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Preface

Workshop + Tutorial The volume of data is rapidly increasing due to
the development of the technology of information and communication. This
data comes mostly in the form of streams. Learning from this ever-growing
amount of data requires flexible learning models that self-adapt over time. In
addition, these models must take into account many constraints: (pseudo) real-
time processing, high-velocity, and dynamic multi-form change such as concept
drift and novelty. This workshop welcomes novel research about learning from
data streams in evolving environments. It will provide the researchers and par-
ticipants with a forum for exchanging ideas, presenting recent advances and
discussing challenges related to data streams processing. It solicits original
work, already completed or in progress. Position papers are also considered.
This workshop is combined with a tutorial treating the same topic and will be
presented in the same day.

Motivation and focus The volume of data is rapidly increasing due to the
development of the technology of information and communication. This data
comes mostly in the form of streams. Learning from this ever-growing amount
of data requires flexible learning models that self-adapt over time. In addition,
these models must take into account many constraints: (pseudo) real-time pro-
cessing, high-velocity, and dynamic multi-form change such as concept drift and
novelty. Consequently, learning from streams of evolving and unbounded data
requires developing new algorithms and methods able to learn under the follow-
ing constraints: -) random access to observations is not feasible or it has high
costs, -) memory is small with respect to the size of data, -) data distribution or
phenomena generating the data may evolve over time, which is known as con-
cept drift and -) the number of classes may evolve overtime. Therefore, efficient
data streams processing requires particular drivers and learning techniques:

o Incremental learning in order to integrate the information carried by each
new arriving data;

e Decremental learning in order to forget or unlearn the data samples which
are no more useful;

e Novelty detection in order to learn new concepts.

It is worthwhile to emphasize that streams are very often generated by dis-
tributed sources, especially with the advent of Internet of Things and therefore
processing them centrally may not be efficient especially if the infrastructure is
large and complex. Scalable and decentralized learning algorithms are poten-
tially more suitable and efficient.

Aim and scope This workshop welcomes novel research about learning
from data streams in evolving environments. It will provide the researchers
and participants with a forum for exchanging ideas, presenting recent advances
and discussing challenges related to data streams processing. It solicits original
work, already completed or in progress. Position papers are also considered.
The scope of the workshop covers the following, but not limited to:

e Online and incremental learning

¢ Online classification, clustering and regression



Online dimension reduction

Data drift and shift handling

Online active and semi-supervised learning

Online transfer learning

Adaptive data pre-processing and knowledge discovery
Applications in

Monitoring

— Quality control

Fault detection, isolation and prognosis,

Internet analytics

Decision Support Systems,

— etc.



A Sliding Window Filter for Time Series Streams

Gordon Lesti! and Stephan Spiegel?
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Abstract. The ever increasing number of sensor-equipped devices comes
along with a growing need for data analysis techniques that are able to
process time series streams in an online fashion. Although many sensor-
equipped devices produce never-ending data streams, most real-world
applications merely require high-level information about the presence or
absence of certain events that correspond to temporal patterns. Since
online event detection is usually computational demanding, we propose
a sliding window filter that decreases the time/space complexity and,
therefore, allows edge computing on devices with only few resources.
Our evaluation for online gesture recognition shows that the developed
filtering approach does not only reduce the number of expensive dis-
similarity comparison, but also maintains high precision.

Keywords: Internet of Things, Time Series Streams, Sliding Window
Technique, Online Event Detection, Computational Complexity

1 Introduction

As time goes by things change, and those who understand change can adapt
accordingly. This basic principle is also reflected in today’s digital society, where
sensor-equipped devices measure our environment and online algorithms process
the generated data streams in quasi real-time to inform humans or cognitive
systems about relevant trends and events that impact decision making.

Depending on the domain researchers either speak about events, patterns,
or scenes that they aim to detect or recognize in time series, sensor, or data
streams. Applications range from event detection for smart home control [17]
over frequent pattern mining for engine optimization [16] to scene detection for
video content [1] and gesture recognition for human-computer interaction [11].

Commonly online algorithms for data streams employ the popular sliding
window technique [8], which observes the most recent sensor measurements and
moves along the time axis as new measurements arrive. Usually each window is
examined for a set of predefined events, which requires the comparison of the
current time series segment and all preliminary learned instances of the relevant
temporal patterns. In general, the pairwise dissimilarity comparisons of temporal
patterns are performed by time series distance measures [18].



The time and space complexity of the sliding window technique increases
with decreasing step size as well as growing window size, measurement frequency,
and number of preliminary learned instances. High computational demand and
memory usage is especially problematic for embedded systems with only few
resources [9,19], which applies to the greatest part of sensor-equipped devices
within the typical Internet of Things (IoT) scenario.

Our aim is to reduce the number of computational expensive dissimilarity
comparisons that are required by the sliding window technique. To this end
we propose a sliding window filter [10], which is able to decide whether the
current window should be passed to a time series classifier or not. Although the
filter could be considered as a binary classifier itself, it merely employs statistical
measures with linear complexity and, thereby, avoids using computationally more
expensive dissimilarity comparisons in many cases. Our approach to mitigate
the computational complexity of event detection in data streams is different
from other techniques in that we refrain from accelerating time series distance
measures [13,15] or reducing dataset numerosity [20].

We demonstrate the practical use of our proposed sliding window filter for
gesture recognition in continuous streams of accelleration data [10,11], where a
great amount of the necessary but expensive Dynamic Time Warping (DTW)
distance calculations [7] is replaced by less demanding statistical measures, such
as the complexity estimate [2] or sample variance [3]. Our experimental results
show that the number of DTW distance calculations can be cut in half, while
still maintaining the same high gesture recognition performance.

The rest of the paper is structured as follows. Chapter 2 introduces back-
ground and notation. Chapter 3 and 4 introduce and evaluate our proposed
sliding window filter. We conclude with future work in Chapter 5.

2 Background and Notation

This section gives more background on the sliding window technique [8], DTW
distance measure [7], and time series normalization [4], which are fundamental
building blocks of our conducted online gesture recognition study [10]. Table 1
introduces the notation that we use for formal problem description.

Symbol Description

Q a time series of size n with Q = (q1,92, -+, Gis- -+, qn)
Q[i,j] a subsequence time series of Q with Q[z, j] = (i, Git1,---, ;)
t the current time
o the mean of a time series @
o the standard deviation of a time series Q@

n, z  two different time series normalizations

Table 1. Notation used for formal problem description.



2.1 Sliding Window Technique

Given a continuous time series stream @, the sliding window technique examines
the w most recent data points and moves s steps along the time axis as new
measurements arrive, where w and s are referred to as window and step size.
This technique has the advantage that it does not need to store the never-ending
stream of data, but it also implies that measurements can only be considered for
further data analysis as long as they are located within the current window.

In most applications, each window is passed to a data processing unit, which
performs some kind of time series classification, clustering, or anomaly detection.
For example in online gesture recognition [10], one can employ a nearest neighbor
classifier, which compares each window to a training set of preliminary learned
time series instances. In case that the current window Q[t —w, t] is similar to one
of the known gestures, where similar means that the time series distance falls
below a certain threshold, a corresponding action can be triggered. A popular
distance measure for gestures [11] and other warped time series is described in
the following subsection.

2.2 Dynamic Time Warping

Dynamic Time Warping (DTW) is a widely used and robust distance measure
for time series, allowing similar shapes to match even if they are out of phase
in the time azis [7]. Traditionally DTW computes a full distance matrix to find
an optimal warping path, where possible nonlinear alignments between a pair
of time series include matches of early time points of the first sequence with
late time points of the second sequence. To prevent pathological alignments, the
size of the warping window can be constraint, for instance, by the Sakoe-Chiba
band [12] or the Itakura parallelogram [6]. Figure 1 illustrates the DTW distance
measure using a Sakoe-Chiba band of 10%, where the percentage of the warping
window refers to the length of the compared time series.

T j T l 50

acceleration

Fig. 1. Time series @ and C compared by DTW with a Sakoe-Chiba band of 10%
time series length. The left plot illustrates the nonlinear alignment between the two
sequences and the right plot shows the optimal warping path within the specified band.



2.3 Time Series Normalization

Literature on time series mining [5,18] suggests to normalize all (sub-)sequences
before measuring their pair-wise dissimilarity by means of a distance measure.
There are multiple ways to normalize time series, where two common techniques
[4] are compared in this study.

Given is a time series @ = (g1, - - -, qn) of length n, we can compute its mean
1 and standard deviation ¢ as followed:

n

1 < 1
MZEZ% UZEZ(%—M)Q
=1

i=1
Having defined the mean p and standard deviation o, we can normalize each

data point ¢; (with 1 <1 < n) of a time series Q = (q1, - .., ¢n) in one of the two
following ways [4]:

n(gi) = ¢ — p (1)

2(g:) = TF (2)

Equation 2 is commonly known as the Z-score. For the sake of simplicity we
refer to 7 and z normalization [4] for the rest of the paper.

3 Filtering Approach

This section does not only explain the concept of our proposed filtering approach,
but also describes how to integrate our filter into the well-known and widely-used
sliding window technique, as shown in Figure 2.

In general, the sliding window filter considers the most recent measurements
in a data stream. The considered measurements are usually passed to a classifier,
which aims at categorizing the current time series subsequence. In case that the
current subsequence was assigned to a known category or class, a corresponding
action is triggered and the next non-overlapping window, w steps along the time
axis, is examined. If the current subsequence just contains noise and no category
was assigned, the next overlapping window, s steps along the arrow of time, is
processed. The main limitation of this traditional sliding window technique is its
computational complexity, which increases with growing window size, shrinking
step size, higher sample rate, and larger training set.

For instance, given a data stream of length [=10090, a window size of w=100,
and a step size of s=10, we need to classify (I — (w — s))/s = 1000 windows.
Moreover, assuming 20 training time series, classifying 1000 windows by means
of the nearest neighbor approach requires exactly 20 x 1000 = 20K dissimilarity
comparisons. In case that we employ unconstrained DTW as time series distance
measure, we need to compute 20K full warping matrices, each of them containing
w* w = 10K cells, resulting in a total amount of 200M distance operations.



Continuous time Extract last
sensors series stream Q subsequellce Qlt —w, 1] Time Time series
or devices | e 7 f.r(in] Q series filter classificator
of size w,
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Sleep for
s time

Qlt —w,t]

classifiable?

Trigger event that Q[t —
77777777777777777777777777777777777777777777777777777 w, t] has been classified
and sleep for w time

Fig. 2. Flowchart of sliding window technique with filter, highlighted in blue. The
current time is denoted by t. Window and step size are denoted by w and s respectively.

In order to reduce the large number of computational expensive dissimilarity
comparisons, we propose to employ a sliding window filter, which is capable of
separating signal from noise, only passing promising time series subsequences
to the classifier. In that sense, the proposed filter can also be considered as a
binary classifier, which prunes windows that are likely to be noise and forwards
subsequences that exhibit similar features as the training time series. Extracting
characteristic time series features that can be used as a filter criterion should
ideally exhibit linear complexity, because we aim at replacing more expensive
dissimilarity comparisons. Suitable filter candidates include statistical measures,
such as the sample variance [3] and length normalized complexity estimate [2],
explained in more detail below.

Given is a time series @ = (q1,-..,¢n) with length n, we can define the
sample variance (VAR) and length normalized complexity estimate (LNCE) as
follows:

VARQ) = > (- w?

LNCE(Q) = —

Having defined the above statistical measures, we are able to compute the
VAR and LNCEF for all training time series and, subsequently, use the resulting
range of statistical values to learn an appropriate filter interval. During testing,
each window that exhibits a measured value within the learned interval is passed
to the classifier or pruned otherwise. In order to avoid excessive pruning of
relevant windows, we further more introduce a multiplication factor, which allows
us to expend the interval boundaries by a certain percentage.

In general, we aim at designing a filter with high precision and recall. In our
case, precision is the ratio between the number of relevant windows that were



passed to the classifier (true positives) and the number of all windows that were
passed to the classifier (true positives and false positives). Consequently, recall
is the ratio between the number of relevant windows that were passed to the
classifier (true positives) and the number of all relevant windows (true positives
and false negatives). An exhaustive evaluation of our proposed sliding window
filter in dependence of all model parameters is presented in the next section.

4 Evaluation

This chapter describes the data aggregation in Section 4.1, data preparation in
Section 4.2, experimental setup in Section Section 4.3, and used performance
measures in Section 4.4, before presenting our results in Section 4.5.

4.1 Data Aggregation

We employed a Wii Remote™ Plus controller to record different gestures for
multiple users. Each user performed 8 gestures, first in a controlled environment
to record clean training samples and afterwards in noisy environment to record
a test time series stream, which includes all predetermined gestures as well as
acceleration data that corresponds to other physical activities. All records are
available for download on our project website [10]. A sample record containing
both training and test gestures is illustrated in Figure 3.

o ‘\I | vlI I
[jpamit §

Fig. 3. An sample record of 98 seconds length, containing 8 training gestures at the
very beginning, directly followed by a test time series stream that comprises the same
8 gestures mixed with acceleration data of various physical activities. Gestures are
highlighted by blue rectangles and are also marked in the recorded data. Note that the
length of gestures can vary for training and test set as well as for different records.

4.2 Data Preparation

All of our data records are resampled and quantized before further analysis. In
general, dimensionality and cardinality reduction of time series is performed to
ease and accelerate data processing by providing a more compact representation
of equidistant measurements [11].

Resampling: The recorded acceleration data was resampled by means of the
moving average technique, using a window size of 50 ms and step size of 30 ms.
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Acceleration data (a) in 23 Converted value

a > 200 16

100 < a < 200 11 to 15 (five levels linearly)

0 <a<100 1 to 10 (ten levels linearly)
a=0 0

—-100<a <0 -1 to - 10 (ten levels linearly)
—200 < a < —100 -11 to - 15 (five levels linearly)
a < —200 -16

Table 2. Conversion of recorded acceleration data from % scale to integer values.

Quantization: The resampled records were then converted into time series with
integer values between -16 and 16, such as suggested in related work [11] and
summarized in table 2.

4.3 Experiment

The proposed sliding window filter has several model parameters that need to
be carefully tuned in order to achieve optimal performance. Depending on the
application domain we need to select an appropriate window and step size, time
series normalization, dissimilarity threshold, and filter criterion. In the following
we describe all parameter settings that were assessed in our empirical study:

— The window size determines the number of most recent measurements
contained in the examined time series subsequences. We tested four different
sizes that were learned from the training gesture, including min, max, and
avg length as well as the mid-point of the range.

— The step size defines the gap between consecutive time series windows. As
default setting we use one tenth of the window size.

— For online gesture recognition we employ the nearest neighbor classifier in
combination with the DTW distance, where we evaluate 34 different Sakoe-
Chiba band sizes, ranging from 1 % to 100 %. Prior to pair-wise comparing
sliding windows and training gestures, the corresponding time series should
be normalized. We evaluate 7, z, and no normalization.

— The dissimilarity threshold defines the time series distance at which a slid-
ing window and a training gesture are considered to belong to the same
class. We determine the threshold for an individual class by measuring the
distances between all samples of that particular class and all instances of
other classes. In our empirical study we evaluate the threshold influence for:
(i) one half of the minimum distance - HMinD, (ii) one half of the aver-
age distance - HAvgD, and (iii) one half of the midpoint distance - HMidD.

11



— The filter criterion is an essential part of our proposed approach. In our
empirical study we evaluate the performance of the two filter criteria, namely
the sample variance VAR and the length normalized complexity estimate
LNCE of a time series. Both filters are tested with different factors that
increase the size of the filter interval from 100 % to 300 %.

Figure 4 visualizes the online gesture recognition results for a sample time
series stream processed by our proposed sliding window filter, after selecting the
above described model parameters with help of the recorded training gestures.

Fig. 4. Visualized results of online gesture recognition for a sample time series stream.
We highlight true positives in green, false positives in red, false negatives in blue, and
true negatives in transparent. Although we see short false detection intervals before or
after true positives, seven out of eight gestures were assigned to the correct class label.

4.4 Performance Measures

Since our proposed sliding window filter is tested on time series streams that
contain various different gestures, we need to treat the described online gesture
recognition challenge as multi-class problem. Common performance measures for
multi-class problems are Precision,,, Recall, and Fgscore,, [14]:

1 1
Precision,, = Z tp; Z(tpi + fpi)
i=1

i=1
! !
Recall,, = Z tp; Z(tpi + fri)
i=1 i=1

Fgscore, = (B + 1)]—77'(2cz'sz'onuRecallu/BQPrecisionM + Recall,,

where 3 is usually set to one and [ denotes the number of classes that require
separate computation of true positives (tp), false positives (fp), and false neg-
atives (fn). These multi-class performance measures allow us to compare and
rank the results for different parameter settings. For our evaluation we employ
the Fyscore,, which weights Precision, and Recall,, equally.

4.5 Results

In order to evaluate the influence of all model parameters that were described
in Section 4.3, we performed a total number of 28152 experiments. Figure 5(a)

12



illustrates the Precision, and Recall, values for all test runs. A top performance
of around 0.7384 Fiscore, was achieved by parameter configurations that used
7 time series normalization, DTW with a Sakoe-Chiba band of about 18 % time
series length, mid window size, and HAvgD for threshold determination.

Given the best parameter configuration, we investigated the influence of the
individual parameters by changing only one at a time and fixing the others, see
Figure 5(b,c,d). As shown in Figure 5(e), we also evaluated the performance
with VAR, LNCE, and no filter. The best results for each individual gesture
is shown in Figure Figure 5(f). Further tests on the applicability of the sliding
window filter as well as our interpretation of the results are presented below.

Normalization: The influence of the time series normalization is illustrated in
Figure 5(b). We compare 7, z, and no normalization, with mid window size and
HAwvgD dissimilarity threshold. The best Fiscore,, was achieved by means of the
1 normalization, which corresponds to the data points shown in the magnifying
glass. The point cloud in the lower left corner of plot 5(b) are parameter settings
with rather small warping band.

Warping Band: The influence of the Sakoe-Chiba band in combination with the
DTW distance is shown below in Figure 6. For this experiment we selected only
the dominating parameter settings, with n normalization, mid window size, and
and HAvgD dissimilarity threshold. The best Fscore, was achieved with a band
with of 18 % time series length.

Dissimilarity Threshold: We evaluate three different ways of determining a dis-
similarity threshold, namely HMinD, HAvgD, and HMidD. For our comparison
in Figure 5(c), we used 7 normalization, mid window size, and a warping band
of 18 % time series length. The best Fscore,, was achieved by means of HAvgD,
shortly followed by the HMidD approach. Comparatively high Precision,, values
were given by HMinD threshold.

Window Size: The influence of the window size determination approach is shown
in Figure 5(d). We compare min, maz, avg, and mid window size, with  normal-
ization, HAvgD dissimilarity threshold, and a warping and of 18 % time series
length. The highest Precision,, Recall, and Fyscore, was achieved by the mid
window size, shortly followed by the avg window size. Figure 5(d) furthermore
suggests to refrain from using maz and min window size determination.

Filtering Approach: Given the optimal parameter setting that was determined in
the previous experiments, we are now in the position to assess the influence of the
filtering approach. Figure 5(e) shows the performance with VAR, LNCE, and no
filter. Twenty simulations are reaching a F}score, value greater or equal to 0.7.
Interestingly, top performance was achieved with and without filter. This lead
is to the question of computational complexity, which is answered in following
paragraph.

13
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Filter Interval: The filter interval does not only influence the resulting Fscore,,,
but also the amount of time series dissimilarity comparisons. Figure 7 illustrates
the influence of the interval size in respect to performance and computational
demand. With an appropriate filter interval of about 200 % we are able to
reduce the number of dissimilarity comparisons by one half, while still achieving
relatively high performance values.
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Fig. 7. Influence of filter interval on the Fiscore, (left) and the amount of 1NN-
DTW dissimilarity comparisons (right). An optimal tradeoff between performance and
computational demand is achieved at approximately 150 % to 200 % filter interval.

Individual Gestures Finally, we have tested the performance for each of the
examined gestures separately. Figure 5(e) shows the best Precision and Recall
values that were achieved for each gesture. The results demonstrate that some
gestures are easier to recognize than others.

5 Conclusion and Future Work

In this work we have proposed a novel sliding window filter for more efficient
event detection in time series streams, which replaces computational expensive
dissimilarity comparisons by less demanding statistical measures. Furthermore,
we have demonstrated that the developed filter is able to recognize gestures in
continuous streams of acceleration data with high accuracy, while cutting the
number of distance calculations in half.

15



Possible applications do not only include event detection on mobile device
with few hardware resources, but also distributed sensor networks with limited
bandwidth that communicate high level information instead of transferring raw
data. In future work we plan to investigate a larger variety of statistical measures
that exhibit favorable filtering properties for online gesture recognition as well
as data streams found in other domains.
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Multi-model Optimization with Discounted
Reward and Budget Constraint

Jixuan Shi and Mei Chen*
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Abstract. Multiple arm bandit algorithm is widely used in gaming,
gambling, policy generation, and artificial intelligence projects and gets
more attention recently. In this paper, we explore non-stationary reward
MAB problem with limited query budget. An upper confidence bound
(UCB) based algorithm for the discounted MAB budget finite problem,
which uses reward-cost ratio instead of arm rewards in discount empiri-
cal average. In order to estimate the instantaneous expected reward-cost
ratio, the DUCB-BF policy averages past rewards with a discount fac-
tor giving more weight to recent observations. Theoretical regret bound
is established with proof to be over-performed than other MAB algo-
rithms. A real application on maintenance recovery models refinement is
explored. Results comparison on 4 different MAB algorithms and DUCB-
BF algorithm yields lowest regret as expected.

1 Introduction

Multiple model refinement with limited budget is a common and essential chal-
lenge in many decision support and learning applications, such as recovery mod-
els for different maintenance action, risk assessment models according to different
risk levels, or hypothesis learning for multi-hypotheses test. The model learning
and refinement (reduce uncertainty) was addressed in a passive way mostly with
individual model separately. However, in many case, it is important and critical
to reduce overall uncertainties (refine models) from a systematic view. Apart
from fundamental needs of model learning, we may face challenges due to sparse
training data (e.g. data is rare for high risk model), budget constraint with dif-
ferent action costs (e.g. high cost maintenance action data), and complicated
uncertainty models.

In this paper, we model the integrated multiple model refinement process as a
sequential decision making problem and apply multi-armed bandit algorithm for
optimization. The multi-armed bandit algorithm has been studied extensively
in the literature due to its capability of sequential decision support in an un-
certainty environment [1], [2], [5], [12]; and widely applied in real applications,
including web search [9], online advertising [8], recommendation [11], multi-agent
systems [10], queuing & scheduling [3], [4], and so on.

MAB algorithm models allocation resource under uncertainty to maximize
the reward, where typical assumption is a bandit with K independent arms with
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stationary reward. At each time step ¢, the agent chooses one arm and receives
a reward accordingly. In the stationary case, the distribution of the rewards are
initially unknown, but are assumed to be unchanged in whole process. The agent
aims at minimizing the expected regret over T rounds, which is defined as the
expectation of the difference between the total reward obtained by playing the
best arm and the total reward obtained by using the algorithm.

