
Int J Parallel Prog (2016) 44:663–685
DOI 10.1007/s10766-015-0364-7

Relational Learning with GPUs: Accelerating Rule
Coverage

Carlos Alberto Martínez-Angeles1 ·
Haicheng Wu3 · Inês Dutra2 ·
Vítor Santos Costa2 · Jorge Buenabad-Chávez1

Received: 19 August 2014 / Accepted: 10 March 2015 / Published online: 28 March 2015
© Springer Science+Business Media New York 2015

Abstract Relational learning algorithms mine complex databases for interesting pat-
terns. Usually, the search space of patterns grows very quickly with the increase in
data size, making it impractical to solve important problems. In this work we present
the design of a relational learning system, that takes advantage of graphics process-
ing units (GPUs) to perform the most time consuming function of the learner, rule
coverage. To evaluate performance, we use four applications: a widely used rela-

CMA was supported by the University of Porto, the Centre for Research and Postgraduate Studies of the
National Polytechnic Institute (CINVESTAV-IPN) of Mexico, and the Council of Science and Technology
(CONACyT) of Mexico. ICD and VSC were partially supported by: the European Regional Development
Fund (ERDF), COMPETE Programme; the Portuguese Foundation for Science and Technology (FCT),
projects ADE (PTDC/EIA-EIA/121686/2010 (FCOMP-01-0124-FEDER-020575)), and ABLe
PTDC/EEI-SII/2094/2012.

B Inês Dutra
ines@dcc.fc.up.pt

Carlos Alberto Martínez-Angeles
camartinez@cinvestav.mx

Haicheng Wu
hwu36@gatech.edu

Vítor Santos Costa
vsc@dcc.fc.up.pt

Jorge Buenabad-Chávez
jbuenabad@cs.cinvestav.mx

1 Departamento de Computación, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508,
07360 Mexico, DF, Mexico

2 Departmento de Ciência de Computadores, CRACS INESC-TEC LA and Universidade do Porto,
Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal

3 Georgia Institute of Technology, 266 Ferst Drive, Atlanta, GA 30332, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-015-0364-7&domain=pdf

664 Int J Parallel Prog (2016) 44:663–685

tional learning benchmark for predicting carcinogenesis in rodents, an application in
chemo-informatics, an application in opinion mining, and an application in mining
health record data. We compare results using a single and multiple CPUs in a multi-
core host and using the GPU version. Results show that the GPU version of the learner
is up to eight times faster than the best CPU version.

Keywords Relational learning · Inductive logic · Logic programming · Datalog ·
Relational databases · Parallel computing · GPUs

1 Introduction

Relational Learning is dedicated to model relationships among data items or attributes
of databases. In contrast to standard learning, the relational learning process can find
relations among attributes and/or among examples from multiple relational tables.
Applications are very diverse, ranging from mining medical databases, to mining
blogs, to chemo-informatics, to citation matching [25].

One very popular approach to relational learning is inductive logic programming
(ILP) [12]. In this logic based framework, we are given a set of positive examples
E+, a set of negative examples E−, a description of the examples in first order logic
(background knowledge B), a language bias and a set of constraints. The goal is to find
a first order logic hypothesis H that ideally covers (explains) all positive examples
and none of the negative.

ILP has been quite successful in producing good classifiers as well as uncovering
new knowledge from data. Most ILP systems operate by enumerating rules. In this
case, the number of different rules, or the search space, can grow very quickly with
the data size. Several techniques have been proposed to control the size of the search
space and scale up ILP to larger data-sets [12]. One of them is to parallelize ILP. ILP
parallelization can be done at several levels: nodes in the search space can be exploited
in parallel [16,31], the background knowledge can be partitioned and searched in
parallel at the cost of incompleteness, or coverage of each new rule found can be
performed in parallel [13]. In this work we concentrate on the paralelization of the
coverage, which is one of the core steps in ILP. This step scores a new found rule by
checking which examples are covered. It is well known that most of the computation
time of an ILP system is spent on computing coverage [8].

We show that GPU processing has the capacity to expedite ILP execution by
speeding-up coverage computation. Our approach interfaces Aleph [29], arguably the
most popular ILP system, with our datalog engine for GPUs [22]. Because both Aleph
and the datalog engine use a similar underlying logic representation, the interface is
very tight. To run Aleph, we use the YAP prolog system [9]. At each Aleph coverage
step, prolog compiles the rule found into a numerical representation that is passed to
our GPU datalog engine. The resulting system maintains total compatibility with the
original execution, and indeed could be easily adapted to most other ILP systems.

We tested our system with real-world ILP applications. Examples include two
benchmarks from chemo-informatics, an application in opinion mining on a social
network, and an application in mining health record data. We compare results using

123

Int J Parallel Prog (2016) 44:663–685 665

a single and multiple CPUs in the multicore host, and using a GPU. Overall, our
GPU implementation often outperforms the highly optimized Aleph-YAP sequential
implementation, and easily outperforms the multicore based implementation.

Section 2 presents background material to relational learning and the datalog lan-
guage. Section 3 presents the design and implementation of our GPU-platform for
relational learning applications, which consists of the Aleph ILP system, YAP prolog
and our GPU-datalog engine. Section 4 presents an experimental evaluation of our
platform. Section 5 presents related work and we conclude in Sect. 6.

2 Background

Relational Learning is the task of learning from databases. More precisely, we want to
model relationships among data items from several tables (relations) in the database.
Various forms of relational learning are discussed in the literature [12]. Inductive
Logic Programming (ILP) is a very popular approach that employs a logic-based
formalism, often based on subsets of first-order logic such as Horn clauses. Logic
programs provide a highly flexible language. In contrast, domain-specific approaches,
such as graph mining, obtain high performance by focusing on the more specific
but very important task of searching for patterns in graphs [4]. Statistical Relational
Learning [32] extends logic-based approaches by combining relational learning and
probabilistic models.

Next we focus on ILP [12]. ILP depends on a logic-based data representation, that
is often a datalog program.

2.1 Datalog

Datalog is a language based on first order logic that has been investigated as a data
model for relational databases since the 80s [36,37]. It has recently been used in new
application domains including declarative networking, program analysis, distributed
social networking, and security [21]. Interest in datalog has always stemmed from
its ability to compute the transitive closure of relations through recursive queries
which, in effect, turns relational databases into deductive databases, or knowledge
bases. The renewed interest in datalog has in turn prompted new implementations of
datalog targeting computing architectures such as GPUs [14,20], field-programmable
gate arrays (FPGAs) [21], and distributed computing based on Google’s MapReduce
programming model [1].

A datalog program consists of a finite number of facts and rules. Facts and rules
are specified using atomic formulas, which consist of predicate symbols with argu-
ments [36].

As an example, we represent in datalog a subset of the organic molecule shown in
Fig. 1. The molecule is represented as a set of atoms connected by bonds, also known
as 2-D representation. Nodes represent atoms, and edges represent chemical bonds
between atoms. The compound has three nitrogens, shown as N, and 11 carbon atoms,
C, shown as unlabeled nodes.

