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Abstract

Breast cancer is one of the main causes of cancer death worldwide. The diagnosis of biopsy

tissue with hematoxylin and eosin stained images is non-trivial and specialists often dis-

agree on the final diagnosis. Computer-aided Diagnosis systems contribute to reduce the

cost and increase the efficiency of this process. Conventional classification approaches rely

on feature extraction methods designed for a specific problem based on field-knowledge. To

overcome the many difficulties of the feature-based approaches, deep learning methods are

becoming important alternatives. A method for the classification of hematoxylin and eosin

stained breast biopsy images using Convolutional Neural Networks (CNNs) is proposed.

Images are classified in four classes, normal tissue, benign lesion, in situ carcinoma and

invasive carcinoma, and in two classes, carcinoma and non-carcinoma. The architecture of

the network is designed to retrieve information at different scales, including both nuclei and

overall tissue organization. This design allows the extension of the proposed system to

whole-slide histology images. The features extracted by the CNN are also used for training

a Support Vector Machine classifier. Accuracies of 77.8% for four class and 83.3% for carci-

noma/non-carcinoma are achieved. The sensitivity of our method for cancer cases is

95.6%.

Introduction

Breast cancer is the first cause of death by cancer in women aged between 20 and 59 years and

the second for women aged more than 59 years [1]. The diagnosis and treatment of this pathol-

ogy in the early stages is essential to prevent the progression of the disease and reduce its mor-

bidity rates [2].
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Breast cancer diagnosis usually consists in an initial detection via palpation and regular

check-ups using mammography or ultrasound imaging. The diagnosis is then followed by

breast tissue biopsy if the check-up exam indicates the possibility of malignant tissue growth

[4]. Breast tissue biopsies allow the pathologists to histologically assess the microscopic struc-

ture and elements of the tissue. The histology allows to distinguish between normal tissue,

non-malignant (benign) and malignant lesions and to perform a prognostic evaluation [5].

Benign lesions represent changes in normal structures of breast parenchyma that are not

directly related with progression to malignancy. Carcinomas can be classified as in situ or inva-

sive. In in situ carcinoma the cells are restrained inside the mammary ductal-lobular system,

whereas in invasive carcinoma the cells spread beyond that structure. The tissue collected

during the biopsy is commonly stained with hematoxylin and eosin (H&E) prior to the visual

analysis performed by the specialists. During this procedure, relevant regions of whole-slide

tissue scans are assessed [6]. Fig 1 shows an example of patches from whole slide images

stained with H&E for each of the classes mentioned. The staining enhances nuclei (purple)

and cytoplasm (pinkish), as well as other structures of interest [7].

During the analysis of the stained tissue, pathologists analyze overall tissue architecture,

along with nuclei organization, density and variability. For instance, tissues with invasive car-

cinoma show a distortion of the architecture as well as higher nuclei density and variability

(Fig 1-D), whereas in normal tissue the architecture is maintained and the nuclei are well orga-

nized (Fig 1-A).

The diagnosis process using H&E stained biopsies is not trivial, and the average diagnostic

concordance between specialists is approximately 75% [8]. The manual examination of histol-

ogy images requires intense workload of highly specialized pathologists. The subjectivity of the

application of morphological criteria in usual classification motivates the use of computer-

aided diagnosis (CAD) systems to improve the diagnosis efficiency and increase the level of

inter-observer agreement [9].

Related work

CAD systems are embed Image Analysis and Machine Learning Methodologies developed to

help physicians during the diagnosis procedure. Being a second opinion system, CAD systems

reduce the workload of specialists, contributing to both diagnosis efficiency and cost reduc-

tion. For that purpose, there’s often an attempt to replicate the physicians’ method. For

instance, the analysis of nuclei morphology may be sufficient to classify a tissue as benign or

malignant [10].

Fig 1. Examples of microscopy image patches from the used dataset [3]. Nuclei and cytoplasm appear purple and pinkish, respectively, due to the

hematoxylin and eosin staining. A normal tissue; B benign abnormality; C malignant carcinoma in situ; D malignant invasive carcinoma.

https://doi.org/10.1371/journal.pone.0177544.g001
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Consequently, some works focus on nuclei analysis for malignant-benign classification.