Though the stationary formulation of the MAB problem allows to address
exploration versus exploitation challenges in a intuitive and elegant way, it may
fail to be adequate to model an evolving environment where the reward dis-
tributions undergo changes in time. As an example, in the famous mini-game:
Gold Miner Go, a player wishes to opportunistically dig as many gold mines
as possible; the arms are the different digging direction the player can choose;
the reward is the gain of each approach, whose distribution is unknown to the
player. The reward is obviously not stationary in this case.

To model such situations, we need to consider non-stationary MAB problems,
where distributions of rewards may change in time. Moreover, when budget is
constrained, which means we may need to select the ‘arm’ more carefully in each
step. Where the budget can be expensive expert tickets or limited game time.

This paper is organized as follows. Detailed problem setup and corresponding
algorithm are explored in section 2. Expected regret over finite rounds is esti-
mated in section 3 with low bound of pulling time 7". We use a multiple recovery
model refinement problem in schedule maintenance as example in experiment
and algorithm implementation. The results are shown in section 4 with compar-
ison between several state-of-art MAB algorithms, with conclusion in section 5.

2 Problem and Algorithm

Note that the major difference between discounted and stationary MAB prob-
lems is that the rewards for each arm are modeled by a sequence of independent
random variables from potentially different distribution (unknown to the user)
which may vary across time. Given this, the operators goal is to maximize the
sum of rewards it earns from pulling the arms of the system but not sticking on
some arms like stationary MAB does.

When considering the cost on action ‘k’ versus its reward iy, we believe that
we can further optimize the selective query by using the reward rate £& [13], [14].
When considering the discounted (non-stationary) reward on each arm (the
model uncertainty gets small when getting more samples), proper adjustment
on averaged reward fi;(t) should be considered [6], [7], [15].

This is a typical optimization problem applied in many scenarios:

model uncertainty reduction by asking for more data points;

— hierarchical clustering to reduce the node impurity by querying which node;
hierarchical active learning with steaming data;

— trigger time for online learning (query) to reduce classification/prediction
error.
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The general conditions are:

— budget constraint and (different) fixed cost arms;
— discounted reward, which can be linear or nonlinear reduction.

all the models in the project to minimize his/her total
To solve this problem, we design an upper confidence bound (UCB) based
algorithm for the D-MAB-BF problem, as shown in the following.

Algorithm 1 The DUCB-BF Algorithm

: Initialization: Pull each arm i once in the first K steps, set t = K.

1
K
2: while " ¢;N¢(1,7) < B do
i=1
3 Sett=t+1. )
4: Calculate the index D;; of each arm i as D; = X¢(7,%) + ce(7, 1)
5
6
7

Pull the arm at with the largest index: I; = argmax D, ;
1<i<K
: end while

s return tp =t — 1.

The definitions of X;(v,1) is given as

t

Xt(%i) = m Z'Yt_sXs(i>I(As = i)/ci»

t
Ni(y,8) =Y A" I(As = ).
s=1

The definition of ¢;(v,7) is defined as
K
e (7,1)=24/ %ﬁ{“g’), ny(y) = > Ny(7,4). I is the indicator function in pre-
’ i=1

vious analysis.

DUCB-BF algorithm uses reward-cost ratio instead of arm rewards in dis-
count empirical average. In order to estimate the instantaneous expected reward-
cost ratio, the DUCB-BF policy averages past rewards with a discount factor
giving more weight to recent observations.

3 Regret Analysis

To formulate the statement about the regret analysis here, let p.(i) be the ex-
pected reward gained when are i is pulled at time t, puf = max;u¢(¢) be the
maximal reward at time t and A;(¢) = pf — pe(7).
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The total expected regret of the operator is:

i=1s=1

Co[$: £ oo

1=1s5=

BIRr =B | % 15 - & (14, =)

In stationary MAB problems, p:(i) = p; remains the same for all times
te{l,...,T}, and p; = p*, Ai(i) = A;. The total expected regret is simplified
to:

Blfr =B | ¥ ¥ 4014 =)

i=1s=1

K
I(A, = i)} = 3 AE N7 (L)

S
Il

M=

M=

K
-3 A
i=1 1

S

Let N7 (i) denote the number of times arm i played when it was(is) not the
best arm during T rounds:

T

Nr(i) =Y I(As=i#1i7).

s=1

Nr (7) represents how many suboptimal choice the algorithm had made.

In non-stationary MAB problems, each p;(¢) is unpredictable. No theoretical
expression on i when the reward is reducing regularly. For simplification, we
can give a fix value on §; and then we only need to analyze Nr (7).

In some situations, the expected reward gained from arm i is changing in
certain way. We consider a particular non-stationary case where the distribution
of the rewards is reducing regularly. The reducing rate of arm i is denoted by
€;. We also assume that the variance of the reward gain is also reducing. The
reward gain from arm i is a sequence of independent random variables denoted by
55_1Xt(i), which X7 (7), X2(i), ... be a sequence of independent random variables.
played, when this arm is suboptimal.

Theorem 1 Let £ > 1/2 and v € (0,1). For any armi € {1,...,K}

- 16¢ log ng )y~ H+D —log(1—7) (T-K)(1-7)
E[M6] < =207 ? Log(l Wi f/aﬂ =T

where Apr (i) =min{s € {1,...,T},i # i, pe(x) — pe(4)}

Proof The proof is adapted from [7]. There are however two main differences.
First, because the expect reward is reducing regularly, there is no break point. In
addition, the expect reward is keeping changing during the process, we cannot
regard the process as piecewise stationary process. The proof is in 3 steps:
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Step 1 We upper-bound the number of times the suboptimal arm i is played as
follows:

Ne) =S I(A =i #13)

T
<1+ Z I(As:Z7éZ:)

s=K+1
T T
<1+ Y I(As=i#i, No(v,i) <L)+ > I(Ay=i#i5, No(v,i) > L)
s=K+1 s=K+1
(1)
Step 2 We observe that
t t
Ni(y,d) =Y A" I(As = i) > 4" Y I(Ay =) =" Ny(1,0)
s=1 s=1
The upper-bound of the second sum in the equation(1) is
T T
Y I(Ag=i#i No(v,i) <L) < > I(Ag =i, Ny(1,i) < L)
s=K+1 s=K+1 (2)

S ’)/_(K+1)L -1

Step 3 Event {4, =i # %, Ns(v,4) > L} occurs only in one of the following
three cases:
a. arm 4 is substantially overestimated: X (7y,4) > ps(i) + cs (7, 1)
b. the best arm * is substantially under-estimated: X (7, *) < ps(*) — cs(7, *)
c. arm ¢ and the best arm # are too close: ps(*) — ps(2) < 2¢5(7,1)
Which means:

P(As =i # i3, No(7,1) > L) < P (Xs(7,8) > ps(0) + ¢5(7,7))
+P (XS('V’ *) < ﬂs(*) - 68(77 *)) (3)
+ P (ps (%) — s (i) < 2¢5(7,4), Nes(7,7) =2 L)

ForL:%W,we have
, , . §logns(v)
ps (%) — ps(2) — 2¢5(7,1) = ps(*) — ps(i) — 4 -
(5) = 0a0) = 264(220) = 0] = () — 4y [ S R
4)
log n (
Z,us(*)fﬂs(l)f4 d gL (’Y)
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so that the third event pg(x) — ps(i) < 2¢5(y,4) never occurs. Due to the regu-
larly reducing assumption, XC—(Z) is a stationary process,

t

Xi(v,i) = Nt(% Z; e X () (Ag = i) /e

_ 1 7t X, (i) & s .

- Nelr) ; EiCi (7) 1(As =1) (5)
1 t L X.() B

= Nt(’%z) ;7 ci I(As = Z)

According to Lemma, by picking n = 44/1 — £/2, we upper-bound the proba-
bility of the two first events:

IN

P (Xs(% 1) > us(?) + cs(y, @)) < lrlogns(’y)—‘ ns(v)’l

log(1 + 1) [_IOg(l—’v)w 1—~

log(1+n)
Hence, we upper-bound the second sum in the equation(1):

T

log(l—7)] 1—7
s=;'_1 (A —'L?él (’Y;'L)>L <25;1’710g(1+n)—‘1_75 (6)
5 {—log(l—'y)—‘ (T-K)(1-7)
=~ 10g(1+77) 1_,7K+1

Combining equation (1)(3)(6), we obtain the statement of the Theorem. B
Lemma For stationary rewards gain, the probability :

P(Xi(v,1) > pe (i) + (7, 1) < [mw nt(y)*%(l*%)

where n > 0, ng(v) = Z'y Szl;tif'y<1[7].

Stopping Time of DUCB BF Algorithms

Based on the regret analysis above, we can easily prove the following throrem.
The following theorem characterizes the lower bound of the expected stopping
time of the proposed DUCB-BF algorithms
Theorem 2 For budget B, the stopping time of the DUCB-BF algorithms

B+ (B/co — NT(*))(CO —c*)

T(B) .

%

where * = arg max ’CL—, cp = max ¢;

ie{l,....K} ie{l,....K}
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4 Application and Results

The theoretical regret bound guarantees that DUCB-BF algorithm performs well
when the reward is reducing regularly. In this section, an optimization problem
on model uncertainty reduction problem is investigated. The object is to mini-
mize the total uncertainty of ‘K’ models where the model selection policy follows
DUCB-BF.

K

mi |0k = Tk

arg in ke ~ Thnp—1l>
mkwakeAk71

K Nk

s.t. Z thiJC <B

k=11i=1

— A bandit with K = 4 arms is created, which means there are 4 different
recovery models (corresponding to 4 maintenance actions).

— The action is to select one of the models to get a new data point x, which
is used to train and update the model.

— For simplicity, assume model uncertainty my is Gaussian distributed. To
obtained an unbiased estimation on my, we need to get a stable O',% for each
K’ with minimum sample of x, where o} ,, is the variance of maximum
likelihood estimation on model my.

— The reward is the difference of estimated variance |O’i7nk — Ui,nk—l" ny is
the training sample number for model ‘k’.

— Fixed cost on 4 actions ¢, = [30, 70, 100, 300], with total budget B.

The selection strategy for DUCB-BF is:

[0 1 [In(t—1
Dy = Ek,tw + — g;
Ck Ck Nkt

— k=t
Mi,t—1
reward, cj is the cost of arm ‘k’, and ng ¢ is the number of arm ‘k’ visited at

time ¢.

For algorithms, including UCB [1], UCB-BV (variable cost and using low
bound on cost for reward rate) [14], fractional- KUBE (reward rate using indi-
vidual ¢;) [13], and our proposed DUCB-BF, are compared with regret. For any

where & ; is the discount factor. fi;, is the empirical averaged

fixed turn T": regret Rp = Tu* — ZtT:l Hi(t), Where p* = maxg—1,. N iy is the
expected reward from the best arm. Before calculate regret for each algorithm,
we need to calculate the optimal reward as follow.

— Initial optimal reward R = 0 and cost C' = 0.

— Start with ¢ = 2, calculate pg = % fork=1,...,N.

— Select arm k* such that k* = maxy, pg, .. Save the reward R = R+ |op» ¢ —
Uk*,t—1|-
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— Update cost C = C + ¢~
— Tterate with ¢ until budget runs out, where ZE:(QB) crrt < B < Zi:(f)ﬂ Chr it
(k} is the optimal arm at time ¢).

The regret for each algorithm is calculated as follows. Let us assume we use
algorithm a to select arm.

— Initial reward R, = 0 and cost C, = 0.
Calculate reward for each arm once, where py, 1 = w, where t = 2N.
Select arm based on policy Dy, (1)
— Based on selected arm a; (where a; is the index of the arm pulled by algo-
rithm a at time t), save the reward Rq = Rq + |0a,t — Oq, t—1]-
— Update cost Cy = Cy + cq, t-
Stop time t,(B) is to ensure Zi“:(QB) Cat < B< Zi“:(f)ﬂ Cayp,t [14].
The regret for algorithm a is under same budget value By, REG, = Rp, —
R, B,

We also calculate the regret of group query (query all 4 action at each
time) using budget value B, (accumulated group query cost for each iteration),
REG, = Rp, — Ry B,

Figure (1) shows the regret on different query strategies. The magenta line
is the regret of group query, the green line is the regret of UCB, a blue line
is superimposed by green line (only different in low budget) is the regret of
UCB-BYV, the black line is the regret of fractional-KUBE, and the red line is our
proposed algorithm DUCB-BF. From this figure we can see that when arm cost
is significantly different, using the reward rate is a better decision, which has less
regret when budget is small. Our algorithm beats other algorithm in considering
the regert. This suggests that when having discounted reward and finite budget,
selecting the arm following the DUCB-BF policy is the best choice. The reason
that the benefit is not significant may due to the reward reduces quickly. Also,
the discounted rate between previous step and current step might not represent
the real situation well.

5 Conclusion and Future Work

Discounted reward on a pre-visited arm is quite common in selection problem.
On the other hand, finite budget on query makes the problem and solution more
practical in many real application, including gaming and policy generation. To
understand the phenomena and study the theoretical meaning of this problem
bring this paper. The non-stationary multi-armed bandit problems with budget
constraint and fixed costs is explored in this paper, with proposed DUCB-BF
algorithm. Theoretical regret bound is studied with a clearly proof lower bound.
A real application is investigated with empirically compared regret bound con-
firmed our finding. This suggests that the proposed DUCB-BF algorithms is a
good policy for discounted MAB problem with budget constraint.
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Regret vs. budget
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Fig. 1. Regret comparison on Group, UCB, fractional-KUBE, UCB-BV, DUCB-BF
query strategies.

Unlike typical discounted MAB problem, our algorithm dose not require extra
assumption on reward distribution, which suggests that many real application
may apply this algorithm. The regret between different MAB algorithms shrink
quickly may due to quickly reduced rewards and variance of the reward converges
quickly. This suggests that the DUCB-BF plays well in early selection stage or
some problem where the reward variance converges slowly. Also, running this
algorithm with more arms (e.g. 1004+ models) with highly various costs may
need to be explored in next step. Considering the time varying discounted rate
€;,+ wit linear or nonlinear coefficient (or using moving window average) can be
another interesting direction.

References

1. Auer, Peter, Nicolo Cesa-Bianchi, and Paul Fischer, Finite-time analysis of the
multiarmed bandit problem. Machine learning 47.2-3 (2002): 235-256.

2. Auer, Peter, Using confidence bounds for exploitation-exploration trade-offs. The
Journal of Machine Learning Research 3 (2003): 397-422.

25



3. Ansell, P. S. , K. D. Glazebrook, J.E. Nio-Mora, and M. O’Keeffe, Whittle’s index
policy for a multi-class queueing system with conver holding costs. Math. Meth.
Operat. Res. 57, 2139, 2003.

4. Ehsan, N., and M. Liu, On the optimality of an index policy for bandwidth allocation
with delayed state observation and differentiated services. In Proceedings of IEEE
INFOCOM, March 2004, Hong Kong.

5. Langford, John and Tong Zhang, The Epoch-Greedy Algorithm for Contextual Multi-
armed Bandits. NIPS 2007.

6. Auer, Peter, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E. Schapire, The non-
stochastic multiarmed bandit problem. SIAM journal on computing 32, no. 1 (2002):
48-77.

7. Garivier, Aurélien, and Eric Moulines, On upper-confidence bound policies for non-
stationary bandit problems. arXiv preprint arXiv:0805.3415 (2008).

8. Babaioff, Moshe, Yogeshwer Sharma, and Aleksandrs Slivkins, Characterizing truth-
ful multi-armed bandit mechanisms. In Proceedings of the 10th ACM conference on
Electronic commerce, pp. 79-88. ACM, 2009.

9. Radlinski, Filip, Robert Kleinberg, and Thorsten Joachims, Learning diverse rank-
ings with multi-armed bandits. In Proceedings of the 25th international conference
on Machine learning, pp. 784-791. ACM, 2008.

10. Ny, Jerome Le, Munther Dahleh, and Eric Feron, Multi-UAV dynamic routing with
partial observations using restless bandit allocation indices. In American Control
Conference, 2008, pp. 4220-4225. IEEE, 2008.

11. Li, Lihong, Wei Chu, John Langford, and Robert E. Schapire, A contextual-bandit
approach to personalized news article recommendation. In Proceedings of the 19th
international conference on World wide web, pp. 661-670. ACM, 2010.

12. Dudik, Miroslav, Daniel Hsu, Satyen Kale, Nikos Karampatziakis, John Langford,
Lev Reyzin, and Tong Zhang, Efficient Optimal Learning for Contextual Bandits.
UAI 2011.

13. Tran-Thanh, Long, Archie Chapman, Alex Rogers, and Nicholas R. Jennings,
Knapsack based optimal policies for budget-limited multi-armed bandits. arXiv
preprint arXiv:1204.1909 (2012).

14. Ding, Wenkui, Tao Qing, Xu-Dong Zhang, and Tie-Yan Liu, Multi-Armed Bandit
with Budget Constraint and Variable Costs. AAAI, 2013.

15. S. Bubeck and N. Cesa-Bianchi, Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends in Machine Learning, vol. 5,
no. 1, pp. 1122, 2012.

26



Evolutive deep models for online learning on data
streams with no storage

Andrey Besedin®, Pierre Blanchart!, Michel Crucianu?, and Marin Ferecatu?

! Laboratoire d’ Analyse de Données et Intelligence des Systémes,
CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
2 Centre d’études et de recherche en informatique et communications,
Le CNAM, 292 rue Saint-Martin, 75003 Paris, France
andrey.besedin@cea.fr, pierre.blanchart@cea.fr,
michel.crucianu@cnam.fr, marin.ferecatu@cnam. fr

Abstract. Inrecent years Deep Learning based methods gained a growing recog-
nition in many applications and became the state-of-the-art approach in various
fields of Machine Learning, such as Object Recognition, Scene Understanding,
Natural Language processing and others. Nevertheless, most of the applications
of Deep Learning use static datasets which do not change over time. This sce-
nario does not respond well to a number of important recent applications (such
as tendency analysis on social networks, video surveillance, sensor monitoring,
etc.), especially when talking about online learning on data streams which require
real-time adaptation to the content of the data. In this paper, we propose a model
that is able to perform online data classification and can adapt to data classes,
never seen by the model before, while preserving previously learned information.
Our approach does not need to store and reuse previous observations, which is a
big advantage for data-streams applications, since the dataset one wants to work
with can potentially be of very large size. To make up for the absence of previ-
ous data, the proposed model uses a recently developed Generative Adversarial
Network to drive a Deep Convolutional Network for the main classification task.
More specifically, we propagate generative models instead of the data itself, to
be able to regenerate the historical training data that we didn’t keep. We test our
proposition on the well known MNIST benchmark database, where our method
achieves results close to the state of the art convolutional networks trained by us-
ing the full dataset. We also study the impact of dataset re-generation with GAN's
on the learning process.

Keywords: Deep Learning, Data Streams, Adaptive Learning, GAN

1 Introduction

Most of the recent research in Deep Learning community has been focused on the case
of static datasets, where the training data is first acquired and then used to train a model
[6]. However, nowadays there is a growing demand for real-time processing and anal-
ysis of continuously arriving huge amounts of data. One of the main challenges when
dealing with online learning on data streams is that the dataset one wants to process
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is potentially of a very large size, which raises the issue of storage and memory man-
agement during training. Another difficulty is that data should be processed in real
time while new samples are still continuously arriving. The problem here is that most
of machine learning algorithms converge to solution quite slowly and sometimes need
several epochs of training over the whole dataset, which is impossible in the online
learning setup. Moreover, not storing and reusing historical data usually results in the
phenomenon of catastrophic forgetting [7]. An even bigger problem can be caused by
concept drifts [1 1], more specifically by changes in data distribution in time, which may
force the algorithm to over-fit on new data and discard useful information, learned from
previous observations.

In this paper we mostly consider the problem of storing previous observations and
adapting to changes in data content (e.g. new classes become available). To address the
storage problem we make use of Generative Adversarial Networks (GANs) [3] which,
in the past few years, acquired increased attention in the Machine Learning community
due to their ability to learn data representations and generate synthetic samples that are
almost indistinguishable from the original data.

Despite their popularity, GANs until now were almost not studied from the point
of view of their ability to generalize outside the training set. In this paper we study the
notions of generalizability and representativity of generative models and propose quan-
titative metrics to evaluate them. By generalizability of generative model we mean its
capacity to focus on learning concepts and patterns and become a representation of the
data distribution rather than reproducing data samples it encounters during training. The
term representativity is used to describe the ability of generative models to represent the
original dataset it was trained on with all its internal variability. We also investigate the
ability of designed online classification system to adapt to the concept drift caused by
incremental appearance of new classes of data during learning.

We validate our method on the MNIST database, often used for benchmarking. This
choice was mainly guided by the need to have a well-known benchmark for comparison
with both offline and online methods using deep neural networks. Our experiments
show that recent generative approaches using GANs have excellent ability to generalize
and discard the necessity of storing and reusing historical data to perform online training
of deep classification models.

To summarize, the contribution of this work is twofold. First, we propose and eval-
uate a new network architecture that uses GANs to allow to train online classifiers with-
out storing the incoming data while being able to adapt to new classes in the incoming
data stream and at the same time to avoid catastrophic forgetting. Second, we justify
the usage of GANSs in proposed context and make a quantitative evaluation of how the
replacement of real data by generated data influences the learning process.

The rest of the paper is organized as follows: In Sec. 2 we motivate our study and
present previous results in online classification using deep neural networks and recent
approaches for adaptive multi-task learning, in Sec. 3 we give the detailed presentation
of our online classification approach and in Sec. 4 we demonstrate the validation results.
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2 Related work

There are very few works in the literature that investigate the possibility to train Deep
Neural Networks for online classification on data streams.

In [1] the authors address the problem of exploding storage demand in the online
learning setup by using generative capacities of Deep Belief Networks (DBNs). In their
approach, the authors train DBNs to generate samples similar to the original data, and
then use those samples instead of the real data to train a classifier. The drawback of
proposed method is the poor generative performance of DBNs on image datasets. It
causes a big decrease in classification accuracy, compared to the offline setting with
a static training dataset, and results in the performance being far beyond the current
state-of-the-art on the MNIST dataset which they used to benchmark their method.

In a more recent work [9] the authors propose a method, Progressive Networks,
designed for effective knowledge transfer across multiple sequentially arriving tasks.
The evaluation of presented method is showed for the reinforcement learning problems,
but the authors state its possible application to a wide range of Machine Learning chal-
lenges. In the proposed approach, a single deep neural network is initialized and trained
for the first given task. Each time a new task appears, a new neural network with the
same architecture as previous ones is added. At the same time, directed connections
from all previous models to the current models are initialized and serve as knowledge
transfer functions. During the back-propagation, those connections are updated together
with the weights of the current model to adjust the influence of previous models on the
current one. The pool of historical models stay unchanged and is only used for the for-
ward pass. The big limitation of this method is that the size of parameter space increases
rapidly when new tasks are added.

Another approach to deal with changing environment is proposed in [2]. Introduced
model, Pathnet, is represented by a huge Neural Network with embedded agents, that
are evolving to find the best matching paths through the network for a current task. After
the task is learned and the new one is introduced, parameters of the sub-network con-
taining the optimal pathway are "freezed" not to be modified by back-propagation when
training for new tasks. PathNet can be seen as an evolutionary version of Progressive
Networks, where the model learns its own architecture during training.

Both PathNet and Progressive Networks approaches showed good results for learn-
ing on sequences of tasks and can be considered as a good alternative to fine-tuning
to accelerate learning. However, they don’t provide a way to solve the problem of data
storage for streams since every task for these algorithms should be fully described by
its complete environment, which is not the case for data streams with only a part of all
data classes available at each time point.

