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ABSTRACT

Technological evolution has allowed that tasks, usually performed by humans, can now 
be performed accurately by automated systems, often with superior performance. The 
healthcare area has been paradigmatic in the automation of processes, as the need to optimize 
costs, ensuring the provision of quality care, is crucial for the success of organizations. 
Diabetes, whose prevalence has increased significantly in the last decade, could be a case 
of application of several technologies that facilitate diagnosis, tracking and monitoring. 
Such tasks demand a great effort from health systems, requiring the allocation of material, 
human and financial resources, under penalty of worsening symptoms and emergence of 
serious complications. In this chapter the authors will present and explore how different 
technologies can be integrated to provide better healthcare, ensuring quality and safety 
standards, with reference to the case of diabetes.
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INTRODUCTION

Diabetes is a metabolic disease characterized by uncontrolled blood glucose regulation 
mechanisms. This chronic disease occurs when the pancreas does not produce 
enough insulin or when the body cannot use it effectively. The disease prevalence is 
on the rise worldwide, affecting 8.8% of the world’s adult population in 2017, with 
the anticipation of a further increase to 9.9% by 2045 (World Health Organization, 
2021). Beyond the personal and social consequences of untreated diseases, from 
a clinical perspective, the diagnostic, monitoring and treatment of this condition 
represents a major effort for healthcare systems. Material and human resources must 
be allocated to ensure an adequate tracking of each case guarantying that symptoms 
are controlled. A bad prognosis can easily lead to severe health conditions. 

Chronic hyper-glycemia associated with uncontrolled diabetes damages various 
organs and systems, causing chronic diabetic complications, leading to disabilities, 
poor quality of life, and ultimately death. Diabetic peripheral neuropathy (DFN) is a 
major complication of diabetes mellitus, being the leading cause of foot ulceration and 
lower extremity amputations (Walicka et al., 2021). All patients with diabetes must 
have their feet evaluated, at least, once per year for the presence of the predisposing 
factors for ulceration and amputation (neuropathy, vascular disease, and deformities) 
(Boulton et al., 2008).

The Semmes-Weinstein monofilament examination is the recommended procedure 
for screening plantar sensitivity, as an early biomarker for DFN (Monofilament 
Testing for Loss of Protective Sensation of Diabetic/Neuropathic Feet for Adults & 
Children, 2012). The examination, performed by a clinician, consists of touching 
the plantar surface with a 10gf calibrated monofilament, on specific test locations, 
and wait for the patient’s sensitivity feedback. This process is widely used but can 
be improved in several aspects: a) The monofilament quality can vary with usage, 
environmental temperature and humidity; b) The task can be tedious when large 
populations must be screened; c) Only a “feel”/”don’t feel” feedback is registered 
while more variables can be observed and considered (image, force, time-tracking, 
among others) (Martins & Coelho, 2021). 

The present chapter aims to describe how modern technologies, such as computer 
vision, artificial intelligence, cloud storage and computing, and robotics can be 
integrated and used to tackle healthcare related challenges, contributing to better 
and more cost-effective services. To describe the involvement of each technology 
we base our description on an application case for diabetic foot management. 

The proposed chapter will be organized as follows. After presenting the 
underlying motivations and, in general terms, the consequences and prognoses in 
an unaccompanied evolution of diabetes, we will present a pipeline proposal for 
the automated management of the diabetic foot, a potential major complication of 



136

Integrating Computer Vision, Robotics, and Artificial Intelligence for Healthcare

this condition. The following section will focus on the topic of computer vision. 
Here, the general architecture of these systems is exposed, followed by a brief 
explanatory passage of the various stages involved in them. A set of sensors used 
for image acquisition and processing are presented, followed by an explanation 
of useful techniques and tools. The following section will be related to robotics, 
more particularly in their collaborative versions, where their main characteristics 
are highlighted. In addition, attention will be given to a set of systems and real 
applications where the use of robotics shows potential in terms of support for 
medicine, with the intention of framing its use in the development of the proposed 
system. In the next section, the role of the cloud as a support technology for the 
system’s operation will be discussed and the main advantages and disadvantages 
of its use will be presented. Finally, the main conclusions are presented and some 
guidelines for the future are established.

DIABETES

Diabetes is a metabolic disorder characterized by uncontrolled mechanisms of blood 
glucose regulation. This disorder is directly associated with dysfunctions or organ 
failures, as a consequence of the human body’s inability to produce insulin and 
manage it properly (Diagnosis and Classification of Diabetes Mellitus, 2005). In the 
next subsections an overview of the disease will be presented as well as techniques 
and technologies used by physicians to assess and prevent complications resulting 
from the diabetic foot will be exposed.

Overview

Diabetic patients can be divided in categories named type 1 diabetes and type 2 diabetes. 
In type 1 diabetes the diagnosis indicates the existence of an absolute deficiency of 
insulin secretion while in type 2 diabetes, the cause results from a combination of 
resistance to insulin action and an inadequate insulin secretion response.

Diabetes comprises a heterogeneous set of disorders characterized by elevated 
blood glucose levels, however, it is possible to differentiate three main groups. The 
first group distinguishes insulin-dependent diabetes, where the individual lacks 
residual insulin secretion and therefore requires insulin for survival. In the second 
group is non-insulin dependent diabetes, where the individual has the ability to 
control his glucose levels, for example, through weight reduction and exercise, or 
by having some residual insulin secretion. Finally, the third group encompasses 
diabetes underlying other diseases, where these are responsible for causing a decrease 
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in fasting glucose and/or a decrease in glucose tolerance in the individual, without 
meeting any of the criteria defined for the diagnosis of diabetes.

Complications such as neuropathy, retinopathy and nephropathy appear as 
long-term consequences. Neuropathy is associated with symptoms such as loss of 
sensation and vascularization, particularly in the extremities, and may result in the 
need for amputation. Retinopathy is responsible for the potential loss of vision and 
nephropathy is related to renal failure.