123

666 Int J Parallel Prog (2016) 44:663–685

Fig. 1 2-D Representation of a
small organic molecule

atom Relational TableFACTS

......

bond Relational Table
molecule id. atoms id’s bond type

molecule id. atom id. atom type

atom(d1, d1_1, n). d1 d1_1 n
atom(d1, d1_2, c). d1 d1_2 c
atom(d1, d1_3, n). d1 d1_3 n

bond(d1,d1_1,d1_2,1). d1 d1_1 d1_2 1
bond(d1,d1_2,d1_3,7). d1 d1_2 d1_3 7

......

Fig. 2 Extract of a prolog database representing the molecule in Fig. 1

Using the datalog syntax we have the facts shown in Fig. 2. Each atom is identified
by a two-attribute key consisting of a molecule identifier and an atom identifier. In the
example, the atoms belonging tomoleculed1 are identified asd1_1,d1_2 andd1_3.
Each atom has its unique identifier, and its type, say c for carbon. Each relation in the
database is called apredicate. In this casewehave two relationsatom/3 andbond/4,
one describes the atoms in the molecule d1, and the other how d1’s atoms are bound
together (a numerical representation).We use prolog notation, where names beginning
with lower case letters refer to predicate names and constants, and names beginning
with upper case letters are used for variables; numbers are considered constants. Each
predicate is identified by its name and number of arguments (arity). Facts correspond
to tuples. They consist of a single atomic formula (i.e., predicates with no connectives
or subformulas and that do not depend on any other formula to be true), and their
arguments are constants.

The power of datalog resides in the ability to extend a database with Rules, that
consist of two or more atomic formulas with the first one leftmost, called the rule’s
head, separated from the other atomic formulas by the IF symbol :-. The other atomic
formulas are subgoals separated by commas, which represent a logical AND. We will
refer to all the subgoals of a rule as the body of the rule. Rules, in order to be general,
are specified with variables as arguments, but can also have constants.

As a simple example, the next rule defines whether an atom A in molecule M has
a neighboring nitrogen:

123

Int J Parallel Prog (2016) 44:663–685 667

nitrogen_neighbor(M, A) :-
bond(M, A, B, _),
atom(M, B, n).

We use the bond relation to find the neighbor and atom to verify whether it is a
nitrogen. Notice that, in this rule, we do not care about the type of a bond: this is
represented by the _ symbol.

Rules can work together. In the next example, we use two rules to say that bonds
are bidirectional:

bnd(M, A, B) :- bond(M, A, B, _).
bnd(M, A, B) :- bond(M, B, A, _).

Using this predicate we are guaranteed to work with an undirected graph, even if the
data only includes one direction.

2.2 Inductive Logic Programming

The task of ILP is to learn new patterns that describe an unknown concept. Usually,
the concepts will be learned by using examples: the set of positive examples, E+,
that corresponds to valid instances, and the set of negative examples E−, that do not
satisfy the concept. In the context of Fig. 1, the positive examples might be molecules
(drugs) that cause cancer, and the negative examples are molecules that have no effect.
In traditional learning, what we know about the example is in a single table. In ILP, we
can use any fact or preexisting rule in the database. Moreover, we may set a number
of constraints to the learning task, and we usually want to be able to shape the rules
to learn.

More formally, ILP learns a theory H given a tuple (E+, E−, B, L ,C). The theory
H we want to learn will usually be a set of rules {R1, . . . , Rn}. We want to cover or
explain all positive examples in E+ and none of the negatives in E−. The background
knowledge B is a program, a set of facts and rules that we believe to be true and relevant
to the problem. The language bias, L , defines the language of clauses that we can learn.
Further reduction of the search space can be obtained by using the constraints C .

2.3 ILP Search

In general, there is no constructive algorithm to obtain the best rules. Instead, ILP
enumerates legal rules and selects the best one found. The most popular algorithm to
learn a rule is shown in Algorithm 1. This algorithm is based on Progol’s [23]. Progol
is one of the first ILP systems implemented. Aleph, the system used in this study, is
based on Progol, and therefore, uses the same algorithm.

The process starts from an initial rule R0 and then keeps on searching until
DoSearch() finds a high-quality clause. Three functions are critical to the algorithm.
NextNode() (line 4) expands the current tree, often by expanding at the best node
so-far. Better() (line 6) compares two sets of covered examples (counters are stored
in variables P , for the positive coverage, and N , for the negative coverage, which

123

668 Int J Parallel Prog (2016) 44:663–685

Algorithm 1 ILP
1: R0 ← I ni t ();
2: {P0, N0} ← Coverage(R0);
3: while DoSearch() do
4: while R ← NextNode() do
5: {P, N , PCover, NCover} ← Coverage(R);
6: if Better(P0, N0, P, N) then
7: R0 ← R; P0 ← P; N0 ← N ;
8: break
9: end if
10: end while
11: end while

ideally should be zero). Usually, this is done by simply computing a quality score, say,
the difference between P and N (P − N). Last, Coverage (line 5) performs this task
obtaining the set of examples that are explained by the rule (PCover , NCover), and
the counters, P and N , for positive and negative examples, respectively.

Often we start with R0 as the rule that is always true. In the example domain, this
corresponds to saying that all drugs cause cancer:

active(M) :- true.

if we had 20 carcinogenic products (P = 20) and 20 safe compounds (N = 20), a
possible initial score would be P − N = 20− 20 = 0. To start searching, we include
a body literal. Our language bias says that we need to use atoms first so we try

active(M) :- atom(M,A,c).

As we are looking at organic compounds, we still get P = 20, N = 20. We try
nitrogen next:

active(M) :- atom(M,A,n).

and get P = 18, N = 15, a somewhat better result. Thus, NextNode() will start
from the latter clause, say generating:

active(M) :- atom(M,A,n), bond(M, A, B, 7).

the process continues until we find a good clause, search the full space, or hit a stopping
criteria.

Coverage computation (line 5 of Algorithm 1) is a key operation in this (and most)
ILP algorithms, often dominating running time. Most often, it is implemented in
prolog. Coverage is computed by matching an example against the head of the clause,
and then proving each sub-goal in turn, left-to-right. Backtracking is needed if a non-
leftmost subgoal fails: in this case we retry from the next solution of the sub-goal to
left (or fail again). As soon as all sub-goals succeed, the example is covered and we
stop. Prolog performance depends critically on indexing, and the YAP prolog system
provides dynamic indexing that generates the best index for any type of call [7] in
order to reduce coverage times.

Aleph implements a further optimization for coverage computation. The optimiza-
tion is based on the observation that Horn clauses are monotonic. In other words,
expanding a clause, that is, adding a literal may lead to less examples being covered,

123

Int J Parallel Prog (2016) 44:663–685 669

because the example may fail on the last goal, but if the example failed on the parent
rule, it will fail on the expanded rule. Thus, Aleph maintains a coverage list for every
node of the search space, and when expanding a node, it only checks the examples in
this list. This is a classic time-space trade-off: it improves execution time by increasing
memory usage.

