Defining Programming Problems
as Learning Objec

José Paulo Leband Ricardo Queirds
'CRACS & DCC-FCUP, University of Porto, Portugal
zp@dcc.fc.up.pt
2CRACS & DI-ESEIG/IPP, Porto, Portugal
ricardo.queiros@eu.ipp.pt

Abstract — Standards for learning objects focus primarily orpurpose systems, such as LMS and repositories andotl

content presentation. They were already extendedsupport cater for the needs of specialized eLearning systeumch as
automatic evaluation but it is limited to exerciseith a predefined 5,,tomatic evaluators.

set of answers. The existing standards lack thedatd required by : - .
specialized evaluators to handle types of exeraissan indefinite This paper focuses on a definition of programming

set of solutions. To address this issue we exteeatiting learning Problems as LO adequate to the interoperabilitgeotices in
object standards to the particular requirementsao$pecialized the area of programs automatic evaluation. Thigilieh is a
domain. We present a definition of programming feois as new application profile for learning objects basedh
learning objects that is compatible both with LéagnManagement |nstructional Management Systems (IMS) specificaidt is

Systems and with system; .p.erfo.rming automatic evialn of being used in a European research project called e,
programs. The proposed definition includes metadmagannot be which aims to integrate a collection of problemeated for
conveniently represented using existing standadsh as: the type) . . .
of automatic evaluation; the requirements of thaleation engine; Programming contests into an effective educational

and the roles of different assets - tests casegr@m solutions, etc. environment.

We present also the EduJudge project and its negirices as a case The remainder of this paper is organized as fald®ection
study on the use of the proposed definition of paogning problems 2 traces the evolution of LO standards and schemguhges
as learning objects. used for defining them. In the following section w&rt by
defining an evaluation model for programming praotseand,
based on it, we present a new application profdtereding

standard specifications and guidelines, and tha chatdel for
I INTRODUCTION representing metadata of programming problems.. ,T!mm
present a case study regarding the use of the pplication

Learning Objects (LO) are units of instructional teo that profile in the EduJudge project. Finally, we comigiuwith a

can- be used, andhmost OL a;lll.reused, on web@dbafs mary of the main contributions of this work aad
eLearning systems. The LO definition was target perspective of future research.

Learning Management Systems (LMS) and thus they are
specialized on content presentation. They encajesuéa I
collection of interdependent files (HTML files, iges, web . .)
scripts, style sheets) with a manifest containirgadata. This Th? evqut!on of eLea.lrnl.ng systemslln the last @cades
metadata is important for classifying and searcHi@ in was impressive. In their fII’S'F .generatllon, eLeagnBystems
digital repositories and for making effective usé their were fjeyelopefj for a specific learning domain aad fa
content in LMS. Standardize metadata plays an itaporole monolithic archltec'Fur_e [1]. Gradually, th(_ese sysseevolved
in keeping LO neutral to different vendors, bothLMS and and became domain-independent, featuring reusabls that
of repositories can be effectively used virtually in any eLearnoaurse. The
Despite its success in the promotion of thaystems that _reach this _Ievel of_maturity usuatb}_JQfN a
standardization of eLearning content, the gene@cstandards pompoqent-onented archltegture in_order to- feguttit tool
are inadequate to some domains. This fact leddccthation !ntegratlon. An example of this type of ;ystgmhe LMS that
of application profiles — extensions to standards, policies anH‘ltegrat.es severa! types of tools for dehvermgte_ot and for
guidelines meeting the needs of specific commuwitiehose recreating a learning context (e.g. Moodle, Sakai).

application profiles are still targeted mostly gmneral The present genergﬂon val_ues the mtercha_ngeanﬁllmg
objects and learners' information through the adapdf new

standards that brought content sharing and inteabjligy to

Keywords— Content Packaging, elLearning Services
Interoperability, Learning Objects.

LEARNING OBJECTSTANDARDS

eLearning. Standards can be viewed as
agreements containing technical specificationstioeroprecise
criteria to be used consistently as guidelines rtsuge that
materials and services are fit for their purposg]. [n the
elLearning context, standards are generally devdlopth the
purpose of ensuring interoperability and reusahifitsystems.
In this context, several organizations [3]-[5] haleveloped
specifications and standards in the last years Téjese
specifications define, among many others, standdois
eLearning content [7]-[9] and interoperability [10}1].