Diabetic Neuropathy

It is known that peripheral neuropathy is the most common in diabetic patients, 
affecting all body tissues and being responsible for the significant mortality associated 
with the disorder under study (Aring et al., 2005). The neurological damage in 
diabetic neuropathy widely involves the entire peripheral nervous system, presenting 
in two main forms: symmetric sensory-motor polyneuropathy and autonomic 
neuropathy (cardiovascular, respiratory, digestive, and genitourinary). A diabetic 
patient may present only one type of neuropathy or develop different combinations. 
For this reason, the clinical picture of neuropathy may vary from asymptomatic 
forms to the presence of multiple unspecific somatic or autonomic manifestations. 
In addition, and although it occurs less frequently, neuropathic injury may be more 
localized, presenting as focal and multifocal neuropathy (cranial, thoracolumbar 
radiculoneuropathy, focal memory or amyotrophy). The main manifestations of 
somatic impairment are numbness and burning sensation in the lower limbs, tingling, 
stinging in the legs and feet, sensation of discomfort and pain, and diminution or 
loss of tactile or thermal sensibility, often in the lower limbs. The evaluation and 
screening of diabetic patients is fundamental since the absence of the typical signs 
and symptoms of diabetic neuropathy does not exclude its presence. 

Clinical Examination of the Diabetic Foot

The identification of diabetic patients at risk of neuropathic foot ulcers and amputation 
is highly desirable. To this purpose, four types of tests are essentially performed by 
physicians: pressure detection, vibration detection, thermal sensitivity and tactile 
sensitivity tests (Smieja et al., 1999).

For pressure detection tests, international procedures recommend the Semmes-
Weinstein monofilament (MSW) method, used to assess the touch sensitivity at 
predefined plantar points. It is considered a non-invasive, low-cost, quick, and 
easy-to-apply test, often used in routine clinical testing and self-assessment (Dros 
et al., 2009). The loss of the ability to detect the plantar sensitivity in one or more 
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locations is associated with the loss of nerve function of large fibers, which can lead 
to foot ulcers and lower limb amputation in diabetic patients. 

Another possibility is the use of a tuning fork of 128 Hz to perform the vibratory 
perception tests. In this evaluation, the examiner holds a tuning fork on the fingertip 
for 5 seconds, if the patient feels vibration initially, as well as along the 5 seconds, 
the diagnosis of normal vibration sensation is considered. If the patient detects a 
vibration sensation at the beginning, but not after 5 seconds, it is considered an 
abnormal vibration sensation. Finally, if the patient does not reveal any vibratory 
sensation at any time, the vibration sensation is considered absent (Boulton et al., 
2008).

Regarding thermal sensitivity tests, it is stated that diabetic foot complications 
are often related to the temperature distribution in the plantar region. It is reported 
that patients, where temperature differences of more than 2.2 °C between one 
region of the foot and the same region of the contralateral foot, may be in risk of 
complications in the diabetic foot (Fraiwan et al., 2017).

Finally, the tactile sensitivity tests are associated with the Semmes-Weinstein 
Monofilament Test method and vibratory detection, being part of some skin 
sensitivity assessment protocols. The two-point discrimination method is often used 
to evaluate the skin sensitivity of the plantar surface using a discriminator tool. This 
device is positioned perpendicularly to the plantar surface, with two parallel sharp 
tips touching the foot surface at the same time. Next, the patient is asked about the 
detection of the touch sensation of the respective device, indicating if one or two 
points are touching the skin. The distance between the two tips can be varied and 
each distance between the touch points is tested three times randomly, considering 
as the smallest distance perceived between the two points the one with at least two 
correct answers (Franco & Bohrer, 2012).

The Semmes-Weinstein Method

The Semmes-Weinstein Monofilament Test (SWMT) is used with the purpose of 
assessing the ability to detect the sensation of pressure in one or more anatomical 
locations on the plantar surface of the foot in diabetic patients, thus seeking to predict 
the development of foot ulcers (Lavery et al., 2012). 

It is composed of a calibrated monofiber nylon yarn, often identified by a 
number from 1.65 to 6.65. The higher the value, the stiffer and more difficult to 
bend it becomes, being the most common and recommended to diagnose peripheral 
neuropathy the 5.07/10 g monofilament, where a force of 10 g is required to make it 
possible to bend or twist it. Figure 1a shows a monofilament during the evaluation 
of plantar surface pressure detection in the points in Figure 1b.
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As far as environmental conditions are concerned, when performing the evaluation 
using the SWMT method, it is required that a quiet and relaxed environment be 
guaranteed. calm and relaxed environment. In addition, the patient should be 
positioned in such a way that he is unable to see where and when the monofilament 
is being pressed. Once these conditions have been met, it is recommended that the 
first application of pressure be made on the inside of the wrist so that the patient 
knows what to expect. A sufficient force should be applied to cause the monofilament 
to bend or kink about 1 cm. 

The seven steps involved in the procedure for the assessment of skin sensitivity, 
using the SWMT method are listed: 

•	 Step 1: Wash hands and put on clean gloves. Clean gloves should be worn 
whenever there is an open area, secretion, or eruption on the foot or ankle. 
Make sure the examination occurs in a location with good illumination 
conditions.

•	 Step 2: Ask the patient to remove shoes and/or socks from both feet, exposing 
the plantar area.

•	 Step 3: Explain the procedure to the patient and show the monofilament. 
(Ensuring the patient understands the procedure and that no harm or risks 
are present)

•	 Step 4: Touch the monofilament to the patient’s arm or hand so that he or she 
understands what to expect when you start the monofilament test.

Figure 1. Brief graphical description of the SWMT. On the left (a) the application of 
the monofilament on the plantar area until it starts to buckle, and on the right (b) the 
plantar testing sites according with international guidelines, on left and right feet
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•	 Step 5: Have the patient close his eyes. When the patient feels the monofilament 
touching his foot, he should answer “yes”.

