
Streaming Sensor Data from Dynamically Reprogrammable
Tasks Running on Mobile Devices

Nuno Silva, Eduardo R. B. Marques, Luís M. B. Lopes
Faculty of Science, University of Porto & CRACS/INESC-TEC

{up200700262,ebmarques,lmlopes}@fc.up.pt

ABSTRACT

We describe Flux, a platform for dynamically reconfigurable data

sensing using mobile devices, like smartphones or tablets. Periodic

sensing tasks are programmed using the Flux Task Language and

compiled onto abstract byte-code that is executed by a low-footprint

virtual machine, guaranteeing by construction important runtime

safety properties. For task dissemination, a Flux gateway performs

on-the-fly injection of tasks on devices present in a geographical

region, and sensing data is streamed back to the gateway that for-

wards it to a publish/subscribe broker. Live or archived streams

are in turn fed by the broker to data processing clients. We imple-

mented a prototype of Flux and used it to conduct a case-study

experiment where the intensity of Wifi signal in our department is

measured over a certain survey area, using smartphones and tablets

carried by volunteers as they walked over the survey area.

CCS CONCEPTS

• Information systems → Sensor networks; • Networks →

Mobile networks; • Computer systems organization → Sen-

sor networks; • Software and its engineering → Virtual ma-

chines; Domain specific languages;

KEYWORDS

Mobile Data Sensing, Mobile Crowd-Sensing, Software Architec-

ture, Domain-Specific Language, Virtual Machine, Android

ACM Reference Format:

Nuno Silva, Eduardo R. B. Marques, Luís M. B. Lopes. 2017. Streaming Sensor

Data from Dynamically Reprogrammable Tasks Running on Mobile Devices.

In Proceedings of 4th ACM Conference on Systems for Energy-Efficient Built

Environments (BuildSys’17). ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3137133.3137139

1 INTRODUCTION

The use of sensors to monitor physical or environmental phenom-

ena has manifold applications. Traditionally, such tasks were per-

formed using Wireless Sensor Networks (WSN), networks of low

cost, low power, devices typically composed of a radio transceiver,

a microcontroller, a power source, and multiple specialized sen-

sors [9]. The nodes communicate using energy efficient protocols

like ZigBee, and report sensor readings to one or more network

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.

BuildSys’17, November 8–9, 2017, Delft, The Netherlands

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5544-5/17/11. . . $15.00
https://doi.org/10.1145/3137133.3137139

gateways, also known as base-stations, and are programmed using

domain-specific languages [14, 16, 22].

Today, however, we have more that 1 billion potential multi-

sensor personal devices in our smartphones or wearables. Smart-

phones, for example, have become ubiquitous and typically feature

powerful multi-core processors, several gigabytes of storage space,

multiple communication interfaces and a multitude of sensors, e.g.,

gyroscope, accelerometer, GPS, temperature, light, camera, among

others [23].

Thus, a new paradigm emerged in which, in some scenarios, the

sensing tasks are performed by such mobile devices, continuously

and in the background. Applications are typically interested in mon-

itoring tasks, e.g., weather variables and mobility. This Mobile Data

Sensing paradigm is particularly interesting given the ubiquity of

such devices, their density in some locations and the increasing

sophistication and quantity of sensors included [20]. From a devel-

oper’s point of view, the fact that these devices can be programmed

in high-level programming languages such as Objective-C and Java,

with rich APIs to access the hardware, makes them more attrac-

tive and flexible than WSN [28]. Another paradigm that uses data

collected by mobile devices is Mobile Crowd Sensing in which

tasks are injected into the devices to be executed with the explicit

intervention of the users, e.g., surveys and processing data sets [11].

Figure 1: Dynamically reconfigurable tasks for mobile

sensing.

While there are quite a few proposals of systems for Mobile Data

Sensing, most focus on the infrastructure required to move the

data from the devices into the cloud infrastructure, for storage or

processing, and on specific applications that take advantage of the

flexibility of mobile networks. We are not aware of any system that

is capable of dynamic reconfiguration, in the sense that the sensing

tasks they perform can be changed according to the geographical

context of the device as depicted in Figure 1. In current systems, if

a new type of sensing activity is desired, a new application with

the appropriate code must be uploaded to the devices and executed.

We feel that this is a major obstacle in the management of such

BuildSys’17, November 8–9, 2017, Delft, The Netherlands Silva et al.

deployments as uploading and installing a new application is highly

intrusive and resource consuming.

We envision a dynamically reconfigurable system where tasks

are injected and removed seamlessly from devices. In this view,

there are regions controlled by one or more gateways connected

to a cloud infrastructure. Each gateway has a pool of tasks that it

injects into any device roaming within its region. While the device

his within the domain of such a gateway, it will execute those

specific tasks and provide the corresponding data streams to the

gateway, which forwards them to the cloud infrastructure. When

a device leaves a region, the task pool is automatically deleted. A

typical device can traverse many such regions (e.g., shops, buildings,

campuses, roads) and perform manifold sensing tasks.

