
A Datalog Engine for GPUs

Carlos Alberto Mart́ınez-Angeles1, Inês Dutra2, Vı́tor Santos Costa2, and
Jorge Buenabad-Chávez1

1 Departamento de Computación, CINVESTAV-IPN,
Av. Instituto Politécnico Nacional 2508, 07360 D.F., México.

camartinez@cinvestav.mx,jbuenabad@cs.cinvestav.mx
2 Departmento de Ciência de Computadores, Universidade do Porto,

Rua do Campo Alegre, 1021, 4169-007, Porto, Portugal.
{ines,vsc}@dcc.fc.up.pt

Abstract. We present the design and evaluation of a Datalog engine
for execution in Graphics Processing Units (GPUs). The engine eval-
uates recursive and non-recursive Datalog queries using a bottom-up
approach based on typical relational operators. It includes a memory
management scheme that automatically swaps data between memory in
the host platform (a multicore) and memory in the GPU in order to
reduce the number of memory transfers.
To evaluate the performance of the engine, three Datalog queries were
run on the engine and on a single CPU in the multicore host. One query
runs up to 200 times faster on the (GPU) engine than on the CPU.

Keywords: Logic Programming, Datalog, Parallel Computing, GPUs,
Relational Databases

1 Introduction

The traditional view of Datalog as a query language for deductive databases
is changing as a result of the new applications where Datalog has been in use
recently, including declarative networking, program analysis, distributed social
networking, security [17] — datalog recursive queries are at the core of these
applications. This renewed interest in Datalog has in turn prompted new designs
of Datalog targeting computing architectures such as GPUs, Field-programmable
Gate Arrays (FPGAs) [17] and cloud computing based on Google’s Mapreduce
programming model [7]. This paper presents a Datalog engine for GPUs.

GPUs can substantially improve application performance and are thus now
being used for general purpose computing in addition to game applications.
GPUs are single-instruction-multiple-data (SIMD) [2] machines, particularly suit-
able for compute-intensive, highly parallel applications. They fit scientific ap-
plications that model physical phenomena over time and space, wherein the
“compute-intensive” aspect corresponds to the modelling over time, while the
“highly parallel” aspect to the modelling at different points in space.

Data-intensive, highly parallel applications such as database relational opera-
tions can also benefit from the SIMD model, substantially in many cases[11, 16,

239

2 C.A. Mart́ınez-Angeles et al.

15]. However, the communication-to-computation ratio must be relatively low
for applications to show good performance, i.e.: the cost of moving data from
host memory to GPU memory and vice versa must be low relative to the cost
of the computation performed by the GPU on that data.

The Datalog engine presented here was designed considering various optimi-
sations aimed to reduce the communication-to-computation ratio. Data is pre-
processed in the host (a multicore) in order for: i) data transfers between the
host and the GPU to take less time, and ii) for data to be processed more effi-
ciently by the GPU. Also, a memory management scheme swaps data between
host memory and GPU memory seeking to reduce the number of swaps.

Datalog queries, recursive and non-recursive, are evaluated using typical re-
lational operators, select, join and project, which are also optimised in various
ways in order to capitalise better on the GPU architecture.

Sections 2 and 3 present background material to the GPU architecture and
the Datalog language. Section 4 presents the design and implementation of our
Datalog Engine as a whole, and Section 5 of its relational operators. Section 6
presents an experimental evaluation of our Datalog engine. Section 7 presents
related work and we conclude in Section 8.

2 GPU Architecture and Programming

GPUs are SIMD machines: they consist of many processing elements that all
run the same program but on distinct data items. This same program, referred
to as the kernel, can be quite complex including control statements such as if
and while statements. However, a kernel is synchronised by hardware, i.e.: each
instruction within the kernel is executed across all processing elements running
the kernel. Thus, if a kernel has to compare strings, processing elements that
compare longer strings will take longer and the other processing elements will
wait for them.