Unlike previously described methods, our model is able to learn incrementally on
massive multi-class streaming data, is adaptable to changes in data distribution and has
no need in excessive historical data storage.
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Fig. 1: Schematic representation of our online learning approach. Original data is pre-
sented to the model class by class. Each time new class of data appears we start training
a new generator modeling that class. At the same time we train a classifier on the gen-
erated data from the previously learned classes and the original data from the new class
that come from the stream.

3 Proposed approach

To represent the process of online learning we model the streams in a way that the data
arrives continuously with distinct classes coming separately one by one. On fig. 1 we
show proposed framework.

‘/7 N AT
A ~_ /A
-
= wy A
‘/"“ 4
A y X\
Q\v

\M,,, )
\ Add when class
Ng n+1is added|

Fig.2: Adding a node to the output layer and initializing the connections with the pre-
vious layer in the online learning scenario when new data class appears in the stream.

Let S = {S;|i = 1, .., N} be the partition of real data into IV distinct classes. In our
learning framework we take the first coming class S; from S and train a generator Gy,
able to represent this data. We save (G; and discard S;. Then we start training G2 on
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the data from S, and in parallel train a classifier C%, feeding it with samples from S} —
synthetic data, generated by G, and newly arriving real data from S5. After that, data
from Sy are discarded. We continue this procedure with all available classes from .S,
one by one, each time generating equal batches of data from all the previously trained
generators. Each time a new class is added we also add a node to the output layer of the
classifier and initialize its connections with the previous layer (fig. 2). The rest of the
network weights are copied from the previous state. See algorithm 1 for pseudo-code.

Require: S = Loj S; : data stream, with 7 - class number

Require: n : nllir:nlber of already learned classes

Require: G : generative model for class ¢

Require: C7 : classification model for data from Lnj Si
(G1 < initialize model =

n+1
while are receiving samples from .S do
d < get batch from S}, j - current class
if j = n + 1 then
n<n+1
Gn,CT' < initialize models
if n > 2 then
C? <« copy parameters from C7*~*
end if

end if
i#j
d* + |J dj generate synthetic data from {G,}
i=1..n
CT < train with d|J d*
G <= train with d
end while
Algorithm 1: Online learning model, proposed in Sec. 3

Model architecture All the experiments in this paper used a DCGAN [8] model for the
generative network, both for the online and offline training settings. DCGANs follow
the same training logic as GANs to the difference that DCGAN generator and discrim-
inator networks are built from convolutional layers and have a set of topological con-
strains to ensure better convergence. Compared to the original GANs, DCGANs show
higher stability during training and tend to produce more visually meaningful samples
when trained on image datasets.

The classification model hyper-parameters were adjusted according to two criteria:

o the performance of the model should be comparable to the state-of-art
e the network should not be too deep to allow real-time training.

The model we retained consists of one convolutional layer followed by two fully-
connected linear layers. Each layer except the last one is followed by a Rectified Linear
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Unit activation function. Batch normalization [4] and dropout [10] are applied during
training on all layers except the output layer. Stochastic Gradient Descent using Adam
[5] is used to perform model parameters optimization. The classification network de-
scribed in this paragraph is used for all experimental scenarios.

4 Experiments

To test proposed method we used the well-known MNIST? dataset of hand-written dig-
its composed of gray-level images of 32x32 pixels, which is classically considered for
static off-line approaches. It contains 60000 images in the train set and 10000 images
in the test set. The dataset includes 10 classes corresponding to digits from 0 to 9. This
database is widely used as a baseline in NN benchmarking and there already exist a lot
of pre-trained convolutional models that provide state-of-the-art results on it.

The main goal of this section is to investigate the performance of our approach,
more precisely to see how the data generated from DCGANSs performs when used to
train networks in an online scenario (Sec. 4.3). However before proceeding to that we
first make sure that the enabling assumption is correct: that is, we make sure that trained
generators are able to represents well the initial training data and generalize on the data
distribution (Sec. 4.1 and Sec. 4.2).

The measure we use in this work to evaluate the fitness of the classifier is the clas-
sification accuracy, usually computed as the mean of the normalized diagonal values
of the confusion matrix. This measure is well known and used in many research works
(for example in [1]).

4.1 Generalizability of GANs

The ability to generalize on the whole data distribution when having only a small num-
ber of data samples available for training is one of the main characteristics that any
learning system is expected to have. In the case of classification algorithms measur-
ing the generalization capacities of a given model is very straightforward and can be
evaluated by the difference between the classification accuracies on the training and
validation sets.

Creating a generative model that would focus on learning concepts rather than mem-
orizing single data samples is a problem of a very high importance, since it can be
viewed as the machine’s capacity to generalize to unseen instances (similar to what
creativity and imagination is for human intelligence). In other words, we are more in-
terested in creating a model that would be able to "imagine" objects, that are similar to
those from data distribution, rather than just reproducing the data samples it has seen
during training, especially in the online learning context where data distributions tend
to change in time. This brings us to the question of defining and measuring the gener-
alizability of the generative model. Unfortunately the measure of the model’s capacity
to generalize cannot be directly transfered from a classification model to a generative
model. Instead, we propose a new notion of generalizability that captures much the
same principles, but adapted to the generative case.

3http://yann.lecun.com/exdb/mnist/
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Fig. 3: Results of the generalizability test on MNIST (see Sec. 4.1). (a) Classification
accuracy for different GANs support sizes as a function of training time. Average over
10 runs; (b) Mean/std of the classification accuracies for different GANs support sizes
over 10 runs after 50 training epochs for the generalizability tests. Blue box represents
the area in which the generalization error does not exceed 5%

We shall say that a generative model G trained on some support subset D*“PP of a
dataset D, with DV being the validation set of D such that such that DvenDsurr — (),
generalizes well on D over some measure p, evaluating the semantical resemblance
of samples from two datasets, if the similarity over x between DV and D™ - the
data sampled from G, approaches the similarity between DV and D\ D¥%. In a more
formal way:

[(D\D", D) — (D, Do) <

where ¢ is the parameter that determines the quality of generalization.

Choosing the metric to measure the semantical similarity between two datasets is
not straightforward. In our study we decided to use a neural network based classification
model for this purpose. Since neural networks are known and much appreciated for their
ability to learn the abstractions and internal data representations, the mean classification
accuracy of this model when trained on one dataset and tested on another one represents
a desired property.

One of the main assumptions on the generalization capacities of any machine learn-
ing algorithm is that to improve it one often would want to get a bigger training set with
more representative data samples. In our experimentations we adopt this idea and adapt
it to generative models case.

In following experiment D is the MNIST dataset and G is the set of generative
models G, - - -, G1¢ - one for each data class. To evaluate the ability of G to generalize
on unseen content we designed a test that consists in varying the size of the set D*“PP
used to train generative models from 60 (1% of D) to 6000 (100%) samples per class
and comparing the mean classification accuracy of the classifier, trained on the data
generated by G, to the one trained and tested on the original data.
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Fig. 3a represents classification accuracy as a function of training time averaged
over 10 runs of classifier training on generated data G, with G trained on the datasets
of different sizes. We can see from the figure that the classification performance on
validation set significantly improves when increasing the size of the support set to train
the generative models. We observe that with only 1% support size the classification
accuracy is pretty high (70-75%) and with a support size of 5% the value goes up to
90%. To quantify this effect, Fig. 3b shows the curve of the improvements through
all the tested support size values and makes a link with the generalizability definition
proposed earlier, with € = 5% and pu(D\ DV, D*%) = 99.6%. We can see from the
figure that using only 40% of the initial dataset (2400 samples per class) allows us to
obtain a highly generalizing generative model with the generalization error below 5%
(the values in the blue box). We can also observe that the curve keeps going up which
means that having more data for training the generative models should improve the final
classification accuracy.

Fig. 4 shows random examples of synthetic samples, generated by DCGAN when
trained on different amount of original images from MNIST dataset. We see that starting
for 10% support size, the generated data is visually very consistent, confirming the
results above.
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Fig.4: Samples, produced by DCGAN-based generator, when using 1 to 100% of the
original MNIST dataset to train it

4.2 Representativity of Generative Models

Another important question we needed to answer before passing to online scenario is
how much data do we need to sample from pretrained generators in order to represent
the full richness of the information, learned by generative models from the original
dataset. This problem is essential since the amount of data we need to generate while
training online classifiers influences directly the learning reactivity and it would be
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reasonable to sample the smallest amount of data, that at the same time wouldn’t affect
too much the final classification accuracy.

Similar to the experiment, described in Sec. 4.1 we trained one generative model
for each class in MNIST dataset and used the generated data to train a classifier with
the difference that this time we used the full dataset as a support for generative models
training.
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Fig. 5: Results of the representativity test on MNIST (Sec. 4.2). Mean/std of the clas-
sification accuracies for different amount of generated data used to train the classifier.
Average over 10 runs after 50 training epochs

To verify the representative capacities of DCGAN, we studied the influence of the
amount of generated data on the final training accuracy by varying its size from 1 to
100 % of the original dataset. Fig. 5 represents mean and standard deviation of the clas-
sification accuracy over 10 runs for each chosen size of generated dataset. We can see
that for MNIST dataset, generating samples in the amount of only 30% of the original
dataset is enough to reach almost the same training accuracy and stability, represented
by low standard deviation, as for the case of generating 100% of the original dataset
size.

Comparing to the training on original data, where with the classification model we
use we obtain the accuracy of F°"9 = 99.6%, training on generated data reduces the
maximum accuracy down to F9¢" = 97.2%. We can consider this decrease as the price
we pay for not storing the data. Based on these two values we can introduce the metric
to evaluate representativity of generative model:

Faen Dval
Ry (D) = %l) = 0.976,
Fy?(Dret)
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where M is the model we evaluate and DV is the validation set - the subset of initial
data that was not used to train the generative model. In these notations, the value of
Ry (D) close to 1 represents the case of D being well represented by G, we would talk
about bad representativity when Ry;(D) << 1 and Ry (D) > 1 corresponds to the
case where generative models not only work as the memory to store data representa-
tions, but also act as a filtering mechanism that extracts useful information from data
samples.

4.3 Online classification using data regeneration

One of the possible limitations of our online classification method, described in Sec. 3,
is that to avoid forgetting we need to continuously generate data from all the previously
learned classes when receiving samples from new classes. The dependency between the
amount of generated data and total number of classes in the dataset may become a prob-
lem for classification tasks with large number of classes. On the other hand, synthetic
data in our model is used to ensure generalization and stability for learning process and
should not be considered as the main source of information for the parameters update.
Generating too much of synthetic data can thus reduce the importance that the model
gives to original data we receive in streaming mode.

Similar to the tests on representativity of generated models, described in Sec. 4.2,
we evaluate the performance of our algorithm depending on the amount of data we
generate. The only difference is that in case of data streams we cannot know in advance
the size of the dataset, neither the total number of classes.
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Fig. 6: Schematic representation of the way batches for online training are organized.
N is the size of real data batch, coming from stream, n is the number of already learned
classes.

To deal with the outlined remarks, we design our experiments in the following way.
Each time we receive a batch of stream data of size N, we generate M data
samples for each previously learned class, where k is a parameter, fixed in the beginning
of each experiment, and n is the current number of learned classes, so that total volume
of generated data is equal to min(k,n) x N (Fig. 6). The size of generated data batch
depends on number of classes we have already learned only when n < k. In each
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Fig. 7: Accuracy of our online-learning algorithm, described in Sec. 4.3 for different
values of scaling parameter k for data regeneration

experiment, fixed value of parameter k in the range between 1 and 9 is taken. Value of 1
corresponds to the case where the total amount of generated data is equal to the size of
received batch, while the value of 9 in the 10 classes classification problem represents
the case where for each already learned data class we generate the amount of data, equal
to the size of received data.

An important aspect to mention is that running the tests directly in streaming mode
with just random initialization resulted in a poor performance. To overcome this prob-
lem, the classification network was bootstrapped by pre-training for several epochs on
the first two data classes and then passing to online mode.

Fig. 7 represents the results of online classification. The graph shows the perfor-
mance of proposed learning algorithm on the evolving dataset with incrementally added
classes of data. Each line is an average over 50 independent runs, corresponding to one
of the five tested values of k.

Our method achieves a classification accuracy above 90% in a completely online
adaptive scenario starting from k& = 3, which is close to the state-of-the-art performance
in the offline learning setting. The performance increases for higher values of k, i.e.,
bigger sizes of generated data. As a comparison point, in a similar experimental online
setting on the 10 classes MNIST dataset, [ 1] obtained only 60% accuracy. We can also
see that with k& > 3 the accuracy decreases a little with every new added class, but
complete forgetting never happens.

5 Conclusion and perspectives

In this work we developed a framework for online training of a Deep Neural Network
classifier on data streams with no storage of historical data. The proposed model uses
data regeneration with DCGANSs to compensate for the absence of the historical data
and avoid catastrophic forgetting in the online learning process on data stream.
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We justify the choice of DCGAN generative models by showing that they have
generalizability and representativity abilities: our experiments confirm that DCGAN-
generated data can be used instead of the original data to train a classifier with good
generalization properties. These properties allow us to train a classification model that
obtains the accuracy above 90% in a completely online learning mode.

In a future part of this work, we will tackle the problem of designing more efficient
training methods with less generated data to increase learning reactivity. Training both
generative networks and classifier requires indeed having a sufficiently large amount
of original data from each presented class, which is often not the case for the real-life
applications with dynamic datasets. We will also measure the forgetting effect and find
ways to limit its impact. We also plan to validate our online learning scheme on larger
and more complex databases.
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Abstract. More and more data is created by humans and cyber-physical
systems having sensing, acting and networking capabilities. Together,
these systems form the Internet of Things (IoT). The realtime analysis of
its data may provide us with valuable insights about the complex inner
processes of the IoT. Moreover, these insights offer new opportunities
ranging from sensor monitoring to actor control. The volume and velocity
of the data at the distributed nodes challenge human as well as machine
monitoring of the [oT. Broadcasting all measurements to a central node
might exceed the network capacity as well as the resources at the central
node or the human attention span. Hence, data should be reduced already
at the local nodes such that the submitted information can be used for
efficient monitoring.

There are several methods that aim at data summarization ranging from
clustering, aggregation to compression. Where most of the approaches
transform the representation, we want to select unchanged data items
from the data stream, already while they are generated by the cyber-
physical system and at the cyber-physical system. The observations are
selected independent of their frequencies. They are meant to be efficiently
transmitted. The ideal case is that no important measurement is missing
in the selection and that no redundant items are transmitted. The data
summary is easily interpreted and is available in realtime. We focus on
submodular function maximization due to its strong theoretical back-
ground. We investigate its use for data summarization and enhance the
Sieve-Streaming algorithm for data summarization on data streams such
that it delivers smaller sets with high recall.

Keywords: Data summarization, Embedded systems, Streaming Data

1 Introduction

With increasing processing capabilities, more and more data is gathered every
day at virtually any place on earth. Most of this data is produced by small
embedded electronics with sensing, acting and networking capabilities [11].

To capitalize on the vast amount of data produced by these IoT devices,
machine learning has proven a valuable tool, but is usually limited to large
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server systems due to resource constraints. In order to speed up the analysis for
monitoring, we wish to move parts of the analysis to the measuring device by the
means of data summarization. For numerical data streams, moving averages have
been used. For categorial values, data summarization describes the extraction of
representative items from a data set and has been used for texts [7,8], speech [14],
and images [13]. Informally, a summary should contain a few, but informative
items, where each item reflects one hidden state or class of the underlying system.
Given such a summary, we can use it to

— perform certain actions, once a new item is added to the summary
— compare summaries of different devices and points in time
— provide a quick overview for human experts

-
-

...01100110 11010001...
...01001100 00100110...

...01100110 D - | 1J11010001...
...01001100 00100110...

...01100110
...01001100

11010001... ...01100110 [] - 11010001...
00100110... ...01001100 00100110...

Fig. 1: Use cases of data summarization in [oT streaming settings. Each device gathers
a data summary on its own and communicates it to central server or to other IoT
devices. Human experts can examine summaries and perform actions if needed.

Data summarization has been viewed as a submodular function maximization
problem, which offers an appealing theoretical framework with strong quality
bounds. In this paper, we focus on data summarization on data streams by
the means of submodular function maximization, namely the Sieve-Streaming
algorithm [1].

The main question when computing a data summary is, what items are
“novel” enough to be included into the summary and which are too similar
to already seen items. If this novelty threshold is chosen too small, the sum-
mary will contain redundant items, whereas if the novelty is expected to be too
high, we will not add any item to the summary. Sieve-Streaming deals with this
challenge by managing multiple summaries in parallel, each with its own novelty
threshold.
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We will exploit the ideas of Sieve-Streaming for monitoring of distributed
measuring devices. Hence, we first investigate, whether the Sieve-Streaming is
appropriate for our setting. Additionally, we extend the algorithm for the use in
embedded systems:

— We reduce the number of summaries by tighter bounds of the utility thresh-
old used by Sieve-Streaming without sacrificing its theoretical guarantees.

— By dynamic thresholding, we further improve the quality of Sieve-Streaming
without increasing its computational costs.

— We evaluate the enhancements empirically.

The paper is organized as the following. The next section will give a brief
overview of the Sieve-Streaming algorithm. Section 3 shows our enhancements
of the Sieve-Streaming algorithm in detail. Section 4 presents experiments on
three different data sets to evaluate data summarization in general and our
enhancements of Sieve-Streaming in detail. We conclude the paper in section 5.

2 Sieve-Streaming

In this section, we shortly present the Sieve-Streaming algorithm and introduce
the notation used in this paper. A more detailed overview of submodular function
maximization can be found in [4]. Submodular function maximization considers
the problem of selecting a set S C V with fixed size |S| = K from a ground
set V, such that a set function f: 2¥ — R is maximized, which assigns a utility
score to each possible subset S C V. For set functions, the marginal gain is given
by the increase in f(S) when adding an element e € V to S:

Ag(e]S) = f(SU{e}) - £(9)

The function f is called monotone, iff for all e € V and for all S C V' it holds
that A¢(e|lS) > 0. Furthermore, we call f submodular iff for all A C B C V and
e € V'\ B it holds that

Ag(e|A) > Ag(e[B)

Submodular functions incorporate a notion of diminishing returns: Adding
a new element to a smaller set will increase the utility value more than adding
the same element to a larger set. This property intuitively captures one aspect
of summarization, in which we seek small but expressive summaries and thus
adding elements to a summary should be done with care.

Now, let us apply monotone submodular function maximization in a stream-
ing setting, so that data items e arrive one at a time and we have to decide
immediately, whether we want to add e to .S, or not. A number of different ap-
proaches for streaming settings have been proposed in literature with different
constraints and assumptions about the data (see [9] for a very recent overview).
The approach of Badanidiyuru and colleagues fits our settings best [1].

Submodularity and monotony allows us to greedily increase the utility value
by simply adding new items to the summary. Since the maximum summary
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size is restricted to K, this approach simply picks the first K elements without
considering other items in the stream. Thus, we should add items to the summary
only, if they offer a reasonable increase in the summary’s utility value, i.e. add
enough novelty.

Let OPT = margscy, sk f(S) denote the maximum possible function value.

Assume we know OPT beforehand and we have already selected some points in
OPT—f(S)
K] ©
the utility so that we can reach OPT with the remaining K — |S| elements. In
a sense, this approach sieves out elements with marginal gains below the given
threshold.
However, this approach does not work, if the optimal summary contains many el-
ements with a gain just below the threshold and one element with large marginal
gain. In this case, we could miss the items with smaller marginal gain waiting
for an item with large gain. To counter this behavior, the authors of [1] propose
to lower the threshold by %, adding e to S if the following holds:

OPT/2 — f(S)

Knowing the optimal utility value OPT is part of the problem we would like

to solve. Usually, this value is unknown beforehand and needs to be estimated.
In order to guarantee a good estimate we can generate multiple estimates for
OPT before running the algorithm and manage multiple sieves each with their
own threshold values in parallel.
We can narrow down the value of OPT by using the properties of submodularity.
To do so, let m = max.cy f({e}) denote the maximum value of a singleton item.
Given e occurs at least once in the data stream, the worst optimal summary
would contain e at least once. If e however occurs at least K times in the data
stream, then the best summary would contain e K-times, so that:

m<OPT <K -m (2)

S. In this situation we could expect the next item e to add at least

Ag(elS) >

Therefore, knowing the maximum singleton value f({e}) already gives a
rough estimate of the range of values we can expect from f. This knowledge
can now be used to sample different threshold values from the interval [m, K'm)|
such that one of these thresholds will be close to OPT. More formally, we
manage different summaries in parallel, each using one threshold from the set
O={(1+¢e)|i€Zm<(1+¢e) <k-m}, so that for at least one v € O it
holds: (1 —e)OPT < v < OPT. Algorithm 1 summaries the proposed method.
It can be shown, that algorithm 1 extracts a summary with:

1
£(8) > (5 ~©)OPT 3)
2.1 Utility function
Given a summary S = {e1,...,ex} we can express the similarity between ele-

ments e; and e; using a kernel function k(e;, €;), which gives rise to the kernel ma-
trix X' = [k(e;, ¢j)];; containing all similarity pairs. This matrix has the largest
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Algorithm 1 Sieve-Streaming with known singleton maximum value m.
1L O0={(1+e)|icZm<(1+e) <k-m}
2: for v € O do
Sy =10
end for
: for next item e do
for v € O do
if As(e]S,) > 2= and |S,| < K then
Sy = Sy U{e}
end if
10: end for
11: end for

@

values on the diagonal as items are the most similar to themselves, whereas val-
ues on the off-diagonal indicate the similarity between distinct elements and thus
are usually smaller. Intuitively, we seek an expressive summary, so that X' con-
tains many values near 0 on its off-diagonal. This intuition is formally captured
by the Informative Vector Machine [5] proposing the function:

f(S) = %logdet(] +oX)

where [ indicates the K x K identity matrix and ¢ > 0 denotes some scaling
parameter. In [10] it was shown, that this function is monotone submodular.

3 Embedded Summary Extraction

In the previous section, we presented the Sieve-Streaming algorithm. Now, we
will introduce the changes that make it better suited for summarization in em-
bedded systems. First we show how to reduce the number of sieves without
sacrificing performance guarantees. Second, we introduce dynamic thresholding
which further increases the utility value. Last, we consider the trade-off between
memory consumption and runtime for an efficient implementation.

Reduce the number of sieves: Sieve-Streaming needs to keep track of mul-
tiple sieves in parallel with corresponding thresholds chosen from the interval
[m, Km]. By taking the special structure of f into account, we can reduce the
size of this interval and thus the overall memory requirements. To do so, we
assume that the kernel function k(-,-) and its corresponding kernel matrix are
positive definite.