The most widely used standard for LO is the IMS t€oh
Packaging (IMS CP). This content packaging speatific
uses an XML manifest file wrapped with other resegrinside
a zip file. The manifest includes the IEEE Learnidbject
Metadata (LOM) standard to describe the learnirspueces
included in the package. This standard proposest @fs77
elements, distributed among nine categories. Thoatih
elements are optional, the standard is being useskveral
elLearning projects all over the world [12].

The LOM standard has achieved a high degree
acceptance in learning communities.
inspection reveals a low adoption rate of LOM eletad12].

Since LOM elements are optional and in some cases t

generic, several projects that have adopted timelatd usually
define application profiles to meet the needs dfcsglized
domains [12].

"documenttite LOM with its own metadata vocabulary. QTI wasigned

for questions with a set of pre-defined answershsas
multiple choice, multiple response, fill-in-the-hks and short
text questions. It supports also long text answaus the
specification of their evaluation is outside theme of the
QTI. Although long text answers could be used titemhe
program's source code, there is no way to speafy it
should be compiled and executed, which test dataldhbe
used and how it should be graded. For these reasens
consider that QTI is not adequate for automatiduaten of
programming exercises, although it may be suppddedake
of compatibility with some LMS. Recently, IMS GLC
proposed the IMS Common Cartridge [15] that bundles
previous specifications and its main goal is toaoige and
distribute digital learning content.

All these standards are described by schema laeguag
most often using the XML Schema Definition language
(XSD). This language overcame Document Type Dédinit
(DTD) limitations and provided several advancedtuess,
efich as the ability to build new types derived frioasic ones,

However a closmanages relationships between elements (similaglédional

databases) and combine elements from several sthhema
In spite of its expressiveness, XSD lacks feattoetescribe
constraints on the XML document structure. For ansg,
there is no way to specify dependencies betweeibtts, or
to select the content model based on the valuenothar

For instance, LOM was not specifically designed telement or attribute. To address these issues aesgniema

accommodate the requirements of automatic evaluatid
programming problems. There is no way to assertrale of
specific resources, such as test cases or solutt@nginately,
IMS CP was designed to be straightforward to extemekting
the needs of a target user community through teaticm of
the already referred application profiles. When liggp to

metadata the terrapplication profile generally refers to "the

adaptation, constraint, and/or augmentation of dadea
scheme to suit the needs of a particular commuifit@]. A
well know elLearning application profile is SCORM]1that

languages were proposed, such as RELAX NG [16]ehas
TREX [17] and RELAX [18]), DSD (Document Structure
Description) [19] and Schematron [20]. The Scheamatr
language provides a standard mechanism for makisegréons
about the validity of an XML document using XPath
expressions and can be easily combined with XMLe8&h

I1l. PROGRAMMING PROBLEMS ASLEARNING OBJECTS

A LO containing a programming problem must include
metadata to allow its use by different types ofcsezed

extends IMS CP with more sophisticated sequencind ae| earning services, such as evaluation enginegramming

Contents-to-LMS communication.

The creation of application profiles is based i @n more
of the following approaches:

» Selection of a core sub-set of elements anddiglsim the
source schema;

« Addition of elements and/or fields (normally testh
extensions) to the source schema, thus generdiingdrived
schema,;

problem repositories, among others. The existingstaddards
are insufficient for that purpose, which led us toe
development of a new application profile based gistiag
standards and guidelines. In this section we dettad
definition of programming problems as LO by extendihe
LOM metadata schema with new elements to support
programming problems and their automatic evaluation

Firstly, we identify an evaluation model for the

* Substitution of a vocabulary with a new or ext@d nrogramming problems. Secondly, we propose a new

vocabulary to reflect terms in common usage withim target
community;

application profile based on the IMS-CP and LOM anecise
the relationships among the several metadata sd¢hema

* Description of the semantics and common usagthe®f Thjrdly, we describe the data model of the metadasmciated

schema as they are to be applied across the cortymuni

to the resources that compose a programming problem

Following this extension philosophy, the IMS Global

Learning Consortium (GLC) upgraded the Question &stT

Interoperability (QTI) specification [9]. QTI dedsioes a data
model for questions and test data and, from vergjaxtends