Scheduling GPU work is usually as follows. A thread in the host platform
(e.g., a multicore) first copies the data to be processed from host memory to GPU
memory, and then invokes GPU threads to run the kernel to process the data.
Each GPU thread has an unique id which is used by each thread to identify what
part of the data set it will process. When all GPU threads finish their work, the
GPU signals the host thread which will copy the results back from GPU memory
to host memory and schedule new work.

GPU memory is organised hierarchically as shown in Figure 1. Each (GPU)
thread has its own per-thread local memory. Threads are grouped into blocks,
each block having a memory shared by all threads in the block. Finally, thread
blocks are grouped into a single grid to execute a kernel — different grids can
be used to run different kernels. All grids share the global memory.

The global memory is the GPU “main memory”. All data transfers between
the host (CPU) and the GPU are made through reading and writing global
memory. It is the slowest memory. A common technique to reducing the number
of global memory reads is coalesced memory access, which takes place when

240

A Datalog Engine for GPUs 3

Fig. 1. GPU memory organization.

consecutive threads read consecutive memory locations allowing the hardware
to coalesce the reads into a single one.

The most approach to program Nvidia GPUs is by using the CUDA toolkit,
a set of developing tools and a compiler that allow programmers to develop GPU
applications using a version of the C language extended with keywords to spec-
ify GPU code. CUDA also includes various libraries with algorithms for GPUs
such as the Thrust library [5] which resembles the C++ Standard Template Li-
brary (STL) [18]. We use the functions in this library to perform sorting, prefix
sums [14] and duplicate elimination as their implementation is very efficient.

3 Datalog

As is well known, Datalog is a language based on first order logic that has been
used as a data model for relational databases [22, 23]. A Datalog program consist
of facts about a subject of interest and rules to deduce new facts. Facts can be
seen as rows in a relational database table, while rules can be used to specify
complex queries. Datalog recursive rules facilitate specifying (querying for) the
transitive closure of relations, which is a key concept in many applications [17].

3.1 Datalog Programs

A Datalog program consists of a finite number of facts and rules. Facts and rules
are specified using atomic formulas, which consist of predicate symbols with
arguments[22], e.g.:

FACTS father relational table

father(harry, john). harry john

father(john, david). john david

... ...

241

4 C.A. Mart́ınez-Angeles et al.

RULE

grandfather(Z, X) :- father(Y, X), father(Z, Y).

Traditionally, names beginning with lower case letters are used for predicate
names and constants, while names beginning with upper case letters are used
for variables; numbers are considered constants. Facts consist of a single atomic
formula, and their arguments are constants; facts that have the same name must
also have the same arity. Rules consist of two or more atomic formulas with
the first one from left to right, the rule head, separated from the other atomic
formulas by the implication symbol ’:-’; the other atomic formulas are subgoals
separated by ’,’, which means a logical AND. We will refer to all the subgoals
of a rule as the body of the rule. Rules, in order to be general, are specified with
variables as arguments, but can also have constants.

3.2 Evaluation of Datalog Programs

Datalog programs can be evaluated through a top-down approach or a bottom-
up approach. The top-down approach (used by the Prolog language) starts with
the goal which is reduced to subgoals, or simpler problems, until a trivial problem
is reached. Thus, the solution of larger problems is composed of the solutions
of simpler problems until the solution of the original problem is obtained. It is
tuple-oriented and hence more difficult to adapt to massive parallelism.

The bottom-up approach works by applying the rules to the given facts,
thereby deriving new facts, and repeating this process with the new facts until
no more facts are derivable. The query is considered only at the end, when the
facts matching the query are selected. Benefits of this approach include the fact
that rules can be evaluated in any order and in a highly parallel manner, based
on equivalent relational operations as described shortly.