The approach used by all ILP systems is top–down for the whole algorithm. In this
setting, we execute the coverage step using a bottom–up approach in order to take
advantage of data-parallelism that arises from a bottom–up computational model.

2.4 Evaluation of Datalog Programs

Datalog programs can be evaluated through a top–down approach or a bottom–up
approach. The top–down approach (used by prolog) starts with the goal which is
reduced to subgoals, or simpler problems, until a trivial problem is reached. It is tuple-
oriented: each tuple is processed through the goal and subgoals using all relevant facts.
Hence it is not easily adapted to GPU parallelism, because evaluating each goal can
give rise to very different computations.

The bottom–up approach first applies the rules to the given facts, thereby deriving
new facts, and repeating this process with the new facts until no more facts are derived.
The query is considered only at the end, to select the facts matching the query. Based
on relational operations (as described shortly), this approach is suitable for GPUs
because such operations are set-oriented and relatively simple overall. Also, rules
can be evaluated in any order. This approach can be improved using the magic sets
transformation [2] or the subsumptive tabling transformation [33]. Basically, with
these transformations the set of facts that can be inferred contains only facts that
would be inferred during a top–down evaluation.

Bottom–up evaluation of datalog rules can be implemented using the relational
algebra operators selection, join and projection, as outlined in Fig. 3. Selections are
made when constants appear in the body of a rule. Next, a join is made between two
or more subgoals in the body of a rule using the variables as reference. The result of a
join can be seen as a temporary subgoal (or table) that has to be joined in turn to the
rest of the subgoals in the body. Finally, a projection is made over the variables in the
head of the rule.

For recursive rules, fixed-point evaluation is used. The basic idea is to iterate through
the rules in order to derive new facts, and using these new facts to derive even more
new facts until no new facts are derived [36].

2.5 GPU Architecture and Programming

GPUs are akin to Single-Instruction-Multiple-Data (SIMD) machines: they consist of
many processing elements that run the same program but on distinct data items. This
program, referred to as the kernel, can be quite complex including control statements
such as if and while statements. However, a kernel is executed by groups of threads
calledwarps [10]. Thesewarps execute one common instruction at a time, so all threads
of a warp must have the same execution path in order to obtain maximum efficiency. If

123

670 Int J Parallel Prog (2016) 44:663–685

Fig. 3 Evaluation of a datalog rule based on relational algebra operations

some threads diverge, thewarp serially executes eachbranchpath, disabling threads not
on that path, until all paths complete and the threads converge to the same execution
path. Hence, if a kernel has to compare strings, processing elements that compare
longer strings will take longer and other processing elements that compare shorter
ones will have to wait.

GPUmemory is organized hierarchically. Each (GPU) thread has its own per-thread
local memory. Threads are grouped into blocks, each block having a memory shared
by all threads in the block. Finally, thread blocks are grouped into a single grid to
execute a kernel — different grids can be used to run different kernels. All grids share
the global memory.

3 Our GPU-based Platform for Relational Learning

The main components of our platform are: the YAP prolog system [9], the Aleph ILP
system [29], written in prolog, and a datalog engine for GPUs [22]. In contrast to our
previous datalog engine design [22], in this design we can execute several queries
at a time, and use various binary operators and prolog built-in predicates, such as
the arithmetic built-ins necessary to process the relational learning applications using
Aleph.

Aleph, YAP and the datalog engine interact as follows in running a relational learn-
ing application.

3.1 The Aleph Program and YAP Prolog

Figure 4 shows our GPU-based platform for relational learning from a high level
perspective. The left block runs in a single host CPU core. First, theYAP prolog system

123

Int J Parallel Prog (2016) 44:663–685 671

Fig. 4 GPU-based platform organization

reads/compiles the Aleph prolog program. Aleph has internal predicates that read
from prolog datasets stored in disk. Besides, it implements predicates that perform the
induce step that generates the rules.After induce is invoked,Algorithm1 executes.
For each rule found, YAP compiles the rule to the datalog engine representation and
a sequence of kernels are used in the GPU side to compute the coverage of that rule.

When Aleph is initiated, YAP compiles all the facts of the dataset to the GPU repre-
sentation. These facts, once sent to the GPUmemory, tend to stay there until execution
terminates. A memory management scheme swaps data between GPU memory and
CPU memory, so that most recently used data remains in GPU memory. This tends to
reduce the number of memory transfers (see Sect. 3.4 for more details).

Each unique string in a fact or rule is assigned a unique (integer) id; equal strings
are assigned the same id. By using a numerical representation, our GPU kernels show
relatively short and constant processing time because all tuples in a table, being man-
aged as sets of integers, can be processed in the same amount of time. In contrast, if
tuples were managed as strings, the processing of longer strings would take longer
than shorter strings; thus slowing down our GPU kernel.

The datalog engine is developed in CUDA®.1 The interface between YAP and
CUDA includes three main functions: one to copy an extensional predicate from
prolog to CUDA, one to install and uninstall a rule in CUDA, and one to invoke the
CUDA datalog engine, returning a list with all solutions or a counter. In a normal
datalog query, a dictionary is used at the very end, when the final results are to be
displayed, to convert id’s to the corresponding strings that identify facts, rules and

1 CUDA is NVIDIA’s General-Purpose Parallel Computing Platform and Programming Model [10].

123

672 Int J Parallel Prog (2016) 44:663–685

constants. In a normal Aleph execution, the results would be lists of positive and
negative examples covered by the rule along with their counters, which would then be
sent back to the host and converted to the corresponding strings using the dictionary.
As mentioned in Sect. 2.3, these coverage lists are used by Aleph to avoid checking
unnecessary examples when a new rule is generated. This reduces sequential execution
time. In the context of this work, in order to take full advantage of the parallelization
power offered by the GPUs, we do not use coverage lists. Instead, the datalog Engine
always tests a rule against the whole set of examples, and only returns to the host
the number of positive and negative examples covered by the rule. This eliminates
the overhead of transferring coverage lists from the host to the GPU and vice-versa.
Finally, there are predicates to initialise the datalog engine and to collect statistics. All
these modifications are distributed with the YAP code and can be downloaded from
http://www.dcc.fc.up.pt/~vsc/Yap/downloads.html.

We have also changed Aleph to compute coverage of a rule by calling the CUDA
YAP interface.2 In order to obtain coverage, we transform an Aleph generated rule
such as:

item(A) :-
same_conversation(A,B),
token(C,B,D,’PRO:pers’,mi).

into a coverage computing rule such as

covers(Id, Pol) :-
example(Id, Pol, A),
same_conversation(A,B),
token(C,B,D,’PRO:pers’,mi).

where the table example is generated when loading the dataset and includes the
primary key, the positive or negative polarity of the example, and the actual exam-
ple. Evaluating the program materialises the covers table with the set of example
identifiers and respective polarities, and we simply have to count to compute coverage.

3.2 The Host Thread of GPU-Datalog

TheGPU-datalog engine consists of a single host thread and a number of GPU kernels.
The host thread runs in the host platform (a multicore in our evaluation) and is respon-
sible for various tasks, including the scheduling of the GPU kernels that implement
the relational algebra operations selection, join and projection. We describe the GPU
kernels in Sect. 3.5. The host thread is responsible for:

1. Communicating with YAP both to receive the data to process (facts, rules, and
queries in numerical format) and to send back results.