We believe there is a wide scope for these ideas in real-world

use. Consider smart buildings, say shopping malls, where tasks can

keep track of the location of the potential clients and send directed

publicity or simply gather data that can be used to produce analytics

important for the management of the commercial enterprise (e.g.,

is the interior layout of the building adequate?) and store owners

(e.g., is our store attractive?); engaging users may rely on a sweep-

stakes system giving bonus for payments in certain shops, movie

tickets, etc. Other applications can be considered, for instance in

the realm of citizen science, where mobile crowd-sensing has been

quite successful in engaging volunteers willing to contribute to sci-

ence projects, or vehicular networks where individual data sensing

shapes a global view of information (e.g., traffic data) that is useful

for all participants.

In this paper we present an architecture and a prototype im-

plementation for Flux, a service that is installed in smartphones

once and receives asynchronous uploads of byte-code files corre-

sponding to sensing tasks, compiled from a hardware independent

domain specific language. The service runs the byte-code files in

an internal, low footprint, virtual machine. As the tasks run they

collect sensor data from the device, may do some processing and

eventually send the final data to a gateway web service. Other ad-

ministrative actions can be performed on the tasks per device, such

as termination or code updates. Once the data reaches the gateway,

it is forwarded to a publish/subscribe broker, another web-service,

that in turn forwards the streams to interested clients. The clients

receive the data in raw format with additional metadata describing

the contents of the stream as they subscribe it, so that they can

unpack it and pipe it to the next level of the processing stack.

As a case study, we asked volunteer students to install the Flux

service in their smartphones and used the system to inject tasks

that measured the number of Wifi networks detected by the device

as well as the access point it is currently connected to. The streams

generated by the smartphones as the students moved through the

survey area were gathered and post-processed to provide a real

time map of the Wifi coverage at the facilities.

The remainder of the paper is structured as follows. Section 2

describes the architecture and an implementation of Flux. Section 3

describes the domain specific language used to implement tasks, and

Section 4 provides a description of the prototype implementation,

along with a performance evaluation for the task service running

on Android devices. Section 5 describes our case-study experiment.

Section 6 describes the state-of-the-art in Mobile Data Sensing and

Mobile Crowd Sensing, and compares it to the approach taken in

Figure 2: The Flux architecture.

Flux. Section 7 concludes the paper with a discussion of ongoing

work on some additional features, and future research directions.

2 ARCHITECTURE

Flux has a typical three-layer architecture where a set of clients,

connected to the Internet, access data streams generated by mo-

bile devices through a publish/subscribe broker. The streams are

sent from mobile devices in a region to a gateway device. Figure 2

presents a high-level representation of these three layers and their

relations.

2.1 Data Layer

A Flux gateway is the interface between the devices generating

data streams and a P/S broker. A gateway keeps track of the mo-

bile devices, connected through Wifi or 3G/4G, in a geographical

region that have the Flux service installed. Such devices eventually

register with the gateway once they enter the region. The gate-

way manages a dynamic task pool through operations that are

mirrored in registered devices: the installation of new tasks, the

removal of pre-existing ones, plus on-the-fly reconfiguration of ac-

tive tasks in terms of periodicity and/or code updates. In interface

with the broker, the gateway publishes the data streams associated

with tasks injected in the devices and henceforth it forwards the

corresponding data to the broker.

Task are executed by the Android Flux service running on the

mobile devices, illustrated on Figure 3. The service senses the exis-

tence of gateways within network reach and registers itself. Over

time, it then receives task setup actions (installations/removals/re-

configurations) from the gateway, and yields back data generated

by running tasks.

Tasks are programmed using a domain-specific language called

FTL (Flux Task Language), originally designed forWSNdevices [13].

FTL is a statically-typed language for periodic sensing tasks that is

Streaming Sensor Data BuildSys’17, November 8–9, 2017, Delft, The Netherlands

Figure 3: The Flux Android service.

parametric in the set of sensors available in each device, and is com-

piled to machine-independent byte-code, abstracting away from

hardware and low level operating system details, whilst also provid-

ing a number of runtime safety properties. A very compact virtual

machine (VM), ported to Android in the context of Flux, runs the

byte-code with very low memory and CPU footprint, and using

earliest-deadline first (EDF) scheduling for task activation. Tasks

are programmed and compiled offline and injected in gateways

using an administration module.

Figure 4 lists the code for the FTL task used in the case-study

experiment described in Section 5. The purpose of the task is to

collect data for GPS-referenced Wifi signal coverage. As mobile

devices (users) change their location, the task measures the signal

of the Wifi internet connection, the total number of Wifi networks

currently detected, and tags these values with an estimate of the

mobile device position using GPS. The details of the FTL language,

VM, and the underlying runtime safety properties are discussed

below in Section 3.

2.2 Processing Layer

The processing layer is composed of a publish/subscribe broker

that keeps track of a collection of gateways, contributing with

data streams, and a collection of clients, that subscribe to the data

streams. The data is live-streamed from gateways to clients accord-

ing to subscription parameters (e.g., split per task). For offline data

analysis, the broker also maintains a database where data streams

are logged for a (parameterizable) time window, making it possible

for clients to access streams that were captured in the recent past

rather than live-streamed.

2.3 Client Layer

Flux clients connect to the broker by first requesting a list of avail-

able streams and then selecting which to receive through subscrip-

tion commands. An example client takes the form of a web browser

app, depicted in Figure 5, where live streams can be visualised in

real-time or logged data streams can also be plotted. A command-

line tool is also available that can readily be composed (e.g., using

pipes) with arbitrary data processing scripts for, e.g., data mining

and interface with cloud services.