To improve the bottom-up approach, several methods have been proposed
such as the magic sets transformation [8] or the subsumptive demand transfor-
mation [21]. Basically, these methods transform a set of rules and a query into a
new set of rules such that the set of facts that can be inferred from the new set
of rules contains only facts that would be inferred during a top-down evaluation.

3.3 Evaluation based on relational algebra operators

Evaluation of Datalog rules can be implemented using the typical relational al-
gebra operators select, join and projection, as outlined in Figure 2. Selections are
made when constants appear in the body of a rule. Then a join is made between
two or more subgoals in the body of a rule using the variables as reference. The
result of a join can be seen as a temporary subgoal that has to be joined in turn
to the rest of the subgoals in the body. Finally, a projection is made over the
variables in the head of the rule.

For recursive rules, fixed-point evaluation is used. The basic idea is to iterate
through the rules in order to derive new facts, and using these new facts to derive
even more new facts until no new facts are derived.

242

A Datalog Engine for GPUs 5

Fig. 2. Evaluation of a Datalog rule based on relational algebra operations.

4 Our Datalog Engine for GPUs

This section presents the design of our Datalog engine for GPUs.

4.1 Architecture

Figure 3 shows the main components of our Datalog engine. There is a single
host thread that runs in the host platform (a multi-core in our evaluation).
In addition to scheduling GPU work as outlined in Section 2, the host thread
preprocesses the data to send to the GPU so that GPUs can process the data
more efficiently, as described in Section 4.2.

The data sent to the GPU is organized into arrays that are stored in global
memory. The results of rule evaluations are also stored in global memory.

Our Datalog (GPU) engine is organized into various GPU kernels. When
evaluating rules, for each pair of subgoals in a rule, selection and selfjoin ker-
nels are applied first in order to eliminate irrelevant tuples as soon as possible,
followed by join and projection kernels. At the end of each rule evaluation, the
duplicate elimination kernels are applied. Figure 3, right-hand side, shows these
steps.

The memory management module helps to identify the most recently used
data within the GPU in order to maintain it in global memory and discard
sections of data that are no longer necessary.

243

6 C.A. Mart́ınez-Angeles et al.

Fig. 3. GPU Datalog engine organisation.

4.2 Host Thread Tasks

Parsing. To capitalise on the GPU capacity to process numbers and to have
short and constant processing time for each tuple (strings variable size entails
varying processing time), we identify and use facts and rules with/as numbers,
keeping their corresponding strings in a hashed dictionary. Each unique string
is assigned a unique id, equal strings are assigned the same id. The GPU thus
works with numbers only; the dictionary is used at the very end when the final
results are to be displayed.

Preprocessing. A key factor for good performance is preprocessing data before
sending it to the GPU. As mentioned before, Datalog rules are evaluated through
a series of relational algebra operations: selections, joins and projections. For the
evaluation of each rule, the specification of what operations to perform, including
constants, variables, facts and other rules involved, is carried out in the host (as
opposed to be carried out in the GPU by each kernel thread), and sent to the
GPU for all GPU threads to use. Examples:

– Selection is specified with two values, column number to search and the
constant value to search; the two values are sent as an array which can include
more than one selection (more than one pair of values), as in the following

244

A Datalog Engine for GPUs 7

example, where columns 0, 2, and 5 will be searched for the constants a, b
and c, respectively:

fact1(’a’,X,’b’,Y,Z,’c’). -> [0, ’a’, 2, ’b’, 5, ’c’]

– Join is specified with two values, column number in the first relation to join
and column number in the second relation to join; the two values are sent as
an array which can include more than one join, as in the following example
where the following columns are joined in pairs: column 1 in fact1 (X) with
column 1 in fact 2, column 2 in fact1 with column 4 in fact2, and column 3
in fact1 with column 0 in fact2.

fact1(A,X,Y,Z), fact2(Z,X,B,C,Y). -> [1, 1, 2, 4, 3, 0]

Other operations are specified similarly with arrays of numbers. These arrays
are stored in GPU shared memory (as opposed to global memory) because they
are small and the shared memory is faster.