•	 Step 6: Hold the monofilament perpendicular to the foot and with a gentle, 
steady motion, touch the skin until the monofilament bends approximately 1 
cm. Hold it against the skin for approximately 2 seconds.

•	 Step 7: Randomly test 10 sites on each foot as in Figure 2b. Random selection 
of the test sites will prevent the patient from anticipating the next test area. 
If there is a bruise, callus, or scar on the foot, apply the monofilament to an 
adjacent area and never directly. If the patient has amputated toes, test the 
maximum remaining sites possible.

If all points are tested and the patient feels the monofilament in each of the areas, 
then there is no record of loss of sensation. On the other hand, if the monofilament 
is not felt in one area of the foot, this indicates loss of protective sensation in that 
area, and medical referral is required. With the result of the MSW test it is possible 
to determine the risk of the patient, thus allowing the need to require a more 
comprehensive examination to be determined.

Automated Diabetic Foot Screening Technologies

The early detection of diabetic foot complications can protect patients from any 
dangerous diagnosis that may develop later, preventing complications of lower limb 
amputation. However, this procedure can be tedious and time-consuming when 
applied to frequent large-scale screening. For the automation of this task some 
projects have been developed covering several aspects of the process. Among the 
four tests exposed (pressure, vibration, thermal and tactile), the most feasible in the 
task of automating the process are the pressure detection and thermal sensitivity 
tests, being the second test the one with greater focus on research and development 
in recent years.

When it comes to pressure detection tests using MSW, the development and 
research of robotic systems that can support the task of skin sensitivity assessment 
is still a barely covered topic. In these systems, it is common to develop applications 
that allow remote transmission of data collected during testing and enable diagnosis 
of illness in the context of telemedicine (Wilasrusmee et al., 2010).

To perform the thermal sensitivity test it is common to use the thermography 
technique, considered a promising modality in intelligent telemedicine monitoring 
systems. Two technologies are distinguished: liquid crystal thermography and infrared 
thermography. The first one corresponds to a color representation proportional to 
the temperature of the surface of the feet in contact with the liquid crystal. in contact 
with the liquid crystal. The second corresponds to the acquisition of thermal images 
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based on the heat emitted by the body (C. Liu et al., 2015). Infrared thermography 
is classified as non-invasive, being considered the best technology to explore in 
the context of telemedicine, regarding the thermal analysis of the diabetic foot. As 
hardware, several technologies are explored, from thermal imaging devices connected 
to smartphones to portable infrared thermometers. With these approaches, there is 
a concern to understand the reliability of this type of automated analysis systems, 
testing them in controlled and uncontrolled environments (Maldonado et al., 2020).

ARTIFICIAL VISION

The evolutional of computers and image acquisition technology has allowed to 
greatly improve the capabilities of artificial vision systems. The most common 
architecture for such systems, as depicted in Figure 2, will be covered in detail in 
the next sub-sections.

Computational vision is understood as the transformation of data from a photo 
or video camera into a decision or a new representation. All these transformations 
are done to achieve a specific goal. A decision can mean a conclusion about what is 
presented in the image, while a new representation can mean, for example, transforming 
a color image into a grayscale image, or translating camera movement into a sequence 
of images. A computer vision system typically presents the architecture shown in 

Figure 2. Generic Artificial Vision Pipeline
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Figure 2, being composed of the stages of image acquisition, preprocessing, and 
final processing (Parker, 2010).

Image Acquisition

This first step in a computer vision system is to analyze lighting conditions. A careful 
observation and preparation of these aspects can drastically reduce problems in later 
stages (e.g. shadows, overexposed areas). Regarding image acquisition, depending 
on the sensor used, it is possible to obtain several types of images, which can be 
two-dimensional, three-dimensional or sequences of images, where each pixel 
represents the value responsible for a light intensity in one or more color bands. It is 
also possible to use infrared sensors, that provide temperature information, or even 
depth cameras, who give information about the distance of each pixel in relation to 
the camera. (Burke, 1996)

Pre-Processing

In the pre-processing phase, it is necessary to verify whether the image satisfies the 
required conditions for further processing and, if not, apply the necessary operations 
to achieve this. To do so, several techniques are used, such as a) remapping, to ensure 
a coordinate system, b) filtering, to ensure that unwanted/incorrect information is 
minimized, c) contrast enhancement, to ensure that relevant information is detected. 
The segmentation of the region of interest if also performed when required. For 
feature extraction, it is common to use mathematical features that can be obtained 
in an image (Meyer-Baese & Schmid, 2014).

Camera Calibration

To use a camera as a trustworthy visual sensor, it is fundamental to know and define 
its intrinsic parameters. Sensor characteristics or lens geometry are some of the 
aspects that vary with the device. Calibrating a camera makes it possible to determine 
an accurate relationship between a 3D point in the real world and its corresponding 
2D projection in the image captured by the calibrated camera. There are three main 
known calibration methods: pattern calibration, geometric tracks, and deep learning 
based. The pattern calibration method is common when there is full control over the 
imaging process, and the best way to perform the calibration is to capture several 
images of an object or pattern of known dimensions from different perspectives. 
The method of geometric tracks is advised when there are other geometric tracks in 
the scene, such as straight lines and vanishing points of known dimensions, which 
can be used as reference in the calibration task. Finally, when there is little control 
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over the image configuration, the deep learning method is used, making it possible 
to obtain camera calibration information (Huo et al., 2022). The calibration stage 
is usually performed only once for a specific setup. 

Filtering

This is an unavoidable step in computer vision processes, and it is responsible for 
removing noise due to the image acquisition process. Noise can originate from sources 
such as the type of sensor, weather conditions, or the relative position between the 
objects of interest and the camera. Thus, it is possible to state that noise can be either 
an interference in the image capture signal, or interferences that can influence the 
interpretation and recognition of objects. To circumvent noise, two types of filters are 
used, spatial and frequency filters. The spatial filters act directly on the image, while 
the frequency filters initially require that the image be transformed to the frequency 
domain using the Fourier transform, being subsequently filtered in this domain, and 
finally, transformed back to the space domain (Gonzalez & Woods, 2017).

