speaking, Eq. (3) solves the
inverse RL problem. However, to apply inverse
RL in practice, the following three issues need to
be addressed:

1. Reward function ambiguity. Typically a
large set of reward functions satisfy all the
constraints of Eq.(3). One such a reward
function that satisfies all the constraints for
any MDP is the all-zeros reward function (it
is consistent with any policy being optimal).
Clearly, the all-zeros reward function is not a
desirable answer to the inverse RL problem.
More generally, this observation suggests not
all reward functions satisfying Eq. (3) are of
equal interest and raises the question of how
to recover reward functions that are of interest
to the inverse RL problem.

2. Statistical efficiency. Often the state space is
very large (or even infinite), and we do not
have sufficiently many expert demonstrations
available to accurately estimate w(-; 7*) from
data.

Inverse Reinforcement Learning

3. Computational efficiency. The number of
constraints in Eq. (3) is equal to the number
of stationary policies |TT| and grows quickly
with the number of states and actions of the
MDP. For finite-state-action MDPs, we have
|A|!S! constraints. So, even for small state and
action spaces, feeding all the constraints of
Eq.(3) into an LP solver becomes quickly
impractical. For continuous state-action
spaces, the formulation of Eq.(3) has an
infinite number of constraints, and thus using
a standard LP solver to find a feasible reward
function R is impossible.

In the following sections, we address these
three issues.

Reward Function Ambiguity

As observed above, typically a large set of reward
functions satisfy all the constraints of Eq.(3).
To obtain a single reward function, it is natural
to reformulate the inverse RL problem as an
optimization problem. We describe one standard
approach for disambiguation. Of course many
other formulations as an optimization problem
are possible.

Similar to common practice in support vector
machines research, one can maximize the (soft)
margin by which the policy 7* outperforms all
other policies. As is common in structured pre-
diction tasks ((see, e.g., Taskar et al. (2003)), one
can require the margin by which the policy 7*
outperforms another policy 7 to be larger when
s differs more from 7*, as measured according
to some function i (7™, 7). The resulting formu-
lation (Ratliff et al. 2006) is

i R|IZ+C
min IR + C§
st. RTpus(m*) > R T pus(mw) + h(n*, m) — &
Vi eTl (4)

For the resulting optimal reward function to
correspond to a desirable solution to the inverse
RL problem, it is important that the objective and
the margin scaling encode the proper prior knowl-
edge. If a sparse reward function is suggested by
prior knowledge, then a 1-norm might be more

Inverse Reinforcement Learning

appropriate in the objective. An example of a
margin scaling function for a discrete MDP is the
number of states in which the action prescribed
by the policy r differs from the action prescribed
by the expert policy *. If the expert has only
been observed in a small number of states, then
one could restrict attention to these states when
evaluating this margin scaling function.

Another way of encoding prior knowledge is
by restricting the reward function to belong to a
certain functional class, for example, the set of
functions linear in a specified set of features. This
approach is very common and is also important
for statistical efficiency. It will be explained in the
next section.

Remark When using inverse RL to help us spec-
ify a reward function for a given task based on
an expert demonstration, it is not necessary to
explicitly resolve the ambiguities in the reward
function. In particular, one can probably perform
as well as the expert without matching the ex-
pert’s reward function. More details are given in
Sect. “A Generative Approach to Inverse RL”.

Statistical Efficiency
As formulated thus far, solving the inverse RL
problem requires the knowledge (or accurate sta-
tistical estimates) of us(7*). For most practical
problems, the number of states is large (or even
infinite), and thus accurately estimating us (7 ™)
requires a very large number of expert demonstra-
tions. This (statistical) problem can be resolved
by restricting the reward function to belong to
a prespecified class of functions. The common
approach is to assume the reward function R can
be expressed as a linear combination of a known
set of features. In particular, we have R(s) =
w' ¢ (s). Using this assumption, we can use the
expression for the value of the policy 7w from
Eq. (D).

Rewriting Eq. (4), we now have the following
constraints in the reward weights w:

mign Iwll3 + Cé&
stow! pg(m*) = wipng(r) + h(x* m) — &
Vr eTl.)

681

This new formulation only requires estimates
of the expected feature counts g (™), rather
than estimates of the distribution over the state
space s (7*). Assuming the number of features
is smaller than the number of states, this signif-
icantly reduces the number of expert demonstra-
tions required.

Computational Efficiency

For concreteness, we will consider the formula-
tion of Eq. (6). Although the number of variables
is only equal to the number of features in the
reward function, the number of constraints is very
large (equal to the number of stationary policies).
As a consequence, feeding the problem into a
standard quadratic programming (QP) solver will
not work.