A. Evaluation model

The goal of defining programming problems as leagni
objects is to use them in systems supporting automa
evaluation. The automatic evaluation of programming

problems is more complex them the automatic evialoadf
exercises supported by other application profsesh as QTI,
where answers are selected from a small predefeedTo
evaluate a programming problem the learner musmgué
program in source code. The evaluation of this s®wode
usually includes a static phase, where the souode ds
compiled or checked for syntactic errors, and aadyin phase,
where the program is executed and its behaviana/aed.
There are several approaches to evaluate the lehafva
program. The most common is to compare its outpdtsade
effects with those of a standard solution. Anotéygproach is
to compare a set of programs from different leanand
evaluate them competitively. In order to provideamagful
metadata to the evaluation engines, a programmioblgm

according to its role.

We considered defining more specialized evaluation

models. For instance, unit tests can be used tdorper
program evaluation instead of test cases. Uniinpsteems a
reasonable candidate for its own specialized etialuanodel,
requiring a source code for a particular unit tesframework,
for instance Junit. However, a similar result candehieved
without a unit testing framework but with boilerfdacode
linked with the learner’s attempt. In this casenéy help (or
not) to use test files, that would be associateth va
“standard” evaluation model. On the other handi testing
using a framework fits the general evaluation matiicribed
above, removing the need for a specialized model.

For every specialized model we considered, reqyismme

definition must have an unambiguous evaluation rhoddeatures and excluding others, we could come up wiéys to

Otherwise, authors could create programming prodlémat
risked to be evaluated differently from want thegended.

LEARNING
MANAGEMENT

SWSTEM
Result
W

M
EVALUATOMN ENGIME
(comrection and
dessificotion;)

A

REPOSTORY OF
LEARMINGOBJECTS

Rafarance LD,
Rafarance Leamer and
attenpt

Raference

Lo
Lo

Fig. 1 Evaluation model

After considering several alternatives we decided &
single and simple four steps evaluation model, egsiated in
Fig. 1 and enumerated bellow.

1. The evaluator receives three pieces of datefesence to
the LO with a programming problem; an attempt thvesdt - a
single file, a program or an archive containingdibf different
types (e.g. JAR, WAR); and a reference to
submitting the attempt.

2. The evaluator loads the LO from a repositonngishe
reference and uses the assets available in thestafic(tests,
generated tests, unit tests, etc.) according fo tthie.

3. The evaluator produces an evaluation report wth

classification and possibly also with a correctionl feedback.
The feedback that may depend on the learner'serefermay
be stored for future incremental feedback to timeeskearner.
4. The evaluator returns the evaluation report idiately
or makes it available within a short delay.
The learning object metadata assigns a role to aasht
assuming this simple model. It is the responsibibf the

evaluation component to use each asset appropriatg

combine it with assets from other evaluation madéle end

up with a simple and maximal evaluation model vgéveral

optional extension points, where a specific rese(stich as a
test case generator or a special corrector) camsketed.

It should be noticed that, although this evaluatioodel is
maximal, it excludes some kinds of programming feots.
For instance, it excludes programming problems wisewveral
programs from different learners are evaluated kémaously
in a competitive fashion. We considered includinig tase as
a second evaluation model. However, since this kifid
programming problem is relatively rare, especiailty the
elLearning context, we decided to postpone thatsdetito a
next version of this definition.

B. Application profile

An IMS CP learning object assembles resources and

metadata into a distribution medium, typically le firchive in
zip format, with its content described by a file med

i memani f est. xm in the root level. The manifest contains

four sections: metadata, organizations, resourcebs sub-
manifests. The main sections are metadata, whidindes a
description of the package, and resources, contaiilist of
references to other files in the archive (resoyrcas well as
dependencies among them.

Metadata information in the manifest file usuathldws the

These metadata elements can be inserted in angrseftthe

IMS CP manifest. In this definition, the metadatattcannot
be conveniently represented using LOM is encoded
elements of a new schema — EduJudge Meta-Data (8J-M

the terarn'EEE LOM schema, although other schemata can bd. use

in

and includednly in the metadata section of the IMS CP. This

section is the proper place to describe relatigsst@among
resources, as those needed for automatic evaluatiah
lacking in the IEEE LOM.