Kowal et al. [11] used different clustering algorithms for nuclei segmentation on fine needle

biopsy microscopic images. Morphological, topological and texture features were used for

training a classifier, achieving an accuracy between 84% and 93% on 500 images from 50

patients. Patient-wise classification was performed by majority voting on 10 images each, with

an accuracy of 96–100%. Similarly, Filipczuk et al. [12] and George et al. [13] extracted nuclei-

based features from fine needle biopsies. First, the circular Hough transform was used for

detecting nuclei candidates, followed by false-positive reduction with machine-learning and

Otsu thresholding. In George et al. [13] the nuclei segmentation is further refined using water-

shed. In both works, shape and texture features of nuclei are used for training different classifi-

ers. Filipczuk et al. [12] achieved an accuracy of 98.51%, by majority voting over 11 images for

each of the 67 patients, and George et al. [13] between 71.9% and 97.15% in individual image

classification using 92 images. Besides nuclei-related information, Belsare et al. [14] also con-

sidered tissue organization for the binary classification of more complex images. The authors

evaluated 70 images from a private 40× magnification breast histology H&E dataset. Spatio-

color-texture graphs were used for segmenting the epithelial layer around the lumen of the

cells, and statistical texture features were used for training the final classifiers. The authors

report accuracies between 70% and 100%.

Other authors have focused on a more complex 3-classes classification of breast cancer his-

tology images. For instance, both Brook et al. [15] and Zhang et al. [16] classified breast cancer

tissue images in normal, in situ carcinoma and invasive carcinoma. For that, a dataset from the

Israel Institute of Technology was used [17]. Brook et al. [15] binarized each image using mul-

tiple threshold values and used connected component statistics to train a support vector

machine (SVM) classifier, reporting 93.4% average accuracy that could be increased to 96.4%

by rejecting 20% of the images. Zhang et al. [16] used a cascade classification approach. Subsets

of Curvelet Transform and local binary pattern (LBP) features were randomly fed to a first set

of parallel SVM classifiers. Images where a given number of classifiers to disagree were rejected

and analyzed by a second set of artificial neural networks (ANN) over other random feature

subsets. Once again, images for which a certain number of classifiers disagreed were rejected.

This system achieved 97% accuracy with 0.8% rejection rate.

The recent increase in available computing power and dataset sizes allowed the application

of Convolutional Neural Networks (CNNs) to image classification problems. Contrarily to the

traditional approach of hand-crafted feature extraction methods, CNNs learn useful features

directly from the training image patches by the optimization of the classification loss function.

These deep learning models have achieved excellent performance in image classification chal-

lenges in different fields [18, 19], including medical image analysis [20], and in particular on

histopathology images [21].

CNNs allow to reduce the field-knowledge needed to design a classification system. Because

of this, the performance of the methods is less biased by the dataset used and similar network

architectures can achieve good results on different problems. In fact, Spanhol et al. [22] used a

CNN architecture inspired in the Imagenet network [18] to classify H&E breast tissue biopsy

samples in benign and malignant tumors, using multiple magnifications. In their work,

32 × 32 and 64 × 64 pixels patches were extracted from the initial images and used for training

the CNN. The final classification was obtained by combining the patch probabilities with sum,

product or maximum rules. Two patch extraction methods were studied, sliding window and

random extraction. The extraction of patches allowed to reduce the complexity of the model

by decreasing the size of the input in subsequent layers. The authors reported an accuracy

decrease for higher magnifications, which suggests that their CNN architecture cannot extract
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relevant features for higher magnifications. In fact, for higher magnifications only nuclei edge-

related features are extracted, as it will be discussed in the paper.

Other authors have adjusted the architecture of the CNN to breast histology related-prob-

lems with success. For instance, Ciresan et al. [19] used 101 × 101 patches to train a CNN for

mitosis detection in H&E stained breast biopsy slides. The used architecture allows to study

nuclei of different sizes and their neighborhoods. This methodology won the ICPR 2012 Mito-

sis Detection Contest with a F1-score of 0.782. In Cruz-Roa et al. [23] a CNN was trained on

100 × 100 pixels whole-slide patches, extracted using grid sampling, to detect invasive carci-

noma regions in breast histology slides. Due to the global nature of the problem, their CNN

feature-extraction scale ranges from nuclei to overall tissue organization. This method outper-

formed other state-of-the-art methods, achieving a F1-score of 0.780. For these last two works,

the model was slided through the image to obtain a probability map and then the detection

result was obtained via thresholding. In [19] the training dataset size and complexity were

increased by applying arbitrary rotations and mirroring to the training instances.