4.3 Memory Management

Data transfers between GPU memory and host memory are costly in all CUDA
applications [1]. We designed a memory management scheme that tries to min-
imize the number of such transfers. Its purpose is to maintain facts and rule
results in GPU memory for as long as possible so that, if they are used more
than once, they may often be reused from GPU memory. To do so, we keep track
of GPU memory available and GPU memory used, and maintain a list with in-
formation about each fact and rule result that is resident in GPU memory. When
data (facts or rule results) is requested to be loaded into GPU memory, it is first
looked up in that list. If found, its entry in the list is moved to the beginning of
the list; otherwise, memory is allocated for the data and a list entry is created at
the beginning of the list for it. In either case, its address in memory is returned.
If allocating memory for the data requires deallocating other facts and rule re-
sults, those at the end of the list are deallocated first until enough memory is
obtained — rule results are written to CPU memory before deallocating them.
By so doing, most recently used fact and rule results are kept in GPU memory.

5 GPU Relational Algebra Operators

This section presents the design decisions we made for the relational algebra
operations we use in our Datalog engine: select, join and project operations for
GPUs. The GPU kernels that implement these operations access (read/write)
tables from GPU global memory.

5.1 Selection

Selection has two main issues when designed for running in GPUs. The first issue
is that the size of the result is not known beforehand, and increasing the size

245

8 C.A. Mart́ınez-Angeles et al.

of the results buffer is not convenient performance-wise because it may involve
reallocating its contents. The other issue is that, for efficiency, each GPU thread
must know onto which global memory location it will write its result without
communicating with other GPU threads.

To avoid those issues, our selection uses three different kernel executions. The
first kernel marks all the rows that satisfy the selection predicate with a value
one. The second kernel performs a prefix sum on the marks to determine the
size of the results buffer and the location where each GPU thread must write
the results. The last kernel writes the results.

5.2 Projection

Projection requires little computation, as it simply involves taking all the el-
ements of each required column and storing them in a new memory location.
While it may seem pointless to use the GPU to move memory, the higher mem-
ory bandwidth of the GPU, compared to that of the host CPU/s, and the fact
that the results remain in GPU memory for further processing, make projection
a suitable operation for GPU processing.

5.3 Join

Our Datalog engine uses these types of join: Single join, Multijoin and Selfjoin. A
single join is used when only two columns are to be joined, e.g.: table1(X,Y) ��
table2(Y,Z). A multijoin is used when more than two columns are to be joined:
table1(X,Y) �� table2(X,Y). A selfjoin is used when two columns have the same
variable in the same predicate: table1(X,X).

Single join. We use a modified version of the Indexed Nested Loop Join described
in [16], which is as follows:

Make an array for each of the two columns to be joined

Sort one of them

Create a CSS-Tree for the sorted column

Search the tree to determine the join positions

Do a first join to determine the size of the result

Do a second join to write the result

The CSS-Tree [19] (Cache Sensitive Search Tree) is very adequate for GPUs
because it can be quickly constructed in parallel and because tree traversal is
performed via address arithmetic instead of the traditional memory pointers.

While the tree allows us to know the location of an element, it does not tell
us how many times each element is going to be joined with other elements nor in
which memory location must each thread write the result, so we must perform
a “preliminary” join. This join counts the number of times each element has
to be joined and returns an array that, as in the select operation, allows us to
determine the size of the result and write locations when a prefix sum is applied
to it. With the size and write locations known, a second join writes the results.

246

A Datalog Engine for GPUs 9

Multijoin. To perform a join over more than two columns, e.g., table1(X,Y) ��
table2(X,Y), first we take a pair of columns say (X,X) to create and search on
the CSS-Tree as described in the single join algorithm. Then, as we are doing
the first join, we also check if the values of the remaining columns are equal (in
our example we check if Y = Y) and discard the rows that do not comply.