Region of Interest Extraction

In this stage, we select specific regions of interest for posterior processing. Usually, 
a structured image section is the region of interest, which must be identified and 
extracted from an unstructured background. With this operation, the posterior 
processing operation can focus on a previously selected area where the required 
analysis conditions are met. The used techniques can vary from simple image cropping 
or basic segmentation algorithms to complex deep learning-based approaches. The 
selection of the best strategy will always depend on the application (Farhan et al., 
2021; Yeum et al., 2019). 

Feature Selection and Extraction

The objective of the feature extraction process is to obtain the relevant and non-
redundant information from the original data and translate it in a lower dimensionality 
space. This is a useful operation when it is not feasible or practical to process the 
totality of input data. A feature selection process is conducted before in order to 
find the smallest feature set but with higher representation/discrimination power. 
The selection process can be made manually, but when a large number of features 
can be extracted, an automated method is preferable. As stated in (Kumar & Bhatia, 
2014): “Features should contain information required to distinguish between classes, 
be insensitive to irrelevant variability in the input, and also be limited in number, to 
permit, efficient computation of discriminant functions and to limit the amount of 
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training data required”. A set of simple but commonly used features are presented 
in Figure 3. These are widely used and their application can lead to good results 
in many cases, showing potential for the development of a baseline system or for a 
prototype. Nevertheless, many other features exist, adaptable to different objectives 
and image contexts: Binary robust independent elementary features (BRIEF), Contour 
profiles, Deformable templates, Features from accelerated segment test (FAST), 
Fourier based descriptors, Gabor features, Geometric moment invariants, Gradient 
feature, Graph description, Harris corner detection, Oriented fast and rotated brief 
(ORB), Projection histograms, Scale-invariant feature transform (SIFT), Shi-Tomasi 
corner detector, Speeded-up robust features (SURF), Spline curve approximation, 
Template matching, Unitary image transforms, Zernike moments or Zoning, are 
some examples, among others (Mutlag et al., 2020). Modern deep-learning based 
techniques are also arising, such as: Superpoints (DeTone et al., 2018), LF-Net 
(Ono et al., 2018), (Y. Liu et al., 2018) or (Huo et al., 2022). The later have the 
advantage of being obtained as part of the training process, eliminating the need for 
manual selection. The downside is that these “deep- features” don’t always have a 
meaningful representation or are explainable.

Image Processing

The final stage in the artificial vision pipeline is the heavy image processing. Here, 
after image preparation the desired outputs are obtained.

Segmentation

Image segmentation focuses on partitioning an image into different parts according 
to their features or properties. This can be a finality per se or a simplifying step for 
later easier analysis. These techniques can be used to split or group specific pixels 
in an image. In addition, elements can be added to the image as markers for the 

Figure 3. Examples of commonly used image features, grouped by type
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segmentation process, if required. It is possible to draw lines, sharpen boundaries, or 
outline objects. There are several possible approaches for image segmentation, with 
some examples shown in Figure 4. These can be grouped into three major types: a) 
Discontinuity-based (the first three columns of Figure 4); b) Similarity based (forth 
column) and c) Other techniques. The last type has a growing number of promising 
machine-learning algorithms where very successful results can be obtained (Minaee 
et al., 2022; Wang et al., 2022). 

Classification

Object recognition is one of the main functions inherent to computer vision systems 
and is directly related to pattern recognition. An object can be defined by one or more 
patterns, such as texture, shape, color, and dimension, and the individual recognition 
of each of these patterns can facilitate the recognition of the object as a whole.

In classification/recognition process, a vision system needs to have knowledge 
about the objects to be recognized. This information can be directly implemented, 
through, for example, a rule-based system, or it can be ensured by a database of 
previously selected samples, which will support a model, using machine learning 
techniques. This process can be achieved by structural type techniques, where patterns 
are described in a symbolic way and the structure is the relation between these 
patterns, or based on decision theory techniques, where quantitative properties are 
used to describe patterns and then to decide whether the object has certain properties.

Tracking

Additionally, we can mention a tracking stage, when sequences of images or videos 
are the source data. The process of tracking is similar to the process of recognizing 
pattern, thus, this process also needs a knowledge base about the motion of the object 

Figure 4. Most common Image segmentation techniques, organized by type of approach
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being tracked in order to minimize the search among the images of a sequence. 
For the implementation of this process there are several techniques that can be 
addressed, such as: corner finding, subpixel corners, optical flow, mean-shift and 
camshift, and estimators.

ROBOTICS

Robotics plays a key role in supporting medicine. In this section, we aim at framing 
the theme of collaborative robotics as a resource in the performance of daily tasks, 
with a view to improving the working conditions of health professionals. 

Definition and Classification

According to the International Organization for Standardization (ISO), in its ISO 
8373:2021 standard, a robot is a programmed actuated mechanism with a degree 
of autonomy to perform locomotion, manipulation or positioning (ISO, 2022a). 
According to this same standard, robots can be classified in one of three categories: 
industrial robots, service robots, and medical robots. A medical robot is a robot 
intended to be used as medical electrical equipment or medical electrical systems.

Mechanically, robots are constituted by sequences of rigid bodies called links that 
are coupled to each other by articulations called joints, as described in Figure 5. This 
demands the study of the spatial relationships between these same links and their 
movements and allow them to perform a series of actions automatically, especially 
if programmed by a computer. Robot manipulators have many characteristics but, 
most often, they are specified by their a) payload, which corresponds to the weight 
they can carry; b) working space, the region they can cover; c) range, distance that 
can be reached by the handle; and d) maximum speed, and repeatability, the ability 
to repeatedly reposition itself on the same programmed point. 
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Robot manipulators are classified by their mechanical structure, being essentially 
divided into seven types: rectangular or Cartesian, cylindrical, polar or spherical, 
pendular, articulated, Selective Compliance Assembly Robot Arm (SCARA), and 
parallel (ISO, 2022a). An articulated robot is a manipulator which has three or 
more rotary joints.