2. Preprocessing the rules and facts (received from YAP) to send to the GPU, so
that the GPU can process the data more efficiently. This preprocessing generates
a numeric representation of the operations to be performed by the GPU kernels.

2 The Aleph modified version is available upon request to the authors.

123

http://www.dcc.fc.up.pt/~vsc/Yap/downloads.html

Int J Parallel Prog (2016) 44:663–685 673

3. Scheduling GPU work.
This is supported by a memory management module described in Sect. 3.4.

3.3 Preprocessing

Datalog rules are evaluated by a sequence ofGPUkernels that implement the relational
algebra operations selection, join and projection. For the evaluation of each rule, the
specification of what operations to perform, including constants, variables, facts and
other rules involved, is carried out at the host (as opposed to be carried out in the GPU
by each kernel thread), and sent to the GPU for all GPU threads to use. We next give
a few examples of how the host specifies operations to the GPU.

Selection is specified by two values, column number to search and constant value
to search; the two values are encoded as an array which can include more than one
selection (more than one pair of values), as in the following example, where columns
0, 2, and 5 will be searched for the constants a, b and c, respectively:

fact1(a,X,b,Y,Z,c). -> [0,a,2,b,5,c]

Join is also specified by two values, column number in the first relation to join
and column number in the second relation to join; the two values are sent as an array
which can includemore than one join, as in the following example,where the following
columns are joined in pairs: column 1 in fact1 (variable X) with column 1 in fact2,
column 2 in fact1 (variable Y) with column 4 in fact2, and column 3 in fact1 (Z) with
column 0 in fact2.

fact1(A,X,Y,Z), fact2(Z,X,B,C,Y). -> [1,1,2,4,3,0]

Other operations are specified similarly with arrays of numbers. These arrays are
stored in the GPU shared memory (as opposed to global memory) because they are
small and the shared memory is faster.

3.4 Memory Management

A memory management module helps to identify the most recently used data within
the GPU in order to maintain it in global memory and discard sections of data that are
no longer necessary. Its purpose is to maintain facts and rule results in GPU memory
for as long as possible so that, if they are used more than once, they may often be
reused. To do so, we use an LRU algorithm in order to keep track of the GPUmemory
available, and maintain a list with information about each fact and rule result that is
resident. When data (facts or intermediate tables) are requested to be loaded into GPU
memory, they are first looked up in that list. If found, its entry in the list is moved to
the beginning of the list; otherwise, memory is allocated for the data and a list entry is
created at the beginning of the list. In either case, its address in memory is returned.
If allocating memory for the data requires de-allocating other facts and rule results,
those at the end of the list are de-allocated first until enough memory is obtained —
rule results are written to CPU memory before de-allocating them. By so doing, most
recently used fact and rule results are kept in GPU memory.

123

674 Int J Parallel Prog (2016) 44:663–685

3.5 GPU Kernels of Relational Algebra Operators

OurGPU kernels include the relational algebra operators selection, join and projection
to evaluate datalog programs and other supporting operators. All the data sent to the
GPU is organized as arrays that are stored in global memory. The results of rule
evaluations are also stored in global memory.

Rules are evaluated left to right. For each pair of subgoals Gl ,Gk in a rule R, we
first apply selection (σXi=c(Gk)) and self-join (Gk ��

Xi=X j
Gk) kernels to both sub-

goals in order to eliminate irrelevant tuples as soon as possible. They are followed by
a join Gl �� Gk kernel and then a projection kernel (π\X j (G joinresult)) that elimi-
nates unnecessary attributes. At the end of each rule evaluation, built-in predicates are
performed followed by the duplicate elimination kernels.

A complete description of the algebra operators implementation design can be
found in [22]. Next, we describe the implementation of additional operations, new to
this datalog engine version.

3.6 Additional Operations

Many ILP programs require comparison predicates which were not part of our first,
“Pure” datalog engine. Furthermore, the evaluation of the TPC-H queries (in Sect. 4.1)
required the implementation of arithmetic predicates and aggregation. These new
additions were implemented as follows:

– Built-in comparison predicates (<,>,<>,=,>=,<=) Built-in comparison
predicates are similar to the selection and self-join operations, i.e. they use a
pipeline of three kernel executions. The first kernel marks all the rows that satisfy
the comparison with one. The second kernel performs a prefix sum on these marks
to determine the size of the result buffer and to use them as the indexes where each
GPU threadmust write its result. The third kernel writes the results. The difference
is that comparison predicates use the given operator instead of always testing for
equality. Also, they compare columns against a constant value (Y > 3) or against
another column (Y > Z).
The comparison predicates are performed at the end of each rule to ensure that
their variables are assigned to a value. For example, consider the following rule:

rule(X) :- table1(X,Y), Z > 3, table2(Y,Z).

the comparison Z > 3 cannot be performed because we do not know the value of
Z yet. Our engine, as part of the preprocessing step, rewrites the rule leaving that
comparison at the end:

rule(X) :- table1(X,Y), table2(Y,Z), Z > 3.

– Arithmetic predicates (+,−, ∗, /) These predicates are performed after all joins
and comparison predicates are completed (similar to the comparison predicates,
they are moved to the end of the rule if necessary). Since the result size is always
equal to the input size, they can be executed in a single kernel instead of the three

123

Int J Parallel Prog (2016) 44:663–685 675

kernels common in all other operations. Thanks to YAP’s “intelligent” analysis of
rules, these predicates can be written in the usual infix notation and are automati-
cally translated to postfix notation for easier evaluation. As an example on how to
write arithmetic predicates, consider the rule:

result(Z,W) :- fact1(X,Y), Z is X + 3, W is Y / 5.

Operations X + 3 and Y/5 will be internally translated to X 3 + and Y 5 /.
– Aggregation (group by) and related operations (sum, avg, count) Aggregation
is commonly used with other operations like summation, count, average, among
others. It indicates a series of columns (variables in datalog) whose combined row
values will determine the result of the related operations. They were implemented
by adding a dummy predicate called aggregation that simply indicates the required
variables. The related operations are represented by predicates with two values:
the variable representing the input column and the one representing the output
column.
The related operations are performed by sorting the data according to the aggre-
gation variables and then using Thrust’s reduce_by_key operation [34] with the
sorted variables as keys. Note that reduce_by_key always performs a summation.
However, count can be implemented by creating an additional column filled with
1’s and performing the summation on said column. The last operation, average,
can be implemented by performing the summation on the required columns and
then dividing the result by the result of the count. As an example, consider the
rule:

result(X,Y,W) :- fact1(X,Y,Z), aggregation(X,Y),
sum(Z,W).

with fact1 having the following values:

X Y Z
1 2 3
1 1 5
1 2 7

the result of the rule will be:

X Y W
1 2 10
1 1 5

4 Experimental Evaluation

This section describes the platform, applications and experiments to evaluate the per-
formance of our relational learning system that capitalises on GPUs.