Selfjoin. The selfjoin operation is very similar to the selection operation. The
main difference is that instead of each thread checking a constant value on its
corresponding row, it checks if the values of the columns affected by the self join
match.

5.4 Optimisations

Our relational algebra operations make use of the following optimisations in
order to improve performance. The purpose of these optimisations is to reduce
memory use and in principle processing time — the cost of the optimisations
themselves is not yet evaluated.

Duplicate Elimination. Duplicate elimination uses the unique function of the
Thrust library. It takes an array and a function to compare two elements in the
array, and returns the same array with the unique elements at the beginning.
We apply duplicate elimination to the result of each rule: when a rule is finished,
its result is sorted and the unique function is applied.

Optimising projections. Running a projection at the end of each join, as
described below, allows us to discard unnecessary columns earlier in the compu-
tation of a rule. For example, consider the following rule:

rule1(Y, W) :- fact1(X, Y), fact2(Y, Z), fact3(Z,W).

The evaluation of the first join, fact1 ��Y fact2, generates a temporary table
with columns (X,Y, Y, Z), not all of which are necessary. One of the two Y
columns can be discarded; and column X can also be discarded because it is not
used again in the body nor in the head of the rule.

Fusing operations. Fusing operations consists of applying two or more oper-
ations to a data set in a single read of the data set, as opposed to applying only
one operation, which involves as many reads of the data set as the number of
operations to be applied. We fuse the following operations.

– All selections required by constant arguments in a subgoal of a rule are
performed at the same time.

– All selfjoins are also performed at the same time.
– Join and projection are always performed together at the same time.

247

10 C.A. Mart́ınez-Angeles et al.

To illustrate these fusings consider the following rule:

rule1(X,Z):- fact1(X,’const1’,Y,’const2’),fact2(Y,’const3’,Y,Z,Z).

This rule will be evaluated as follows. fact1 is processed first: the selections
required by const1 and const2 are performed at the same time — fact1 does not
require selfjoins. fact2 is processed second: a) the selection required by const3
is performed, and then b) the selfjoins between Y s and Zs are performed at the
same time. Finally, a join is performed between the third column of fact1 and
the first column of fact2 and, at the same time, a projection is made (as required
by the arguments in the rule head) to leave only the first column of fact1 and
the fourth column of fact2.

6 Experimental Evaluation

This section describes our platform, applications and experiments to evaluate
the performance of our Datalog engine. We are at this stage interested in the
performance benefit of using GPUs for the evaluation of Datalog queries, as op-
posed to using a CPU only. Hence we present results that show the performance
of 3 Datalog queries running on our engine compared to the performance of the
same queries running on a single CPU in the host platform. (We plan to compare
our Datalog engine to similar GPU work discussed in Section 7, Related Work,
in further work).

On a single CPU in the host platform, the 3 queries were run with the
Prolog systems YAP [9] and XSB [20], and the Datalog system from the MITRE
Corporation [3]. As the 3 queries showed the best performance with YAP, our
results plots below show the performance of the queries with YAP and with
our Datalog engine only. YAP is a high-performance Prolog compiler developed
at LIACC/Universidade do Porto and at COPPE Sistemas/UFRJ. Its Prolog
engine is based on the WAM (Warren Abstract Machine) [9], extended with some
optimizations to improve performance. The queries were run on this platform:

Hardware. Host platform: Intel Core 2 Quad CPU Q9400 2.66GHz (4 cores
in total), Kingston RAM DDR2 6GB 800 MHz. GPU platform: Fermi GeForce
GTX 580 - 512 cores - 1536 MB GDDR5 memory.

Software. Ubuntu 12.04.1 LTS 64bits. CUDA 5.0 Production Release, gcc
4.5, g++ 4.5. YAP 6.3.3 Development Version, Datalog 2.4, XSB 3.4.0.