Robots usually work in cells. A robotic cell is composed of a manipulator used 
to perform the desired task, a controller responsible for controlling the manipulator, 
and a programming console to program and control the tasks. In addition, it is 
constituted by a set of peripherals that may be needed, such as security elements or 
sensors needed to perform the tasks. Regarding the tool attached to the manipulator, 
this varies according to the application that the robot will perform.

Due to the risks that these machines pose to humans, mostly derived from their 
high moving speeds and the masses in motion, most applications of industrial robots’ 
demand that these work inside closed cells, typically by fences, to safeguard the 
operators working with it. Recently, have been introduced into the market robots 
that are adequate to work in the vicinity of humans, without requiring the physical 
separation between both.

Collaborative Robotics

Robotic applications are called collaborative when robots interact directly with 
people in a shared space, and cooperative when there are information and action 
exchanges between multiple robots to ensure that their motions work effectively 
together to accomplish the task. Collaborative robotics results from the evolution 
of “traditional” robotics and are associated with applications on which robots work 

Figure 5. Diagram illustrating the mechanical constitution of a robotic arm: links 
and joints
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in the vicinity of, and collaborate with, humans without the need for fencing. They 
are safe as they make it possible to share the same space with humans without the 
need for fences, since they integrate safety features that, for example, limit force 
and power in accordance with ISO-10218 and TS-15066 guidelines regarding risk 
assessment for collaborative applications (ISO, 2022b). 

Regarding its characteristics, and when compared to “traditional” industrial 
robots, collaborative robots (usually called cobots) present rounded shapes and soft 
materials so as not to hurt the human in situations of occasional collisions (Matthias 
et al., 2011). On the other hand, they are considered lighter when compared to 
industrial robots, since they are made of materials that give them a low weight, 
compact, since they can be easily transported and moved between work areas within 
the factory, and flexible, since they can be installed in any orientation or on any 
mobile platform - as in the case of lift systems, Automated Guided Vehicles (AGV) 
and linear axes. Finally, unlike industrial robots, which require a lot of space on the 
factory floor to be isolated by means of protective systems, collaborative robots can 
be installed in tight spaces, and depending on the application can dispense with the 
use of protective systems (El Zaatari, 2019).

Human-robot collaboration has manifested itself in several areas, such as assembly, 
logistics and consumer-oriented service industries. The underlying reason for adopting 
collaborative robotics is usually the issue of safety, particularly in situations where 
the human works in proximity, or directly, with the robot. To this end, it is common 
to use sensors to control force, avoid collisions, and detect the presence of obstacles.

Safety Aspects

According to ISO 10218-2 and ISO/TS 15066 it is possible to name four collaborative 
modes of operation that, depending on the requirements of the respective application 
and the design of the robotic system, can be used individually or in combination. These 
four modes of operation are “Safety-rated monitored stop”, “Hand guiding”, “Power 
and force limiting by design or control”, and “Speed and separation monitoring” 
(ISO, 2022b), which are illustrated in Figure 6.

Figure 6. Collaborative modes of operation: “Safety-rated monitored stop”, 
“Hand guiding”, “Power and force limiting by design or control”, and “Speed 
and separation monitoring”
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In “Safety-rated monitored stop” mode, the robot is stopped in the collaborative 
space during interaction with the operator. This state is monitored, and the drive can 
remain on. In “Hand guiding” mode, the safety of the human/machine collaboration 
is guaranteed by the fact that the robot can be consciously guided manually, at a 
reduced and safe speed. In the “Power and force limiting by design or control” mode, 
physical contact between the robotic system and the operator can occur intentionally 
or inadvertently. The necessary safety is achieved by limiting the power and force 
to values considered safe to avoid injury or threat. The technical specification ISO/
TS 15066 includes maximum values, which cannot be exceeded in the collision of 
the robot with body members. Finally, in “Speed and separation monitoring”, the 
speed and trajectory of the robot are monitored and adapted according to the speed 
and position of the operator in the protected space (ISO, 2022b).

However, it should be noted that there are no safe robotic applications. Although 
the robot, per se, can be considered safe, the application may not. This means that, 
although with cobots the security requirements have adapted, an adequate and careful 
risk assessment is always necessary in each robot application. Considering the 
scenario in which the robot’s task consists in handling a knife or a blade, no matter 
how well it can perform what is intended, it is automatically no longer considered 
collaborative. Thus, manufacturers, integrators, and cobots’ users should realize the 
importance of considering both the application and the collaborative environment 
when assessing their security level.

For a complete risk assessment, it is mandatory that the system conforms to what 
is prescribed in the standards developed for this purpose, which are guidelines created 
at the European level to comply with European legislation (European Parliament and 
European Council, 2006). Besides the compliance with the Machinery Directive, 
and as far as the robot is concerned, two standards should be highlighted and 
differentiated: ISO 10218-1 and ISO 10218-2. ISO 10218-1 refers to the standards 
that are recommended to be followed in an evaluation of the safety level of the robot 
in isolation. IS0 10218-2 refers to a complete safety assessment of the robot cell and 
the integrated system. It also deserves attention the existence of the ISO/TS 15066 
guidelines, which specify the risk assessment criteria oriented to collaborative robots.

Finally, and concerning collaborative robots, it deserves a mention the fact that 
the KUKA LBR Med collaborative robot has been certified for medical applications 
(KUKA, 2017), which will, in the authors’ opinion, allow the increase of the number 
of medical robotic applications.

Healthcare Applications

The use of robotics can be useful in several tasks intrinsic to medicine. In the 
following, are presented several examples of robotic applications to support surgical 
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interventions, radiotherapy treatments, physical therapy and rehabilitation, nursing 
assistance, and also to perform COVID-19 tests, a task in demand during the 
pandemic period.