123

676 Int J Parallel Prog (2016) 44:663–685

4.1 Base Performance

In our previous work, we showed that our CUDA datalog implementation did very
well at performing joins and transitive closures, easily outperforming other non-GPU
based systems that use a top–down rule evaluation [22].

Similarly to our work, Diamos et al. [14,15],Wu et al. [39,41] and Young et al. [42]
have also developed relational operators for GPUs, which are being integrated into
the Red Fox [26] platform, an extended datalog developed by LogicBlox [18]. Their
relational operators partition and process data in blocks using algorithmic skeletons.
We compared our datalog GPU engine with the one used in the Red Fox platform. We
used eight of the TPC-H [35] queries to evaluate the performance of our system: 1,
3, 4, 5, 10, 18, 19, 21, and manually translated them from SQL to datalog. Queries
2, 7, 9, 13, 14, 16, 20, 22 had sub-string operators (like, extract, substring). Since our
system transforms whole strings into numbers, it was not possible for us to use these
operators. Queries 6, 17 had floating-point constants and were not of interest to our
work. Queries 8, 11, 12, 15 had operators that are hard to directly translate fromSQL to
datalog (case, having, views). The evaluation was performed in the same architecture
described in [40], which includes a GeForce GTX TITAN, and used the same scale
factor of 1 for TPC-H data which is roughly 1GB. The tables were populated with
random data using the TPC-H data generator, and that same scale factor.

Figure 5 shows the results of our system against the latest Red Fox results [26] with
PCIe (GPU-bus) transfer time (i.e., time taken by memory transfers between the GPU
and the host)—time spent on loading tables from disk to main memory is not included.
Q1 shows roughly the same execution time for both Red Fox and our datalog engine.
Our engine is faster forQ3 andQ19 andRedFox is faster for the remaining five queries.
Red Fox uses primitives of the ModernGPU library [28], which are well-tuned for
coalesced memory accesses, while we use plain CUDA implementation. ModernGPU
uses the Merge-Path framework [19,24] to partition the data for Cooperative Thread
Arrays (CTAs) and then threads so that the workload among the threads is balanced.

Fig. 5 Comparison between
GPU-datalog and Red Fox

 10

 100

 1000

 10000

Q1 Q3 Q4 Q5 Q10 Q18 Q19 Q21

Ti
m

e
(m

se
c)

GPU-Datalog
Red Fox

123

Int J Parallel Prog (2016) 44:663–685 677

Added to that, our system was optimised for logical queries, not SQL. Hence, query
translation may also be sup-optimal.

Regarding translation from SQL to logic queries, we believe that the main factor
that affected the performance of our engine was query rewriting, particularly the use
of auxiliary rules. For example, Q21 required two additional rules to represent two
SQL exists operators. When these additional rules are evaluated, they create large
intermediate tables which need to be joined to themain rule, increasing execution time.
In contrast, three additional rules were created for Q19 to represent the or operator.
These rules perform much better because their results are naturally fused together and
are used into the main rule without the need to join.

In addition, the following factors contributed somewhat to the performance results
of our system:

– Comparison predicates These predicates are performed after all join operations
are finished in order to ensure that their variables are assigned to a value. By
correctly rearranging these predicates, their evaluation could be performed sooner,
thus eliminating many unnecessary tuples earlier in the computation.

– Join algorithm Red Fox has a slightly better join algorithm [14]. Therefore, since
this algorithm computes the most time consuming operation, the benefits are sig-
nificant.

4.2 Relational Learning: Materials and Methods

In this work we use the Aleph ILP system [29] to generate first order models for
different domains. We performed experiments with three different versions of Aleph:
(1) the original prolog code that runs relational learning applications in YAP, where
coverage-lists are used to minimize the number of examples to be tested against a new
rule (Aleph-cov), (2) a modified version of the original Aleph, where the whole set of
examples is always passed to the coverage procedure (Aleph-all), and (3) a modified
version of Aleph that calls the datalog engine to execute the coverage step, where
the whole set of examples is used. For this version we use two different libraries:
(3.1) that runs the coverage step on the GPU (Aleph-cuda) and (3.2) that runs the
coverage step on the host multicore with several threads (Aleph-multi). The two first
versions Aleph-cov and Aleph-all use a top–down approach to evaluate the queries.
The other two, Aleph-cuda and Aleph-multi use a bottom-up approach using the
datalog engine.

Aleph-multi is our multicore version of our datalog engine, which uses OpenMP.
Its interface is similar to the Aleph-cuda interface. It uses the bottom–up approach and
does not include any prolog optimizations like tabling or coverage lists. Like Aleph-
cuda, it is based on the same relational algebra operations, with one major difference:
instead of using three function calls (kernels) for selections and joins, we decided to
capitalize on the CPU’s flexible memory scheme by using size-changing arrays. With
these arrays, each thread can write a resulting tuple as soon as it is found, and the final
result is given by joining all the arrays. This reduces the number of function calls to a
single call, and therefore reduces processing time.

123

678 Int J Parallel Prog (2016) 44:663–685

Table 1 Applications
characteristics

Background knowledge is given
as number of facts (tuples) in the
database

Application Background
knowledge

Number of
examples

Carcino 21,303 297

Hiv 2,310,575 48,766

Omop 4,802,317 125,000

Blog 5,124,092 50,000

In discussing our experimental results below, Aleph-cov is used as a baseline
comparison algorithm, because this is the sequential version that is normally used
for relational learning tasks. We first compare the versions that run entirely on the
host, Aleph-cov, Aleph-all (both top–down) and Aleph-multi (bottom–up), with
one thread, to evaluate how the top–down and bottom–up evaluation behave on our
relational learning applications. Next, we compare the results of our Aleph-cuda
implementation withAleph-cov,Aleph-all, and the best results obtained withAleph-
multi. We then evaluate the scalability of the Aleph-multi version with varying
number of threads.

The first order models generated by all versions are the same as well as the counters
of positive and negative examples. Each run was performed ten times. The reported
execution times are averages of ten runs and are expressed in seconds. The standard
deviation is low.

Next, we describe the relational learning applications we use in this work.

4.2.1 Applications

– carcino: this is awell-known application that focuses onwhether drugsmay be car-
cinogenic in rodents. The ILP system has information on the drug’s 2-D structure
(atoms and bonds) and on major chemical properties [30].

– hiv: this dataset is based on the DTP AIDS anti-viral screen, that checks tens of
thousands of compounds for evidence of anti-HIV activity. The ILP system has
information on the drug compound’s 2-D structure [5,38].

– omop: this dataset consists of simulated medical records, namely diagnosis and
prescription data. The task is to find drugs that can cause adverse side-effects, and
it relies on temporal relationships between prescriptions and diagnosis [27].

– blog: this is an application that contains collected blog postings about solar energy
solutions taken from two Italian blog’s discussions/threads. Blogs are stored as a
collection of Part-Of-Speech (POS) tokens. Further data on authorship, threading
and title is also included in the analysis. The ILP task is to model blog’s author’s
opinions [17].