Contributions

In our work, a CNN designed for the analysis of breast cancer H&E stained histology images is

proposed. Unlike previous approaches we perform image-wise classification in four classes of

medical relevance: i) normal tissue, ii) benign lesion, iii) in situ carcinoma and iv) invasive

carcinoma.

For this, a new breast cancer image dataset is presented. In addition, the proposed CNN

architecture is designed to integrate information from multiple histological scales, including

nuclei, nuclei organization and overall structure organization. By considering scale informa-

tion, the CNN can also be used for patch-wise classification of whole-slide histology images. A

data augmentation method is adopted to increase the number of cases in the training set. A

SVM classification using the features extracted by the CNN is also used for comparison

purposes.

Materials and methods

Dataset

The image dataset is composed of high-resolution (2040 × 1536 pixels), uncompressed, and

annotated H&E stain images from the Bioimaging 2015 breast histology classification chal-

lenge [3]. All the images are digitized with the same acquisition conditions, with magnification

of 200× and pixel size of 0.42μm × 0.42μm. Each image is labeled with one of four classes: i)

normal tissue, ii) benign lesion, iii) in situ carcinoma and iv) invasive carcinoma The labeling

was performed by two pathologists, who only provided a diagnostic from the image contents,

without specifying the area of interest for the classification. Cases of disagreement between

specialists were discarded. The goal of the challenge is to provide an automatic classification of

each input image.

The dataset is composed of an extended training set of 249 images, and a separate test set

of 20 images. In these datasets, the four classes are balanced. The images were selected so that

the pathology classification can be objectively determined from the image contents. An addi-

tional test set of 16 images is provided with images of increased ambiguity, which we denote as

“extended” dataset. The training and test datasets are publicly available at https://rdm.inesctec.

pt/dataset/nis-2017-003.
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Preprocessing

Prior to analysis, images are normalized using the method proposed in [24]. This method

takes into account the staining technique used for the histology slides preparation. First, the

colors of the images are converted to optical density (OD) using a logarithmic transformation.

Then, singular value decomposition (SVD) is applied to the OD tuples to find the 2D projec-

tions with higher variance. The resulting color space transform is then applied to the original

image. Finally, the image histogram is stretched so that the dynamic range covers the lower

90% of the data. Fig 2 shows two images before and after normalization.

Image-wise classification

In the work herein described, image classification is performed by first processing several

patches with a patch-wise classifier, and then combining the classification results of all the

image patches to obtain the final image-wise classification.

The classification of breast cancer histology images into one of the four target classes must

rely on the extraction of nuclei related features as well as features related to overall tissue orga-

nization. The nuclei features are useful to differentiate between carcinoma and non-carcinoma

cells, and should include single nucleus information, such as color and shape, as well as nuclei

organization features like density or variability. Differently, tissue structure information is nec-

essary to differentiate between in situ and invasive carcinomas. Thus, the classification should

be based on features which scales range from less than the size of a nucleus to several nuclei

wide.

The visual analysis of the dataset images indicates that nuclei radius ranges from 3 to 11 pix-

els (1.26μm to 4.62μm). Also, in our initial observations we postulated that patches of about

128 × 128 pixels should be enough to cover the relevant tissue structures. However, in our

dataset the label is assigned to the whole image of 2040 × 1536 pixels, meaning that there is no

guarantee that small regions contain relevant diagnosis information. This motivated the use of

larger image patches of 512 × 512 pixels to ensure that a more reliable label can be provided

for each image patch. A patch dataset is generated from the training dataset as explained in

section Augmented patch dataset.
The procedure to classify one image is as follows. First the original image is divided into

twelve contiguous non-overlapping patches. The patch class probability is computed using the

patch-wise trained CNN and CNN+SVM classifiers. Then, the image-wise classification is

obtained using one of three different patch probability fusion methods: i) majority voting,

where the image label is selected as the most common patch label, ii) maximum probability,

where the patch with higher class probability decides the image label and iii) sum of probabili-

ties, where the patch class probabilities are summed and the class with the largest value is

assigned. Draws are solved by prioritizing malignant classes using the following order:

Fig 2. Histology image normalization. A and C original images; B and D images after normalization.

https://doi.org/10.1371/journal.pone.0177544.g002
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i) invasive, ii) in situ, iii) benign and iv) normal. This criterion increases the sensitivity of our

approach for the carcinoma classes in detriment of the non-carcinoma classes, which is of

greater interest for a second-opinion system.