3 THE FTL LANGUAGE AND VM

We now cover the main traits the FTL language, associated guaran-

tees of runtime safety, plus the FTL virtual machine, crucial aspects

of Android service and the overall Flux proposal.

3.1 FTL code

The FTL code for a task is structured in three block sections, as

illustrated in the example of Figure 4. The sensors section contains

a description of the sensors used by the task, where each sensor is

defined by a type signature. The init block declares and initialises

task variables, that persist in memory across task invocations. Fi-

nally, the loop block contains the actual instructions that execute

sensors {

NUMBER_WIFI_NETWORKS : void −> int ,

WIFI_SIGNAL_LEVEL : void −> int ,

LOCATION : in t −> f l o a t

}

i n i t {

in t number_wi f i = 0 ;

in t w i f i _ l e v e l = 0 ;

f l o a t l a t i t u d e = 0 . 0 ;

f l o a t l o n g i t u d e = 0 . 0 ;

f l o a t a l t i t u d e = 0 . 0 ;

f l o a t accu racy = 0 . 0 ;

}

[in t @ "NUMBER_WIFI_NETWORKS : # networks " ,

in t @ "WIFI_SIGNAL_LEVEL : dBm" ,

f l o a t @ "LOCATION l a t i t u d e : deg r ee s " ,

f l o a t @ "LOCATION l ong i t u d e : deg r e e s " ,

f l o a t @ "LOCATION a l t i t u d e : meters " ,

f l o a t @ "LOCATION accuracy : meters "]

loop {

number_wi f i = NUMBER_WIFI_NETWORKS () ;

w i f i _ l e v e l = WIFI_SIGNAL_LEVEL () ;

l a t i t u d e = LOCATION (0) ;

l o n g i t u d e = LOCATION (1) ;

a l t i t u d e = LOCATION (2) ;

a c cu racy = LOCATION (3) ;

send on ly when p o s i t i o n i s a c cu r a t e

i f (a c cu racy <= 10) {

radio [number_wif i , w i f i _ l e v e l , l a t i t u d e ,

l ong i t ude , a l t i t u d e , a c cu racy] ;

}

}

Figure 4: FTL task for geo-referenced Wifi data collection.

BuildSys’17, November 8–9, 2017, Delft, The Netherlands Silva et al.

Figure 5: Live data streaming on a web browser

every time the task is activated; the activation period itself is not

defined by the task’s code, but instead configured by the gateway

upon installation. The loop block is annotated with a preceding

definition for the type for messages that can be sent in its body

(only one type of message can be sent), in terms of component

fields, their type, label, and textual description of the units used.

The example loop block illustrates the FTL support for sensor

reading, variable assignments, conditional branching (the if con-

struct), and data transmission (the radio instruction). The code

proceeds by first reading the Wifi and GPS measurements onto

task variables, and then transmitting if the GPS accuracy does not

exceed a threshold of 10 meters. Beyond the instructions shown in

the example, FTL also provides support for basic arithmetic over

scalar values and logical/relational operators over boolean values.

3.2 Runtime safety

By construction, FTL is quite constrained in order to provide guaran-

tees of safe execution and predictable memory footprint; we discuss

possible extensions of the language as future work in Section 7.

In terms of control flow, branching is strictly limited to plain

if-else blocks as in the example task. Thus, FTL provides no support

for iteration, function calls, or recursion. This guarantees proper ter-

mination of each task activation, while, in our view, still providing

reasonable expressiveness for plain data sensing.

To guarantee memory access safety, FTL provides support for

scalar types only (integer, floating-point, and boolean), excluding

composite types like arrays or lists for instance, which could make

it extremely complex to guarantee memory access safety at compile-

time. The type constraints also imply that a precise memory foot-

print is inferred by the compiler for a task. This footprint is bounded

by the task variables’ memory plus the maximum possible size of

the FTL VM stack (discussed below).

The use of the FTL language and VM also defines a secure sand-

box, as opposed to a scheme where arbitrary Android code is (down-

loaded and) used for data sensing tasks, raising well-known, com-

plex to detect and mitigate, security issues [10, 12].

3.3 FTL virtual machine

The listing shown in Figure 6 depicts the bytecode for the FTL task

given in Figure 4 in text form; the actual binary representation has

a size of just 137 bytes. The FTL VM is a typical stack-based VM,

i.e., each byte-code operation pops operands from a stack and/or

pushes its results onto to the stack.

As shown in the figure, the byte-code has three sections: data,

stack and text. The data section contains all the space for the pro-

gram variables, corresponding initial values, and other program

constants. The stack, whose size is precomputed statically, is used

for data manipulation (e.g., arithmetic, argument passing and stor-

age of return values) and, finally, the text section contains the actual

instructions to be executed. As should be reasonably intuitive from

the listing, instructions in the text block include loads (ld) onto

the stack, stores (st) from the stack onto memory, sensor reads

(rd), and radio transmission (rad). Other assorted instructions re-

late to arithmetic and flow control logic. For instance, the bf 60

is a conditional branch to the instruction with program counter

60, where ret (“return”) ends the execution for a task activation;

the flow corresponds to bypassing radio transmission, when the

accuracy value exceeds 10, as in the original FTL code.