For each query, in each subsection below, we describe first the query, and then
discuss the results. Our results show the evaluation of each query once all data
has been preprocessed and in CPU memory, i.e.: I/O, parsing and preprocessing
costs are not included in the evaluation.

6.1 Join over four big tables.

Four tables, all with the same number of rows filled with random numbers, are
joined together to test all the different operations of our Datalog engine. The
rule and query used are:

248

A Datalog Engine for GPUs 11

join(X,Z) :- table1(X), table2(X,4,Y), table3(Y,Z,Z), table4(Y,Z).

join(X,Z)?

Fig. 4 shows the performance of the join with YAP and our engine, in both
normal and logarithmic scales to better appreciate details. Our engine is clearly
faster, roughly 200 times. Both YAP and our engine take proportionally more
time as the size of the tables grows. Our engine took just above two seconds to
process tables with five million rows each, while YAP took about two minutes
process tables with one million rows each.

The time taken by each operation was as follows: joins were the most costly
operations with the Multijoin alone taking more than 70% of the total time; the
duplicate elimination and the sorting operations were also time consuming but
within acceptable values; prefix sums and selections were the fastest operations.

 0

 100

 200

 300

 400

 500

 600

 700

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
(s

e
c
)

Size of each table in millions of rows

GPUDatalog
YAP

 1

 10

 100

 1000

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
(s

e
c
)

Size of each table in millions of rows

GPUDatalog
YAP

Fig. 4. Performance of join over four big tables (log. scale on the right).

6.2 Transitive closure of a graph.

The transitive closure of a graph (TCG) is a recursive query. We use a table with
two columns filled with random numbers that represent the edges of a graph [12].
The idea is to find all the nodes that can be reached if we start from a particular
node. This query is very demanding because recursive queries involve various
iterations over the relational operations that solve the query. The rules and the
query are:

path(X,Y) :- edge(X,Y).

path(X,Z) :- edge(X,Y), path(Y,Z).

path(X,Y)?

Fig. 5 shows the performance of TCG with YAP and our engine. Similar
observations can be made as for the previous experiment. Our engine is 40x
times faster than YAP for TCG. Our engine took less than a second to process
a table of 10 million rows while YAP took 3.5 seconds to process 1 million rows.

249

12 C.A. Mart́ınez-Angeles et al.

For the first few iterations, duplicate elimination was the most costly oper-
ation of each iteration, and the join second but closely. As the number of rows
to process in each iteration decreased, the join became by far the most costly
operation.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

e
c
)

Size of each table in millions of rows

GPUDatalog
YAP

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

e
c
)

Size of each table in millions of rows

GPUDatalog
YAP

Fig. 5. Performance of transitive closure of a graph (log. scale on the right).

6.3 Same-Generation program.

This is a well-known program in the Datalog literature, and there are various
versions. We use the version described in [6]. Because of the initial tables and
the way the rules are written, it generates lots of new tuples in each iteration.
The three required tables are created with the following equations:

up = {(a, bi)|i�[1, n]} ∪ {(bi, cj)|i, j�[1, n]}. (1)

flat = {(ci, dj)|i, j�[1, n]}. (2)

down = {(di, ej)|i, j�[1, n]} ∪ {(ei, f)|i�[1, n]}. (3)

Where a and f are two known numbers and b, c, d and e are series of n
random numbers. The rules and query are as follows:

sg(X,Y) :- flat(X,Y).

sg(X,Y) :- up(X,X1), sg(X1,Y1), down(Y1,Y).

sg(a,Y)?

The results show (Fig. 6) very little gain in performance, with our engine
taking an average of 827ms and YAP 1600ms for n = 75. Furthermore, our
engine cannot process this application for n > 90 due to lack of memory.

The analysis of each operation revealed that duplicate elimination takes more
than 80% of the total time and is also the cause of the memory problem. The
reason of this behaviour is that the join creates far too many new tuples, but most
of these tuples are duplicates (as an example, for n = 75 the first join creates
some 30 million rows and, after duplicate elimination, less than 10 thousand
rows remain).