The upper bound Km of the threshold v is sharp and thus cannot be improved.
Intuitively, a summary reaches its maximum function value when all entries on
the off-diagonal are 0. In this case logdet(I + 02X) equals log((1 + o)&) =
Klog(1+ o) = K - m, which is exactly what we derived using submodularity.
The lower bound m, however, can be improved substantially: A summary reaches
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its minimum utility when all entries on the off-diagonal equal the largest pos-
sible kernel value C| that is, we picked the same element K times. W.l.o.g we
assume that C = 1 in the following, e.g. we use the RBF kernel k(z,y) =
exp(—3|lz — y||?). Note, that it is possible to scale every positive definite ker-
nel to the interval [0,1] without damaging its positive definite property (cf.
[3]). By using Sylvester’s determinant theorem, we see that logdet(I + ocX) =
log(I+0171) = log(14+0K) > m = log(1+0) where 1 denotes the vector, where
all entries are 1. In order to show that this intuition really creates a lower bound,
we use the characteristic polynomial det(AI — (I +0X)) = Zfil(—l)kAK_iai.
The determinant can be computed in terms of characteristic coefficients a;, that
isdet(I+oX) = Zf(:o a; =1+det(cX) +tr(cX) + Zfi;l a;. Since I + o X is
positive definite, each coefficient a; can be expressed as the sum of eigenvalues
of I + ¢X, which are also all positive [2]. Since oX' is also positive definite, we
see that det(cX) > 0. This leads then to

K-1

det(I +0%) =1+ det(cX) + tr(cX) + Y a; > 1+tr(cX) =1+ 0K
i=2

and thus: logdet(I + oX) > log(1 + o K).

Dynamic Thresholding: Sieve-Streaming creates a fixed number of sieves
|O| in the beginning of the algorithm. Due to the thresholding approach, sieves
with smaller thresholds will accept more items and thus fill-up more quickly,
whereas sieves with large thresholds are more picky. Once a summary is full the
corresponding sieve is not used anymore. This allows us to create another sieve
in its place with a different threshold while keeping the overall number of sieves
constant.

In turn, we can use this new threshold to refine the estimate of OPT. Let
v. denote the largest threshold corresponding to a full summary and let v,
denote the smallest threshold corresponding to a non-full summary. Note that
by construction v, > v, and that - given the current summaries - OPT seems
to be in the interval [v.,v,]. Therefore, we can refine the estimate of OPT if we
create a new sieve in [v., v,].

With this approach “older” sieves with larger threshold may contain more
items than “newer” sieves. In turn, one of these “older” sieves may become full
at one point, whereas the newly created sieves with smaller threshold are still
accepting elements. Since the thresholds for these sieves are smaller than that
the sieve that just became full, we know that these sieves will not offer any
better utility values. Therefore, we can close these sieves once a sieve with larger
threshold closes.

In practice one rather unintuitive effect may happen, in which all summaries
of sieves might be full at some point in time. In pure Sieve-Streaming, sieves
are created in the interval [m, K'm|, where the upper bound K'm represents the
largest utility possible. This bound is independent from the data and therefore
we expect that at least one sieve will be open all the time aiming for an extreme
case with utility K'm.
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Recall however, that only the half of each threshold (see eq. 1) is used when
the marginal gain of a new item is evaluated. Thus, Sieve-Streaming effectively
uses %K m as upper bound. This is enough to ensure a (% — ¢) approximation,
but might be sub-optimal in some cases. To counter this, we gradually increase
the interval of thresholds to 2 K'm, once we notice that all sieves are closed.

Implementation: In a naive approach, each sieve needs to store K elements
and compute logdet(I +0X) on-the-fly as required. Computation of the determi-
nant is generally performed in cubic time, whereas the computation of X' takes
O(K? - d) leading to a total of O(K?® + K? - d) per element.

To improve the overall speed, we can trade some runtime with memory if we
store X permanently. Since k(-,-) is positive definite, I + o X is also positive
definite. Thus, we may use a Cholesky decomposition I + X = LTL where L
denotes a lower triangular matrix to compute the determinant.

Adding a new row / column vector to a Cholesky decomposition can be per-
formed in O(K?) time. Thus, when adding a new element to the summary, we
compute all necessary kernel values and update the Cholesky decomposition ac-
cordingly leading to O(K? + K - d) computations per element. However, with
this method the memory requirements increase, since X' and L need to be stored
continuously, leading to O(2K? + K) memory instead of O(K) memory.

4 Experiments

In this section we experimentally evaluate the enhancements introduced to Sieve-
Streaming. More specifically, we want to answer the following questions:

1. Are extracted summaries meaningful in a sense, that they represent the
hidden states of a system?

2. How does the runtime decrease when a reduced number of sieves is used?

3. How does the utility value increase when dynamic thresholding is used and
how does this affect the quality of the summary?

Answering the first question is difficult, because we need to know the data
generation process in detail to detect the hidden states of a system. For real-
world data this is nearly impossible. Hence, we use data sets D = {(z;,y;)|i =
1,...,N} usually found in classification tasks. Here, each observation z; € R?
is also associated with a label y;. We assume that each label y; represents one
hidden state of the system in the data generation process. Thus, we compute
a summary of the training data x; without considering the labels y; and then
report the number of different labels represented by the best summary found
across all sieves. With respect to the notation used in classification tasks, we
denote this measure as recall.

To answer the second and third question, we measure the computation time
per data item and the best utility value of each algorithm (pure, reduced, and
dynamic).
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All experiments were performed on an Intel i7-6700 machine with 3.4 Ghz
and 32 GB RAM. We repeated each experiment 10 times with shuffled data sets
and always report average results. Our implementation is available at https:
//bitbucket.org/sbuschjaeger/iotstreaming2017.

Figure 3 contains all experimental results. Each column represents one data set
whereas each row represents one measure. We use one synthetic data set and
two real-world data sets.

Synthetic data: We composed a synthetic data set containing eight four-
dimensional Gaussian distributions as a Gaussian mixture model. Each Gaus-
sian mean value g = (p;); is uniform randomly generated with —2 < u; < 3 for
i =1,2,3,4. Variance values are chosen uniformly random from (0, 0.8].

For the data generation process we first randomly pick one of the Gaussian
distributions and then sample a new data item & € R* from this distribution.
We repeat this process 10000 times. To simulate infrequent states, e.g. failure,
we introduced different probabilities for each Gaussian. Two Gaussian are rare
to be selected with a probability of 0.001, whereas the remaining six Gaussian
receive the remaining probability mass equally, that is each has a probability of
0.133 to be used for data generation.

We use the RBF Kernel K(x;,z;) = exp(fW) and set 0 = 1 and
e = 0.1. Since there are eight hidden states in total, a summary of size K = 8
should be enough in theory to detect all states of the system. To account for
some error however, we vary K from 10 to 24.

The first image in the first row of Figure 3 shows the recall of all three

algorithms on the synthetic data set. Sieve-Streaming and its tuned counterpart
achieve roughly 60% recall for K = 10 and then steadily increase their recall
with rising K reaching nearly 100% at K = 20. Dynamic Sieve-Streaming shows
a similar performance, but behaves slightly better for smaller K. Interestingly,
for K = 16 all variants produce the same output and for K = 18 Dynamic
Sieve-Streaming is outperformed by pure Sieve-Streaming. For larger K however,
Dynamic-Sieve Streaming detects all states with 100% recall for K = 24.
Note that a potential “failure” state has a probability of 0.001, that is roughly
every 1000 measurements such “failure” may occur. Usually, a human operator
would need to examine all 1000 states in this case to determine if there is a
failure or not. Using a summary with K = 24 however, a human operator only
needs to examine 24 different measurments, reducing the overall workload for
the human operator by 99.976%.

Looking at the second row in Figure 3, we see that Sieve-Streaming and
its implementation on a smaller interval offers the same utility, which can be
expected. Dynamic Sieve-Streaming consistently achieves higher utility values
explaining the higher recall.

The last row of plots depict the runtime results. Sieve-Streaming needs
around 0.45 ms per element, whereas its reduced variant is faster for all K.
Dynamic Sieve-Streaming on the other hand needs up to 0.52 ms per element,
due to its dynamic sieve management.
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UJIndoor Location: As a second data set, we use the UJIndoorLoc data set
[12]. This data set contains the GPS position and RSSI fingerprints of nearby
WiFi hotspots as well as the corresponding building, floor and room number of
17 smartphone users throughout their daily routine at the university of Jaume
in Spain. The dataset in total contains 19937 measurements and is usually used
for prediction tasks in which one tries to infer the GPS position based on the
RSSI fingerprints.

We abandon the RSSI fingerprints and try to predict the semantic location,
that is the building, floor and room number directly based on the current GPS
position. We normalize the GPS data and use the RBF Kernel K(z;,x;) =

L 2
exp(—%). We set 0 = 1 and € = 0.1. On average, each user visits 79

different locations, thus we try different K from 80 to 130.

The second column in Figure 3 shows the results for this data set. The recall
is displayed in row one. Standard Sieve-Streaming and its reduced counterpart
achieve between 50% and 60% recall, whereas Dynamic Sieve-Streaming man-
ages to detect roughly 10% more items offering a recall of 60% to 70%. Again,
this increase in recall can be explained with a higher utility value: Dynamic
Sieve-Streaming increases the utility value consistently by roughly 10 points
compared to Sieve-Streaming. The runtime of the three algorithms (second col-
umn and third row of Figure 3) paints a different picture than before. Again,
pure Sieve-Streaming is the slowest algorithm, whereas Sieve-Streaming on the
smaller interval reduced the overall computational costs by around 0.2ms per
element. For smaller K, Dynamic Sieve-Streaming can be found in the middle
of the two algorithms. For larger K however, Dynamic Sieve-Streaming seems
to become faster than the reduced version of Sieve-Streaming. The reasons for
that is, that Sieve-Streaming may exit a data set early if all sieves are full. Since
Dynamic Sieve-Streaming reopens new sieves, it will run through the complete
data set. This in turn, enables cache locality and branch prediction to take full
effect, so that the runtime per element decreases.

MNIST: As a third data set, we use the well-known MNIST data set [6]. This
data set contains 60000 28 x 28 grayscale images of the handwritten digits 0
to 9 and is usually used as a baseline measure for image classification. Much
in line with the usual classification task, we try to extract a summary con-
taining one representative image for each digit. However, we will do this in an
unsupervised manner. Again, we normalize the data and use the RBF kernel
K(z;,x;) = exp(f%). We set 0 = 1 and ¢ = 0.1. Since there are 10
classes in total, we vary K from 8 to 16.

The results are shown in the third column of figure 3. All algorithms performed
nearly the same, with Dynamic Sieve-Streaming being slightly better for all val-
ues of K reaching a recall between 60 and 80%. Again, the utility value for
Dynamic Sieve-Streaming is consistently larger than for pure and reduced Sieve-
Streaming explaining the increased recall performance. Figure 2 displays two
summaries for K = 8 computed by pure Sieve-Streaming and dynamic Sieve-
Streaming respectively. Both algorithms show a similar summary, but pure Sieve-

47



Streaming selects multiple ones and fives. Dynamic Sieve-Streaming also selects
multiple ones, but does not choose to include two fives into the summary and
thus can add six, seven and eight to the summary increasing the recall signif-
icantly. Looking at the runtime, standard Sieve-Streaming is again the slowest
algorithm variant reaching a computation time of 1ms per element, whereas re-
duced and dynamic Sieve-Streaming are both faster with a maximum of 0.65
ms per element. Note, that we again observe the effect, that Dynamic Sieve-
Streaming seems to be faster than its reduced counterpart due to cache locality
and branch prediction.

5 Conclusion

In this paper we tackled the problem of data summarization on data streams
with small, embedded systems. More specifically, we tried to answer the following
questions:

— Is submodular function maximization a suitable framework for data sum-
marization and can summarization help us to detect the current state of a
system?

— How can we make data summarization on data streams more suitable for
small embedded systems frequently found in IoT settings?

In order to answer these questions, we first presented the Sieve-Streaming algo-
rithm from [1]. Sieve-Streaming works on the assumption of submodularity and
uses this to sieve out unwanted items. The main advantage of Sieve-Streaming is
its strong and universal theoretical foundation offering the approximation guar-
antee of at least (1 —¢).
This theoretical foundation however, leaves room for a more specialized version of
Sieve-Streaming tailored towards data summarization. Therefore, we introduced
a more refined version of Sieve-Streaming for data summarization by reducing
the overall number of Sieves needed. Additionally, we introduced a dynamic ver-
sion of Sieve-Streaming independent from the summarization task which is able
to reuse sieves with different thresholds. We note, that both enhancements do
not jeopardize the theoretical analysis of Sieve-Streaming and still maintain the
(3 — ) approximation guarantee.
We evaluated our algorithmic changes on three data sets. The experiments have
shown that we are able to detect the states of systems using the presented data
summarization approach and that an increased utility function usually comes
with an increased recall of system states. Thus, Dynamic Sieve-Streaming is a
valuable enhancement of the standard Sieve-Streaming algorithm consistently
increasing the recall leading to a 99.976% reduction of workload for human op-
erators in our experiments.

Dynamic Sieve-Streaming has its limitations. We did not always detect all
hidden states in the experiments. Future work will investigate other kernel func-
tions, which could have been tuned more.
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Fig. 2: Extracted summary for MNIST using pure Sieve-Streaming and Dynamic Sieve-
Streaming for K = 8.
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Fig. 3: Experiments on synthetic data (left column), UJIndoor location data (middle
column) and MNIST (right column). The first row depicts recall (higher is better),
the second row shows the maximum utility value (higher is better) and the third row
displays the runtime (in milliseconds) per element (smaller is better) on the datasets.
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Additionally, we observe that Sieve-Streaming and its newer enhancements
do not deal with concept drift. Here, further work is also needed.

In sum, dynamic Sieve-Streaming is a helpful tool for exploring and monitor-
ing data streams with a solid theoretical foundation. At the same time, we also
see a potential for new research directions including concept drift and specialized
kernel functions.

Notes and Comments. Part of the work on this paper has been supported
by Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research
Center SFB 876 (http://sfb876.tu-dortmund.de) "Providing Information by
Resource-Constrained Analysis”, project Al.
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Abstract

This paper presents a hybrid dynamic data-driven
approach to achieve simple and multiple drift like
fault detection of pitch system sensors. This
approach considers the system evolving in non-
stationary environments and switching between
several control modes. This switching is entailed
by changes in the system environments. In each
control mode, the system has a different dynam-
ical behavior. The latter is described in a feature
space sensitive to normal operating conditions in
the corresponding control mode. These operating
conditions are represented by restricted zones in
the feature space called classes. The latter are
characterized by a set of parameters represent-
ing their statistical properties, e.g. gravity center
and variance-covariance matrix. The occurrence
of an incipient fault entails a drift in the system
operating conditions until the failure takes over
completely. This drift manifests as a progressive
change in the classes parameters in each control
mode over time. The proposed approach moni-
tors normal classes parameters in order to detect
a drift in their characteristics. This drift detection
allows achieving the fault in its early stages. It
uses two drift indicators. The first indicator de-
tects the drift and the second indicator confirms
it. Both indicators are based on the observation of
changes in the normal operating conditions char-
acteristics over time. A wind turbine simulator is
used to validate the performance of the proposed
approach.

1 INTRODUCTION

The search for alternative clean energy is undoubtedly be-
coming more and more important in modern societies. The
growing interest in wind energy production has led to the
design of sophisticated wind turbines (WTs). Like every
other complex and heterogeneous system, WTs are faced to
the occurrence of faults that can impact their performance
as well as their security. Therefore, it is crucial to design
a reliable automated diagnostic system in order to achieve
fault detection and isolation in early stage.

Fault diagnosis of WTs is a challenging task because of
the high variability of the wind speed and the confusion be-
tween faults and noises as well as outliers. However, the
fault diagnosis of pitch system is particularly a challenging

task because of (i) the occurrence of pitch system faults in
power optimization zone in which the fault consequences
are hidden and (ii) the actions of the control feedback which
compensate the fault effects. The role of the pitch system
is to adjust the pitch of a blade by rotating it depending on
the pitch angle position reference provided by the controller.
The latter decides the pitch angle position reference accord-
ing to the wind speed in order to allow an optimum energy
production.

In the literature, there are several methods
[61,19L[111,[12],[11,[4],[15] that are used to achieve
fault diagnosis in WTs. They achieve the fault diagnosis
by reasoning over differences between desired or expected
behavior, defined by a model, and observed behavior
provided by sensors. They can be classified into two main
categories of methods: internal and external methods.
The internal methods [17],[18],[20] use a mathematical
or structural model to represent the relationships between
measurable variables by exploiting the physical knowledge
or/and experimental data about the system dynamics. These
variables represent the internal parts of the wind turbine.
The response of the mathematical model is compared to the
observed values of variables in order to generate indicators
used as a basis for the fault diagnosis. Generally, the model
is used to estimate the system state, its output or its param-
eters. The difference between the system and the model
responses is monitored. Then, the trend analysis of this
difference can be used to detect changing characteristics of
the system resulting from a fault occurrence. The internal
methods used to achieve the fault diagnosis of wind turbines
are divided into three main categories: parameter estimation
[81,[19], observer and state estimation based [31,[23] and
signal analysis or feature based [7],[21] approaches. These
methods were applied successfully to achieve the diagnosis
of faults impacting the pitch system [19],[3],[16], the
generator [16],[14], the converter [25],[14], and the gearbox
[26],[16].

The major advantages of these methods are their ability
to detect both the abrupt and progressive failures via trend
analysis, and they give a precise decision or isolation of a
failure. However, they suffer from the necessity to depth in-
formation about system behavior and failures which is hard
to obtain for complex and strong non-stationary systems as
wind turbines.

An alternative to overcome this problem is the external
methods [17],[22],19]. The external methods consider the
system as a black box, in other words, they do not need
any mathematical model to describe the system dynami-
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cal behaviours. They use exclusively a set of measure-
ments or/and heuristic knowledge about system dynamics to
build a mapping from the measurement space into a decision
space. They include expert systems and machine learning
and data mining techniques. These methods are suitable for
systems that are difficult to model, they are simple to imple-
ment and require short processing time. However, since the
obtained models are not transparent, the obtained results are
hard to be interpreted and demonstrated. There are several
machine learning and data mining methods used to achieve
the fault diagnosis of wind turbines. Such methods are de-
scribed and successfully applied in [24],[2].

Few approaches have been proposed to achieve early fault
diagnosis of WTs, in particular pitch sensors. This is due
to the fact that modeling component degradation in strong
non-linear and complex non-stationary environments is very
hard task. Examples of these methods, we can cite genetic
algorithm [10], neural network, the boosting tree algorithm,
and support vector machine [9]. These methods do not in-
tegrate a mechanism to detect a drift by analyzing the char-
acteristics of incoming data and to update the model param-
eters and structure in response to this drift. Therefore, they
do not achieve a reliable early diagnosis. Consequently, the
diagnosis performance (diagnosis delay) is decreased sig-
nificantly for faults occurring in WT critical subsystems as
pitch systems ones.

This paper presents a new data-driven based approach in
order to achieve a reliable drift monitoring and diagnosis of
simple and multiple drift-like faults that can affect wind tur-
bine pitch sensors. This approach takes into account the dif-
ferent dynamical behaviors of WTs according to the wind
speed. The goal is to detect a drift from normal operating
conditions using only the recent and useful data. Initial off-
line modeling allows constructing initial classes based on
the historical data set. These classes characterize the op-
erating conditions of the pitch system (normal/faulty) and
are represented by restricted zones in the feature space. The
latter is formed by sensitive features to pitch sensor oper-
ating conditions in order to distinguish any drift from nor-
mal to fault operating conditions. The modeling tool is an
algorithm called AuDyC (Auto-Adaptive Dynamical Clus-
tering) used to initialize the classes that will be dynamically
updated.

In this work, two-dimensional feature space is con-
structed, for the sensor faults. The faulty classes, represent-
ing the failure operating conditions of pitch sensor, are con-
sidered to be a priori unknown. There is one known class in
advance.The class represents the pitch sensor normal oper-
ating conditions. It considers gradual degradations in pitch
sensor operating condition as a drift in the characteristics of
normal class over time. Detecting and following this drift
can help to predict the occurrence of pitch sensor failure.

The drift-like fault is monitored using two drift indica-
tors: one to detect a drift and the second one to confirm it.
When the drift is detected by the first indicator, a warning is
emitted to human operators. Then, the second drift indicator
confirms this drift in order to inform human operators of the
necessity to react by taking the adequate correction actions.

The proposed data-driven approach is composed of five
main steps: processing and data analysis, clustering and
classification, drift monitoring, updating and interpretation
steps.

Turbine
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Figure 1: Wind turbine components.
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Figure 2: Reference power curve for the WT depending on
the wind speed.

2 Pitch system within wind turbines

The wind turbine model under study is composed of five
principal parts: the blades, the drive train, the generator with
the converter, and the controller (see Figure 1). It can be
seen that the blades are fixed to the main axis, which in turn
is connected to the generator through the drive train. The
generator is electrically connected to the converter, which
in turn is connected to a transformer. The blades are pitched
by the pitch actuators.

Figure 3: Controller operating zones modeled by a finite
state automaton.

The controller operates in four zones (see Figure 2). Zone
1 is the start-up of the turbines, zone 2 is power optimiza-
tion, zone 3 is constant power production and zone 4 is no
power production due to a too high wind speed.

In order to handle transitions between the control modes,
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the controller checks the operating zone in which the WT
is by observing the wind speed. The transitions between
the control modes change the dynamics of the pitch system.
Each control mode is active in one zone thus it is modeled
by a finite state automaton. Each zone is represented by a
state in which a specific control mode or strategy is defined.
According to the wind speed, the control mode changes
by switching from one mode or state to another mode or
state. This switching between control modes is achieved
by discrete events. As an example, if the WT was initially
in control mode related to the zone 1, as long as the wind
speed is less than a predefined threshold (5 m/s in Figure 2)
E5, will be generated. E7; keeps the WT in control mode
1. If the wind speed is greater than the predefined threshold
for zone 1 (5 m/s in Figure 2), The event F15 is generated
leading to switch the WT from the control mode related to
zone 1 to the control mode related to zone 2 (see Figure 3).
Same reasoning can be applied for the other events.

The focus of this benchmark model is on the operation of
WT in zones 2 and 3. Two control strategies are applied to
optimize the energy production and keep it constant at its
optimal value: the converter torque control in zone 2 and
the blades angle control in zone 3 (see Figure 4). In zone
2, the WT is controlled so that it produces as much energy
as possible. To do so, the blades angle is maintained equal
to 0° and the tip speed ratio is kept constant at its optimal
value. The latter is regulated by the rotating speed control
by tuning the converter torque. Once the optimal power pro-
duction is achieved, the blades angle control maintains the
converter torque constant and adjusts the rotating speed by
controlling the blades angle. The latter modifies the trans-
fer of the aerodynamic power of the wind on the blades. In
this work, the controller modes are modeled by a finite state
automaton containing two states (see Figure 4). In the fol-
lowing, zones 2 and 3, respectively, correspond to control
modes 1 and 2:

Control Mode 1 In this control mode, the power opti-
mum value is achieved by setting the pitch reference to zero
B[t] = 0 and the reference torque to the converter 7, , as
follows:

2
Tgr = Kopt X (w]g\]—[t}) (1)
g

Ny is the gear ratio and n is the sampling time.
Where

1 Cp,

Kop = —pAR3 ——max 2
opt 2P )\gpt ( )
with p the air density, A the area swept by the turbine
blades, C'p,, . the maximum value of power coefficient, and
Aopt the optimal value of A is found as the optimum point
in the power coefficient C'» mapping of the WT. The power
coefficient mapping characterizes the efficiency of energy

and it depend on A and 3.

Control Mode 2 In this mode, the major control actions
are handled by the pitch system using a Proportional Integral
(PI) controller trying to keep wy[t] at wy.