4 IMPLEMENTATION

In this section we describe some details of a prototype implementa-

tion of the Flux architecture, and present a basic performance and

resource footprint evaluation for the Flux Android Service.

Streaming Sensor Data BuildSys’17, November 8–9, 2017, Delft, The Netherlands

. t o t a l 137

. o f f s e t 19

. data

. 0 0

. 4 0 . 0

. 8 1

. 1 2 2

. 1 6 3

. 2 0 10

. 2 4 number_wi f i

. 2 8 w i f i _ l e v e l

. 3 2 l a t i t u d e

. 3 6 l o n g i t u d e

. 4 0 a l t i t u d e

. 4 4 accu racy

. stack

. 4 8 0

. 5 2 0

. 5 6 0

. 6 0 0

. 6 4 0

. 6 8 0

. 7 2 0

. t ex t

. 0 rd NUMBER_WIFI_NETWORKS 0

. 3 s t number_wi f i

. 5 rd WIFI_SIGNAL_LEVEL 0

. 8 s t w i f i _ l e v e l

. 1 0 l d #0

. 1 2 rd LOCATION 1

. 1 5 s t l a t i t u d e

. 1 7 l d #1

. 1 9 rd LOCATION 1

. 2 2 s t l o n g i t u d e

. 2 4 l d #2

. 2 6 rd LOCATION 1

. 2 9 s t a l t i t u d e

. 3 1 l d #3

. 3 3 rd LOCATION 1

. 3 6 s t accu racy

. 3 8 l d accu racy

. 4 0 l d #10

. 4 2 f 2 i

. 4 3 f l e

. 4 4 b f 60

. 4 6 l d number_wi f i

. 4 8 l d w i f i _ l e v e l

. 5 0 l d l a t i t u d e

. 5 2 l d l o n g i t u d e

. 5 4 l d a l t i t u d e

. 5 6 l d accu racy

. 5 8 rad 6

. 6 0 r e t

Figure 6: Bytecode for the example FTL task

4.1 Programming framework

We used Java as the development language for all components, ex-

cept for the Web browser client that was implemented in Javascript.

The gateway and P/S broker were implemented as Apache Tomcat

web-services [4], the Flux service was programmed on Android

Studio [3] to run on Android 4.4 or higher, and the FTL compiler

was implemented using the ANTLR compiler infrastructure [29].

All components of the Flux architecture communicate using a com-

mon message format, specified using Google’s Protocol Buffers [5].

Plain TCP/IP sockets were used for gateway-device communica-

tions and Web-sockets for all other interactions (gateway-broker,

client-broker, and admin-gateway). For logging the data streams at

the broker we used an SQLite database [8].

4.2 The P/S broker and the gateway

The broker keeps track of all the region gateways and their task

pools. This information is updated every time an authenticated

user accesses a gateway to manage the corresponding task pool.

Any modifications introduced by the user are communicated to

the broker by the gateway. This information allows the clients to

get more details about the registered tasks and is also relevant to

perform other actions such as storing the streamed data in a more

flexible way in the broker. Once the broker gets the first items from

a data stream associated with a task, it creates a table on a SQLite

database with the specific fields to match the task output data and

metadata (e.g., name, units). The broker also keeps track of the

active clients so it can forward the data or notify possible changes

in the data stream.

Each gateway stores a list of registered tasks, previously up-

loaded by an administrative user, that can be injected or updated

on the mobile devices. When a new device connects to the gateway,

the latter compares the registered pool of tasks to the tasks running

on the device and sends missing tasks or updates to the device.

This synchronization of the running tasks also takes into account

whether a given device meets all the requirements for running the

tasks, e.g. if it has all necessary sensors. If a task’s requirements are

not fully met, it is ignored for that particular device. When a device

detects that a gateway is no longer connected, the task associated

with it are killed and the memory reclaimed.

4.3 The Android service

The implementation of the Android service follows the organiza-

tion depicted in Figure 3. It is composed of four main modules: the

gateway interface, the task scheduler, the FTL virtual machine, and

a sensor control interface. As a service, it runs in the background

without need for user interaction. A user-interface application,

shown in Figure 7, can in any case be used to turn the gateway con-

nection on or off, or the entire service on or off, besides providing

basic information regarding the state of running tasks.

Figure 7: The Flux service Android application.

The basic rationale and functionality of the scheduler and the

virtual machine modules were discussed earlier in the paper (Sec-

tions 2 and 3), hence we merely provide some complementary

details regarding the implementation of the sensor control and

gateway interfaces.

The sensor control interface is responsible for obtaining sen-

sor readings, interacting with assorted Android OS APIs for that

purpose. The task scheduler directs it to enable sensors on/off as

tasks are installed/removed, and the virtual machine obtains sensor

readings from it. The module implements an adaptive activation/de-

activation strategy for sensors. Active sensors may consume signif-

icant battery power (e.g., as is the case of GPS), whilst on the other

BuildSys’17, November 8–9, 2017, Delft, The Netherlands Silva et al.

hand their repeated initialisation/shutdownmay cause unnecessary

latency. In particular, initialisation may imply high latency until

valid readings are obtained (again as in the case of GPS).