These applications are characterized according to Table 1. Notice that the carcino is
the smallest dataset. The other three applications have data bases with similar size,
millions of tuples and tens of thousands of examples.

123

Int J Parallel Prog (2016) 44:663–685 679

4.2.2 Hardware and Software

We used the following platform to run our experiments:

– a host computer Core 2 Quad Processor Q9400 (4 cores in total) at 2.66GHz, with:
– 4 × 32KB L1 instruction caches,
– 4 × 32KB L1 data caches,
– 2 × 3MB L2 caches (each cache shared between two cores),
– 6GB DRAM,
– a GeForce GTX 580, 1.54GHz 512 CUDA Cores (16 Multiprocessors × 32
CUDA Cores/MPK), 1535 MB GDDR5 memory, 768KB L2 cache, CUDA
Capability Major/Minor version number: 2.0. The software used was Ubuntu
12.04.1 LTS, gcc version 4.6.3, NVIDIA Corporation Cuda compilation tools,
release 5.0, V0.2.1221, CUDA Driver Version/Runtime Version 5.0/5.0.

4.3 Relational Learning: Results

4.3.1 Aleph-cov, Aleph-all and Aleph-multi(1)

Table 2 shows the average execution times (in seconds) of all applications using three
versions of Aleph (-cov, -all, -multi). As mentioned before, Aleph-cov is used as a
reference since it is the system used for regular relational learning. We use Aleph-all
to make a fair comparison with Aleph-cuda. Aleph-multi(1) is our multicore datalog
engine using only one thread.

As expected, the execution times vary hugely from one application to another, since
they present different characteristics (use of constants or built-in predicates, compound
terms, etc.) and stress different parts of the YAP engine.

Since Aleph-cov does not use the whole set of examples to perform the coverage,
its execution time is much lower than Aleph-all and Aleph-multi with one thread, but
the difference in times vary according to the kind of application characteristic. For
example, carcino, omop and blog benefit greatly from the coverage list optimization
used by Aleph-cov.

4.3.2 Aleph-cuda, Aleph-all, Aleph-cov and Aleph-multi

Figure 6 shows the execution times of all applications using the four versions of Aleph,
Aleph-cuda, Aleph-all, Aleph-cov and Aleph-multi. Results shown for Aleph-multi
are the best for each application, being carcino’s best time obtained with one thread,

Table 2 Execution times for
Aleph-cov, Aleph-all and
Aleph-multi (1 thread), in
seconds

Application Aleph-cov Aleph-all Aleph-multi(1)

Carcino 14.02 139.50 238.81

Hiv 211.79 272.99 391.77

Blog 3201.76 13,343.27 7177.20

Omop 656.55 4528.78 1514.50

123

680 Int J Parallel Prog (2016) 44:663–685

Fig. 6 Applications total
execution time for each Aleph
version. Notice that the best
times are obtained by the cuda
engine in the three larger
applications, even if bottom–up
sequential execution is always
slow

 10

 100

 1000

 10000

 100000

carcino hiv blog omop

Ti
m

e
(s

ec
)

Aleph-cuda
Aleph-cov
Aleph-all

Aleph-multi

Fig. 7 CUDA execution time
breakdown

 0.1

 1

 10

 100

 1000

carcino hiv blog omop

T
im

e
(s

ec
)

Select(1)
Select(2)

Sort
Join

DupRem
Bips

hiv’s best time obtained with eight threads, and omop’s and blog’s best times obtained
with four threads.

From the four applications, three of them greatly benefit from the CUDA imple-
mentation with speedups varying from 5 (blog) to 8.36 (omop), when comparing
Aleph-cuda with the Aleph-cov version. The application carcino was the only one
that did not benefit from the CUDA implementation. Its size caused the cost of mem-
ory transfers to dominate the total execution time.

One interesting observation is that Aleph-all, which somehow imitates the same
coverage behaviour of Aleph-cuda, by not using the coverage-list, is still much slower
than the CUDA and multicore versions. Note that the plots use logarithmic scale.

We instrumented our code to report the total amount of time spent in the GPU and
in the different operations. Our results show that over 91% of the running time is spent
on the coverage step.

Figure 7 shows the time taken by the CUDA implementation in each datalog oper-
ation. There are six different steps. The first two perform all selections and self-joins
required by the two sub-goals involved in each join. Next, an array is sorted to pre-

123

Int J Parallel Prog (2016) 44:663–685 681

Table 3 Aleph-multi execution time with speedups and slowdowns for two, four and eight threads

Application 2 4 8

Carcino 252.26 (0.55,0.05) 264.36 (0.53,0.05) 301.83 (0.46,0.05)

Hiv 271.51 (1.00,0.78) 233.21 (1.17,0.91) 215.10 (1.27,0.98)

Blog 5452.07 (2.45,0.59) 4827.10 (2.76,0.66) 4854.19 (2.75,0.66)

Omop 1109.33 (4.08,0.59) 982.27 (4.61,0.67) 1013.02 (4.47,0.65)

The first number in the parentheses represents the speedup/slowdown of Aleph-multi when compared to
Aleph-all. The second number represents the comparison against Aleph-cov

pare for the join operation, then the join is performed. Finally, built-in predicates are
evaluated (if any), followed by duplicate removal.

The applications have rather different characteristics. The carcino dataset, which
did not benefit from the CUDA implementation spent most of its time in the join
operation. In fact, join is one of the dominant operations for all applications together
with selection. This is expected, since join is usually the most expensive operation in
database processing. The hiv application is from a similar domain, chemo-informatics,
but it is much less about joins: in fact the main operation is duplicate removal. A
detailed analysis shows that the two applications use different representations for a
molecule: hiv fuses bonds and atoms into a single table. Thiswas developed to simplify
prolog indexing, but seems to also result in smaller intermediate tables.

The blog and omop applications have the most well-balanced execution. Both
datasets use many constants in the rules, and include self-joins, so the major com-
ponent is indeed preparing each sub-goal join. The joins themselves are noticeably
fast, as they do not take much more time than sorting or duplicate removal. This is
probably because the main tables have strong functional dependencies in both cases.
Notice that omop has a similar profile to blog, even if speed-ups are much worse. Last,
omop uses comparisons to establish temporal precedence and is thus the only dataset
where built-ins play a significant role.

4.3.3 Aleph-multi

In this section we compare our datalog engine implemented in a multicore machine
with our sequential versions and our Aleph-cuda version.

Table 3 shows the average execution times of Aleph-multi for a varying number of
threads for the four applications. Speedups (slowdowns) related to the Aleph-all and
Aleph-cov versions, respectively, are between parentheses.

Comparing the results of Table 3 with the results shown in Table 2, we can observe
that the prolog top–down execution with coverage lists (Aleph-cov) is the best for all
applications. Bottom–up multicore datalog (Aleph-multi) outperforms normal prolog
(Aleph-all) in all applications except carcino, where it also suffers from carcino’s
small size. These results show that coverage lists are more important than the language
(datalog vs. prolog) or the evaluation method (top–down vs. bottom–up).