B(t) = Br(t—1) + ke (t) + (ki Toky) e (t—1) (3)

When e(t) = w,-(t) — Wnom- In this case the converter ref-
erence is used to suppress fast disturbances:

P (t)
@)

we (1)

The control mode should switch from mode 1 to mode 2 if

the following condition is satisfied:

Fos : Wy (t) > Wnom ®)

The satisfaction of this condition generates a discrete
event, Fo3, allowing the switching from control mode 1 to
control mode 2. The goal to obtain P, equal to P,.. This
condition is satisfied when the wind speed is greater than
predefined threshold for zone 2 (12.5 m/s in Figure 2). Like-
wise, the control mode should switch from control mode 2
to control mode 1 if the following condition is satisfied:

Tor (1) =

E32 t Wy (t) < Wnom — WA (6)
Where w;, 0y, 1s the nominal generator speed and wp is a
small offset subtracted from the nominal generator speed to
introduce some hysteresis in the switching scheme, thereby
avoiding that the control modes are switching all the time
[15]. The satisfaction of this condition generates a discrete
event, F3o, allowing the switching from control mode 2 to
control mode 1. This condition is satisfied when the wind
speed is less than the wind speed threshold defined for zone
3 (12.5 m/s in Figure 2).

E 23
CM1 =Zone2 CM2=Zone3
0z ®) <@ E 0g(0) > Dpoy — 0y
32

Figure 4: Controller modes modeled by a finite state au-
tomaton

As we said before, the benchmark model allows simulat-
ing the WT behavior in two power zones: 1) zone 2 (power
optimization) where 7, is controlled and 3, is equal to zero
and; 2) zone 3 (optimal energy production) where 7, is kept
[, constant and is controlled. In this paper, we focus on
pitch sensor faults as it is discussed in subsection 2.

3 Pitch system description

The considered WT is horizontal-axis based with three
blades. Each blade is equipped with an actuator. The role
of the pitch actuator is to adjust the pitch of a blade by ro-
tating it; Each actuator is provided by the same pitch angle
reference [3.. The pitch angle of a blade is measured on
the cylinder of the pitch actuator, each pitch position (an-
gle) B,,, where i € {1,2,3} is measured with two sensors
where index m; represents the i** sensor of the correspond-
ing variable (see Figure 5). The pitch system feedback 3
is an internal variable used to model the pitch position error
caused by sensor faults:

/Bf = 67” - % (/3k,m1 + 6k,m2) 7

The controller is fed by the mean value of the readings of the
two sensors. Hence, this sensor fault is modeled as a change
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in the pitch references, meaning that a sensor fault resulting
in changed mean value should also change the pitch refer-
ence accordingly [15].

Pitch actuator Sensor

B B
e ﬁkm k.ml

[ 24

Controller

Figure 5: Block diagram of pitch system for the blade &,
(k=1,2,3)

4 Pitch system modeling

The hydraulic pitch system is modeled in the benchmark as
a closed loop of dynamic system. The state representation
of the nominal pitch system dynamics is defined as follows
[15]:

Yp = Cpp

A= [ _3,3 —22% } @®)
Sy

C,=[0 1]

. T
The state vector x;,, = [ Br  Br } is composed of pitch

angular speed [, and position 3; for each blade k : (k =
1,2,3). y, is the measured pitch position, 3, is the pitch
angle position reference provided by the controller, and 3,
is the feedback pitch system (see Figure 5). w,,, C are the pa-
rameters of the pitch system where w,, represent the natural
frequencies and ( is the damping ratio.

The pitch system represent a hybrid dynamic system and
especially it belongs to the class of Discretely Controlled
Jumping Systems (DCIJS), In these systems, the continuous
state variables change discontinuously under the influence
of an external action (e.g., a command) as the case for elec-
tromagnetic systems with pulse inputs [?]. The pitch system

) T
state variable x,, = [ Br B } changes discontinuously

under the influence of an external action defined by Equa-
tion 5 and 6.

5 Pitch system drift-like fault scenarios
generation

In this paper the types of fault which are considered in this

work are simple and multiple drift-like fault in pitch sensors.

The following subsections detail the generation of several
scenarios representing drift-like faults with three different

speeds in pitch sensor (3,,; and pitch sensor f3,,,2, and in
both pitch sensors S,,1 and B,2.

5.1 Sensor drift-like fault

Each blade is equipped with an actuator. Each actuator is
provided by the same pitch angle reference .. In addi-
tion, each pitch position, (angle) [3,,; is measured with two
sensors where index i represents the i*" sensor of the cor-
responding variable. The fault scenarios related to simple
drift-like fault in pitch sensor n°1 and sensor n°2 and mul-
tiple drift-like fault in both pitch position sensor n°1 and
sensor n°2 in blade n°3 are summarized respectively in Ta-
ble 1, Table 2 and Table 3. The state representation of the
pitch system after the integration of a fault in sensor S;,;,
1 € {1,2} is defined as follow:

z, = Az, + Bu
yp = Cap+ £ (1) )
@) =X (ty — te)

Therefore the parameter \;, ¢ € {1,2} is used in the sim-
ulation to generate a fault in sensor f3,,,; during the time pe-
riod (tp — t.) where t is the start time and ¢, is the end time
of sensor drift-like fault.

Simple drift-like fault in sensor [,,1

In this paper the simple drift-like fault scenarios in pitch
sensor 1 (8,,1) scenarios are modeled as a gradual change
in the coefficient A; of pitch sensor n°1 in blade n°3 where
tp is the beginning of the drift and ¢, is the end of the drift.
Nine scenarios for simple sensor drift-like fault are gener-
ated in order to simulate slow, moderate and high degra-
dation speeds represented by slow, moderate and high drift
speeds (see Figure 6). Each drift speed scenario is gener-
ated at three different time instances. Thus, parameter \; is
changed linearly from Ay to A1p in a period of 30s, 60s
and 90s, corresponding respectively to high, moderate and
slow drift speeds. Then, the fault remains active for 200s.
Finally the parameter A\ decreases again to return to its ini-
tial value A1y (see Figure 6 for the case of high drift speed
in sensor 1 (3,,1)).

Drift scenario 1

7 sFaulty }> J ; ‘{
.,y Healthy /
o 1 I L 1 I L 1 I J
0 05 1 15 2 25 3 35 4
Time (s) x10°
Drift scenario 2
?.,;aulty}» J ! T ﬂ{
L,y Healthy /
[ L | | | I | | J
0 05 1 15 2 a5 f 3 35 4
Tine(s) 77 wif
Drift scenario 3
7.,FFauIty}> T ' ! ‘{
J,y Healthy 7

[ I I I I I I L I J
0 05 1 15 2 25 £ 35 4
Time )

Figure 6: Simple drift-like fault scenarios in pitch sensor 1
(Bm1), corresponding to high drift speed in 3 different time
instances t;, is the beginning time of the drift and ¢, is the
end of the drift.

Simple drift-like fault in sensor 3,2

The simple drift-like fault scenarios in pitch sensor 2 (G;,2)
scenarios are modeled as a gradual change in the coefficient
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Fault N° | Drift speed | Simple drift-like fault | Period
in pitch sensor (3,1

Fyp 30s AN — AP 2500s

(High) -2730s

F4m 60s /\lN — /\IF 2500s

(Medium) -2760s

Fye 90s /\1]\] — /\IF 2500s

(Slow) -2790s

Fsp, 30s MN = A1F 2600s

-2830s

F5m 60s /\1N — /\1F 2600s

-2830s

Fse 90s /\1]\] — /\IF 2600s

-2890s

Fg},, 30s )\1]\] — )\IF 2700s

-2930s

FGm 60s /\lN — /\lF 2700s

-2960s

F@s 90s /\1]\] — /\IF 2700s

-2990s

Table 1: Simple drift-like fault scenarios in pitch sensor 1

(ﬁml)

A2 of pitch sensor n°2 in blade n°3 where ¢;, is the begin-
ning of the drift and ¢, is the end of the drift. As for the
case of simple drift-like fault in pitch sensor /3,,,1 scenarios,
nine scenarios for simple sensor drift-like fault are gener-
ated in order to simulate slow, moderate and high degra-
dation speeds represented by slow, moderate and high drift
speeds (see Figure 7). Each drift speed scenario is gener-
ated at three different time instances. Thus, parameter A is
changed linearly from Aoy to Agp in a period of 30s, 60s
and 90s, corresponding respectively to high, moderate and
slow drift speeds. Then, the fault remains active for 200s.
Finally the parameter A, decreases again to return to its ini-
tial value Ao (see Figure 7 for the case of high drift speed
in sensor 2, (Bn2)).

Fault N° | Drift speed | Simple drift-like fault | Period
in pitch sensor (,,2

F7},, 30s )\2]\/ — )\QF 2800s

(High) -3030s

F7m 60s /\QN — /\QF 2800s

(Medium) 3060s

Frg 90s /\2]\] — /\2F 2800s-

(Slow) -3090s

th 30s )\2]\] — )\2F 2900s

-3130s

Fsm 60s AoN — Aop 2900s

-3130s

ng 90s /\2]\7 — /\2F 2900s

-3190s

th 30s /\2]\] — /\2F 3000s

30s -3230s

Fy, 60s AoN — Aop 3000s

-3260s

ng 90s /\2N — /\2F 3000s

-3290s

Table 2: Simple drift-like fault scenarios in pitch sensor 2

(ﬁmQ)-

Drift scenario 1
T T

T T T T T T
Faulty 2 3+ »‘
Healthy ., I / |
I I I I I | | |
0 (5 T 15 2 25 3 35 4
Time (s) x10°
Drift scenario 1
T T T
Faulty 7. :+ {
Healthy 2, x| >4
[ \ | \ : \ \ , | J
0 05 T 15 2 25 3 a5 4
Time (s) x10°
Drift scenario 1
T T T T T T T T
Faulty hzf}» «{
Healthy 7., /
o I L 1 L | 1 | | J
0 [ T 15 2 25 3 35 ¥
Time (s) x10°

Figure 7: Simple drift-like fault scenarios in pitch sensor 2
(Bm2), corresponding to high drift speed in 3 different time
instances.

Multiple sensor drift-like fault

In this chapter the generated scenarios of the multiple drift-
like fault in pitch sensor 1 (8,,1) and sensor 2 (5,,2) are
modeled as a gradual change at the same time in the drift
coefficient (\; and A2) of both pitch sensors n°1 and pitch
sensors n°2 in blade n°3. As for the case of simple drift-
like fault in pitch sensor scenarios, nine scenarios for multi-
ple sensor drift-like fault are generated in order to simulate
slow, moderate and high degradation speeds representing by
slow, moderate and high drift speeds (see Table 3). Each
drift speed scenario is generated at three different time in-
stances. Thus, parameters A; and A, are changed linearly
from A1y and Aoy to A1 and Aop in a period of 30s, 60s
and 90s, corresponding respectively to high, moderate and
slow drift speeds. Then, the fault remains active for 200s.
Finally the parameter decreases again to return to their ini-
tial values (see Figure 8 for the case of high drift (degrada-
tion) speed in both sensor 1 (53,,1) and sensor 2 (5,,2)).

Drift scenario 1
Faulty 2,5 ! 4
Healthy 7.,
e £ < ;
Faulty A,z - -+
Healthy 7.,y /
o 3 = e g Ea %
Drift scenario 2
Faulty ;£ |- ]
Healthy 7, . /
! Time ()
Faulty ., | |
Healthy 7., /
Time (s)
Drift sconario 3
Faulty 2,5 | ]
Healthy 2, /
35
Time (s)
Faulty A,z 4
Healthy %,y /
" Time ()

Figure 8: Multiple sensor drift-like fault scenarios in sen-
sors (Bm1) and (5,,2) corresponding to high drift speed in 3
different time instances.
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Fault N° Drift speed Multiple drift-like fault in Period
in pitch sensors (3,,2 and B2
Fth 30s (ngh) )\1N — )\1}7‘ and )\QN — )\QF 3100s-
3330s
FlOm 60s (Medlum) )\1N — /\1F and )\2N — )\2F 3100s-
3360s
Fl()s 90s (SlOW) >\1N — >\1F and >\2N — )\QF 3100s-
3390s
Fllh 30s MN — AMpand Aoy — Aop 3200s-
3430s
Fllm 60s )‘1N — )‘1F and )\21\[ — /\QF 3200s-
3460s
Fiis 90s )\1N — )\IF and )\QN — )\QF 3200s-
3490s
Fiopn 30s )\lN — )\lF and )\2]\/ — /\2F 3300s-
3530s
Flgm 60s )\lN — )\lF and /\QN — /\QF 3300s-
3560s
Flgs 90s )\1N — )\IF and )\QN — )\QF 3300s-
3590s

Table 3: Multiple drift-like fault scenarios in pitch sensors (5,,1) and (SB,2).

6 Proposed approach

In this section, hybrid dynamic data-driven approach is de-
veloped in order to achieve condition monitoring and drift
like fault detection of pitch sensor. It performs predictive
diagnosis by detecting a drift of the system operating condi-
tions from normal to faulty modes. The proposed approach
is based on 5 steps developed in the following subsections
(see Figure 9).

6.1 Processing and data analysis

This step aims at finding the features that are sensitive to the
system operating conditions in order to construct the feature
space. A feature space representing the operating conditions
of each assembly of WT is defined, this feature space will be
responsible of the detection and isolation of faults impacting
this components. The research of sensitive features is based
on the signals provided by the pitch sensors as well as the
prior knowledge about the system dynamics. These features
are chosen in order to maximize the discrimination between
operating conditions in the feature space. In this paper, two-
dimension feature space is constructed for the sensor fault.
The goal of the feature space use, at the level of component,
is to facilitate the drift-like fault isolation and to enhance the
diagnosis robustness.

The position of the pitch actuators is measured by two re-
dundant sensors for each of the three pitch positions S yn;,
k=1,2,3,7 = 1,2, with the same reference angle 3, pro-
vided to each of them. In order to enhance the robustness
against noise, the measurements are filtered by a first order
filter using time constant 7 = 0.06.

For the drift like fault detection and isolation of the sen-
sor faults, we propose to explore the physical redundancy in
order to generate residuals as follows:

Aﬁsl = ‘ﬁr+ﬂf 7/8m1‘ (10)
ABSQ = ‘BV'+6,f_Bm2‘ (11)
To do so, the residual Afs,, n = 1,2, is generated by the

comparison between the pitch angle measurement (3,,;, i =
1,2, m = 1,2,3 and the command computed by the sum

of the desired value of the pitch angle 3, and the feedback
pitch system 3y (see Figure 5). The residual is computed
within a time window which is tuned to be several times the
actuator time response.

The evolution of these residuals with respect to each of
the two sensors is considered as meaningful features. In-
deed, the residual A, respectively Afso, is equal to zero
when the corresponding sensor f3,,1 respectively (3,2, is in
normal operating conditions. When, the sensor (3,,,1 respec-
tively Bpmeo, is in faulty operating conditions, the residual
ABs1, ABgo will be different of zero because this sensor
will not measure the new value of command (5, + 8¢) (see
Figure 5). Indeed, the command (5, + Bf) will change in
order to compensate the difference between the two sensors
due to the fault of sensor (3,,,1 respectively B2.

6.2 Classifier learning and updating

The clustering looks to determine the number of classes con-
tained in the learning set and to initialize their parameters.
The classification aims at designing a classifier able to as-
sign a new pattern to one of the learnt classes in the feature
space. A new pattern characterizes the actual operating con-
ditions (normal or faulty in response to the occurrence of a
certain fault) of the system. Examples of these approaches
are present in [5] as well as in the references of this paper.
Auto-adaptive Dynamical Clustering Algorithm (Au-
DyC) [13] is selected in this work in order to achieve both
clustering and classification. AuDyC computes the param-
eters of initial classes based on the statistical properties of
data which are the mean and the variance-covariance matrix.
These classes characterize the normal operating conditions
of pitch sensors. AuDyC was chosen because it is unsu-
pervised classification method and is able to model streams
of patterns since it always reflects the final distribution of
patterns in the features space. It uses a technique that is in-
spired from the Gaussian mixture model [13]. Let £ be a
d-dimensional feature space. Each feature vector x € E¢
is called a pattern. The patterns are used to model Gaus-
sian prototypes P? characterized by a center jup; € R¥*!
and a covariance matrix Y p; € R?*?. Each Gaussian pro-
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Figure 9: Proposed on-line adaptive scheme steps.

totype characterizes a class. A minimum number of N,
patterns are necessary to define one prototype, where N, ;.
is a user-defined threshold. A class models operating condi-
tions and gathers patterns that are similar one to each other.
The similarity criterion that is used is the Gaussian member-
ship degree. Faults will affect directly this distribution and
this will be seen through the continuously updated parame-
ters. More details about AuDyC related to merging classes,
splitting classes, rules of recursive adaptation, similarity cri-
teria, etc., can be found in [13].

In the sensor feature space, four classes are considered:
the fault of sensor 1, 3,,1 , the fault of sensor 2, 3,,2, the
fault of both sensor 1,5,,1 and sensor 2 (3,,,2, and the nor-
mal functioning. Figure 10 shows the classes representing
normal and failure operating conditions of pitch sensor in
the feature space constituted by the two residuals defined by

Equation 10 and 11. In zone 2, the effects of this fault are
hidden because the actuators are not operated. Moreover, it
is strongly difficult to distinguish the fault occurrence to the
noise in the case of small angles. Therefore an overlapping
region is created between the normal and failure classes (see
Figure 10 and Figure 15).

In order to answer the challenges inherent to the system
operation, the normal and failure classes are split into five
classes and the pitch actuator dynamics are represented by
two different control modes. The first one corresponds to
the case of zone 2 low wind speed; while the second control
mode represents the case of zone 3 high wind speed (see
Figure 16). Class 1 is the ambiguity class. It gathers the
patterns representing pitch sensor normal or faulty operat-
ing conditions. This class represents the control mode 1.
Class 2 represents the normal operating conditions class in
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Figure 10: Large view of overlapping region for the pitch
sensor normal and failure operating conditions in case of
simple fault in pitch sensor 1, (5,,1).

Afg,

Figure 11: Feature space of the pitch sensor normal and fail-
ure operating conditions in case of simple fault in pitch sen-
sor 1, (Bm1)-

+T T T T T
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Figure 12: Large view of overlapping region for the pitch
sensor normal and failure operating conditions in case of
simple fault in pitch sensor 2, (5,,,2).

control mode 2. Class 3 represents failure class caused by
simple drift-like fault in pitch sensor 1, 5,1 in control mode
2, class 4 represents failure class caused by simple drift-like
fault in pitch sensor 2, B,,2 in control mode 2 and class 5
represents failure class caused by multiple drift-like fault in
pitch sensor 1, 3,,1 and sensor 2, /3,,,2 in control mode 2.
The updating step aims at reacting to the changes in
classes characteristics in the feature space. AuDyC continu-
ously updates the classes parameters by using the recursive
adaptation Rules 12 and 13. In such a way, its validity and

T
0 Healhy class
+  Fauy s

Figure 13: Feature space of the pitch sensor normal and fail-
ure operating conditions in case of simple fault in pitch sen-
sor 2, (Bm2)-
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Figure 14: Large view of overlapping region for the pitch
sensor normal and failure operating conditions in case of
multiple fault in pitch sensor 1, (8,,1) and pitch sensor 2,
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Figure 15: Feature space of the pitch sensor normal and fail-
ure operating conditions in case of multiple fault in sensor
ﬁml and ﬁmZ-

performance over time is preserved.

fe(t) = pe(t — 1) + flpe(t — 1), 2, 2% Nypip) (12)

S o) = (t=1)+g( _(t—1), pe(t—1), 2", 2%, Nyyin)
€ € e (13)
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Figure 16: (a) Sensor decision space. (b) Control modes 1
and 2 modeled by a finite state automaton.

where 2°% and !¢ are respectively, the newest and the

oldest arrived pattern in the time window Ny, .

Initial off-line modeling allows the construction of ini-
tial classes that characterize knowledge from historical data.
The historical data are usually sensor data that are saved.
AuDyC is used to initialize the parameters of classes that
will be dynamically updated. Knowledge of failure modes
given from (labeled) historical data can help building a clas-
sification scheme for fault diagnosis. However, in reality,
these data are hard to obtain.

In this work, we suppose that only data corresponding to
normal operating conditions (normal classes) are known in
advance. The training of the process by applying AuDyC
is made based on features that are extracted from historical
sensor data once finished; the class corresponding to normal
operating conditions is retained. We denote this class by
Cn = (un, EN).

In on-line functioning, the parameters of C'y are dynam-
ically updated by AuDyC for each new pattern arrived in
control mode 2. This yields changes in the class parameters
which continuously reflect the distribution of the newest ar-
riving patterns. We denote by C, = (u., X.) the evolving
classes in feature space. We have C_(t = 0) = (¢, Xe) =
Ch.

In control mode 1 of pitch system, pitch sensor nor-
mal and faulty behaviors cannot be distinguished. Thus, in
the proposed approach, the decisions about the status (nor-
mal/faulty) of patterns located in this region are delayed.
Therefore in this case, the classifier will not be updated in
order to avoid integrating in the drift time window useless
patterns. In order to detect the drift as soon as possible, Au-
DyC updates the classes parameters by using a window that
contains only the patterns belonging to control mode 2. Au-
DyC is dynamic by nature in the sense that it continuously
updates the parameters of the classes as new patterns arrive.

6.3 Pattern decision analysis

When a new pattern is classified in the ambiguity class (A),
in sensor feature space, assigning it to normal or failure

operating conditions is a risky decision since normal and
failure classes are overlapped in this region of the feature
space. In order to reduce this risk, the decision about the
status (normal or faulty) of any pattern classified in this re-
gion is delayed by assigning the label (A) (ambiguity deci-
sion). Then, this ambiguity can be removed by analyzing
the past and future decisions of this pattern. The analysis
of the pattern decision sequence is achieved by using a set
of decision rules allowing assigning to ambiguity patterns
label (N) or label (F) (normal or faulty) as follows. Let us
suppose that X 4 = {x¢, 441, ..., Tt1n } is a set of patterns
associated with decision (A). Let z;_1 be the previous pat-
tern arrived just before z;. Let D (z,—1) € {A, N, F;} be
the decision of this pattern. Let x4, the pattern arrived
just after ;4. Let D (zy4n4+1) € {4, N, F;} be the deci-
sion for this pattern. Then, the decision can be updated as
follows:

D (xt—1) = NAD (44n+1) = N = D (z) = N,Vz € X4
D(z4—1) = FAD (%t4n41) = F = D (z) = F,Vz 6()1(1)
D (z4—1) = NAD (Z44n41) = F = D (z) = A,Vz E(;(?:z
D (z4—1) = FAD (%44n41) = N = D (z) = A,Vz 6()1(6:

Where A refers to And logical operation. (4

Rule 16 signifies that the fault has occurred somewhere
in control mode 1 where its consequences on the pitch sys-
tem dynamical behavior can be observed. Rule 17 indicates
that the failure has disappeared in the control mode 1 either
because of maintenance actions or because the fault is inter-
mittent.