The sensor activation strategy takes into account the periodicity

of tasks with respect to the sensors they read. For a task with small

period (high-frequency), below a certain threshold, the sensors it

uses are enabled before the first task activation and henceforth

left on. Otherwise, for a task with larger period (low-frequency),

the sensors it uses are turned on and off respectively before and

after each task activation. In the latter case, to avoid stale reads

when the task is activated again, the module also takes care to

schedule the sensor activation for a configurable amount of time

before the deadline of the next task activation is reached. The period

threshold is configured per each type of sensor, attending to a (for

now relatively heuristic) balance between initialisation latency and

battery consumption, for instance the threshold is currently set to

2 minutes for GPS.

Regarding the gateway interface, it employs some built-in data

buffering mechanisms for network resilience and for reducing bat-

tery/bandwidth consumption. Data produced by tasks is buffered

when a connection to the gateway is lost, making the service robust

to network outages. Moreover, time and buffer size limits may be

set and fine-tuned if desired, so that transmission to the gateway

occurs periodically using buffered data, rather than continuously

using live data.

4.4 Performance evaluation

We conducted an evaluation of the Android service in terms of

resource consumption and virtual machine performance during

byte-code execution. For the evaluation we used a Google Nexus

tablet running Android 6.0 with 2 GB of RAM and a dual-core

2.3 GHz CPU, plus a gateway installed on a 4-core machine with

12 GB of RAM that was connected to the same network as the

mobile device. This was done to mitigate exterior interference on

the communication between the device and the gateway, as we

wished to evaluate the performance of the service in isolation. Note

also that a much more lightweight configuration can be used for

hosting a gateway (and/or a broker), like the one for the case-study

experiment discussed in Section 5.

The service was setup using five distinct configurations. The first

configuration had no tasks running, with the purpose of measuring

the footprint of the service when idle. The four other configurations

resulted from successively increasing the number of running tasks

by one, and doubling the frequency of each new task by a factor of

two. The four tasks were: (1) the example Wifi survey task running

at 1 Hz, (2) an atmospheric pressure sensing task at 2 Hz, (3) a

gyroscope sensing task at 4 Hz, and (4) an accelerometer sensing

task at 8 Hz.

For each configuration, we then conducted 5 monitoring sessions

of a 2-minute run of the service using the Android Debug Shell (adb).

In terms of resource consumption, we sampled the CPU utilisation

and RAM usage in 1-second intervals, plus the total of the TCP/IP

data transmitted by the service in each 2-minute interval. The

results for the resource consumption (with the corresponding 95%

confidence intervals) are shown in Table 1, in terms of average CPU

Table 1: Resource consumption.

Tasks CPU (%) RAM (KB) Net. (bytes/s)

None (∅) 0.17 ± 0.04 9731 ± 2.8 6.2 ± 1.1

WS 0.25 ± 0.06 9851 ± 3.3 86.3 ± 15.8

WS + AP 0.32 ± 0.06 9864 ± 3.3 139.0 ± 25.0

WS + AP + GS 0.58 ± 0.08 9877 ± 3.8 288.9 ± 52.4

WS + AP + GS + AS 1.39 ± 0.10 9915 ± 5.6 576.6 ± 104.0

WS: Wifi survey (1Hz); AP: atmospheric pressure sensing (2 Hz);

GS: gyroscope sensing (4Hz); AS: accelerometer sensing (8 Hz)

Table 2: Byte-code size and execution time.

Task Size (bytes) Exec. time (ms)

Wifi survey (WS) 137 4.55 ± 0.20

Atmospheric pressure sensing (AP) 26 0.23 ± 0.01

Gyroscope sensing (GS) 74 0.44 ± 0.02

Accelerometer sensing (AS) 74 0.42 ± 0.01

and RAM usage during the interval, as well as the average network

bandwidth used to send the sensed data.

Overall, we can observe that the service has a very low footprint

for all the measures we considered. On average, CPU usage is below

2% in all configurations, the RAM used is under 10 MB, and the

consumed network bandwidth is less than 1 KB/s. Moreover, the

implementation scales well as the number of tasks increase: the

CPU and RAM overhead of adding one more task at double the

frequency is almost negligible, whereas the consumed network

bandwidth increases naturally owing up to the need of transmitting

more sensed data.

In addition to resource consumption, we also measured the per-

formance of byte-code execution within the virtual machine. This

was done in terms of the average execution time per activation for

each of the four benchmarking tasks. This was done for the last

evaluation configuration, the one with all tasks enabled. The results

(with the corresponding 95% confidence intervals) are shown in

Table 2, that lists the byte-code size and average execution time

in milliseconds per each of tasks. Again, a low-footprint pattern is

observed. The Wifi survey task, with larger code size, is the most

time-consuming but still takes less than 5 milliseconds on average

to run. All other tasks run in less than 0.5 milliseconds, on average.

5 CASE STUDY

For evaluating Flux, we conducted a controlled real-world experi-

ment where Wifi service quality was surveyed over a certain area.

Volunteer users carried Android devices and walked through pre-

scribed paths along the survey area, while the Flux Android service

executed an FTL task to collect GPS-referenced Wifi signal data

and streamed that data to a Flux gateway. The following sections

describe this experiment in detail.