However, our most important conclusion is that our Aleph-cuda implementation
performs much better on these applications exploiting more efficiently the GPU

123

682 Int J Parallel Prog (2016) 44:663–685

resources than our multicore implementation, Aleph-multi, exploiting the multicore
resources. Because the coverage step presents a tendency to produce finer-grained
tasks, the results are somewhat better on the GPU, with maximum speedup of 8, while
our multicore implementation has a maximum speedup of 4.

5 Related Work

Heet al. [20] havedesigned, implemented and evaluatedGDB, an in-memory relational
query co-processing system for execution on both CPUs and GPUs. GDB consists
of various primitive operations (scan, sort, prefix sum, etc.) and relational algebra
operators built upon those primitives.

We modified the Indexed Nested Loop Join (INLJ) of GDB for our single join and
multi-join, so that more than two columns can be joined, and a projection performed, at
the same time. Their selection operation and ours are similar too; ours takes advantage
of GPU shared memory and uses the Prefix Sum of the Thrust Library. Our projection
is fused into the join and does not perform duplicate elimination, while they do not
use fusion at all.

As mentioned in Sect. 4.1, Diamos et al. [14,15], Wu et al. [39,41] and Young et
al. [42] have developed relational operators for GPUs. Their join algorithm, compared
to that of GDB, shows 1.69 performance improvement [14]. Their selection performs
twoprefix sums and the result iswritten and thenmoved to eliminate gaps; our selection
performs only one prefix sum and writes the result once. They discuss kernel fusion
and fission in [41]. We applied fusion (e.g., simultaneous selections, selection then
join, etc.) at source code, while they implement it automatically through the compiler.
Kernel fission, the parallel execution of kernels and memory transfers, is not yet
adopted in our work.

With respect to running relational learning algorithms in GPUs, to the best of
our knowledge, this is the first attempt. Regarding parallelization of the coverage
algorithm using a multicore implementation and top–down evaluation, Côrte-Real et
al. [6] managed to achieve linear speedups using a multi-threaded implementation.
However, the execution times reported are only on the coverage step and ignore all
other Aleph operations. Other attempts were done on distributed environments with
modest speedups [16,31].

6 Conclusions

To the best of our knowledge, we presented the first attempt to run relational learning
algorithms, based on ILP, on GPU platforms. Our relational learning setting for GPUs
takes advantage of already available systems: the YAP prolog system, the Aleph ILP
system and a datalog engine for GPUs, in order to speed-up the execution of the
main core of an ILP algorithm, the coverage step. Using the GPU required minimal
changes to the relational learning system while preserving the original search-space.
Our results show a performance improvement for three of the four relational learning
applications, varying between 5 and almost 8.5. These results were compared to the
results obtained with a version of the relational learning coverage step implemented

123

Int J Parallel Prog (2016) 44:663–685 683

for multicores, and the GPU version achieved better maximum speedups. We believe
that these results can be further improved, and we have been working on the following
extensions to our datalog GPU engine.

– Evaluation based on tabling [33] or magic sets [2] methods.
– Managing tables larger than the total amount of GPU memory.
– Mixed processing of rules both on the GPU and on the host multicore.
– Improved join operations to eliminate duplicates earlier in the computation.
– ImprovedGPUmemorymanagement according to recent progress in this area [11].

GPUs are nowadays widely used for traditional machine learning algorithms [3].
Our results show that GPUs are also a natural fit to multi-relational learning tasks, and
should be considered for other multi-relational computationally intensive tasks. The
same framework used here can be reused for other logic-based relational learners.

Acknowledgments The authors gratefully acknowledge the comments from all reviewers, which highly
improved the quality of this paper. We would also like to thank Martínez-Angeles’ M.Sc. and qualification
committee members for their helpful comments.

References

1. Afrati, F.N., Borkar, V., Carey, M., Polyzotis, N., Ullman, J.D.: Cluster computing, recursion and
datalog. In: Proceedings of the First International Conference on Datalog Reloaded, Datalog’10, pp.
120–144. Springer, Berlin (2011)

2. Beeri, C., Ramakrishnan, R.: On the power of magic. J. Log. Program. 10(3&4), 255–299 (1991)
3. Bekkerman, R., Bilenko,M., Langford, J. (eds.): Scaling upMachine Learning: Parallel andDistributed

Approaches. Cambridge University Press, Cambridge (2011)
4. Chakrabarti, D., Faloutsos, C.: Graph mining: laws, generators, and algorithms. ACM Comput. Surv.

38(1) (2006). doi:10.1145/1132952.1132954
5. Collins, J.M.: The DTP AIDS antiviral screen program (1999). http://dtp.nci.nih.gov/docs/aids/

aidsdata.html
6. Côrte-Real, J., Dutra, I., Rocha, R.: A map-reduce constructor for prolog. In: Proceedings of the

International Conference on Principles and Practice of Declarative Programming (PPDP) (2013)
7. Costa, V.S., Sagonas, K., Lopes, R.: Demand-driven indexing of prolog clauses. In: Veronica D., Ilkka

N. (eds.) Proceedings of the 23rd International Conference on Logic Programming, volume 4670 of
Lecture Notes in Computer Science, pp. 305–409. Springer (2007)

8. Costa, V.S., Srinivasan, A., Camacho, R., Blockeel, H., Demoen, B., Janssens, G., Struyf, J., Vande-
casteele, H., Van Laer, W.: Query transformations for improving the efficiency of ilp systems. J. Mach.
Learn. Res. 4, 465–491 (2003)

9. Costa, V.S., Rocha, R., Damas, L.: The yap prolog system. Theory Pract. Log. Program. 12(1–2), 5–34
(2012)

10. CUDA C programming guide. http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
11. Dastgeer, U., Li, L., Kessler, C.: Smart containers and skeleton programming for GPU-based systems.

In: Proceedings 7th International Symposium on High-Level Parallel Programming and Applications
(HLPP’14), Amsterdam (2014)

12. De Raedt, L.: Logical and Relational Learning. Springer, Berlin (2008)
13. Dehaspe, L., De Raedt, L.: Parallel inductive logic programming. In: In Proceedings of the MLnet

Familiarization Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases,
pp. 112–117 (1995)

14. Diamos, G., Wu, H., Lele, A., Wang, J., Yalamanchili, S.: Efficient relational algebra algorithms and
data structures for GPU. Technical report, Georgia Institute of Technology (2012)

15. Diamos, G., Wu, H., Wang, J., Lele, A., Yalamanchili, S.: Relational algorithms for multi-bulk-
synchronous processors. In: Proceedings of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’13, New York, NY, USA, pp. 301–302. ACM (2013)

123

http://dx.doi.org/10.1145/1132952.1132954
http://dtp.nci.nih.gov/docs/aids/aidsdata.html
http://dtp.nci.nih.gov/docs/aids/aidsdata.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

684 Int J Parallel Prog (2016) 44:663–685

16. Fonseca, N.A., Srinivasan, A., Silva, F.M.A., Camacho, R.: Parallel ILP for distributed-memory archi-
tectures. Mach. Learn. 74(3), 257–279 (2009)