The compound schema can be viewed as a new apglicat

profile that combines metadata elements selectad feveral
schemata. The structure of the archive, actingistsilmlition
medium and containing the programming problem &®ais
|epicted in Fig. 2.

lies

H comp :
_"."ﬁ 1
I
IM5 CP :
schema metadata
N
: 1 I :
; '
— M IS ||
EEE . " complies
— et IDJIDREF :
schema | -
. : resgurce
HH
[resource
Assets -
resource
ereences el
complies

imsmanifest.xml

Fig. 2 Structure of a programming problem as a LO

The archive contains several files representetardtagram
as gray rectangles. The manifest is an XML file atsl
elements' structure is represented by white
Different elements of the manifest comply with difnt
schemata packaged in the same archive, as repddanthe
dashed arrows: the manifest root element compligls the
IMS CP schema; elements in the metadata sectiorcoraply
either with IEEE LOM or with EJ MD; metadata elertsen
within resources may comply either with IEEE LOM IMS
QTI. Resource elements in the manifest file refeeeassets
packaged in the archive are represented by safidvar

The resources section of the IMS CP provides & sofit
resource elements composed each one by sevesgallfilerder
to link the EJ MD domain metadata, it is necessaryreate a
reference mechanism to link it with the relatedbteses. This

mechanism takes the ID/IDREF types of the XML SdaemI

specification to link the EJ MD metadata elementhwhe
identifier attribute of the resource element.

The IMS CP specification is defined by a W3C XML

retgang

TABLE |
SCHEMATA IN THE NEW APPLICATION PROFILE

Spec. Namespace Filename
IMSCP http://www.imsglobal.org/xsd/imscp_v1 imscp_vlpl.xs
LOM http://www.imsglobal.org/xsd/imsmd_v1 imsmd_v1p2.xs
QTl http://www.imsglobal.org/xsd/imsqti_v1 imsqti_vlpl.xs
EMD http://www.edujudge.eu/ejmd_ ejmd_v2.xsi

These references will be used for online validatitm
conform to IMS CP Best Practice Document - to prefdine
references on the IMS website, rather than staBD Xiles in
the LO package, as they will be the most up-to-date
specifications.

To represent programming problems as learning thjec
able to be evaluated according to model we justrieesd, we
extended the metadata of the IMS CP to assigneatookach
asset. Metadata can be inserted in several poihtthe
manifest. Based on the available choices we dediolgrace
different types of metadata related to assets énféflowing
extension points:

Domain metadata (EJ MD), related to the automatic
evaluation, in IMS CP manifest/metadata element;

Resource metadata(lEEE LOM), independent from their
use in automatic evaluation, within the IMS CP
manifest/resource/file/metadata elements (withoyt @domain
metadata) and linked by the domain data throughBBR
attributes.

C. Data Mode

The core of the proposed application profile isEaeiJudge
schema that introduces new elements for resoupmsfie to
programming problems. In this subsection we presriata
model, represented schematically in Fig. 3.

The domain metadata is a hierarchy of elements @vhos
eaves are resources. The baResourcetype is an asset in
the distribution medium, referred by a relativeerfihme. The
ProgramResourceis a specialized type of resource that refers
to a source code program file. This type of respuegjuires as

Schema Definition (XSD). The schema describes Whic%ttributes all the information to compile and execuhe

elements may exist in the document manifest and those
elements may be structured. Unfortunately, notalistraints
of EJ MD can be expressed in XML Schema. For irtgtathe
XSD cannot check if the EJ MD elements are incluihethe
proper place of the manifest. Thus we use also r8atien
rules embedded in the XSD of EJ MD. The XSD can
preprocessed using a XSLT; the resulting Schemaithema
is further processed as a second order transfamat
validate the manifest.

In our application profile we used elements fromesel
schemata and namespaces were used to avoid nashe<lin
the EJ MD specification, the namespaces, filenamed
namespace prefixes of XML instances are as follows:

program, including the language name and versio a
compilation and execution command lines.

The metadata type hierarchy has three main catsgiorithe
first level: the General category describes generic metadata
and recommendations; theresentation category describes
paetadata on resources that are presented to theete@.g.
description and skeleton resources); Ewaluation category
describes the metadata on resources used to evalat
learner's attempts and provide feedback. The elenwrthe
Evaluation type define all the resources needed to judge a
programming problem. It has attributes to identifye
problem's evaluation module and its version andeethr
elements pointing to different types of evaluati@sources:
tests, correctors and solutions.