Augmented patch dataset

An augmented patch dataset is created from the normalized images in the training set. The

used dataset has a low number of samples when compared to other CNN classification prob-

lems [18]. The network might thus be prone to overfit. Dividing images into patches allows to

increase the dataset complexity and dimension. Data augmentation through patch rotation

and mirroring further improves the dataset. This is possible because the studied problem is

rotation invariant, i.e., physicians can study breast cancer histological images from different

orientations without altering the diagnosis. Consequently, rotations and mirroring allow to

increase the size of the dataset without deteriorating its quality. Patching and dataset augmen-

tation have already been used successfully on similar histological classification problems [19].

However, they have not been used for carcinoma classification.

First, the image is divided in patches of 512 × 512 pixels size, with 50% overlap. Some exam-

ple patches are shown in Fig 1. Patch normalization is performed by subtracting the average

value to the red, green and blue channels separately. Each patch is then transformed into eight

different patches by combining k � π/2 rotations, with k = {0, 1, 2, 3}, and vertical reflections.

This results in a total of 70000 different patches from the original 250 training images. Each of

the patches is considered to have the same class label as the original image.

CNNs for patch-wise classification

CNNs are used for classifying the 512 × 512 histology image patches into the four tissue classes.

CNNs are feed-forward neural networks that are specialized in visual pattern recognition.

Neurons are connected to overlapping local image patches (receptive fields), and arranged in

convolutional maps with all the neurons sharing the same weights. This allows the convolu-

tional maps to act as local image filters, detecting the same patterns at all the image positions,

and to reduce the total number of parameters to be trained [25]. The network is organized in a

hierarchical layer structure that, at each level, combines the lower level features into higher

level ones, until the image class label is obtained.

The proposed network architecture follows the common trends in previous successful

applications of CNNs for image classification [18, 19, 26], with several convolutional-pooling

layer pairs, followed by a fully-connected network. The architecture providing the best results

in our experiments is summarized in Table 1, and illustrated in Fig 3, and resulted from the

following design considerations:

• Input layer: The input layer has three channels of 512 × 512 pixels, corresponding to the nor-

malized RGB patches extracted from the images.

• Depth and number of maps: As previously discussed, breast cancer tissue classification

requires the analysis at several feature scales. In the target images the nuclei radii are between

3 and 11 pixels, and it is required to explore nuclei-scale features, nuclei organization fea-

tures, and structure-scale features. The proposed network architecture has, therefore, convo-

lutional layers with enough neural maps to represent each of these three features at their

range of scales, as shown in Table 1. The final fully-connected network performs the integra-

tion of the information for the whole image patch, and provides the final classification. The

large input size and multi-scale network design enable the extension of the method for

whole-slide images.
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• Max-pooling: The lower level information needs to be spatially integrated for the image

region, as well as simplified when accounting for higher level information. Max-pooling lay-

ers allow for such a complexity reduction without increasing the number of parameters in

the network. The max pooling layers use a stride equal to the pooling size;

• Non-saturating nonlinearity: Both the convolutional layers and fully-connected layers are

composed of Rectified Linear Units, with activation function f(x) = max(0, x) [27]. This non-

linearity is selected to help avoiding the vanishing gradients and to improve the training

speed [18, 27].

• Output layer: The output is composed of four neurons, corresponding to each of the four

classes, that are normalized with a softmax activation function.

The model is trained with 75% of the training set, and validated on the remaining images.

The validation set is randomly selected for each epoch. The training process stops after the

stabilization of the validation accuracy with equal weight for all the classes (50 epochs). The

network weights are initialized randomly, and an adaptive learning rate gradient-descent

Table 1. Proposed Convolutional Neural Network architecture. Left side notes show the histological association with the network layers: A—edges; B—

nuclei; C—nuclei organization; D—structure and tissue organization.