17. Gavanelli, M., Riguzzi, F., Milano, M., Cagnoli, P.: Constraint and optimization techniques for sup-
porting policymaking. In: Yu, T., Chawla, N., Simoff, S. (eds) Computational Intelligent Data Analysis
for Sustainable Development, Data Mining and Knowledge Discovery Series, chap. 12, pp. 361–382.
Chapman & Hall/CRC, Abingdon (2013)

18. Green, T.J., Aref, M., Karvounarakis, G.: Logicblox, platform and language: a tutorial. In: Proceedings
of the Second International Conference on Datalog in Academia and Industry, Datalog 2.0’12, pp. 1–8.
Springer, Berlin (2012)

19. Green, O., McColl, R., Bader, D.A.: GPU merge path: a GPU merging algorithm. In: Proceedings
of the 26th ACM International Conference on Supercomputing, ICS ’12, New York, NY, USA, pp.
331–340. ACM (2012)

20. He, B., Mian, L., Yang, K., Fang, R., Govindaraju, N.K., Luo, Q., Sander, P.V.: Relational query
coprocessing on graphics processors. ACM Trans. Database Syst. 34(4), 21:1–21:39 (2009)

21. Huang, S.S., Green, T.J., Loo, B.T.: Datalog and emerging applications: an interactive tutorial. In:
Proceedings of the 2011 ACM SIGMOD International Conference onManagement of Data, SIGMOD
’11, New York, NY, USA, pp. 1213–1216. ACM (2011)

22. Martínez-Angeles, C.A., Dutra, I., Costa, V.S., Buenabad-Chávez, J.: A datalog engine for GPUs. In:
WFLP-2013: 22nd International Workshop on Functional and (Constraint) Logic Programming, Kiel,
Germany, 11–13 Sept, pp. 239–253 (2013)

23. Muggleton, S.: Inverse entailment and progol. New Gener. Comput. 13, 245–286 (1995)
24. Odeh, S., Green, O., Mwassi, Z., Shmueli, O., Birk, Y.: Merge path—parallel merging made simple.

In: Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium
Workshops & PhD Forum, IPDPSW ’12, Washington, DC, USA, IEEE Computer Society, pp. 1611–
1618 (2012)

25. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, Cambridge
(2012)

26. Red fox: a compilation environment for data warehousing. http://gpuocelot.gatech.edu/projects/
red-fox-a-compilation-environment-for-data-warehousing/

27. Ryan, P.B., Schuemie, M.J.: Evaluating performance of risk identification methods through a large-
scale simulation of observational data. Drug Saf. 36(1), 171–180 (2013)

28. Sean Baxter: modern GPU library—tutorial. http://nvlabs.github.io/moderngpu/index.html (visited in
Jan 2015) (2013)

29. Srinivasan, A.: The Aleph manual. University of Oxford, England (2001). http://www.cs.ox.ac.uk/
activities/machlearn/Aleph/aleph.html

30. Srinivasan, A., King, R.D., Muggleton, S.H., Sternberg, M.J.E.: Carcinogenesis predictions using ILP.
In: Lavrac, N., Dszeroski, S. (eds.) Inductive Logic Programming, volume 1297 of Lecture Notes in
Computer Science, pp. 273–287. Springer, Berlin (1997)

31. Srinivasan, A., Faruquie, T.A., Joshi, S.: Data and task parallelism in ILP using MapReduce. Mach.
Learn. 86(1), 141–168 (2012)

32. Taskar, B., Getoor, L.: Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)
33. Tekle, K.T., Liu, Y.A.: More efficient datalog queries: subsumptive tabling beats magic sets. In: SIG-

MOD Conference, pp. 661–672 (2011)
34. Thrust: a parallel template library. http://thrust.github.io/
35. TPC-H transaction processing performance council benchmark H. http://www.tpc.org/tpch/
36. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. I. Computer Science Press,

Rockville (1988)
37. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. II. Computer Science Press,

Rockville (1989)
38. Weislow, O.S., Kiser, R., Fine, D.L., Bader, J., Shoemaker, R.H., Boyd, M.R.: New soluble-formazan

assay for hiv-1 cytopathic effects: application to high-flux screening of synthetic and natural products
for aids-antiviral activity. J. Natl. Cancer Inst. 81(8), 577–586 (1989)

39. Wu,H.,Diamos,G., Cadambi, S.,Yalamanchili, S.:Kernelweaver: automatically fusing database prim-
itives for efficientGPUcomputation. In: Proceedings of the 2012 45thAnnual IEEE/ACMInternational
Symposium on Microarchitecture, MICRO-45, Washington, DC, USA, IEEE Computer Society, pp.
107–118 (2012)

123

http://gpuocelot.gatech.edu/projects/red-fox-a-compilation-environment-for-data-warehousing/
http://gpuocelot.gatech.edu/projects/red-fox-a-compilation-environment-for-data-warehousing/
http://nvlabs.github.io/moderngpu/index.html
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
http://thrust.github.io/
http://www.tpc.org/tpch/

Int J Parallel Prog (2016) 44:663–685 685

40. Wu, H., Diamos, G., Sheard, T., Aref, M., Baxter, S., Garland, M., Yalamanchili, S.: Red fox: an
execution environment for relational query processing on gpus. In: International Symposium on Code
Generation and Optimization (CGO) (2014)

41. Wu, H., Diamos, G., Wang, J., Cadambi, S., Yalamanchili, S., Chakradhar, S.: Optimizing data ware-
housing applications for gpus using kernel fusion/fission. In: Proceedings of the 2012 IEEE 26th
International Parallel and Distributed Processing Symposium Workshops & PhD Forum, IPDPSW
’12, Washington, DC, USA, IEEE Computer Society, pp. 2433–2442 (2012)

42. Young, J., Wu, H., Yalamanchili, S.: Satisfying data-intensive queries using GPU clusters. In: 2012 SC
Companion High Performance Computing, Networking, Storage and Analysis (SCC), pp. 1314–1314
(2012)

123

	Relational Learning with GPUs: Accelerating Rule Coverage
	Abstract
	1 Introduction
	2 Background
	2.1 Datalog
	2.2 Inductive Logic Programming
	2.3 ILP Search
	2.4 Evaluation of Datalog Programs
	2.5 GPU Architecture and Programming

	3 Our GPU-based Platform for Relational Learning
	3.1 The Aleph Program and YAP Prolog
	3.2 The Host Thread of GPU-Datalog
	3.3 Preprocessing
	3.4 Memory Management
	3.5 GPU Kernels of Relational Algebra Operators
	3.6 Additional Operations

	4 Experimental Evaluation
	4.1 Base Performance
	4.2 Relational Learning: Materials and Methods
	4.2.1 Applications
	4.2.2 Hardware and Software

	4.3 Relational Learning: Results
	4.3.1 Aleph-cov, Aleph-all and Aleph-multi(1)
	4.3.2 Aleph-cuda, Aleph-all, Aleph-cov and Aleph-multi
	4.3.3 Aleph-multi

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