Ratliff et al. (2006) suggested a formal com-
putational approach to solving the inverse RL
problem, using standard techniques from convex
optimization, which provide convergence guar-
antees. More specifically, they used a subgradi-
ent method to optimize the following equivalent
problem:

: 2 T *
C h(r*,
min fwll; + max (w pg () + h(x",)

—w g (). ©)

In each iteration, to compute the subgradient, it is
sufficient to find the optimal policy with respect
to a reward function that is easily determined
from the current reward weights w and the margin
scaling function &(xr*, -). In more recent work,
Ratliff et al. (2007) proposed a boosting algo-
rithm to solve a formulation similar to Eq. (6),
which also includes feature selection.

A Generative Approach to Inverse RL

Abbeel and Ng (2004) made the following obser-
vation, which resolves the ambiguity problem in
a completely different way: if, for a policy x, we
have that pg () = pe(x™), then the following
holds:

UGr) = wT () = w' o) = U™,

682

no matter what the value of w is. Thus, to perform
as well as the expert, it is sufficient to find a policy
that attains the same expected feature counts i
as the expert.

Abbeel and Ng provide an algorithm that
finds a policy 7 satisfying pe(w) = pg (™).
The algorithm iterates over two steps: (i)
Generate a reward function by solving a QP.
(i) Solve the MDP for the current reward
function.

In contrast to the previously described inverse
RL methods, which focus on merely recovering
a reward function that could explain the expert’s
behavior, this inverse RL algorithm is shown to
find a policy that performs at least as well as the
expert. The algorithm is shown to converge in a
polynomial number of iterations.

Apprenticeship Learning: Inverse RL
Versus Imitation Learning

Inverse RL alleviates the need to specify a reward
function for a given task when expert demon-
strations are available. Alternatively, one could
directly estimate the policy of the expert us-
ing standard a machine-learning algorithm, since
it is simply a mapping from state to action.
The latter approach, often referred to as imita-
tion learning or behavioral cloning (links), has
been successfully tested on a variety of tasks,
including learning to fly in a fixed-wing flight
simulator (Sammut et al. 1992) and learning to
drive a car (Pomerleau 1989; Abbeel and Ng
2004).

The imitation learning approach can be ex-
pected to be successful whenever the policy class
to be considered can be learned efficiently from
data. In contrast, the inverse RL approach relies
on having a reward function that can be estimated
efficiently from data.

Cross-References
Apprenticeship Learning

Reinforcement Learning
Reward Shaping

Inverse Resolution

Recommended Reading

Abbeel P, Ng AY (2004) Apprenticeship learning via
inverse reinforcement learning. In: Proceedings of
ICML, Alberta

Doya K, Sejnowski T (1995) A novel reinforcement
model of birdsong vocalization learning. Neural Inf
Process Syst 7:101

Montague PR, Dayan P, Person C, Sejnowski TJ (1995)
Bee foragin in uncertain environments using predic-
tive hebbian learning. Nature 377(6551):725-728

Pomerleau D (1989) Alvinn: an autonomous land ve-
hicle in a neural network. In: NIPS 1, Denver

Ratliff N, Bagnell J, Zinkevich M (2006) Maximum
margin planning. In: Proceedings of ICML, Pitts-
burgh

Ratliff N, Bradley D, Bagnell J, Chestnutt J (2007)
Boosting structured prediction for imitation learn-
ing. Neural Inf Process Syst 19:1153-1160

Sammut C, Hurst S, Kedzier D, Michie D (1992)
Learning to fly. In: Proceedings of ICML, Aberdeen

Schmajuk NA, Zanutto BS (1997) Escape, avoidance,
and imitation. Adapt Behav 6:63-129

Taskar B, Guestrin C, Koller D (2003) Max-margin
markov networks. In: Neural information process-
ing systems conference (NIPS03), Vancouver

Touretzky DS, Saksida LM (1997) Operant condition-
ing in skinnerbots. Adapt Behav 5:219-47

Watkins CJ (1989) Models of delayed reinforcement
learning. Ph.D. thesis, Psychology Department,
Cambridge University

Inverse Resolution

Definition

Inverse resolution is, as the name indicates, a rule
that inverts resolution. This follows the idea of
induction as the inverse of deduction formulated
in the » logic of generality. The resolution rule
is the best-known deductive inference rule, used
in many theorem provers and logic programming
systems. » Resolution starts from two » clauses
and derives the resolvent, a clause that is entailed
by the two clauses. This can be graphically rep-
resented using the following schema (for propo-
sitional logic).

h<g,a,...,apand g < by,..., by
/’l(—b],.. ’

'abmﬁala"‘5an
Inverse resolution operators, such as absorption

(17) and identification (17), invert this process.

http://dx.doi.org/10.1007/978-1-4899-7687-1_100017
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_966
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_81
http://dx.doi.org/10.1007/978-1-4899-7687-1_116

Iterative Computation

To this aim, they typically assume the resolvent
is given together with one of the original clauses
and then derive the missing clause. This leads to
the following two operators, which start from the
clauses below and induce the clause above the
line.

h<g,a,...,apand g < by,..., by
h<bi,....byp,ay,...,apand g< by,... by’

h<g,a,...,apand g < by,..., by
h<by,...,bym,a1,...,ap and h< g,ay,...,a,

The operators are shown here only for the propo-
sitional case, as the first order case is more in-
volved as it requires one to deal with substitutions
as well as inverse substitutions.