Layer type Maps & Neurons Filter size Effective receptive field Effective receptive field (μm)

0 Input 3M × 512 × 512N 1 × 1 0.4 × 0.4

A 1 Convolutional 16M × 510 × 510N 3 × 3 3 × 3 1 × 1

2 Max-pooling 16M × 170 × 170N 3 × 3 5 × 5 2 × 2

C B 3 Convolutional 32M × 168 × 168N 3 × 3 11 × 11 4.6 × 4.6

4 Max-pooling 32M × 84 × 84N 2 × 2 14 × 14 5.9 × 5.9

5 Convolutional 64M × 84 × 84N 3 × 3 26 × 26 11 × 11

6 Max-pooling 64M × 42 × 42N 2 × 2 32 × 32 13 × 13

D 7 Convolutional 64M × 42 × 42N 3 × 3 56 × 56 24 × 24

8 Max-pooling 64M × 14 × 14N 3 × 3 80 × 80 34 × 34

9 Convolutional 32M × 12 × 12N 3 × 3 152 × 152 63.8 × 63.8

10 Max-pooling 32M × 12 × 12N 3 × 3 224 × 224 94.1 × 94.1

11 Fully-connected 256N 512 × 512 215 × 215

12 Fully-connected 128N 512 × 512 215 × 215

13 Fully-connected 4N 512 × 512 215 × 215

https://doi.org/10.1371/journal.pone.0177544.t001

Fig 3. Convolutional Neural Network architecture, according to Table 1. The original image has 512 × 512 pixels and 3 RGB channels. Orange and

purple squares represent the convolutional and max-pooling kernels, respectively.

https://doi.org/10.1371/journal.pone.0177544.g003
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back-propagation algorithm is used for weight update [28]. The selected loss function is cate-

gorical cross entropy.

For comparison, the features extracted by the CNN are used for training a Support Vector

Machine classifier (CNN+SVM). The activations of the second fully connected layer are used

as features. A radial basis function kernel is used and the optimal parameters are obtained by

exhaustive search using 3-fold cross validation on the training data. The classifier is trained

using the whole training set.

Results evaluation

The performance of our method is evaluated in terms of sensitivity and accuracy. This evalua-

tion is performed patch-wise and image-wise for the initial and extended sets. A binary classifi-

cation in non-carcinoma and carcinoma is also considered by grouping normal with benign

outcomes and in situ with invasive results, respectively. Table 2 details the number of images

and patches used.

Results

Patch-wise classification

The patch-wise accuracy and sensitivity are shown in Tables 3 and 4, respectively. The overall

accuracy (initial plus extended datasets) is 66.7% for the CNN and 65.0% for the CNN+SVM

classifier. The performance of our system is lower for the extended dataset due to its increased

complexity. The overall accuracy increases when only two classes (non-carcinoma and carci-

noma) are considered (77.6% for the CNN and 76.9% for the CNN+SVM). This indicates that

the normal/benign and in situ/invasive classes share similar features between them. Further-

more, the proposed system achieves an overall sensitivity of approximately 81% for carcinoma

patch-wise classification.

Table 2. Number of images (and patches) used for performance evaluation. A total of 36 images and 512 patches are considered.

Dataset non-carcinoma carcinoma

Normal Benign in situ Invasive

Initial 10 (120) 10 (120)

5 (60) 5 (60) 5 (60) 5 (60)

Extended 8 (96) 8 (96)

4 (48) 4 (48) 4 (48) 4 (48)

Overall 18 (216) 18 (216)

9 (108) 9 (108) 9 (108) 9 (108)

https://doi.org/10.1371/journal.pone.0177544.t002

Table 3. Patch-wise accuracy (%) (2 and 4 classes).

Classifier No classes Initial Extended Overall

CNN 4 72.5 59.4 66.7

2 80.4 74.0 77.6

CNN+SVM 4 72.9 55.2 65.0

2 82.9 69.3 76.9

https://doi.org/10.1371/journal.pone.0177544.t003
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Image-wise classification

Image-wise classification results are shown in Tables 5 and 6, respectively. Majority voting

shows the best results, achieving an overall accuracy of 77.8% for four classes. These results are

Table 4. Patch-wise sensitivity (%) (2 and 4 classes).