[Edujudge MD |

|1. 11..1

1
|General| [Fresentation] L.l Evaluation
1.+ 0.1 depende [0..* 0.1
‘Descriptionl |5keleton| 17|=_-SE| Correctorsl |50Iution
B..1 g, *
| TestDescription TestGroup

+valorization

g, * T g,.1
TestFiles | TestGenerator

+valorization

[1..1 1..1 lo..=*
|Input| ‘Dutput'ﬁ Feedback

+ErTOr
+valorization

! Y
\vJ ProgramResource
Resource [<J +compilationLine
- +executionline
+filename
+language
+languageVersion

Fig. 3 The EduJudge data model

The elements of typ&ests describe resources supplied tathe valorizations of successful executions. To exdrrthe
evaluate the submitted program. This definition psufs program is used the optiondteedback element. These
several testing methodologies, each with a speeifianent elements provide, for each test case, a feedbadsage

type, including among others: associated with a particular error condition (e"@/rong
1. TestFilescontains a pair of input and output files; Answer”, “Time Limit Exceed”, “Execution Error”) oinvalid
2. TestGroup contains an unbound collection of test filesoutput. TheshowAfterNumber Attempts attribute controls when
and an associated valorization; the feedback message should be sent to the |dzeired in the
3. TestDescription identifies a test file encoded in aactual number of attempts. Thalorization attribute of the
language that describes test cases; feedback element enables partial grading for pneddferrors.
4. TestGeneration identifies a program that will generate The TestGroup element is a container of TestFile elements
input files for test cases. and is used to create different test sets, withoptional

The TestFiles element supports the simplest type of¥alorization for the complete set. Th&estDescription
evaluation and is expected to be the most commaosgd. element refers to a file describing test casess Tile is meant
This element must contain references to input anigub files, as input for a test case generation tool. Thedestription is
and may have a valorization and feedback. An elémkthis an asset of the LO but the test generation toolt nes
type corresponds to a single test case, thus ibeaepeated to available to the evaluation engine. Alternativelyhe
create a comprehensive set of tests. In this desdetirner's TestGenerator element refers to a program that when
program is executed once for eddastFile element, receiving executed generate tests to this particular progiagim
as input the content of the file referenced byabeesponding exercise.
element, and/or from the arguments attribute. Tdwulting The Correctors element is optional and refers to custom
output is compared to the expected output containethe programs that change the general evaluation pétiegiven

TestFile element. problem.
The TestFiles element can also be used for grading and There are two types of correctors:
correcting programs. This element may includealarization « Static: invoked immediately after compilation, befany

attribute, in which case the grade of the prograthé sum of execution. Can be used to: compute software meidrics

the source code, judging the quality of source code The communication among these components compmlies t

perform unit testing on the program; check thecstme
of the program's source code.

« Dynamic: invoked after each execution with a testec
Deals with non-determinism (e.g. the solution getof

unordered values, in this case the corrector nazesl

the outputs before comparing them).

A single programming problem may use an arbitranyber
of correctors. The order in which they are execugedefined
by thedepends attribute.

Finally, optional elements of typ8olution refer to files
containing the problem solution.

IV. CASE STUDY

The purpose of a LO is to make a particular piete «

instructional content available to multiple eLeaisystems,
especially LMS.

A LO containing a programming problem, with adeguat
metadata for a well-defined evaluation model, dan be used
the

by specialized elLearning systems and promote
interoperability. These features are part of thuirements of
the EduJudge project that we used as a case studthé
proposed definition of programming problems as LO.

In this section we start with a general descriptainthe
EduJudge project and proceed with a brief explanadif its
components. For each component we describe sulgcitst
architecture and we highlight the impact of thegoaonming
problem definition presented on the previous sectio

A. The EduJudge project

The European research project EduJudge [21] airpea
the Valladolid online judge (http://uva.onlinejudgey/) to
secondary and higher education, benefiting from

considerable collection of programming problems nfro

international and worldwide ACM-ICPC [22] compsiitis.
The vision of the EduJudge project is of an eLeasyrdystem
that integrates systems already in use, such as, Lvth

programming problems that are already availablemfro

programming competitions.