6.4 Drift monitoring and interpretation

The key problem of drift monitoring is to distinguish be-
tween variations due to stochastic perturbations and varia-
tions caused by unexpected changes in a system’s state. If
the sequence of observations is noisy, it may contain some
inconsistent observations or measurements errors (outliers)
that are random and may never appear again. Therefore, it
is reasonable to monitor a system and to process observa-
tions within time windows in order to average and reduce
the noise influence. Moreover, the information about pos-
sible structural changes within time windows can be inter-
preted and processed more easily. As a result, a more reli-
able classifier update can be achieved by monitoring within
time windows. The latter must include enough of patterns
representing the drift.

To distinguish the useful patterns, the pitch sensor dy-
namics are represented by two different control modes. In
the control mode 2, the degradation consequences of pitch
sensor can be observed. Therefore, all patterns in this mode
are useful to be analyzed and to be included in the drift
time window. In the control mode 1, the degradation conse-
quences are masked. Patterns representing normal operating
conditions cannot be distinguished from patterns represent-
ing pitch sensor degradations. Therefore in this case, no
decision (normal/drift) will be taken in order to avoid inte-
grating in the drift time window useless patterns.

The proposed scheme makes use of classes parameters
(Mean, Variance-covariance matrix) which are dynamically
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updated at each time but only with the patterns belonging to
control mode 2. Drift indicators are defined based on these
parameters and the detection of faults inception will be
made based on their values. We define two drift indicators
Iy (x), Ing () as follows:

Ihl (LE) = dMah (CNnue) (18)

Ihz (t) =dg (.UNMUe) (19)

Where dj;.n, and dg are, respectively, the Mahalanobis and
Euclidean metrics.

Euclidean metric computes the distance between the cen-
ter yu,, of the normal class C'y and the center . of evolving
class C¢; on the other side Mahalanobis metric computes
the distance between the normal class C'y and the evolving
class center p.. Therefore, these two distances are calcu-
lated as follows:

daran (CN, pe) = \/(MN —pe) SN (un = pe)”
(20

di (v ie) =\ — ) (o — )™ @1)

The drift is detected when the Mahalanobis indicator
Ip,, (x), defined by Equation 18, exceeds a certain thresh-
old thy:

I (x) > thg = drift is detected (22)

After the drift detection, the drift is confirmed when Eu-
clidean indicator Io (z) defined by Equation 19, exceeds
thg as follows:

Iy (z) > thy = drift is confirmed (23)

The selection of thy is motivated statically by taking three
o (standard deviations) of the data in the normal operating
conditions.

In the case of pitch sensor faults, three scenarios may ap-
pear in the sensor feature space: fault impacting sensor 1
(Bm1), fault impacting sensor 2 (S,,2) or fault impacting
both sensors (3,1 and (3,,2) at the same time. The direction
of the evolving class in the sensor feature space depends on
which of these scenarios happened. Therefore, for sensor
fault isolation, we use a drift direction indicator in order to
monitor the direction of the evolving class. This will allow
to determine which of these three scenarios happened and
hence to isolate the abnormal drift source. When drift oc-
curs, the evolving class will migrate from normal operating
condition to failure. The direction indicator Dr and direc-
tion isolation DI are used to isolate the sensor which caused
the drift-like fault. The idea is to consider the angle 6, re-
spectively 6o, between the vector p. relating the center of
the evolving class and the origin of the feature space, and
the vector p.; respectively p.o relating the origin with the
projection of the center of the evolving class according to
feature 1 respectively feature 2, of the feature space. These
angles define the movement direction of the evolving class.

In order to calculate 6; and 65, the scalar products be-
tween m and ;TZ and between pi.2 and /ﬁ are calculated as
follows:

(@) - i (@) = ue(@)] - e (@) - cos by (24)

(@) - iy () = [lpe(@)|] - llpea(z)] - cosfy  (25)

If the drift is detected and confirmed by the two drift in-
dicators Ip; () and Iz (), then the drift isolation (to de-
termine if sensor 1 or sensor 2 or both is the source of this
drift) is achieved as follows:

IfD’I‘=91*62 >thaand91 >02:>DI:12
fault in sensor 1 (5,,1)(26)

If Dr =601 — 0y >th,and 0y < 01 = DI =2
fault in sensor 2 (B,,2) (27)

IfDT:61*92<tha:>D]=3Z
fault in both sensors (8,,1andS,,2) (28)

where th,, is the angle threshold. th, is defined accord-
ing to the variation of patterns within the normal class C'y .
Therefore, th, is determined experimentally using the pat-
terns belonging to Cly.

The interpretation step aims at interpreting the detected
changes within the classifier parameters and structure. This
interpretation is then used as a prediction about the tendency
of the future development of the WT current situation. This
prediction is useful to formulate a control or maintenance
action.

7 Experimentation and obtained results

The failures of pitch sensors are caused by a continuous
degradation of its performance over time. This degradation
can be seen as a continuous drift of the normal operating
conditions characteristics (normal class) of the pitch sensor.
Detecting and following this drift can help to predict the oc-
currence of the pitch sensor failures. The two monitoring
indicators defined by Equation 18 and Equation 19 are used
to detect and to confirm this drift for the twenty-seven sce-
narios of simple and multiple drift-like fault in pitch sensors
are defined in section 2.

7.1 Simple drift-like fault in sensor 5,1

Figure 18 and Figure 19 represent, respectively, first and
second residuals used in the pitch sensor feature space in
presence of an abnormal drift in pitch sensor 1, 3,,1. We
can see in the case of an abnormal drift in pitch sensor 1,
Bm1, that only residual Af,; is impacted, while residual
Ao has similar behavior as the one without abnormal drift
in Bml .

Table 4 show the values of the drift indicators I, (x) and
I, () for the nine defined drift-like fault scenarios. These
values represent the required time (starting from the drift
beginning) to detect and confirm the drift occurrence. Thus,
they can be used as an evaluation criterion to measure the
time delay to detect a drift before its end.

Figures 20 and 21 show the obtained results using the
two drift detection indicators I, (x) and I, (), for sim-
ple drift-like fault in pitch sensor (3,,;. The degradation is
observed when the pitch actuator operate in control mode 2,
the drift like fault in pitch sensor is successfully detected by
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Figure 17: Drift direction angles in the pitch sensor feature space in the case of (a) simple drift-like fault in pitch sensor 1
(Bm1), (b) simple drift-like fault in pitch sensor 2 (8,,,2), (c) multiple drift-like fault in both pitch sensors (8;,,1) and (5,,2).

Fault N Drift speed I 1o Period
Fyn 30s(High) 5.25s | 11.00s | 2500s
(High) -2730s

Fim 60s(Medium) | 8.60s | 18.70s | -2760s
(Medium) -2760s

Fys 90s 14s 26.30s | 2500s
(Slow) -2790s

Fsp, 30s 6.90s | 13.30s | 2600s
-2830s

Fs.n 60s 11.50s | 20.20s | 2600s
-2860s

Fis 90s 14.25s | 27.10s | 2600s
-2890s

Fgp, 30s 6.05s | 11.90s | 2700s
-2930s

Fom 60s 12.60s | 23.50s | 2700s
-2960s

Fis 90s 15.10s | 29.40s | 2700s
-2990s

Table 4: Results of simple drift-like fault detection and con-
firmation in pitch sensor 1 (5,,1), for the nine drift scenar-
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Figure 18: First residual used in the pitch sensor feature
space in the case of the simple drift-like fault in pitch sensor

1 (ﬁml)-

FaultEnd Time

Time (X)

Figure 19: Second residual used in the pitch sensor feature
space in the case of the simple drift-like fault in pitch sensor
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Figure 20: Drift indicator I, () based on Mahalanobis dis-
tance of the simple drift-like fault in pitch sensor 1 (3,,1).

both indicator Ij,, (z) and Iy, (x), for all drift speeds (see
Figure 20 and Figure 21).

The drift-like fault in pitch sensor 1 (/3,,1), is detected in
early stage before the end of this drift (arriving to the fail-
ure mode due to drift fault in pitch sensor). As an example,
in the case of a drift of slow speed (F6s) (see Table 4), the

61



T

Drift Indicator 1h2
7
L P

th, 1

d

1 1 1
60 8 100 12 140

Pattern (X)

= H
]

Figure 21: Drift indicator I, (z) based on Euclidean dis-
tance of the simple drift-like fault in pitch sensor 1 (3,,1).

pitch sensor reaches the failure mode resulting from a drift-
like fault in \; (degradation in A;) after 90 seconds of the
beginning of the drift. In the proposed approach, this drift is
detected 15.10 seconds and confirmed 29.40 seconds after
its beginning. Therefore, the drift like fault in pitch sen-
sor is confirmed 60 seconds before its end. This enables
to achieve an early fault diagnosis and therefore helps the
human operators of supervision to take efficiently the right
actions.

Figure 22 and Figure 23 represent, respectively, evolving
class angle and the direction indicator of the pitch sensor
fault. These figures show the obtained results in presence of
simple drift-like fault in pitch sensor 1, based on Figure 22
and Figure 23 the sensor 1 (/3,,1), fault is successfully iso-
lated by the direction indicator. Indeed, the direction angle
shows that the evolving class exceeds the angle threshold
(see Figure 17.a). Based on Equation 26, the drift-like fault
in sensor 1 (B,,1), is isolated (see Figure 29).

10 tha

N sl ki) il b kbbbl Ntk

0 2 0] 60 0 100 12 % 160
Pattern (X)

Direction indicator (Dr) of the evolving class angle

Figure 22: Direction indicator Dr of the evolving class an-
gle of the simple drift-like fault in pitch sensor 1 (5,,1).

7.2 Simple drift-like fault in sensor (5,2

Figure 24 and Figure 25 represent, respectively, first and
second residuals used in the pitch sensor feature space in
presence of an abnormal drift in pitch sensor sensor 2, [3,,,2.
We can see in the case of an abnormal drift in pitch sensor
2, Bmo, that only residual Afss is impacted, while residual
A 3,1 has similar behavior as the one without abnormal drift

in ﬂmg.

Sensor 1and Sensor 2|-

Sensor2|-

Sensor 1| H / DI
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Direction isolation (DI)

Figure 23: Direction isolation DI of the simple drift-like
fault in pitch sensor 1 (3,,1).

Table 5 show the values of the drift indicators Ij,, (x) and
I, () for the nine defined drift-like fault scenarios. These
values represent the required time (starting from the drift
beginning) to detect and confirm the drift occurrence. Thus,
they can be used as an evaluation criterion to measure the
time delay to detect a drift before its end.

Fault N | Drift speed I Ipo Period
Frp, 30s 6.07s | 12.15s | 2800s
(High) -3030s

Frn 60s 8.90s | 19.05s | 2800s
(Medium) -3060s

Fr 90s 14.20s 27s 2800s
(Slow) -3090s

Fyp, 30s 5.70s | 11.80s | 2900s
-3130s

Fsm 60s 8.25s | 18.40s | 2900s
-3160s

Fys 90s 13.70s | 26.18s | 2900s
-3190s

Fyy, 30s 6.90s | 12.70s | 3000s
-3230s

Fom 60s 9s 20.30s | 3000s
3260s

Fys 90s 14.90s | 28.10s | 3000s
3290s

Table 5: Results of simple drift-like fault detection and con-
firmation in pitch sensor 2(3,,2), for the nine drift scenarios.

Figures 26 and 27 show the obtained results using the
two drift detection indicators Iy, (x) and Iy, (z), for simple
drift-like fault in pitch sensor 2 (/3,,2). The degradation is
observed when the pitch actuator operate in control mode 2,
the drift-like fault in pitch sensor 2 is successfully detected
by both indicators I, (x) and I, (x) for all drift speeds
(see Figure 26 and Figure 27).

The drift-like fault in pitch sensor 2 (3,,2), is detected in
early stage before the end of this drift (arriving to the fail-
ure mode due to drift fault in pitch sensor). As an example,
in the case of a drift of slow speed (F9s) (see Table 5), the
pitch sensor reaches the failure mode resulting from a drift-
like fault in Ay (degradation in Ag) after 90 seconds of the
beginning of the drift. In the proposed approach, this drift is
detected 14.90 seconds and confirmed 28.10 seconds after
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Figure 24: First residual used in the pitch sensor feature
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Figure 25: Second residual used in the pitch sensor feature
space in the case of the simple drift-like fault in pitch sensor
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Figure 26: Drift indicator I}, (z) based on Mahalanobis dis-
tance of the simple drift-like fault in pitch sensor 2 (3,,2).

its beginning. Therefore, the drift like fault in pitch sen-
sor is confirmed 60 seconds before its end. This enables
to achieve an early fault diagnosis and therefore helps the
human operators of supervision to take efficiently the right
actions.

For the drift isolation, Figure 28 and Figure 29 are used.
They represent, respectively, evolving class angle and the
direction indicator of the pitch sensor fault. These figures

Drift indicator 1h2

I I " ' -
0 20 40 60

80 N‘)O 12‘0 140
Pattern (X)

Figure 27: Drift indicator I, (z) based on Euclidean dis-
tance of the simple drift-like fault in pitch sensor 2 (53,,2).

show the obtained results in presence of simple drift-like
fault in pitch sensor 2, based on Figure 28 and Figure 29
the sensor 2 (f3,,2), fault is successfully isolated by the di-
rection indicator. Indeed, the direction angle shows that the
evolving class exceeds the angle threshold (see Figure 17.b).
Based on Equation 27, the drift-like fault in sensor 2 (53,,2),
is isolated (see Figure 29).
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Figure 28: Direction indicator Dr of the evolving class an-
gle of the simple drift-like fault in pitch sensor 2 (5,,2).
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Figure 29: Direction isolation DI of the simple drift-like
fault in pitch sensor 2 (/3,,2).
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7.3 Multiple drift-like fault in sensors (,,; and
ﬁmQ

Figure 30 and Figure 31 represent, respectively, first and
second residuals used in the pitch sensor feature space in
presence of an abnormal drift in both pitch sensor f3,,,; and
Bmo at the same time. We can see that both residual A
and Afso are impacted by the occurrence of the abnormal
drift in 3,,,1 and S,,2.

Table 6 show the values of the drift indicators Ij,, (x) and
Ip,, (x) for the nine defined drift-like fault scenarios. These
values represent the required time (starting from the drift
beginning) to detect and confirm the drift occurrence. Thus,
they can be used as an evaluation criterion to measure the
time delay to detect a drift before its end.

Fault N | Drift speed I Ipo Period
Fion 30s 5.04s 10.9s | 3100s
(High) -3330s

Fiom 60s 9s 19.04s | 3100s
(Medium) -3360s

Fios 90s 13.68s | 26.23s | 3100s
(Slow) -3390s

Fiin 30s 6.55s | 15.50s | 3200s
-3430s

Fiim 60s 10.05s | 19.30s | 3200s
-3460s

Fiis 90s 13.80s | 27.50s | 3200s
-3490s

Fiopn 30s 7.10s | 16.10s | 3300s
-3530s

Fiom 60s 9.55s | 22.80s | 3300s
-3560s

Fios 90s 14.70s | 28.25s | 3300s
-3590s

Table 6: Results of multiple drift-like fault detection and
confirmation in pitch sensor 1 (5,,1), and pitch sensor 2
(Bm2), for the nine drift scenarios.
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Figure 30: First residual used in the pitch sensor feature
space in the case of the multiple drift-like fault in pitch sen-
sor 1 (3,,1), and sensor 2 (3,,2).

Figures 32 and 33 show the obtained results using the
two drift detection indicators I, (z) and Iy, (x), for mul-
tiple pitch sensor fault. The degradation is observed when
the pitch actuator operate in control mode 2. The drift like
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Figure 31: Second residual used in the pitch sensor feature
space in the case of the multiple drift-like fault in pitch sen-
sor 1 (Bm1), and sensor 2 (5,,2).

fault in pitch sensor is successfully detected by both indi-
cator Ip,, (x) and Iy, (z) for all drift speeds in both sensors
(see Figure 32 and Figure 33).

Drift Indicator Ih1
7

Pattern (X)

Figure 32: Drift indicator I;,, () based on Mahalanobis dis-
tance of the multiple drift-like fault in both pitch sensor 1
(Bm1), and sensor 2 (By,2).
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Figure 33: Drift indicator I, (z) based on Euclidean dis-
tance of the multiple drift-like fault in both pitch sensor 1
(Bm1), and sensor 2 (By,2).

The multiple drift-like faults in pitch sensors are detected
in early stage before the end of these drifts (arriving to the
failure mode due to drift fault in both pitch sensors). As an
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example, in the case of a drift of slow speed (F12s) (see Ta-
ble 6), the pitch sensors reache the failure mode resulting
from a drift-like fault in A; and A\ (degradation in A\; and
A2) after 90 seconds of the beginning of the drift. In the
proposed approach, this drift is detected 14.70 seconds and
confirmed 28.25 seconds after its beginning. Therefore, the
multiple drift-like fault in pitch sensor is confirmed 60 sec-
onds before its end. This enables to achieve an early fault
diagnosis and therefore helps the human operators of super-
vision to take efficiently the right actions.

For the drift isolation, Figure 34 and Figure 35 are used.
They represent, respectively, evolving class angle and the
direction indicator of the pitch sensor fault. These figures
show the obtained results in presence of a multiple drift-like
fault in both pitch sensors (,,1 and (,,2, as we can see in
Figure 34 and Figure 35 the fault is successfully isolated by
the direction indicator. Indeed, the direction angle shows
that the evolving class evolve within the axe of the normal
class (see Figure 17.c). Based on Equation 27, the multi-
ple drift-like isolation in both pitch sensors is isolated (see
Figure 35).
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Figure 34: Direction indicator Dr of the evolving class an-
gle of the multiple drift-like fault in both pitch sensor 1
(Bm1), and pitch sensor 2 (5,,2).
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Figure 35: Direction isolation DI of the multiple drift-like
fault in both pitch sensor 1 (3,,,1), and sensor 2 (B,2).

8 CONCLUSIONS

In this paper, an approach of condition monitoring and drift-
like fault detection was developed. It is based on the use of

a classifier able to achieve a reliable drift monitoring and
early diagnosis of simple and multiple pitch sensors faults.
This approach considers the system switching between sev-
eral control modes. This approach based on the monitoring
of the drift of the characteristics of classes representing the
normal operating conditions of pitch system in each con-
trol mode. These characteristics are described by the mean
and variance covariance matrix of these classes. They are
monitored using two indicators in order to monitor and fol-
low the drift. Both are defined based on the computation
of the distance between the class representing normal oper-
ating conditions and the evolving class. The first indicator
is based on the Mahalanobis distance and is used to detect
the drift; while the second indicator is based on Euclidean
distance and is used to confirm the drift. The drift indica-
tors have detected successfully all drift scenarios of three
speeds in early stage before the end of this drift for the case
of simple and multiple drift-like faults in pitch system.

Future work will focus on the drift like fault of other wind
turbine critical components as the generator and drive train
as well as the use of other indicators to detect drifts of other
types or natures.
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Abstract. In increasing number of real world applications, data are pre-
sented as streams that may evolve over time and this is known by concept
drift. Handling concept drift through ensemble classifiers has received a
great interest in last decades. The success of these ensemble methods
relies on their diversity. Accordingly, various diversity techniques can
be used like block-based data, weighting-data or filtering-data. Fach of
these diversity techniques is efficient to handle certain characteristics of
drift. However, when the drift is complex, they fail to efficiently han-
dle it. Complex drifts may present a mixture of several characteristics
(speed, severity, influence zones in the feature space, etc) which may vary
over time. In this case, drift handling is more complicated and requires
new detection and updating tools. For this purpose, a new ensemble ap-
proach, namely EnsembleEDIST2, is presented. It combines the three
diversity techniques in order to take benefit from their advantages and
outperform their limits. Additionally, it makes use of EDIST2, as drift
detection mechanism, in order to monitor the ensemble’s performance
and detect changes. EnsembleEDIST2 was tested through different sce-
narios of complex drift generated from synthetic and real datasets. This
diversity combination allows EnsembleEDIST?2 to outperform similar en-
semble approaches in term of accuracy rate, and present stable behaviors
in handling different scenarios of complex drift.

Keywords:Ensemble Classifier, Diversity techniques, Complex Concept
Drift, Adaptive Learning, Evolving Data Stream, Change Detection

1 Introduction

Learning from evolving data stream has received a great attention. It ad-
dresses the non-stationarity of data over time, which is known by concept drift.
The term concept refers to data distribution, represented by the joint distribution
p(z,y), where z represents the n — dimensional feature vector and y represents
its class label. The term concept drift refers to a change in the underlying dis-
tribution of new incoming data. For example, in intrusion detection application,
the behavior of an intruder may evolve in order to confuse the system protection
rules. Hence, it is essential to consider these changes for updating the system in
order to preserve its performance.

67



Ensemble classifiers appear to be promising approaches for tracking evolving
data streams. The success of the ensemble methods, according to single classifier,
relies on their diversity [17] [22] [21]. Diversity can be achieved according to three
main strategies [15]: block-based data, weighting-data or filtering-data. In block-
based ensembles [5], [16], [20], the training set is presented as blocks or chunks
of data at a time. Generally, these blocks are of equal size and the evaluation
of base learners is done when all instances from a new block are available. In
weighting-data ensembles [3] [4] [18] [13], the instances are weighted according
to some weighting process. For example in Online Bagging [19], the weighting
process is based on re-using instances for training individual learners. Finally,
filtering-data ensembles [1] are based on selecting data from the training set
according to a specific criterion, for example similarity in feature space.

In many real-life applications, the concept drift may be complezr in the sense
that it presents time-varying characteristics. For instance, a drift can present
different characteristics according to its speed (abrupt or gradual), nature (con-
tinuous or probabilistic) and severity (local or global). Accordingly, complex drift
can present a mixture of all these characteristics over time. It is worth to under-
line that each characteristic presents its own challenges. Accordingly, a mixture
of these different characteristics may accentuate the challenge issues and com-
plicate the drift handling.

In this paper, the goal is to underline the complementarity of the diversity
techniques (block-based data, weighting-data and filtering-data) for handling dif-
ferent scenarios of complex drift. For this purpose, a new ensemble approach,
namely EnsembleEDIST?2, is proposed. The intuition is to combine these three
diversity techniques in order to efficiently handle different scenarios of complex
drift. Firstly, EnsembleEDIST2 defines a data-block with variable size for up-
dating the ensemble’s members, thus it can avoid the problem of tuning off size
of the data-block. Secondly, it defines a new filtering criterion for selecting the
most representative data of the new concept. Thirdly, it applies a new weight-
ing process in order to create diversified ensemble’s members. Finally, it makes
use of EDIST2 [14] [12], as drift detection mechanism, in order to monitor the
ensemble’s performance and detect changes.

EnsembleEDIST2 has been tested through different scenarios of complex
drifts generated from synthetic and real datasets. This diversity combination
allows EnsembleEDIST2 to outperform similar ensemble approaches in term of
accuracy rate, and present a stable behavior in handling different scenarios of
complex drift.

The remainder of the paper is organized as follows. In Section II, the chal-
lenges of complex concept drift are exposed. In Section III, the advantages and
the limits of each diversity technique are studied. In Section IV, the proposed ap-
proach, namely EnsembleEDIST?2, is detailed. Section V, the experimental setup
and the obtained results are presented. Finally, in Section VI, the conclusion and
some future research directions are exposed.
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2 Complex Concept Drift

In many real-life applications, the concept drift may be complezr in the sense
that it presents time-varying characteristics. Let us take the example of a drift
with three different characteristics according to its speed (gradual or abrupt),
nature (continuous or probabilistic) and severity (local or global). It is worth
to underline that each characteristic presents its own challenges. Accordingly,
a mixture of these different characteristics may accentuate the challenge issues
and complicate the drift handling.