5.1 Outline

The survey area, depicted in Figure 8, has a dimension of roughly

100 × 150 meters, and comprises the Computer Science department

Streaming Sensor Data BuildSys’17, November 8–9, 2017, Delft, The Netherlands

Text

C

B

A

Figure 8: Survey area.

building that is part of the Faculty of Science of our university

(A in the figure), plus walkways in a garden north of the same

building1. The figure also depicts an outline of the paths followed by

volunteer users carrying mobile devices, covering corridors within

the department building plus walkways outside. The walkways

pass through the outside of two other university buildings (B and

C in the figure).

Open-air GPS precision was better than within the building (as

expectable), but anyway judged to be fair enough in both vicinities

(as discussed below). The department building has two floors, but

data was sampled only for the second floor, since most of the ground

floor has reserved access (there is only a small portion of corridors).

The Wifi network subject to monitoring is the eduroam2 instal-

ment at our university, the most commonly used campus network

by students and staff. The FTL task running on devices collected two

items of information over time and space: the Wifi signal strength,

and the number of nearby networks also detected by Android.

The aim was to analyse a suspected inverse correlation between

eduroam’s Wifi signal strength and interference from other active

networks, in addition to physical location.

1The satellite and map imagery used in this paper was obtained from Google Earth, in
compliance with Google’s terms (https://www.google.com/permissions/geoguidelines.
html), and Open Street Maps, in compliance with the ODbL license (http://www.
openstreetmap.org/copyright).
2http://eduroam.org

5.2 Setup

For the experiment, we used a CentOS Linux virtual machine (Cen-

tOS VM) with 2 cores and 1837 MB of RAM, hosted on a OpenStack

cloud infrastructure. An Apache Tomcat application server instance

runs on the VM, hosting a Flux gateway and a Flux P/S broker.

The CentOS VM is accessible over the Internet, allowing devices

running the Flux Android service to install tasks (and relay data)

from (to) the gateway, and external clients to access the P/S broker.

This is a relatively simple setup, but one that served the purpose of

the experiment; note that, as mentioned earlier in the paper, multi-

ple gateways running on different hosts can be used, interacting

with a broker on another, possibly distinct, host.

Table 3: Android device characteristics

Type Version Vendor

Tablet 6.0 Google (9)

Smartphone 7.0 Samsung (1)

6.0 Asus (1), Huawei (1), Lenovo (1), LG

(1), OnePlus (2), Vodafone (1), Wiko

(2)

5.1 Xiaomi (1)

4.4 Alcatel (1)

For measurements we used a total of 23 devices, divided in two

groups: 9 Google Nexus tablets running Android 6.0 that we pro-

vided the volunteers for use, plus 12 personal smartphones owned

by the volunteer themselves from various vendors and running as-

sorted Android versions, predominantly Android 6.0 (the 9 Google

tablets + 9 smartphones), but also 7.0, 5.1, and 4.4 (one device per

each version). Table 3 summarises the basic characteristics of these

devices. The Android service was installed in each of the devices,

followed by an automatic download and installation of the FTL task

for the survey by the service itself, as soon as it got a connection

to the gateway. The FTL task is the same as described earlier in

Section 2, with the difference that no HDOP filter is set when trans-

mitting to the gateway (i.e., the if guard condition in Figure 4 is

omitted), and was configured to run with a periodicity of 4 seconds.

5.3 Results

After setup, the volunteers conducted 33 trips along the prescribed

survey paths, resulting in the collection of 2726 data sample mea-

surements, 1193 inside the department building and 1533 outside.

For data analysis, we filtered out measurements for which the GPS

horizontal dilution of precision (HDOP) exceed 10 meters, reducing

our data set to 1922 samples (69% of the original) inside the building

and to 1212 samples (79% of the original) outside. Figure 9 depicts

the filtered data set as geo-referenced “heat maps”, in terms of the

eduroam Wifi signal strength (9a), the number of detected Wifi

networks (9b), and the GPS HDOP (9c). In the plots, rendered using

QGis [7], the colors depicts the average measure for data points

within each hexagon that forms the heat map (buildings are marked

A to C as in Figure 8).

From the plots, we canmake a few direct observations. Regarding

eduroam’s Wifi signal strength, clearly it is significantly weaker in

the outside area. An immediate decrease inWifi signal is observable

BuildSys’17, November 8–9, 2017, Delft, The Netherlands Silva et al.

C

B

A
D

(a) Wifi signal strength (dBm)

C

B

A
D

(b) Number of networks

C

B

A
D

(c) GPS precision (HDOP)

Figure 9: Data plots for collected data

Wifi
signal
(dBm)

networks

Figure 10: Wifi signal vs. number of Wifi networks inside

the department building.

just a few meters outside the building, and the signal only tended

to go up as users move north and get near the two other university

buildings. In contrast, the quality of geo-referencing is less reliable

inside the building (as would be expectable), given that HDOP

measures are clearly better (lower) outside (as also highlighted by

the HDOP threshold filtering discussed above).