To fulfill this vision the architecture of the Edwlhe system

adheres to service oriented principles [23]. Thishidectural
model is based on services that are able to paatieion
different reconfigurable processes. Services resite a
physical location, act on their own resources aredl@osely
coupled to other services. The EduJudge projetides three
types of such services:

Learning Objects store

Repository (LOR), to

the IMS DRI specification and is depicted schenadiicin
Fig. 3 as an UML sequence diagram. The concept of

programming problem as a LO is central to this
communication model.
‘Producer | LS I £ I LO0R
| | gethextid()| 1
| submit(URL |Id|t!, LO lo}
| l search(xauery!query} : XML I
| - .o SLOTLO SR and et
| | |
| retrieve(URL|loid) : LO -
T
M | evaluate(URL loid) ! |
| g asset) : File
|
|
' |
| 4: addReporti URL|iuid, LOReport repcrt}ﬁ-
| }
|

T | L
I | I
Fig. 4 Communication model among EduJudge compsnent

The life cycle of a LO starts with the request of a
identification and the submission of a LO to theasitory.

tI%Iext, the LO is available for searching and dowdlbg other

eLearning systems. Then, the learner in the LMS ussnthe
LO and submit it by sending an attempt of the pzobl
solution to the EE. Based on the received feedtaekearner
may repeat the process. In the end, the LMS semdpaat of
the LO usage data back to the repository. This BRénsion
will be, in our view, the basis for a next genaratiof LMS

with the capability to adjust the order of pres&ataof the

programming exercises in accordance with the nedda

particular student.

B. Learning object repository

The repository of specialized LO of EduJudge is e&m
crimsonHex. It was developed as part of the Edudymtgject
to act as a programming problem repository sertocthe EE

programming problems and to retrieve those suiedat and the LMS. In this subsection we highlight thehitecture

particular learner profile;

of crimsonHex and its relation to the programmirrglglem

Evaluation Engine (EE), to automatically evaluate and definition presented in the previous section. Detan the

grade the students' attempts to solve the problems;

Learning Management System (LMS),to manage the

presentation of problems to learners.

implementation of crimsonHex can be found elsewfi4¢
The architecture of crimsonHex repository is daddin
three main components:

Core, to expose the main features of the repositoryh bot
external services, such as the LMS and the EEt@idernal
components - the Web Manager and the Importer;

Web Manager, to allow the creation, revision,
uploading/downloading of LO and related metadatégreing
compliance with controlled vocabularies;

grading and correcting using the metadata provietthe LO;
Web front-end, for configuring the service and submitting
programs to test and debug the evaluator.

The new evaluation engine is planned to supporersgv
evaluation models including, among others: 1) snigiput-

Importer, to populate the repository with existing legacyutput test files; 2) multiple input-output testle; 3)

repositories.

Searching LO in the repository is based on queretheir
XML manifests. Since manifests are XML documentshwi
complex schemata we paid particular attention ttalsses
systems with XML support: XML enabled relationatalzases
and Native XML Databases (NXD), such as eXist aedrfa.

XML enabled relational databases are traditionghloeses
with XML import/export features. They do not stangernally
data in XML format hence they do not support quegyiising
XQuery. Since queries in
recommendation this type of storage is not a vafition. In
contrast, NXD uses the XML document as fundamantilof
(logical) storage, making it more suitable for dathemata
difficult to fit in the relational model. Finallwve chose eXist
[25] NXD since it supports all the required XML stiards
and it has a strong user community.

The crimsonHex is a repository of specialized lgan
objects. To support this multi typed content theomatory
must have a flexible LO validation feature. The #XNXD
supports implicit validation on insertion of XML doments in
the database but this feature could not be usedsdueral
reasons: LO are not XML documents (are ZIP filestaiming
an XML manifest); manifest validation may involveany
XSD files that are not efficiently handled by eXisind

interactive server problems and 4) interactive yseblems.
The first two models overlap the evaluation modaderlying
the proposed definition of programming problems L&3.
Moreover, all the problems in the UVA Online Judge
correspond to the first model. The second modeldasy
important from a pedagogical point-of-view sincealtows
better grading and feedback. Part of the efforb@bpulating
the EduJudge repository was the automatic conversio
between these two models. The last two models ateyet
covered by the definition but they are seldom used

this standard are a DRiLearning and they are absent from the UVA coltectof

programming problems.