As one example, consider the clauses

1. flies :- bird, normal.
2. bird :- blackbird.
3. flies :- blackbird, normal.

Here, (3) is the resolvent of (1) and (2). Further-
more, starting from (3) and (2), the absorption
operator would generate (1), and starting from
(3) and (1), the identification operator would
generate (2).

Cross-References

First-Order Logic
Logic of Generality

Is More General Than

Logic of Generality

683

Is More Specific Than

Logic of Generality

Isotonic Calibration

Classifier Calibration

Item

Instance

Item Space

Instance Space

Iterative Algorithm

K-Medoids Clustering

Iterative Classification

Collective Classification

Iterative Computation

K-Means Clustering

http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_900
http://dx.doi.org/10.1007/978-1-4899-7687-1_406
http://dx.doi.org/10.1007/978-1-4899-7687-1_408
http://dx.doi.org/10.1007/978-1-4899-7687-1_432
http://dx.doi.org/10.1007/978-1-4899-7687-1_44
http://dx.doi.org/10.1007/978-1-4899-7687-1_431

	I
	Identification
	Identity Uncertainty
	Idiot's Bayes
	Immune Computing
	Immune Network
	Immune-Inspired Computing
	Immunocomputing
	Immunological Computation
	Implication
	Improvement Curve
	Incremental Learning
	Definition
	Motivation and Background
	Theory
	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Indirect Reinforcement Learning
	Induction
	Definition
	Theory
	Hume's Problem of Induction
	Induction and Probabilistic Inference
	Popper
	Causality and Hempel's Paradox

	Cross-References
	Recommended Reading

	Induction as Inverted Deduction
	Inductive Bias
	Synonyms
	Definition
	Cross-References

	Inductive Database Approach to Graphmining
	Overview
	Pattern Domain
	Query Language
	Data Structures
	Recommended Reading

	Inductive Inference
	Definition
	Detail
	Explanatory Learning
	Beyond Explanatory Learning
	Consistent and Conservative Learning
	Monotonicity
	Indexed Families
	Cross-References
	Recommended Reading

	Inductive Inference Rules
	Inductive Learning
	Synonyms
	Definition

	Inductive Logic Programming
	Synonyms
	Motivation
	Theory
	A Methodology
	FOIL: An Illustration
	Application
	State-of-the-Art
	Current Trends and Challenges
	Cross-References
	Recommended Reading

	Inductive Process Modeling
	Synonyms
	Definition
	Cross-References
	Recommended Reading

	Inductive Program Synthesis
	Inductive Programming
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	The Evidence and the Oracle
	Program Schemas
	Predicate Invention
	Background Knowledge

	Programs and Data
	Applications
	Future Directions
	Cross-References
	Recommended Reading

	Inductive Synthesis
	Inductive Transfer
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Theoretical Work
	Future Directions
	Cross-References
	Recommended Reading

	Inequalities
	Information Retrieval
	In-Sample Evaluation
	Synonyms
	Definition
	Cross-References

	Instance
	Synonyms
	Definition

	Instance Language
	Instance Space
	Synonyms
	Definition

	Instance-Based Learning
	Synonyms
	Definition
	Motivation and Background
	Further Reading
	Recommended Reading

	Instance-Based Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	The Basic Approach
	Examples of IBRL Algorithms
	Assumptions
	Problems and Drawbacks

	Cross-References
	Recommended Reading

	Intelligent Backtracking
	Synonyms
	Definition

	Intent Recognition
	Internal Model Control
	Synonyms
	Definition

	Interval Scale
	Inverse Entailment
	Definition
	Cross-References

	Inverse Optimal Control
	Inverse Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Preliminaries and Notation
	Characterization of the Inverse RL Solution Set
	Reward Function Ambiguity
	Statistical Efficiency
	Computational Efficiency

	A Generative Approach to Inverse RL

	Apprenticeship Learning: Inverse RL Versus Imitation Learning
	Cross-References
	Recommended Reading

	Inverse Resolution
	Definition
	Cross-References

	Is More General Than
	Is More Specific Than
	Isotonic Calibration
	Item
	Item Space
	Iterative Algorithm
	Iterative Classification
	Iterative Computation