Surgical Assisted Intervention

When referring to the use of robots to support surgical interventions, the most 
prominent name is the da Vinci robot, developed by Intuitive. It is a robot remotely 
controlled by a physician. The architecture of this robotic system presents a compact 
design allowing a higher degree of movement of the instruments, when compared 
to the movements performed by a surgeon in a conventional intervention. As far 
as the patient is concerned, it allows for less invasive and, therefore, less traumatic 
surgeries, allowing for a better recovery (Won et al., 2020). This robot is used by 
physicians to perform several surgeries, such as gastrectomies for partial or total 
removal of the stomach (Aktas et al., 2020), robotic myomectomies to remove 
fibroids (Won et al., 2020), and thyroidectomies to remove all or part of the thyroid 
gland (Tunca et al., 2020).

Robotic Device for Radiotherapy

The CyberKnife, manufactured by Accuray Incorporated, is the first fully robotic 
radiotherapy device for the treatment of benign tumors and malignant tumors 
(CyberKnife, 2022). It uses a system called stereotactic body radiation therapy 
through real-time image guidance, which is based on delivering radiation doses in 
a localized manner and with a higher accuracy than that obtained with conventional 
radiotherapy (Pishvaian et al., 2006). Its flexibility in the robotic arm allows radiation 
beams to be focused in all directions, focusing high doses of radiation on the tumor 
and simultaneously minimizing the dose to adjacent healthy tissues (CyberKnife, 
2022).

Nursing Assistant in Patient Transport

Transporting a patient unable to move by himself from a bed to a wheelchair, or 
vice versa, is one of the most physically challenging tasks in nursing care (Mukai et 
al., 2010). The Robot for Interactive Body Assistance (RIBA) is a nursing assistant 
robot developed by a Japanese partnership between the RIKEN collaboration center 
and Tokai Rubber Industries, Ltd. This robot is used to lift and transfer a patient 
between a bed and a wheelchair by means of instructions sent by a healthcare 
professional via haptic sensors. The contact between the robot and the human body 
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is controlled by sensors that aim to avoid the possibility of causing pain sensation 
in patients (Mukai et al., 2010).

Exoskeleton in Locomotive Rehabilitation

Exoskeletons are robotic structures intended to aid in the rehabilitation of patients 
who suffer locomotion problems (Bogue, 2022). Marsi Bionics is a Spanish company 
of exoskeletons for gait rehabilitation, customized for each patient. They have 
developed two models of exoskeletons, the MB Active Knee (MAK) and the Atlas 
Pediatric Exo (ATLAS) (Marsi Bionics, 2022).

The MAKs are robotic knees with a stiffness adaptable to the needs of each 
patient. They provide the strength, mobility and stability necessary for locomotion 
and are supported by sensors to analyze the patient’s gait in order to improve it 
(Marsi Bionics, 2022). ATLAS is an exoskeleton developed for the physiotherapy 
of children with neurological diseases, such as cerebral palsy, and neuromuscular 
diseases, such as spinal muscular atrophy and myopathies. Its function is to support 
a child from the trunk to the feet and is composed of eight active joints that provide 
total mobility on the ground (Marsi Bionics, 2022). 

Another example is a robotic structure controlled by the brain through which 
a quadriplegic patient was able to control his movement again (Benabid, 2019). 
To control this exoskeleton, a surgery was performed in which two implants were 
placed on the surface of the brain, covering the parts of the brain responsible for 
movement control. These implants are used to read the brain activity and transmit 
instructions to a computer. Afterwards, by means of software, the brain waves 
received by the computer are transformed into instructions that serve to control the 
exoskeleton placed on the patient. Thus, when the patient thinks about walking, a 
chain of movements in the robotic exoskeleton is initiated, resulting in the movement 
of his legs (Benabid, 2019).

Assisted Passive and Active Mobilization

The use of devices to perform rehabilitation and physiotherapy exercises is widely 
used by therapists nowadays (Bélanger-Barrette, 2019). Examples of devices are 
arthromotors and elastic devices for ankle resistance (Bertelsen et al., 2020).

Passive mobility is associated with exercises in which movement is restricted 
to the range of motion and is produced solely by an external force, with little or no 
voluntary muscle contraction. The external force can originate from the force of 
gravity, a machine, a therapist, or the person himself who uses the force of another 
body segment (Bertelsen et al., 2020). One example of such a robotic device is 



152

Integrating Computer Vision, Robotics, and Artificial Intelligence for Healthcare

the ROBERT© robot, based on a collaborative manipulator arm, from the Danish 
company Life Science Robotics.

Assisted active mobilization consists of the action of an external force, manual or 
mechanical, that assists the performance of a movement when a patient has decreased 
mobility in some body segments. Typically, the patient can initiate the movement, 
but is not able to reach its maximum amplitude (Padilla-Castañeda et al., 2018).

COVID-19 Test Performance

During the COVID-19 pandemic period, the unprecedented need for medical testing 
resulted in an initiative by the well-known Universal Robots, which directed its energies 
toward the development of an autonomous robot capable of performing COVID-19 
testing. This robot was first launched in Denmark by the company Lifeline Robotics 
in March 2020 (Universal Robots, 2022). Developed in collaboration with robotics 
researchers at the University of Southern Denmark, the system starts by scanning the 
patient’s identification card, prepares a sample kit consisting of a container with an 
identification label, and collects the sample on a swab. When collecting the sample, 
he uses a vision system to identify the right spots to be reached in the throat of the 
patient. Then, he places the sample in the container that is screwed and sent to a 
laboratory for analysis (Universal Robots, 2022).