Regarding interference between eduroam and other networks,

we can observe areas inside the building a where a significantly

higher number of networks are active, on the west side particularly

where a considerable number of computer labs are concentrated, the

D “hotspot” in the plots of Figure 9b. From the plot it seems apparent

that these do not interfere with eduroam’s Wifi signal significantly,

however. To clarify the analysis, we depict a scatter plot in Figure 10

relating the Wifi signal and the number of networks; no correlation

pattern emerges, as illustrated by the relatively uniform distribution

of scatter points per network count, and the point is reinforced by

the trend line shown for the average signal. We did not pursue an

exhaustive analysis of this finding, but conjecture that it relates to

the fact that there are several eduroam’s access points scattered

around the building, and suspect that they should also typically have

a stronger signal than more modest special-purpose Wifi access

points/routers operating in computer labs.

6 RELATEDWORK

Mobile Data Sensing and Mobile Crowd Sensing are emerging

paradigms with proven monitoring applications in areas like health,

environment urban management, and citizen science. In what fol-

lows, we survey several examples of state-of-the-art systems and

applications, then make an overall comparative assessment with

the Flux proposal.

SmartRoad [18] is a crowd-sensing road system for mapping

traffic regulators, such as traffic lights and stop signs. It aims to

avoid expensive road surveys and provide data that can improve

both safety and help compile fuel-efficient routes. It resorts to a

smartphone-based crowd-sensing system that collects data from

the GPS sensor. It uses a client-server architecture in which the

smartphone acquires the data and sends it to the server where it

is processed. An interesting feature is that, to reduce errors due to

poor sensor quality, environmental noise or even improper handling

of the phone, the information of multiple vehicles is combined to

improve the results. Users are motivated to participate by providing

the collected data as input for navigation systems.

NoizCrowd [32] proposes the use of smartphone sensors to col-

lect noise levels from a region for the purpose of generating accurate

noise models. A large data set is required for this, hence the op-

tion for a crowdsourcing application. The system consists of four

components: (a) an application located in the smartphones that is

responsible for recording the noise levels, using the microphone,

and the current position, using the GPS sensor; (b) storage to keep

Streaming Sensor Data BuildSys’17, November 8–9, 2017, Delft, The Netherlands

all the data received from the application; (c) a model generator,

and; (d) a visualisation and data transfer component. The data col-

lection consists of recording the mean noise levels in decibels, as

well as measuring peaks, in intervals of only a few seconds. The

data is then sent to the system’s data storage via a web service.

Medusa [24] is a programming framework for general purpose

crowd-sensing. It defines a sensing objective as a task that is pro-

vided by a requestor and is carried out by volunteers that act as

workers. Each task is defined by a XML-based domain-specific

language, that provides high-level abstraction for specifying the

sequence of steps in the sensing task. The framework consists of

a distributed runtime system separated in two main components:

the Medusa Cloud Runtime and the Medusa Runtime on the Smart-

phone. The Cloud Runtime is responsible for receiving and parsing

the tasks, keep track of the different generated instances for each

task and manage the associated workers. This uses the Amazon

Mechanical Turk [1] system as a backend. The Runtime on the

Smartphone is in charge of receiving the tasks from the Cloud

Runtime and running them in a sandbox environment.

Sensus [33] is a system designed for human-subject studies. The

aim is to support scheduled and sensor-triggered surveys, and in-

tegrate the survey response with data from the embedded sensors

on the participant mobile device. The system is composed of an

application that runs on the mobile devices and a cloud storage.

Tasks are generated using a mobile app and disseminated to the

study participants through the Amazon Mechanical Turk [1], as an

encrypted JSON file. Each participant then decrypts the sensing

task and loads it into the Sensus mobile application. When the task

is complete, the collected data is submitted to Amazon S3 [2] for

retrieval and analysis by researchers.

SARANA [17] is a system architecture that supports the devel-

opment of applications that execute tasks on remote devices based

on the services they can provide (e.g. camera, image analysis). It

provides a language and a run-time system that allow programmers

to express spatial regions of interest as well as resource constraints

needed to run the tasks. SARANA makes use of a domain-specific

language, a superset of Java, that provides abstractions for device

discovery, task distribution under spatial, temporal, and resource

constraints, and processing of aggregated data.

Device Analyzer [30] is a mobile application, developed at the

University of Cambridge, that collects data from mobile phones

and transmits it to a central server where the dataset is kept and

analysed for pattern extraction. The authors mention that several

patterns emerge from the data and can be used to implement rec-

ommendation systems, e.g., the best phone plan based on phone

usage by the user and apps that may be of interest.

PressureNet [21] is the first application for smartphones built on

top of atmosphere sensors, in this case barometers. The information

collected from the devices is uploaded to the cloud where it can be

used as a real-time weather monitoring and forecast network.

OpenSignal [6] is an application that uses crowdsourced infor-

mation on wireless connections and signal strength to create a

connectivity map for users. Using this feedback, the application

can give the users instructions, e.g., move in a certain direction,

to improve their connectivity. The application also provides speed

tests directed to popular service providers like Google and Facebook

and upload/download tests using popular CDNs.

Zooniverse [27] is a quite successful citizen-science platform that

allows users of mobile devices to contribute to scientific projects,

e.g., by helpingwith the processing of large datasets. After installing

the mobile application the user selects one or more projects to

contribute and receives data chunks to process. The results are

submitted by the application to the cloud.