D. Learning management system

Moodle [27] is the reference LMS selected for the
EduJudge system. The integration of Moodle in tHeJadge
network is achieved through a set of plugins andiutes.
These include a user interface for configurationreote
services (LOR and EE) and to select competitivenieg
strategies implemented locally that complement sbevices
provided by the evaluation engine.

Moodle provides several extension mechanisms, tfvo o
which were used in EduJudge to implement thesdralen
components:

manifest validation may combine XSD and Schematron

validation and this last is not fully supporteddist.

C. Evaluation engine

Activity Module, an evolution of a contest-driven learning
activity module (QUESTOURNnament) [26] that incorgtes
competitive and collaborative contests involving thbo
programming problems and general purpose questions;

The evaluation engine of the EduJudge project is anQuestion-Type plugin managing question-types for remote

improvement and optimization of the Online Judgel@ation
engine [26]. To process an evaluation request thgine

evaluation (provided by an EE) and remote stordgea(
LOR). With this plugin Moodle is be able to delegab

receives a program in source code and a programmiegternal services the evaluation of some kindscefa@ses.

problem reference. This reference is an URL thatsisd for
downloading the LO from the repository. The metadabm

the EJ MD schema is used for identifying the retdzssets in
the LO, in particular test files, valorizations aegdback. The
evaluation engine has three main components:

The Question-Type plugin provides also a centedliz
guestionnaires management system for the activibgute.
Each challenge can be defined as a complete qoeatie
made up of a set of questions from the database.pltg-in
was implemented on top of the Question Engine drel t

Submission handler responsible for receiving evaluationsQuestion Bank of Moodle.

requests from different sources, (web services, Vegns,

The Question-Type plug-in interacts with the refmgiin

email messages) and feeding them to the judge ddemamrder populate the Question Bank and uses bothragene

queue; it returns a ticket that is used by the iserelient,
typically an LMS, to retrieve the evaluation report

metadata provided by the LOM schema, such as narde a
author, and also specific metadata provided byB#BeMD

Judge daemon,processes a queue of evaluation requestshema, such as problem descriptions and source cod

and, for each request, fetches the programming lgmob
definition, compiles the submitted source and eteuit
against the provided test cases; it is also redplengor

skeletons.

V. CONCLUSION

In this paper we presented a definition of programgm
problems as learning objects. The main contributibrthis
work is the extension of an IMS standard to thetipalar
requirements of a specialized domain -
evaluation of programming problems. We believe ttrat
described approach can be adapted to other leadoimgins,
in particular those with other forms of non-trivialitomatic
evaluation.

The definition of programming problems as learrnitjects
is framed by an evaluation model that allows usassign
specialized roles to different assets. Based o nifodel we
defined a scope for the new metadata and how érpteys
with existing specifications and guidelines. Foiistmew
application profile we defined a data model for thetadata

that characterizes assets of LO containing progiagm [12]

problems.

The result of this research work is being used daJudge
project to promote interoperability among its seeg. The
experience with EduJudge is presented as a cadyg stihe
applicability of the proposed definition. We inckdl a short
description of the project and of the services twat most
affected by this definition.

In its current status the EduJudge Metadata (EJ N4D) [17]

available for test and downloads [28]. Our futurakwill be
to adapt the schema to support new evaluation rapdet
instance, programming problems where
aggregates programs submitted by two or more learne

ACKNOWLEDGMENT

This work is part of the project entitled “Integrag Online
Judge into effective e-learning”, with project nuenti35221-

LLP-1-2007-1-ES-KA3-KA3MP. This project has been[22]
funded with support from the European CommissiohisT

communication reflects the views only of the auth@nd the
Commission cannot be held responsible for any ugehamay
be made of the information contained therein.

REFERENCES

[1] Dagger, D., O'Connor, A., Lawless, S., Walsh, Eadé/ V.: Service
Oriented elLearning Platforms: From Monolithic Sysseto Flexible
Services (2007)

[2] Bryden, A.: Open and Global Standards for Achievarg Inclusive
Information Society.

[3] IMS Global Learning Consortium. URL: http://www.iglsbal.org

[4] IEEE Learning Technology Standards Committee.
http://ieeeltsc.org

[5] ISO/IEC- International Organization for Standartima. URL:
http://standards.iso.org/ittf/PubliclyAvailableStkmds/index.html

[6] Friesen, N.: Interoperability and Learning Objeds: Overview of E-

Learning Standardization". Interdisciplinary JouroaKnowledge and
Learning Objects. 2005.

the autamati

the evaluator

URL:

[7]1 IMS-CP — IMS Content Packaging, Information Mod&#st Practice
and Implementation Guide, Version 1.1.3 Final Sjpeation IMS
Global Learning Consortium Inc., URL:
http://www.imsglobal.org/content/packaging.