For instance, we can consider the drift depicted in Fig.1 as complex drift as
it simulates a Gradual Continuous Local Drift, in the sense that the hyperplane
class boundary is gradually rotating during the drifting phase and continuously
presenting changes with each instance in local regions. Namely, the time until
this complex drift is detected can be arbitrarily long. This is due to the rarity
of data source representing the drift, which in turn makes it difficult to confirm
the presence of drift. Moreover, in some cases, this drift can be considered as
noise by confusion, which makes the model unstable. Hence, to overcome the
instability, the model has to (i) effectively differentiate between local changes
and noises, and (77) deal with the scarcity of instances that represent the drift
in order to effectively update the learner.

Another interesting complex drift represents the Gradual Continuous Global
Drift (see Fig.2). During this drift, the concept is gradually changing and contin-
uously presenting modifications with each instance. Namely, during the transi-
tion phase, the drift evolves and presents several intermediate concepts until the
emergence of the final concept (see Fig.2.b). Hence, the challenging issue is to
efficiently decide the end time of the old concept and detect the start time of the
new concept. The objective is to update the learner with the data that represent
the final concept (see Fig.2.c) and not with data collected during the concept
evolution (see Fig.2.b). Moreover, this drift is considered as global because it is
affecting all the instances of the drifting class. Namely, handling this complex
drift is also challenging, because the performance’s decrease of the learner is
more pronounced than the other types of drifts.

1 1
08 08
06 06

0.4 0.4

0.2 0.2

0 02 04 06 08 1 0 02 04 06 08 1
(a) (b)
concept1 instance space affected by the drift concept2

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
(c) (d) (e)

Fig. 1. Gradual Continuous Local Drift:a concept1, b-d instance space affected by the
drift and e concept2
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Fig.2. Gradual Continuous Global Drift: a conceptl, b concept evolution and c
concept2

3 Related work

The diversity [15] among the ensemble can be fulfilled by applying various
techniques such as: block-based data, weighting-data or filtering data, in order
to differently train base learners (see Fig.3). Accordingly, the objective in this
investigation is to highlight the advantages and drawbacks of each diversity
techniques in handling complex drift (see Table 1).

3.1 Block-based Technique

According to the block-based technique, the training set is presented as blocks
or chunks of data at a time. Generally, these blocks are of equal size and the
construction, evaluation, or updating of base learners is done when all instances
from a new block are available. Very often, ensemble learners periodically eval-
uate their components and substitute the weakest one with a new (candidate)
learner after each data block [20] [16] [6]. This technique preserves the adapt-
ability of the ensemble in such way that learners, which were trained in recent
blocks, are the most suitable for representing the current concept.

The block-based ensembles are suitable for handling gradual drifts. Generally,
during these drifts, the change between consecutive data blocks is not quite
pronounced; thus, it can be only noticeable in long period. The interesting point
in the block-based ensembles is that they can enclose different learners that are
trained in different period of time. Hence, by aggregating the outputs of these
base classifiers, the ensemble can offer accurate reactions to such gradual drifts.

In contrast, the main drawback of block-based ensembles is the difficulty of
tuning off the block size to offer a compromise between fast reactions to drifts
and high accuracy. If the block size is too large, they may slowly react to abrupt
drift; whereas small size can damage the performance of the ensemble in stable
periods.

3.2 Weighting-data Technique

In this technique, the base learners are trained according to weighted in-
stances from the training set. A popular instance weighting process is presented
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in the Online Bagging ensemble [19]. For ease of understanding, the weighting
process is based on re-using instances for training individual classifiers. Namely,
if we consider that each base classifier C; is trained from a subset M; from the
global training set; then the instance; will be presented k times in M;; where
the weight k is drawn from a Poisson(1) distribution.

(a) Block-based

--{00-0]-{ooo}-[oo-o}---ﬁm o
~— |

[ ] Ensemble Classifier
(b) Weighting-data

S S S SR SR S

2times
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(c) Filtering-data
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—_ 1
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Fig. 3. Different diversity techniques among the ensemble

Online Bagging has inspired many researchers in the field of drift tracking
[3] [17] [13]. This approach can be of great interest for:

— Class imbalance: where some classes are severely underrepresented in the
dataset

— Local drift: where changes occur in only some regions of the instance space.

Generally, the weighting process intensifies the re-use of underrepresented class
data and helps to deal with the scarcity of instances that represent the local
drift. However, the instance duplication may impact the ability of the ensemble
in handling global drift. During global drift, the change affects a large amount of
data; thus when re-using data for constructing base classifiers, the performance’s
decrease is accentuated and the recovery from the drift may be delayed.
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3.3 Filtering-data Technique

This technique is based on selecting data from the training set according to
a specific criterion, for example similarity in the feature space. Such technique
allows to select subsets of attributes that provide partitions of the training set
containing maximally similar instances, i.e., instances belonging to the same
regions of feature space. Thanks to this technique, base learners are trained
according to different subspaces to get benefit from different characteristics of
the overall feature space.

In contrast with conventional approaches which detect drift in the overall
distribution without specifying which feature has changed, ensemble learners
based on filtered data can exactly specify the drifting feature. This is a desired
property for detecting novel class emergence or existing class fusion in unlabeled
data. However, these approaches may present difficulty in handling local drifts
if they do not define an efficient filtering criterion. It is worth to underline that
during local drift, only some regions of the feature space are affected by the
drift. Hence, only the base classifier which is trained on changing region is the
most accurate to handle the drift. However, when aggregating the final decision
of this classifier with the remained classifiers, trained from unchanged regions,
the performance recovery may be delayed.

Table 1. Summary of the advantages (+) and drawbacks (-) of diversity techniques
for handling complex drift

Gradual Continuous|Gradual Probabilistic Abrupt
Complex Drift
Local| Global [Local]  Global  |Local|Global
Block-based + + —+ + - -
Weighting-data| —+ - —+ - + -
Filtering-data - —+ - —+ - -+

4 The proposed approach

The intuition behind EnsembleEDIST2 is to combine the three diversity tech-
niques (Block-based, Weighting-data and Filtering data) in order to take benefit
from their advantages and avoid their drawbacks.

The contributions of EnsembleEDIST?2 for efficiently handling complex con-
cept drifts are as follows, it:

— Explicitly handles drift through a drift detection method EDIST?2 [14] (sub-
Section4.1)

— Makes use of data-block with variable size for updating the ensemble’s mem-
bers (subSection4.2)
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— Defines a new filtering criterion for selecting the most representative data of
the new concept (subSection4.3)

— Applies a new weighting process in order to create diversified ensemble’s
members (subSection4.4)

(a) In-Control

Wo
T
|
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Time
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The ensemble members are incremented
according to datain W gand W
Ensemble
(b) Warning (c) Drift
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| - 1
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The ensemble members are incremented A new classifier is created fromdatainW and W 0

warnin
according to weighted data from W and the oldest classifier is removed “
warning

Fig. 4. EnsembleEDIST2’s adapting process according to the three detection levels:
(a) In-control, (b) Warning and (c) Drift

4.1 Drift monitoring process in EnsembleEDIST2

EnsembleEDIST?2 is an ensemble classifier designed to explicitly handle drifts.
It makes use of EDIST?2 [14], as drift detection mechanism, in order to monitor
the ensemble’s performance and detect changes (see Figd).

EDIST2 monitors the prediction feedback provided by the ensemble. More
precisely, EDIST2 studies the distance between two consecutive errors of clas-
sification. Notice that the distance is represented by the number of instances
between two consecutive errors of classification. Accordingly, when the data dis-
tribution becomes non-stationary, the ensemble will commit much more errors
and the distance between these errors will decrease.

In EDIST2, the concept drift is tracked through two data windows, a ’global’
one and a ’current’ one. The global window W is a self-adaptive window which
is continuously incremented if no drift occurs and decremented otherwise; and
the current window Wy which represents the batch of current collected instances.

In EDIST?2, we want to estimate the error distance distribution of W and W
and make a comparison between the averages of their error distance distributions
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in order to check a difference. As stated before, a significant decrease in the error
distance implies a change in the data distribution and suggests that the learning
model is no longer appropriate.

EDIST?2 makes use of a statistical hypothesis test in order to compare W and
Wy error distance distributions and check whether the averages differ by more
than the threshold e. It is worth underlining that there is no a priori definition of
the threshold e, in the sense that it does not require any a priori adjusting related
to the expected speed or severity of the change. € is autonomously adapted
according to a statistical hypothesis test (for more details please refer ti [14]).

The intuition behind EDIST2 is to monitor pg which represents difference
between W and Wy averages and accordingly three thresholds are defined:

— In-Control level: pg < € ; within this level, we confirm that there is no change
between the two distributions, so we enlarge W by adding Wy ’s instances.
Accordingly, all the ensemble members are incremented according to data
samples in Wg and W.

— Warning level: puq > € ; within this level, the instances are stored in an warn-
ing chunk Wiyarning. Accordingly, all the ensemble members are incremented
according to weighted data from Wyarning. (The weighting process will be
explained in subSection.4)

— Drift level: uq > € + og4; within this level, the drift is confirmed and Wg
is decremented by only containing the instances stored since the warning
level,i.e., in Wiyarning. Additionally, a new base classifier is created from
scratch and trained according to data samples in Wiqrning, then the oldest
classifier is removed from the ensemble.

4.2 EnsembleEDIST?2’s diversity by variable-sized block technique

In EnsembleEDIST2, the size of data-block is not defined according to the
number of instances, as it is the case of conventional block-based ensembles, but
according to the number of errors committed during the learning process. More
precisely, the data-block Wy, in EnsembleEDIST2, is constructed by collecting
the instances that exist between N errors.

As depicted in Fig.5 , when the drift is abrupt, the ensemble commits Ny
errors in short drifting time. However, when the drift is gradual, the ensemble
commits Ny errors in relatively longer drifting time. Hence, according to this
strategy, the block size is variable and adjusted according to drift characteristics.

It is worth to underline that EnsembleEDIST2 can offer a compromise be-
tween fast reaction to abrupt drift and stable behavior regarding gradual drift.
This is a desirable property for handling complex drift which may present dif-
ferent characteristics in the same time, and accordingly EnsembleEDIST2 can
avoid the problem of tuning off the size of data-block as it is the case of most
block-based approaches.
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(a) Abrupt drift (b) Gradual drift
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Fig.5. Variable data-block technique in EnsembleEDIST?2

4.3 EnsembleEDIST2’s diversity by new filtering-data criterion

Differently from conventional filtering-data ensembles, which filter data ac-
cording to similarity in the feature space, EnsembleEDIST2 defines a new filter-
ing criterion. It filters the instances that trigger the warning level. More precisely,
each time the ensemble reaches the warning level, the instances are gathered in
a warning chunk W,4rning in order to re-use them for training the ensemble’s
members (see Fig.6.a). This is an interesting point when dealing with local drift
because drifting data are scarce and not continuously provided. It is possible
that a certain amount of drifting data can be found in zones (1), (2), (3) and
(4) but not quite sufficient to reach the drift level. Accordingly, by considering
these data for updating the ensemble’s members, EnsembleEDIST2 can ensure
a rapid recovery from local drift.

In contrast, conventional filtering-data ensembles are unable the define in
which zone the drift has occurred, thus, they may update the ensemble’s mem-
bers with data filtered from unchanged feature space; which in turn may delay
the performance correctness.

4.4 EnsembleEDIST2’s diversity by new weighting-data process

The focus in EnsembleEDIST2 is to maximize the use of data present in
Waarning for accurately updating the ensemble. More precisely, the data in
Wwarning are weighted according to the same weighting process used in On-
line bagging [19]. Namely, each instance; from Wwarning is re-used k times for
training the base classifier C; , where the weight k is drawn from a Poisson(1)
distribution (see Appendix7).

Generally, the weighting process in EnsembleEDIST2 offers twofold advan-
tages. First, it intensifies the re-use of underrepresented class data and helps to
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deal with scarcity of instances that represent the local drift. Second, it permits
faster recovery from global drift than conventional weighting-data ensembles. As
it is known, during global drift, the change affects a large amount of data. Hence,
differently from conventional weighting-data ensembles, which apply the weight-
ing process to all the data sets; EnsembleEDIST2 only weights the instances
present in Wiarning (see Fig.6.b). Accordingly, it can avoid to accentuate the
decrease of the ensemble’s performance during global drift, and ensure a fast
recovery.

Local drift

concept2

concept1

(a) Filtering data
technique
Monitoring

’ measure
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Data presentin W .
warning
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Fig.6. (a) Filtering-data technique and (b) Weighting-data technique in Ensem-
bleEDIST?2

5 Experiments and performance analysis

5.1 Experimental evaluation

Synthetic Datasets In this investigation, we are studying six different sce-
narios of complex concept drift as depicted in Table 2 . All synthetic datasets
contain 100, 000 instances and one concept drift where the starting and the end-
ing time are predefined. For gradual drift, the drifting time lasts 30, 000 instances
(it begins at tstq,t=40,000 and ends at te,g = 70,000). For abrupt drift, the drift
occurs at t = 50, 000.
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Table 2. Different types of Complex Drift handled in this investigation

Complex Drift Characteristics .
Speed { Nature { Severity Synthetic Datasets
. Local Hyperplane [10]
Gradual Continuous Clobal RBF [2]
adua Probabilistic Local SEA Gradual [24]
TOPabIISHC ™ Clobal  |[STAGGER Gradual [23]
Local SEA Abrupt [24]
Abrupt Global | STAGGER Abrupt [23]

Real Datasets

FElectricity Dataset (48,312 instances, 8 attributes, 2 classes) is a real world
dataset from the Australian New South Wales Electricity Market [9]. In this
electricity market, the prices are not fixed and may be affected by demand and
supply. The dataset covers a period of two years and the instances are recorded
every half an hour. The classification task is to predict a rise (UP) or a fall
(DOWN) in the electricity price. Three numerical features are used to define the
feature space: the electricity demand in current region, the electricity demand
in the adjacent regions and the schedule of electricity transfer between the two
regions.

This dataset may present several scenarios of complex drift. For instance, a
gradual continuous drift may occur when the users progressively change their
consumption habits during a long time period. Likewise, an abrupt drift may
occur when the electricity prices suddenly increase due to unexpected events
(e.g., political crises or natural disasters). Moreover, the drift can be local if
it impacts only one feature (e.g., the electricity demand in current region); or
global if it impacts all the features.

Spam Dataset (9,324 instances, 500 attributes, 2 classes) is a real world dataset
containing email messages from the Spam Assassin Collection Project [11]. The
classification task is to predict if a mail is a spam or legitimate. The data set
contains 20% of spam mailing. The feature space is defined by a set of numerical
features such as the number of receptors, textual attributes describing the mail
contain and sender characteristics...

This dataset may present several scenarios of complex drift. For instance,
a gradual drift may occur when the user progressively changes his preferences.
However, an abrupt drift may occur when the spammer rapidly changes the mail
content to trick the spam filter rules. It is worth to underline that the drift can
also be continuous when the spammer starts to change the spam content; but
the filter continues to correctly detect them. In the other side, the drift can be
probabilistic when the spammer starts to change the spam content; but the filter
fails in detecting some of them.
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Evaluation criteria When dealing with evolving data streams, the objective
is to study the evolution of the EnsembleEDIST2 performance over time and see
how quick the adaptation to drift is. According to Gama et al. [8] the prequential
accuracy is a suitable metric to evaluate the learner performance in presence of
concept drift. It proceeds as follows: each instance is firstly used for testing then
for training. Hence, the accuracy is incrementally updated using the maximum
available data; and the model is continuously tested on instances that it has not
already seen (for more details please refer to [8]).

Parameter Settings All the tested approaches were implemented in the java
programming language by extending the Massive Online Analysis (MOA) soft-
ware [2]. MOA is an online learning framework for evolving data streams and
supports a collection of machine learning methods.

For comparison, we have selected well known ensemble approaches according
to each category:

— Block-based ensemble: AUE (Accuracy Updated Ensemble) [5], AWE (Accu-
racy Weighted Ensemble) [16] and LearnNSE [20] with block size equal to
500 instances.

— Weighting-data ensemble: LeveragingBag [3] and OzaBag [19]

— Filtering-data ensemble: LimAttClass [1]

For all these approaches, the ensemble’s size was fixed to 10 and the Hoeffding
Tree (HT) [7] was used as base learning algorithm.

It is worth to notice that EnsembleEDIST2 makes use of two parameters: Ny
which is the number of error in Wy and m which is the number of base classifiers
among the ensemble. In this investigation, we respectively set Ny = 30 and
m = 3 according to empirically studies done in subSections 5.2 and 5.2.

5.2 Comparative study and interpretation

Impact of Ny on EnsembleEDIST?2 performance EnsembleEDIST2 makes
use of the parameter Ny in order to define the minimum number of error occurred
in Wy. Recall that Wy represents the batch of current collected instances. This
batch is constructed by collecting the instances that exist between Ny errors.

It is interesting to study the impact of Ny on the accuracy according to
different scenarios of complex drift. For this purpose, we have done the following
experiments: for each scenario of complex drift, the accuracy of Ensemble EDIST2
is presented by varying Ny values (see Table 3).

Based on these results, we can conclude that the performance of Ensem-
bleEDIST2 in handling different scenarios of complex drifts is weakly sensitive
to Ny. Hence, we have decided to use Ny = 30 as it has achieved the best
accuracy rate in most cases.
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Table 3. Prequential accuracy for different values of Ny in EnsembleEDIST?2

Complex drift Gradual Continuous Gradual Probabilistic Abrupt
Local Global Local Global Local Global
Synthetic database|Hyperplane| RBF |SEA Gradual|STAGGER Gradual|SEA Abrupt|STAGGER Abrupt
No = 30 98,6 95,9 97,2 91,6 97,9 99,6
No = 60 98,2 95,9 97,2 91,5 98,1 99,6
No = 90 98,2 95,6 97.1 91,6 97,5 99,6
No =120 98,3 95,9 97,1 91,6 98,2 99,6
No = 150 98,3 95,6 97.1 91,7 97.5 99,6
Impact of ensemble size on EnsembleEDIST2 performance Ensem-
bleEDIST2 makes use of the parameter m in order to define the number of
classifiers in the ensemble. Accordingly, it is interesting to study the impact of
m on ensemble’s performance according to different scenarios of complex drift.
According to Tabled, it is noticeable that the size of EnsembleEDIST2 does
not impact significantly the performance in handling different scenarios of com-
plex drift. Hence, we have decided to use m = 3 as it achieved the best accuracy
rate in most cases and it allows to limit the computational complexity of the
ensemble.
Table 4. Accuracy of EnsembleEDIST2 with different number of base classifiers
Complex drift Gradual Continuous Gradual Probabilistic Abrupt
Local Global Local Global Local Global
Synthetic database|Hyperplane| RBF |SEA Gradual|STAGGER Gradual|SEA Abrupt|STAGGER Abrupt
m=3 98,6 95,9 97,2 91,6 97,9 99,6
m=5 98,6 95,9 97.1 91,6 98 99,6
m =10 98.4 95,8 97,2 91,1 97.6 99,6

Accuracy of EnsembleEDIST2 Vs other ensembles Table5 summarizes
the average of prequential accuracy during the drifting phase. The objective of
this experiment is to study the ensemble performance in the presence of different
scenarios of complex drift. Firstly, it is noticeable that EnsembleEDIST2 has
achieved better results than block-based ensembles in handling different types
of abrupt drift. During abrupt drift (independently of being local of global),
the change is rapid; thus AUE, AWE and LearnNSE present difficulty in tuning
off the block size to offer a compromise between fast reaction to drift and high
accuracy. However, EnsembleEDIST?2 is able to autonomously train ensemble
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members with variable amount of data at each time process, thus it can efficiently
handle abrupt drift.

Secondly, it is noticeable that EnsembleEDIST2 outperforms weighting-data
ensembles in handling different categories of global drift. During global drift
(either continuous, probabilistic or abrupt), the change affects a large amount
of data; thus when LeveragingBag and OzaBag intensify the re-use of data for
training ensemble members, the performance’s decrease is accentuated. In con-
trast, EnsembleEDIST2 duplicates only a set of filtered instances for training
the ensemble members, that is why it is more accurate in handling global drift.

Thirdly, it is noticeable that EnsembleEDIST2 outperforms the filtering-data
ensembles in handling different categories of local drift. During local drift (either
continuous, probabilistic or abrupt), the change affects a little amount of data;
thus the choice of the filtering criterion is a essential point for efficiently handling
local drift. EnsembleEDIST?2 defines a new filtering criterion, which is based on
selecting the data that triggered the warning level. These data are the most
representative of the new concept, thus when training the ensemble’s members
accordingly, it makes it more efficient for handling local drift.

EnsembleEDIST2 has also been tested through real world data sets which
represent different scenarios of drift. It is worth underlining that the size of
these data sets is relatively small comparing to the synthetic ones. Despite the
different features of each real data set, encouraging results have been found
where EnsembleEDIST2 has achieved the best accuracy in all the datasets (see
Table6).

To sum, it is worth to underline that the combination of the three diversity
techniques in EnsembleEDIST?2 is beneficial for handling different scenarios of
complex drift in the same time.

Table 5. Accuracy of EnsembleEDIST2 Vs. other ensembles in synthetic datasets

Complex Drift Gradual Continuous| Gradual Probabilistic Abrupt
Local Global Local Global Local Global
Synthetic Dataset Hyperplane RBF SEA Gradual|[STAGGER Gradual|SEA Abrupt|STAGGER Abrupt

EnsembleEDIST?2 98,604 | 95,982 97,211 91,609 98,196 99,605

AUE 94,187 95,611 94,547 90,381 95,234 98,367

Block-based AWE 94,054 95,018 94,563 90,551 95,23 98,367
LearnNSE 96,369 95,44 94,372 85,873 95,079 39,049

C . LeveragingBag| 98,6 95,8 97,1 89,1 98,2 94,3
Weighting-data—4 & =108 195 | 93,533 | 96,082 69,21 98,132 96,64
Filtering-data | LimAttClass | 91,281 94,186 91,126 86,553 91,226 94,893
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Table 6. Accuracy of EnsembleEDIST2 Vs. other ensembles in real datasets

l Real Dataset [Electricity[Spam‘
EnsembleEDIST?2 84,8 89,2

AUE 69,35 |79,34

Block-based AWE 72,09 160,25

LearnNSE 72,07 160,33
LeveragingBag| 83.8 88,2
OzaBag 82,3 82,7
Filtering-data | LimAttClass 82,6 63,9

Weighting-data

6 Conclusion

In this paper, we have presented a new study of the role of diversity among
the ensemble. More precisely, we have highlighted the advantages and the limits
of three widely used diversity techniques (block-based data, weighting-data and
filtering data) in handling complex drift.

Additionally, we have presented a new ensemble approach, namely Ensem-
bleEDIST2, which combines these three diversity techniques. The intuition be-
hind this approach is to explicitly handle drifts by using the drift detection mech-
anism EDIST2. Accordingly, the ensemble performance is monitored through a
self-adaptive window. Hence, EnsembleEDIST2 can avoid the problem of tuning
off the size of the batch data as it is the case of most block-based ensemble
approaches, which is a desirable property for handling abrupt drifts. Secondly, it
defines a new filtering criterion, which is based on selecting the data that trigger
the warning level. Thanks to this property, EnsembleEDIST?2 is more efficient for
handling local drifts then conventional filtering-data ensembles, which are only
based on filtering data according to similarity on feature space. Then, differently
from the conventional weighting-data ensembles which apply the weighting pro-
cess to all the data stream; EnsembleEDIST2 only intensifies the re-use of most
representative data of the new concept, which is a desirable property for handling
global drifts.