Summary

In this section the reader was introduced to the subject of robotics, describing its 
main characteristics. It was explained what is meant by application and collaborative 
robotics, to justify the choice of using a collaborative robot in the implementation 
phase of this project. In addition, were presented a set of practical examples where 
the use of robotics, in some cases collaborative ones, shows advantages in supporting 
activities related to human health. Relevant examples are the ROBERT© system for 
physiotherapy assistance and the Universal Robots robotic arms applied to perform 
COVID-19 tests.

CLOUD TECHNOLOGY

In the healthcare area, there is an increasing demand to improve results, both clinically 
and economically, while not forgetting the general well-being of the population. 
To tackle these challenges, in the last few years several technological advances in 
computing, sensing, networking, and communications, have been introduced with 
the objective of improving the cost-effectiveness of services and raise their quality. 
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The healthcare system landscape is extensive, diverse, and encloses high complexity 
systems and software. The ecosystem encompasses healthcare providers, clinical 
personnel and patients but also includes health insurance companies, laboratories, 
pharmacies, and other stakeholders, each with specific requirements and expectations. 
These, combined with the available digital technologies make health related services 
an increasingly data-intensive community with a high demand for computational 
resources. 

The use of storage and computing capacity in the cloud thus arises naturally, 
allowing distributed access to dynamic and scalable resources, also allowing 
software as a service (SaaS) or Platform as a Service (PaaS) models. Technologies 
like the electronic health records (EHR), the Internet of Things (IoT) and Ambient 
Assisted Living (AAL) require a strong level of integration and computation, only 
possible with robust cloud systems. For example, cloud computing helps healthcare 
organizations share information such as EHR, medical certificates, prescriptions, 
insurance information, and gather results stored in various information systems. 
Additionally, the use of machine learning approaches, where data is the main source 
of knowledge, further increases the need of cloud resources, especially when it 
is possible to scale the use of such systems. The construction of an appropriate 
infrastructure should follow the industry priorities, which, by order of relevance, 
as addressed in (Ratnam & Dominic, 2014), are: scalability, privacy, security and 
fast access.

The universal access to cloud resources can also be used to gather healthcare 
data, when required, from in a mass scale. Crowdsourcing, a new emerging field, 
refers to the possibility of a large number of people who contribute together to solve 
an individual or organizational problem or complete a task. This is a widespread 
approach in many business areas, but it is still underexplored in the healthcare 
perspective, especially in the field of global health. It can be easily adapted to multiple 
situations, it is unexpensive when compared with similar purpose solutions, and 
allows to effectively collect large amounts of information from a large geographically 
distributed targeted group. Eight major areas where crowdsourcing of healthcare 
is used have been defined: Monitoring; Nutrition; Public Health and Environment; 
Education; Genetics; Psychology; and General Internal Medicine / Others (Wazny, 
2018). 

Concerning robotics, there is a consistent increase on its use in the healthcare 
area. According with the International Federation of Robotics, the medical robot’s 
area, that represents 11.3 billion USD market worldwide in 2022, has been growing 
and is expected to grow at a two digits rate, with similar growing numbers for 
logistic robots. Its applications are growing in the healthcare area, having evolved 
from simple repetition-oriented tasks to highly flexible and environment-aware 
functionalities, where devices are capable of working side by side with humans. 
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The application can be broadly classified as receptionist robot area, nurse robots 
in hospital area, ambulance robot area, telemedicine robot area, hospital serving 
robot area, cleaning robot area, spraying/disinfestation robot area, surgical robot 
area, radiologist robot area, rehabilitation robot area, food robot area, and outdoor 
delivery robot area (Khan et al., 2020). The use of robots for the automation of tasks 
where they operate alone is already widely accepted, unlike situations where they 
must interact with humans, where their use has yet to be further promoted. Based 
on a series of interviews in a Catalunya hospital during the first and second waves 
of COVID-19, citizens’ opinions and perceptions about automation were wittingly 
related with the high demand context of the medical system. The survey analysis 
found that the patient’s view of health care robots was ambiguous and consistent 
with other welfare technology surveys. On the other hand, they thought it was 
very positive to introduce robots that would take care of people, support them, and 
replace nurses and medical staff when needed (Vallès-Peris et al., 2021). Despite the 
technical complexity, robot agents can undoubtedly increase the effectiveness and 
efficiency of services. Afterwards, advanced Human-Robot Interaction (HRI) that 
make use of natural communication strategies (such as voice and gestures, which are 
very mature technologies), mimicking human-to-human interactions, can improve 
the user experience and enhance the systems’ acceptability.

In this context, cloud and robotic system integration is essential. Cloud Robotics 
explores the possibility of robots relying on remote shared data or code to support 
operations, rather than consolidating all computation, storage, and sensing capabilities 
into a single stand-alone station. Partially supporting operation on the cloud allows to 
reduce computational requirements and to use a larger robotic knowledge base while 
guaranteeing a minimum guaranteed QoS, scalability and flexibility. This, paves 
the road to a more flexible operation, allowing to manage complex or unexpected 
situations with reusable libraries, skills, or actions (Fosch-Villaronga et al., 2018). 
Cloud robotics is expected to influence the adoption of robot services and enable a 
new generation of robots that are smarter and cheaper than traditional stand-alone 
and connected robots.

Nevertheless, the acceptance of new technologies and services depends heavily on 
their usefulness, effectiveness, efficiency, reliability, and ease of use, as the end user 
recognizes. some open challenges must be overcome to achieve an optimal service. 
Technological issues that temporarily limit the use of such systems or difficulties 
on the access to the resources can frustrate customer expectations. Another concern 
is interoperability between systems, which can create unreachable infrastructural 
islands or that imply additional middleware services, making it harder to achieve 
the desired universal access. Security and privacy are also a major concern since 
centralized resources can easily become a target for malicious purposes or for 
unwanted data access. 
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APPLICATION CASES

One of the objectives of this chapter was to observe the example of the diabetic 
foot assessment process, as an application case where robotics and cloud systems 
work together, towards an improved healthcare service. This is a barely covered 
application, whose existing studies will now be briefly presented.