Dataset Classifier non-carcinoma carcinoma

Normal Benign in situ Invasive

Initial CNN 69.2 91.7

61.7 56.7 83.3 88.3

CNN+SVM 76.7 89.2

65.0 61.7 76.7 88.3

Extended CNN 81.3 66.7

50 72.9 58.3 56.3

CNN+SVM 82.3 56.3

54.2 66.7 43.8 56.3

Overall CNN 74.5 80.6

56.4 63.9 72.2 74.1

CNN+SVM 79.2 74.5

60.2 63.9 62.0 74.1

https://doi.org/10.1371/journal.pone.0177544.t004

Table 5. Image-wise accuracy (%) using different voting rules (2 and 4 classes).

Classif. Vote 4 Classes 2 Classes

Init. Exten. Overall Init. Exten. Overall

CNN Maj. 80.0 75.0 77.8 80.0 81.3 80.6

Max. 80.0 62.5 72.2 80.0 75.0 77.8

Sum 80.0 68.8 75.0 80.0 75.0 77.8

CNN+SVM Maj. 85.0 68.8 77.8 90.0 75.0 83.3

Max. 80.0 62.5 72.2 80.0 75.0 77.8

Sum 85.0 68.8 77.8 90.0 75.0 83.3

https://doi.org/10.1371/journal.pone.0177544.t005

Table 6. Image-wise sensitivity (%) using majority voting (2 and 4 classes).

Dataset Classifier non-carcinoma carcinoma

Normal Benign in situ Invasive

Initial CNN 70 90

80 40 100 100

CNN+SVM 80 100

80 60 100 100

Extended CNN 50 100

75 75 75 75

CNN+SVM 50 90

75 75 50 75

Overall CNN 61.1 94.4

77.8 55.6 88.9 88.9

CNN+SVM 66.7 95.6

77.8 66.7 77.8 88.9

https://doi.org/10.1371/journal.pone.0177544.t006
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constant regardless of using CNN or CNN+SVM for patch-wise classification. In both meth-

ods maximum probability is the worst performing method suggesting it is not a suitable strat-

egy for this problem. Regarding binary classification, the overall accuracy increases for both

classifiers when compared to the four class problem. Furthermore, CNN+SVM seems to out-

perform the CNN model, achieving a total accuracy of 83.3% for the best voting methods. In

comparison, CNN’s performance is only better for the extended set using majority voting.

The lower accuracy of patch-wise classification is explained by the fact that patch labels are

obtained from the image labels without any information about the location of the abnormali-

ties. This approach is sub-optimal as, regardless of the image class, normal tissue regions may

also be present. As a result, noise is introduced in the training set, contributing to the lower

patch-wise accuracy. Despite this, the network is focusing relevant details of the image. For

instance, Fig 4 shows activations of first and second layers of the CNN, where relevant diagno-

sis structures, such as nuclei or stroma organization of low and high nuclei density regions, are

being prioritized.

Feature visualisation

Fig 5 shows a two-dimensional representation of the initial training set and the activations of

the last convolutional and the second fully-connected layers. These representations result from

the application of t-SNE, which is an efficient parametric embedding technique for dimension-

ality reduction that preserves distance between samples [29]. In these representations, each

point corresponds to a patch and the 2D distance between points is an approximation of the

original Euclidean distance in the multidimensional space. In Fig 5-C, test set patches are also

represented. As shown in Fig 5-A and 5-B, the CNN tends to approximate samples of the same

class in higher layers. This indicates these layers are extracting relevant features from the initial

data after training. In Fig 5-C, patches appear organized in clusters dominated by one class,

indicating a good differentiation between patches with different labels after the two fully-con-

nected layers. Differently, the presence of points of different classes possibly represents mis-

classified patches. Despite this, the overall patch organization indicates that the the fully-

connected layer activations are useful features for classification using the suggested SVM

model.