EnsembleEDIST2 has been tested different scenarios of complex drift. En-
couraging results were found, comparing to similar approaches, where Ensem-
bleEDIST2 has achieved the best accuracy rate in all datasets; and presented a
stable behavior in handling different scenarios of complex drift.

It worth to underline that in the present investigation, the ensemble size, i.e.,
the number of ensemble members, was fixed. Hence it is interesting, for future
work, to perform a strategy for dynamically adapting the ensemble size. The
focus is that, during stable period, the ensemble size is maintained fixed; whereas
during the drifting phase the size is autonomously adapted. This may ameliorate
the performance and reduce the computational cost among the ensemble.
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7

EnsembleEDIST2 pseudo code

Algorithm FEnsemble EDIST?2
Input: (z,y): Data Stream

Np: number of error to construct the window
m: number of base classifier

Output: Trained ensemble classifier F

PN ok W=

== = = O
WhoEor

14.

15.
16.
17.
18.

19.
20.
21.
22.
23.
24.
25.

for each base classifier C; from F
InitializeClassi fier(C;)
end for
Wea<CollectInstances(E, Ny)
Wwarning<_¢
repeat
Wo<«CollectInstances(E, Ny)
Level«DetectedLevel(W¢, Wo)
switch (Level)
case 1: Incontrol
Wea < Wa U W,y
Update Parameters(Wg, Wo)
Increment all ensemble’s members of E according to instances in
Wa
end case 1
case 2: Warning
Wu}arning — Wu}arning U WO
Update Parameters(Wyarning: Wo)
WeightingDataProcess(E, Wyarning)
end case 2
case 3: Drift
Create a new base classifier Cj,,, trained on instances in Warning
E+ EUC)ew
Remove the oldest classifier from E
WGFWwarning
I/I/wa'rning%@
end case 3
end switch

26.until The end of the data streams

Algorithm DetectedLevel(We, Wy )
Input: Wg: Global data window characterized by:

Ng: error number
1a: error distance mean
og:error distance standard deviation
Wy: Current data window characterized by:
Np: error number,
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Wo: error distance mean,
og:error distance standard deviation

Output: Level: detection level

HE©0NS oW =

= O

Hd$—HG-Ho
ik

0.2
Tds Tg + No
€—t1_q *x0g
if (ug >€e+04q)
Level«Drift
else if (ug > ¢)
Level«W arning
else Level<Incontrol
end if
end if
return (Level)

Algorithm CollectInstances(E, Ny)
Input: (z,y): Data Stream

Np: number of error to construct the window
C' trained ensemble classifier F

Output: W: Data window characterized by:

© XS OE WD

— = e e
Gtk D= o

N: error number
w: error distance mean
o:error distance standard deviation
Weo
N0
p0
o+0
repeat for each instance x;
Prediction < unweightedM ajorityVote(E, x;)
if (Prediction = false)
d;<computeDistance()

N d;
KNt wa

o/ Eto? + 7((1]1'\,1“1)2
NN +1
end if
until (N = Np)

. return (W)

Algorithm UpdateParameters(Weg, W)
Input: Wg: Global data window characterized by:

Ng: error number
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e error distance mean
og:error distance standard deviation
Wy: Current data window characterized by:
Np: error number,
Ho: error distance mean,
og:error distance standard deviation

Output: Updated parameters of W

1.
2.

NgoZ+Noo?
MG%NciNO (NG’/J'G+N0’/J'O) O'G(*\/ G]$CG;+N§UO + (sz;[i]]\if((]))z (IU'G - ,U’O)2

Ng+Ne + Ny

Algorithm WeightingDataProcess(E, Wyarning)
Input: E: Ensemble Classifier

Wyarning: Window of data

Output: E: Updated ensemble classifier

1
2
3
4.
5.
6
7
8

for each instance x; from Wyarning
for each base classifier C; from E
k <+ poisson(1)
do k times
TrainClassifier(C;, x;)
end do
end for
end for
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Abstract. A comparison between co-training and self-training method
for single-target regression based on multiples learners is performed. Data
streaming systems can create a significant amount of unlabeled data
which is caused by label assignment impossibility, high cost of labeling or
labeling long duration tasks. In supervised learning, this data is wasted.
In order to take advantaged from unlabeled data, semi-supervised ap-
proaches such as Co-training and Self-training have been created to ben-
efit from input information that is contained in unlabeled data. However,
these approaches have been applied to classification and batch training
scenarios.

Due to these facts, this paper presents a comparison between Co-training
and Self-learning methods for single-target regression in data streams.
Rules learning is used in this context since this methodology enables to
explore the input information.

The experimental evaluation consisted of a comparison between the real
standard scenario where all unlabeled data is rejected and scenarios
where unlabeled data is used to improve the regression model.

Results show evidences of better performance in terms of error reduction
and in high level of unlabeled examples in the stream. Despite this fact,
the improvements are not expressive.

1 Introduction

Prediction represents an essential task in data streams contexts that depend on
accurate predictions for decision making or planning [1]. In these contexts, large
quantities of data is not labeled due to label assignment impossibility, high cost
of label assignment or long time tasks. Frequently, sensitive data requires label
omission [4].

The main areas where unlabeled data occurs are Engineering Systems ( video
object detection ) [7], Physics (weather forecasting and ecological models) [8],
Biology (model of cellular processes) [9] and Economy/Finance (stock price fore-
casting) [1]. In most of these areas, data from streams are obtained and processed
in real time [4].
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Semi-supervised Learning (SSL) methodology have been suggested to use
input information from unlabeled data for more accurate predictions [4]. Only
in unlabeled examples abundance cases, this methodology may be useful [11].
In fact, the unlabeled examples convey information related to the variety or to
the range of the inputs values. These values ranges may create constrains to
the models and them more precise. As negative characteristic, this methodology
may introduce errors and lead to less accurate predictions [11,12].

More formally, X = {Xi,..., Xj,..., X;} € R’ represents a vector of input
random variables and Y represents a scalar random variable, with a joint proba-
bility distribution P(X,Y). The vectors X; = (T;,1, ..., Ti j, ..., ¥i,7) € R’ and y;,
where 7 € {0,1,2, ...}, represent realizations of X and Y, respectively. A stream
is defined as the sequence of examples e; = (x;, y;) represented as S = {(x0, o),
(X1,Y1)s -y (Xi, ¥i), ... }- Label absence is represented by y; = 0. The objective of
SSL is to use examples (x;, () to enhance the regression model y; < f(x;) and
reduce the error of prediction for both labeled and unlabeled examples.

SSL methods work on batch mode and are applied to classification. The ime-
diate adaption to regression is not possible [11]. Co-training is a SSL approach
that uses more than one different models. The model diversity is created by
through different inputs, different regression methods or different parametriza-
tion [4].

The training stage produces an artificial label for the unlabeled example from
the regressors predictions of the same example, according to a criterion (e.g.,
mean of all predictions) [11]. Posteriorly, this artificially labeled example is used
in the training of the regressors. The prediction stage yield a final prediction
from the regressors predictions of the example, according to a similar criterion
as in training.

Self-training can be seen as a particular case of Co-training where just one
model is trained. This method uses its own predictions to artificially label the
unlabeled examples and use this examples in the respective training.

It worths to say that the active learning can also be easily introduced in these
methods. However, once used in the training, the example contribution cannot
be removed from the model.

This work focus on the comparison between Self-training method and Co-
training method which uses several models that learn with each other for online,
single-target regression. Despite expecting better prediction results from Co-
training, it is important to find how much the results are superior to Self-training.
In fact, Co-training is more computationaly expensive then Self-training. This
work also may pave the way for the extension to online multi-target regression
using the Random Adaptive Model Rules (Random AMRules) algorithm in fu-
ture works [15, 16].

This document is structured as follows. In Section 2, the fundamentals of
SSL for Self-training and Co-training are briefly revised. Section 3 describes the
modifications of the Co-training to online learning and regression using ensem-
bles of rule models. Section 4 describes the evaluation method. The results are
discussed in Section 5 and the main conclusions are remarked in Section 6.
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2 Related Work

This section explains some concepts used in the development of Co-training and
Self-training methods. As general pattern, Co-training involves the training of
two or more different models in some aspects ( e.g., different inputs, different re-
gressors, different parametrization, different examples ...). The labeled examples
are processed as a supervised processure. The unlabeled examples are artificially
labeled and processed as a supervised procedure. The artificial label is essentially
a prediction (Self-training) or a processed prediction derived from a combina-
tion of predictions of complementary learners (Co-training). The learners are
considered to predict reliably (confidence driven method).

Co-training methods follow these assumptions: consensus, complementary,
sufficiency, compatibility and conditional independence. Self-training only con-
siders sufficiency and compatibility. Note that these assumptions can be applied
for both batch and online(incremental) methods.

— Consensus assumption states that the more similar the learner predictions
are, the more reliable the artificial label is [18].

— Complementarity assumption states the learners contain different infor-
mation and can learn from each other [18].

— Sufficiency assumption states that each regressor should be sufficiently con-
sistent (e.g., by enough number of attributes) to build a model.

— Compatibility assumption implies that the predictions of different models
present the same probabilistic distribution.

— Conditional independence assumption gives the chance of at least one
learner can produce a more accurate prediction.This prediction can be used
to teach the other learners. [19].

— Conditional independence assumption considers that the learning pro-
cess of each Despite being very important for Co-training, the independence
assumption is very restrictive. Therefore, related but less restrictive assump-
tions were considered.

— Weak dependence assumption tolerates a small dependence level between
inputs which lead to positive results. This assumption overcomes the restric-
tive characteristic of Conditional independence [20].

— Large diversity assumption considers that using different algorithms or
the same algorithms but with different parametrization lead to independent
models [21].

Concerning the drawbacks, the inaccuracy of the artificially labeled examples
introduce error into the models and it is the main cause of model degradation.
Moreover, the artificially labeled examples may not carry the information to
the regressor leading to unnecessary operations [11]. Different strategies to ar-
tificially label or criteria to discard non-beneficial artificially labeled examples
may be present in some Self-training and Co-training variants. The prediction
stage generally combines the predictions of the models according to a pre-defined
criterion to produce the final prediction [11].

89



3  Online Co-training and Self-training Regression

This section provides the description of a developed a Co-training method and
also a Self-training method through the presentation of the main adaptations
to the online and regression context. Here, the description was focused in the
Co-training algorithm. A small description of the underlying algorithm regressor
Random AMRules (ensemble rules based method) is also presented.

The new method that is being proposed divides the inputs variables of the
example into two groups randomly which is defined in the initial stage. Here,
weak dependence is assumed since no independence information between pairs of
attributes is available. The complementarity assumption is also used since each
produced model contains information that other does not contain.

The two groups are forced to share a randomly selected inputs by a pre-
defined overlap percentage. Two Random AMRules complementary regressors
are used to produce artificial labels through prediction for the unlabeled example.
The initial models are obtained previously in a training stage using a dataset
portion. The size of dataset portion should be sufficient to produce a consistent
model. Here, the inputs overlapping increase the number of attributes in each
model and contribute for the sufficiency assumption.

A score that reflects the benefit or confidence of artificially labeled example is
calculated for the decision of being accepted for training. The score is the relative
difference (RD) compared to the maximum of absolute values of the output found
in the stream ¥,,4.. Here, the consensus assumption is used. Equation 1 defines
de relative difference. . )

ymam

If the score is lower than a pre-defined threshold, the predictions are used to
train the complementary regressor. Otherwise, the artificially labeled example is
rejected. The consensus assumption is used in this step. If the example is labeled,
this example is used to compute the mean error for each regressor. Next, the
example is used for all regressors training. Here, the compatibility assumption is
used since both models are trained with the same output. Algorithm 1 explains
the training procedure of the proposed method.

Prediction is performed by combining the regressor predictions through pre-
diction weighting. The weights are computed by inverting the values of the re-
spective error produced by labeled examples in the training stage since the higher
the error is, the less the artificial example benefits the model. In other words, this
strategy gives more credit to the regressor that produces less errors. Algorithm
2 shows the steps of label prediction.

The Random AMRules regressor was employed to train the models and to
produce the artificial labels for the unlabeled examples [16]. Random AMRules is
a multi-target algorithm (predicts several outputs for the same example) that is
based on rule learning which can be calibrated to work on single-target mode [3].

In essence, Random Rules is an ensemble based algorithm that uses bag-
ging to create diversity and uses AMRules algorithm as a regressor. AMRules
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Algorithm 1 Training algorithm of the proposed method
1: Initialization:
2:  «a — Owverlap percentage
s — Score Threshold
Random input allocation and overlapping
into the two groups using «
Input: Exzample (x;,y;) € S
Output: Updated Models
Method:
9: Divide x; into x} and x?
10: if (y; = 0) then
11: 97 = PredictModell(x})
12: 97 = PredictModel2(x?)
13: if (|97 — 92|/Ymaz < s) then

14: TrainModell((x},92))
15: TrainModel2((x2, 7))
16: else

17: & = Update the mean error of Modell(§i,y:)
18: & = Update the mean error of Model2(42,y:)
19: TrainModell((x},y:))
20: TrainModel2((x2,y;))

Algorithm 2 Prediction algorithm of the proposed method

Input: Example (xi,y;) €S
Output: FExample prediction y;
Method:

Divide x; into x! and x?

97 = PredictModell(x})

92 = PredictModel2(x?)

w1 = é2/(é1 + €2))

we = é€1/(e1 + &2)

i = w1 * G + w2 * G

divides the input space in order to train local model in each partition. AMRules
partionates the input space and creates local models for each partition. The lo-
cal models are trained using a single layer perceptron. Its main advantages are
models simplicity, low computational cost and low error rates [3].

Modularity is one of the main advantages. In fact, this method allows the
train of models for local input sections limited by the rule that are more precise.
This algorithm also resorts to anomaly detection to avoid data outliers damage.
Moreover, change detection on the stream is also employed by this method in
order to avoid the influence of old information on the current predictions. The
ensembles of AMRules can benefit the prediction by creating multiple and di-
verse regressor models by pruning the input partitions. The multiple regressor
predictions create more possibilities to find a more accurate value. The ensembles
also lead to a more stable final prediction and data change resilience.
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The Self-training method basically consists of one learner that artificially
labels the incoming example and uses directly in the training (without a rejection
criteria). This method is very simple compared to Co-training, since only one
model is trained and it doesnt present a condition for training acceptance. In
terms of complexity, the Co-training presents the double complexity in required
memory and computing power, when compared to the Self-Learning. In fact, the
Co-training method basically trains two modesl while Self-training just trains
one.

4 The Evaluation Method

The evaluation method and the material used in the experiments are described
in this section. Real-world and artificial datasets were used to evaluate the pro-
posed algorithm through a data stream simulation. A portion of 30% of the first
examples of the stream were used for a initial consistent model training and the
remaining 70% were used in the testing.

In order to produce an unlabeled examples in the test stage, a binary Bernoulli
random process with a probability p was used to assign an example as labeled
or unlabeled. In case of unlabeled assignment, the true output value is hidden
from the algorithm. The p probabilities of unlabeled examples occurrence were
50%, 80%, 90%, 95% and 99%.

For the Co-training method, the score threshold values for algorithm cali-
bration were 1 x 1074, 5 x 10~4, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5 and 1. These
values of score threshold are justified by the possibility of algorithm behaviour
observation in multiple scales of this parameter. The overlap percentages as-
sume the following values: 0%, 10%, 30%, 50%, 70% and 90%. The evaluation
was performed in Prequential mode where in example arrival, the label predic-
tion is performed first and then the example is used in the training [25]. Each
Random AMRules regressor consists of ten regressors ensemble. This value was
determined in a validation step were no significant improvement was observed
above 10 regressors.

In these experiments, five real world and four artificial datasets were used
to simulate the data stream. The real world datasets were HouseS8L (Housing
Data Set), Housel6L (Housing Data Set), CASP ( Physicochemical Properties of
Protein Tertiary Structure Data Set), California, blogDataTrain and the artificial
datasets were 2dplanes, fried, elevators and ailerons. These datasets contain a
single-target regression problem and are available at UCI repository [26].

Table 2 an shows the features of the real world and artificial data sets used
in the method evaluation.

The performance measure used in these experiments was the mean relative
error (MRE). The MRE is used as an intermediate measure to quantify the pre-
diction precision of each test scenario for both labeled and unlabeled examples.
The MRE Reduction (MRER) was measured by using the relative difference (in
percentage) between the reference scenario (no unlabeled examples used) M RE
and the case with the parametrization that lead to the lowest error M REj,west
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Table 1. Real world datasets description

Dataset # Examples # Inputs
House8L 22784 8
Housel6H 22784 16
calHousing 20640 7
CASP 45730 9
blogDataTrain 52472 281

Table 2. Artificial datasets description

Dataset # Examples # Inputs

2dplanes 40768 10
fried 40768 10
ailerons 13750 41
elevators 8752 18

(includes the reference case M REy). Equation 2 defines the MRER performance
measure.

|MREO - MRElowest|

MRER =
RER MRE,

100 (%) (2)

If the reference case yields the lowest error, then the MRER is zero, which
means that the algorithm is not useful for that particular scenario.

Massive Online Analysis (MOA) platform was used to accommodate the pro-
posed algorithm [27]. This platform contains Machine Learning and Data Mining
algorithms for data streams processing and was developed in JAVA programming
language.

5 Results

In this section, the evaluation results for Co-training and Self-training are pre-
sented and discussed.

5.1 Co-training results

For each combination of overlap percentage and score threshold, the experiments
were performed in 10 runs due to the fact that the inputs are selected randomly.
This procedure is important to obtain more consistent values. The results also
include the presentation of the MRER for each dataset and the unlabeled ex-
amples percentage simulation.
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In the experiments was registered, for the particular case of overlap of 50%
and score threshold of 0.001, the use of 9.1% of the unlabeled examples in the
training lead to reduction of 3.85% of the MRE in average for the Housel6H
dataset. In general, it was also observed that the overlapping decrease the MRE.

The failure in some scenario is explained by the fact of many unlabeled
examples lead to model degradation and the artificial labels were very inaccurate
(the curves of unlabeled examples scenarios are above the reference curve). This
fact indicates that features of the datasets such as inputs variables distributions
may dictate the performance.

This methods are prone to error propagation through the model. The error
propagation through the model lead to worst predictions in the artificial labeling,.
This effect leads to a cycle that reinforce the error on each unlabeled example
processing. In fact, the more unlabeled examples arrive the higher is the error.

Table 3 provides the MRER values of the experiments on real world datasets
for each chosen unlabeled examples probabilities, for Co-training method.

Table 3. MRER (%) for real world datasets

Unlabeled examples probabilities

Datasets 50% 80% 90% 95%  99%
HouseSL 223 321 277 0,00 0,00
Housel6H 38 193 032 000 0,00
calHousing 237 202 075 001 0,00
CASP 0,80 1,65 000 000 0,00

blogDataTrain 1,17 0,40 0,37 0,00 0,00

Table 3 suggests that the proposed algorithm seems to improve the per-
formance for most part of the scenarios. The Co-training method can produce
error reduction in higher percentage of unlabeled examples than the Self-training
method. Despite this fact, the MRER are in general relatively small but superior
than the Self-training method.

Table 6 provides the MRER value for real artificial datasets in similar way
as the real world datasets presented in Table 5.

Table 4. MRER (%) for artificial datasets

Unlabeled examples probabilities

Datasets 50%  80% 90% 95%  99%
2dplanes 2,39 0,90 0,75 0,00 0,00
fried 3,55 3,35 1,71 0,00 0,00
ailerons 267 1,79 0,01 0,95 0,00
elevators 1,35 1,11 0,71 0,00 0,00
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The results on artificial datasets reinforce the same conclusions that were
obtained from real world datasets. The MRER is similarly small.

The results show that for 99% of unlabeled examples probability, the method
does not produce beneficial artificial labels. This high level of unlabeled examples
in the stream represents an extreme scenario where the model is training almost
with artificially labeled examples and the high error propagation can frequently
occur.

5.2 Self-training results

Table 5 provides the MRER values of the experiments on real world datasets for
each chosen unlabeled examples probabilities, for the Self-training method.

When MRER assumes the zero value, a combination of overlap percentage
and score threshold values that improves the model was not found and the
reference scenario presents the lower MRE.

Table 5. MRER (%) for real world datasets

Unlabeled examples probabilities

Datasets 50% 80% 90% 95%  99%
HouseSL 0,57 001 000 000 0,00
Housel16H 023 000 000 000 0,00
calHousing 0,02 000 000 000 0,00
CASP 0,00 000 000 000 0,00

blogDataTrain 0,44 0,00 0,00 0,00 0,00

Table 5 suggests that the proposed algorithm seems to improve the per-
formance for few scenarios. In fact, the algorithm fails in high probabilities of
unlabeled examples. Inclusively, there is one dataset that didnt produce any
favourable result. In successful cases, the MRER are in general relatively small.

Table 6 provides the MRER value for real artificial datasets in similar way
as the real world datasets presented in Table 5.

Table 6. MRER (%) for artificial datasets

Unlabeled examples probabilities

Datasets 50%  80% 90% 95%  99%
2dplanes 1,12 0,00 0,00 0,00 0,00
fried 0,17 0,00 0,00 0,00 0,00
ailerons 0,81 0,00 0,00 0,00 0,00
elevators 0,22 0,00 0,00 0,00 0,00
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The results on artificial datasets also support the view that the more elevated
the unlabeled probability is, the less is the benefit of the unlabeled examples.
The MRER is similarly small and there are very few successfull cases.

These results show that Self-training is limited by the percentage of unlabeled
in the stream. For unlabeled examples higher than 50 %, the Self-training does
not produce any error reduction. This limitation is explained by the fact that
the artificially labeled examples produce high errors which does not garantee
compability of the predictions.

6 Conclusion

This paper addresses a comparison of an online Co-training and Self-training
algorithm for single-target regression based on ensembles of rule models. This
work is the base for the development of multi-target regression methodology
capable of using unlabeled examples information for model improving.

The results support that Co-training approach which uses the Random AM-
Rules method reduces the error with the appropriate parameters calibration.
The main contribution was the overlapping and the consensus measure strate-
gies that contribute to increase diversity and model consistency in a online co-
training scenario. The comparison between Co-training and Self-training reveal
that Co-training can in fact lead to higher error reductions that the Self-training.
In addiction, Co-training can produce error reduction in higher level of unlabeled
examples in the stream.

In fact, the MRER is positive when an amount of unlabeled examples are
used in the training in most evaluation combinations. Despite this fact, the
model benefit is still relatively small and the performance is highly dependent
of a good parametrization tuning (score threshold and overlap percentage). In
addition, the amount of unlabeled examples is relatively small to obtain some
model improvement.

Considering future work, this work will be extended to multi-target regres-
sion. The fact that very few unlabeled examples can lead to some improvement
may suggest the study of the conditions that lead to this improvement. To in-
crease the method validity, future works will include a higher number of real
world datasets with higher amount of examples. Datasets with particular fea-
tures such drifts presence are also in view.
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