IMS-Metadata - IMS MetaData. Information Model, B&actice and

Implementation Guide, Version 1.2.1 Final Spectfma IMS Global

Learning Consortium Inc., URL: http://www.imsglotmiy/metadata.

IMS-QTI - IMS Question and Test Interoperabilitpfdrmation Model,

Best Practice and Implementation Guide, Version.11.Final

Specification IMS Global Learning Consortium Inc.URL:

http://www.imsglobal.org/question/index.html.

IMS DRI - IMS Digital Repositories InteroperabilityCore Functions

Information Model, URL:

http://www.imsglobal.org/digitalrepositories/drivfimsdri_infov1p0.h

tml.

Simon, B., Massart, D., van Assche, F., TernierD8val, E., Brantner,

S., Olmedilla, D., & Miklos, Z. (2005). A Simple @ty Interface for

Interoperable Learning Repositories. In Proceedofghe WWW 2005

Conference, retrieved March 16, 2006 from http:/Mmmwien.ac.at/e-

learning/interoperability/www2005-workshop-sqi-2008-14.pdf

Godby, C.J.: What Do Application Profiles Reveabatbthe Learning

Object Metadata Standard? Ariadne Article in elLesynStandards,

2004.

[13] IMS Application Profile Guidelines Overview, Part Management
Overview, Version 1.0. URL:
http://www.imsglobal.org/ap/apv1p0/imsap_oviewvlgfl.

[14] ADL SCORM URL: http://www.adInet.gov/Technologiesgsm

[15] IMS Common Cartridge Profile, Version 1.0 Final &fieation. URL:
http://www.imsglobal.org/cc/ccvlp0/imscc_profilevd.ptml

[16] Clark, J, Murata, M.: RELAX NG Specification, OASISommittee

Specification, December 2001, http://relaxng.orgésp0011203.html

Clark, J.: TREX - Tree Regular Expressions for XMrhai Open

Source Software Center, 2001, http://www.thaiopansacom/trex/.

[18] Murata, M.: RELAX (Regular Language description fotML).

INSTAC (Information Technology Research and Stadization

Center), 2001, http://www.xml.gr.jp/relax/.

[19] Moller, A.: Document Structure Description 2.0, EM, 2002,
http://www.brics.dk/DSD/dsd2.html.

[20] The Schematron, An XML Structure Validation Langeaging
Patterns in Trees,
http://www.ascc.net/xml/resource/schematron/schemdttml.

[21] EduJudge project — Integrating On-line Judge irffediive E-learning.

URL: http://www.edujudge.eu

ACM ICPC - International Collegiate Programming @mt. URL:

http://icpc.baylor.edu/icpc/

[23] Krafzig, D., Banke, K., Slama, D. Enterprise SOAengce-Oriented
Architecture Best Practices. 1.ed. Estados UnidoAmérica: Prentice
Hall, 2004. ISBN 0131465759

[24] Leal, J.P., Queirés, R.: CrimsonHex: a Service €@ Repository of
Specialised Learning Objects. In: ICEIS 2009: 1ltternational
Conference on Enterprise Information Systems, M{2009)

[25] Meier, W.: eXist: An Open Source Native XML Databai: NODe
2002 Web and Database-Related Workshops, (2002)

[26] Regueras, L.M., Verdq, E., Castro, J.P., Pérez,. M/&rd(, M.J.Design
of a Distributed and Asynchronous System for Rentbteluation of
Students’ Submissions in Competitive E-learning. IBEE 2008:
International Conference on Engineering Educatrdapest (2008).

[27] Cole, J., Foster, H.: Using Moodle - Teaching viite Popular Open

Source Course Management System, O'Reilly — Contmnineéss.

[28] EduJudge MetaData (EJ MD) specification (versiom).2.URL:
http://mooshak.dcc.fc.up.pt/~edujudge/schemaDoafgies/ejmd/ejmd

v2.xsd

(8]

(9]

(10]

[11]