Comparison with the state-of-the-art

CNNs were used by Cruz-Roa et al. [23] to perform classification of whole slide high-resolu-

tion image patches as invasive carcinoma. The achieved sensitivity was 79.6%. The overall

Fig 4. Activation examples for the first (A, B) and second (C) layers of the Convolutional Neural Network. Different structures with diagnostic

relevance are analyzed.

https://doi.org/10.1371/journal.pone.0177544.g004
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sensitivity of our method for patch-wise classification of invasive carcinoma is 74.1%. These

results are not directly comparable due to several reasons: 1. our method discriminates patches

in 4 classes as opposed to the segmentation problem considered in [23], which focuses only on

invasive carcinoma and non-invasive carcinoma region classification; 2. in the previous work,

patch-wise whole-slide images ground truth is available. In our case, only image-wise ground

truth corresponding to a smaller section in the whole-slide image is available. Thus, in our

dataset some patches in the training and testing sets may not contain relevant information to

be correctly classified, lowering the accuracy in patch classification.

Despite this, our method performance shows to be close to that of [23], specially when con-

sidering that ours is not a dedicated invasive carcinoma detection method. For the CNN archi-

tecture and image resolution in [23], spatial related features with size between 4μm and 100μm
are analyzed by their algorithm. The diameter of breast cells nuclei is approximately 6μm,

which suggests that sub-nuclei features such as texture are not being considered. This indicates

that the good classification results reported by the authors are based on tissue organization fea-

tures. By comparison, our architecture is able to capture features with size between 1.3μm and

94μm. This allows the CNN to learn not only individual nuclei features but also the structures’

organization.

In the work of Spanhol et al. [22] CNNs were used for classifying breast cancer histology

images of different magnifications in benign or malign tumours. For the 200× magnification,

the achieved accuracy was approximately 84%. In our work, the overall image-wise accuracy

for the non-carcinoma/carcinoma tissue classification is approximately 81% when using CNN

and 83% with SVM classifier. The methods present similar performances, even though our

training was performed considering 4 classes. Besides, the dataset used in [22] contains

approximately 2000 images for the referred magnification, which is a significantly larger train-

ing set. We were able to train a more complex model with less training examples thanks to the

proposed data augmentation method. Further, in [22] images were selected in such a way that

only relevant regions for diagnosis were present, while in our case non-relevant regions for

classification were present both in the patch-wise training and testing set which can mislead

the network training.

Fig 5. 2D projection of the training patches and their activations on different layers of the CNN using t-SNE [29]. A training patches; B last

convolutional layer; C second fully-connected layer. Diamond shapes represent test images.

https://doi.org/10.1371/journal.pone.0177544.g005
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Considering the CNN architecture and image resolution in Spanhol et al. [22] spatial

related features with size between 0.2μm and 7μm are learned for the 200× magnifications.

However, if the nuclei diameter is approximately 6μm, then the reported network architecture

is not able to learn features at higher scales through its convolutional layers. Furthermore, the

authors use the same CNN architecture for different amplifications, implying that larger fea-

tures are learned for lower magnifications. As discussed previously, nuclei organization is also

relevant for the diagnosing process. They achieve better results for lower magnifications, indi-

cating that taking care of the relevant scale analysis is important for having success with CNN

architectures for classification. By comparison our more complex architecture is suitable for

learning features at multiple relevant scales.

Conclusions

A CNN-based approach for the classification of H&E stained histological breast cancer images

is proposed. All relevant features are learned by the network, reducing the need of field knowl-

edge. Images are classified as either normal tissue, benign lesion, in situ carcinoma and inva-

sive carcinoma. Alternatively, a binary classification as carcinoma or non-carcinoma is also

performed. For this, the architecture of the network is designed to extract information from

different relevant scales, including nuclei and overall tissue organization. The network is

trained on an augmented patch dataset and tested on a separate set of images. Both dataset

augmentation and scale-based network design have been shown important for the success of

the approach. The extracted features are also used for training a SVM classifier. Both CNN and

SVM classifiers achieve comparable results. The proposed classification scheme allows to

obtain high sensitivity for carcinoma cases, which is of interest for pathologists. The perfor-

mance of our system is similar or superior to the state-of-the-art methods, even though a

smaller and more challenging dataset is used. Finally, since the network is designed to consider

multiple biological scales, the proposed system can be extended for whole-slide breast histol-

ogy image classification relevant for clinical settings.
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