250

A Datalog Engine for GPUs 13

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 25 30 35 40 45 50 55 60 65 70 75

T
im

e
(m

s
e
c
)

Problem size(n)

GPUDatalog
YAP

Fig. 6. Same-Generation program.

7 Related Work

He et. al [15] have designed, implemented and evaluated GDB, an in-memory
relational query coprocessing system for execution on both CPUs and GPUs.
GDB consists of various primitive operations (scan, sort, prefix sum, etc.) and
relational algebra operators built upon those primitives.

We modified the Indexed Nested Loop Join (INLJ) of GDB for our single join
and multijoin, so that more than two columns can be joined, and a projection
performed, at the same time. Their selection operation and ours are similar
too; ours takes advantage of GPU shared memory and uses the Prefix Sum of
the Thrust Library. Our projection is fused into the join and does not perform
duplicate elimination, while they do not use fusion at all.

Diamos et. al [10, 11, 24–26] have also developed relational operators for
GPUs, which are being integrated into the Red Fox [4] platform, an extended
Datalog developed by LogicBlox [13] for multiple-GPU systems [26]. Their re-
lational operators partition and process data in blocks using algorithmic skele-
tons. Their join algorithm, compared to that of GDB, shows 1.69 performance
improvement [11]. Their selection performs two prefix sums and the result is writ-
ten and then moved to eliminate gaps; our selection performs only one prefix
sum and writes the result once. They discuss kernel fusion and fission in [25]. We
applied fusion (e.g., simultaneous selections, selection then join, etc.) at source
code, while they implement it automatically through the compiler. Kernel fis-
sion, the parallel execution of kernels and memory transfers, is not yet adopted
in our work. We plan to compare our relational operators to those of GDB and
Red Fox, and extending them for multiple-GPU systems too.

251

14 C.A. Mart́ınez-Angeles et al.

8 Conclusions

Our Datalog engine for GPUs evaluates queries based on the relational operators
select, join and projection. Our evaluation using 3 queries shows a dramatic
performance improvement for two of the queries, up to 200 times for one of
them. The performance of the same-generation problem is improved twice only,
but we believe it can be improved more. We will work on the following extensions
to our engine.

– Extended syntax to accept built-in predicates and negation [6].
– Evaluation based on tabling [21] or magic sets [8] methods.
– Managing tables larger than the total amount of GPU memory.
– Mixed processing of rules both on the GPU and on the host multicore.
– Improved join operations to eliminate duplicates before writing final results.

Acknowledgements

Carlos A. thanks the University of Porto and its Departmento de Ciência de
Computadores, CINVESTAV-IPN (Centre for Research and Postgraduate Stud-
ies of the National Polytechnic Institute) and CONACyT (Mexican Council of
Science and Technology) for their support throughout his postgraduate stud-
ies. ICD and VSC were partially supported by the ERDF (European Regional
Development Fund) through the COMPETE Programme and by FCT (Por-
tuguese Foundation for Science and Technology) within project LEAP (FCOMP-
01-0124-FEDER-015008).

References

1. CUDA C Best Practices Guide.
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html.

2. CUDA C Programming Guide.
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

3. Datalog by the MITRE Corporation. http://datalog.sourceforge.net/.
4. Red Fox: A Compilation Environment for Data Warehousing.

http://gpuocelot.gatech.edu/projects/red-fox-a-compilation-
environment-for-data-warehousing/.

5. Thrust: A Parallel Template Library. http://thrust.github.io/.
6. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.

Addison-Wesley, 1995.
7. Foto N. Afrati, Vinayak R. Borkar, Michael J. Carey, Neoklis Polyzotis, and Jef-

frey D. Ullman. Cluster computing, recursion and datalog. In Datalog, pages
120–144, 2010.