In order to automate the testing of SWMT, a group of researchers (Wilasrusmee et 
al., 2010) reported the development of a prototype robotic systems for the screening 
of diabetic neuropathy. In this system we highlight essentially the development of 
software, a controller, and a robotic monofilament testing system. A dedicated control 
software was created to manage the action of the robotic system and to activate the 
movements of the monofilament, with the respective commands being sent by the 
interfacing hardware controller. The software is also capable of storing the patient’s 
data, as well as the respective test results, in a database. The location of the database 
is not specified but the doctor operates the robotic system remotely, which allows 
to have a cloud interface. The electronic controller is also responsible for receiving 
the response of patient through a joystick, as feedback to the monofilament touch. 
The robotic monofilament testing system consists of a machine responsible for 
controlling the monofilament movement, performing the operation of touching the 
patient’s foot, when it receives the command sent by the controller. To direct and 
position the robotic monofilament at the respective predefined plantar points for 
the SWMT evaluation, the physician has the possibility to control the necessary 
movements around the xx and yy axes remotely. One of the limitations of the 
system is the fact that only three of the ten pre-defined plantar points recommended 
in the method were tested, as well as the need to adjust the shape and surface of 
the robotic monofilament in order to better fit the different patients. However, it 
is worth noting its achievement with respect to its framework in telemedicine and 
remote data transmission.

A more recent system explores the use of an artificial vision system and a 
collaborative robot to perform the SWMT, as depicted in Figure 7. The artificial vision 
system (Costa et al., 2022) uses a three stages pipeline to estimate the location of the 
testing sites. For the automatic segmentation of the testing sites, a set of algorithms 
is described, consisting of a) background segmentation, b) hallux segmentation, 
and c) plantar and heel segmentation. As an alternative, a segmentation oriented 
deep-learning algorithm, such as U-Net can be used.
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For the development of the system the authors have created a novel plantar 
images database. For the image acquisition process, a simple photographic scenario 
was prepared in order to obtain more stable conditions. It consisted of two black 
pieces of paperboard, one for background and another for floor area below the feet, 
connected in a L-shaped format. The background cardboard had two reference targets, 
created with yellow and pink sticky notes, with known dimensions, positioned on 
the top left and right corners. The use of this scenario setup allows to: (a) Create 
a common setup for image acquisition while hiding external elements or image 
disturbance sources; (b) It allows to easily identify image elements, with known 
physical dimensions, all with explicit, facilitating the creation of conversion bases 
between digital pixel distances with real world coordinates. (c) It creates a visual 
barrier between the patient and its feet, preventing the observation of the SWMT, 
minimizing induced false feedback. 

The pipeline depicted in Figure 8 represent the image processing stages. Unlike 
the deep-learning approach, a manual combination of processing blocks allows to 
have full control of the processing operation. For each plantar image presented at the 
input, the first step is to perform background segmentation, by identifying the feet 
area, and to find the calibration markers, located on the top left and right corners of 
the background. Next, after cropping the region of interest, its orientation is estimated 

Figure 7. Diagram of an automated plantar sensitivity exam considering supported 
by a deep-learning based artificial vision system, representing both training and 
run-time stages
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and the image is rotated to a vertical orientation. This guarantees that all feet will 
follow with a known orientation to the next step. Two sub images are then generated: 
one containing the toes area and another for the central plantar region and heel. For 
each of these new images, specific processing algorithms were developed exploring 
the known anatomic features of the foot. All information is finally combined and 
referenced as coordinates in the original image. 

The image coordinates are the transformed to real-world coordinates, using the 
known references markers dimensions. Robotic trajectories are then calculated to 
randomly reach each of the testing points, while waiting for the patient’s feedback 
using a hand gripped button. The force that the robot applies is limited to 10gf, as 
recommended by the international SWMT guidelines. 

After image acquisition, the storage and processing operations can be performed 
using cloud systems. The robotic system is also controlled over a wireless network, 
been able to receive coordinates or trajectories from a cloud-based controller. The 
cloud-based patients’ database allows to store the SWMT results and, later provides to 
clinical personnel the latest values as well as the evolution of the disease. Considering 
additional cloud-based information it is possible to develop a prognostic for the 
disease and create a personalized therapy plan.

CONCLUSION

In this chapter we have shown how artificial vision, robotics, artificial intelligence and 
cloud systems can be integrated to bring an increase quality to healthcare organization 
along with a more cost-effective operation. To explore the topic we have focused on 
diabetes, a growing disease worldwide that can highly reduce the patients’ quality 
of life and a major economic impact, with several direct and indirect costs. After 
describing the disease and its implications we have centered our attention on how 

Figure 8. Artificial vision pipeline for SWMT, adapted from (Costa et al., 2022)
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technology can be used in such cases and what benefits it can bring. Initially we 
describe artificial vision and the main stages of a typical processing pipeline and 
then we have provided an overview of each individual step. The use of hard-coded 
algorithms vs machine-learning algorithms is covered, as well as the advantages and 
disadvantages of each approach. Robotics in healthcare, an important and growing 
area, was also introduced, with a thorough perspective of distinct application cases. 
Users’ perspective, ethical and security questions were especially addressed in the 
context of collaborative robotics. Finally, the use of cloud technology as an operational 
pillar of such systems was described and the possibilities of having a highly reliable 
and always accessible computational infrastructure were enhanced. The integration 
of these technologies in a single application is showcased in the final section where 
the automation of the diabetic foot monofilament examination presented.

Technological evolution has created immense possibilities that were previously 
unimaginable. The rapid adaptation of organizations, particularly in healthcare, has 
allowed a significant improvement of services accompanied by greater efficiency 
and effectiveness in the use of resources, both human and material. In parallel, new 
ethical questions arise along with the need for humans to adapt to an increasingly 
digital world. So far, the benefits of technology have far outweighed the risks, and 
it is expected that, in a near future, health will be an increasingly universal good.
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