8. Catriel Beeri and Raghu Ramakrishnan. On the power of magic. J. Log. Program.,
10(3&4):255–299, 1991.

9. Vı́tor Santos Costa, Ricardo Rocha, and Lúıs Damas. The yap prolog system.
TPLP, 12(1-2):5–34, 2012.

252

A Datalog Engine for GPUs 15

10. Gregory Diamos, Haicheng Wu, Jin Wang, Ashwin Lele, and Sudhaka Yalaman-
chili. Relational algorithms for multi-bulk-synchronous processors. In PPoPP-13:
The 18th Symposium on Principles and Practice of Parallel Programming, 2013.

11. Gregory F. Diamos, Haicheng Wu, Ashwin Lele, Jin Wang, and Sudhakar Yala-
manchili. Efficient relational algebra algorithms and data structures for GPU.
Technical report, Georgia Institute of Technology, 2012.

12. Guozhu Dong, Jianwen Su, and Rodney W. Topor. Nonrecursive incremental eval-
uation of datalog queries. Ann. Math. Artif. Intell., 14(2-4):187–223, 1995.

13. Todd J. Green, Molham Aref, and Grigoris Karvounarakis. Logicblox, platform
and language: a tutorial. In Proceedings of the Second international conference on
Datalog in Academia and Industry, Datalog 2.0’12, pages 1–8, Berlin, Heidelberg,
2012. Springer-Verlag.

14. Mark Harris, Shubhabrata Sengupta, and John D. Owens. Parallel prefix sum
(scan) with CUDA. In Hubert Nguyen, editor, GPU Gems 3, chapter 39, pages
851–876. Addison Wesley, August 2007.

15. Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju, Qiong Luo,
and Pedro V. Sander. Relational query coprocessing on graphics processors. ACM
Trans. Database Syst. (TODS), 34(4), 2009.

16. Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga K. Govindaraju, Qiong Luo, and
Pedro V. Sander. Relational joins on graphics processors. In SIGMOD Conference,
pages 511–524, 2008.

17. Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. Datalog and emerging
applications: an interactive tutorial. In SIGMOD Conference, pages 1213–1216,
2011.

18. David R. Musser, Gilmer J. Derge, and Atul Saini. STL tutorial and reference
guide: C++ programming with the standard template library, 2nd Ed. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

19. Jun Rao and Kenneth A. Ross. Cache conscious indexing for decision-support
in main memory. In Proceedings of the 25th International Conference on Very
Large Data Bases, VLDB ’99, pages 78–89, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc.

20. Terrance Swift and David Scott Warren. Xsb: Extending prolog with tabled logic
programming. TPLP, 12(1-2):157–187, 2012.

21. K. Tuncay Tekle and Yanhong A. Liu. More efficient datalog queries: subsumptive
tabling beats magic sets. In SIGMOD Conference, pages 661–672, 2011.

22. Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Volume
I. Computer Science Press, 1988.

23. Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Volume
II. Computer Science Press, 1989.

24. Haicheng Wu, Gregory Diamos, Srihari Cadambi, and Sudhakar Yalamanchili. Ker-
nel weaver: Automatically fusing database primitives for efficient GPU computa-
tion. In Micro-12: 45th International Symposium on Microarchitecture, 2012.

25. Haicheng Wu, Gregory Diamos, Jin Wang, Srihari Cadambi, Sudhakar Yalaman-
chili, and Srimat Chakradhar. Optimizing data warehousing applications for GPUs
using kernel fusion/fission. In IPDPSW-12: IEEE 26th International Parallel and
Distributed Processing Symposium Workshops & PhD Forum, 2012.

26. Jeffrey Young, Haicheng Wu, and Sudhakar Yalamanchili. Satisfying data-intensive
queries using GPU clusters. In HPCDB-12: 2nd Annual Workshop on High-
Performance Computing meets Databases, 2012.

253