Flux is more closely related to systems like Medusa, Sensus, and

SARANA, in the sense that it uses a domain-specific language to

define sensing tasks and provides the necessary infrastructure to

inject them into the mobile devices. By the use of a constrained

language and VM, however, Flux guarantees safe and predictable

execution and resource usage. Also, unlike Medusa and Sensus,

Flux tasks run continuously in the background gathering sensor

data, without need for user intervention. And, unlike SARANA, all

system layers operate modularly and are configured independently.

In Flux, tasks are associated with geographical regions managed

by gateways, allowing for scenarios in which devices can roam

between regions and perform different tasks accordingly. SARANA,

discussed earlier, also accounts for device location when assigning

tasks. The concept of region has also been proposed as a program-

ming abstraction forWSN [31]: a region can be defined based on cri-

teria such as device location, radio connectivity, or values for sensed

data. The main purpose is to enable online data pre-processing or

aggregation to reduce the bandwidth (and energy) required to send

the streams to the base stations. Regiment [22], for example, uses

regions in combination with data streams as fundamental program-

ming abstractions. As a functional macro-programming language,

it does not support the dynamical reconfiguration of the tasks

since the sensor network needs to be reprogrammed as a whole.

Agilla [15], on the other hand, implements a mobile-agent program-

ming flavour, where each agent (a task) can proactively migrate

across the network, executing code that depends on the conditions

sensed at each node. It differs from Flux in that nodes are typically

geographically fixed, whereas tasks may move.

7 FINAL REMARKS

In this paper we presented the Flux framework for streaming sensor

data from dynamically reprogrammable tasks injected in mobile

devices. We described its architecture, prototype implementation,

and a case-study application as a proof-of-concept, demonstrating

the dynamic injection of tasks in mobile devices moving around in a

given region, and the acquisition of the corresponding data streams.

Flux tasks are developed in the FTL domain-specific programming

language, boasting enough expressiveness for basic sensing tasks

while providing compile time guarantees of runtime safety, and

compiled to extremely compact byte-code that is executed by a

low-footprint virtual machine on Android.

We have a working proof-of-concept of the system that imple-

ments the roaming scenario presented in Figure 1, i.e., letting de-

vices engage with gateways dynamically as their physical location

changes. As a first approximation we opted to define regions with

geographical boundaries and associated with specific gateways that

inject tasks in the devices and receive the data produced by the

devices. Regions, however, can be defined more broadly, as a set of

boundary conditions on attributes other than geographical position,

e.g., the region formed by all devices reading temperatures higher

BuildSys’17, November 8–9, 2017, Delft, The Netherlands Silva et al.

than 30◦C and humidity below 50%, the region formed by devices

whose owners are interested in sports. Such attribute-based regions

have been suggested in the setting of programming languages for

WSN [22, 31], mostly with the goal of supporting online data aggre-

gation and reducing power consumption due to communication. In

the mobile setting, however, the hardware and energy limitations

of WSN are not present and more sophisticated uses of regions are

perhaps possible. Such regions would also provide the means to

make task submission more fine-grained in the sense that only a

subset of all devices in a geographical region, those with certain

attributes, are injected with a given task pool.

In association, the policy used to inject/kill the tasks, is, of course,

related to the way region boundaries are detected. In this work we

took the simple view that tasks are injected as a device enters

a region and killed as they leave it. Flux is already resilient to

problems such as a temporary failure or disconnection from the

device despite being in the region; when it surfaces again, the device

synchronises with the gateway again and the tasks are reloaded.

There are also failures related to errors in the sensors, e.g., missing a

reading or providing a very imprecise, making it difficult to establish

whether or not a device is still within a region’s boundaries, and

errors related to rapidly changing conditions, e.g., devices moving

too fast between regions for correct task injection/killing semantics

to be enforced. These are problems for future work. We are also

looking at event-driven activation for tasks, beyond the current

support for strict periodic activation. The motivation is that many

sensing activities are not continuous over time but instead triggered

by the onset of certain environmental conditions (spatial location,

hour of the day, temperature, available light, etc) or by the users

themselves in crowd-sensing scenarios.

Extending FTL for more expressive online data processing, whilst

preserving runtime-time safety guarantees, is another topic worthy

of future research. Currently the language is quite simple, with

scalar types, sensor/actuator I/O, basic arithmetic and control flow.

Adding constructs, e.g., in support of iteration or array types, can

in principle be built-in into the FTL compiler leveraging technolo-

gies like SMT solvers [19] to preserve runtime safety. Furthermore,

FTL currently has no communication constructs that allow neigh-

bouring nodes to exchange data for aggregation or pre-processing

purposes. This is particularly desirable given the rich networking

capabilities of mobile devices, in particular in the context of mo-

bile edge-clouds, where nearby devices form a network to work

collaboratively, a topic we are also currently working on [25, 26].

ACKNOWLEDGMENTS

Thisworkwas funded by projects HYRAX (CMUP-ERI/FIA/0048/2013,

FCT) and SMILES (NORTE-01-0145-FEDER-000020, NORTE 2020).

REFERENCES
[1] [n. d.]. Amazon Mechanical Turk. https://www.mturk.com/. ([n. d.]).
[2] [n. d.]. Amazon Web Services Simple Storage Service (S3). https://aws.amazon.

com/s3/. ([n. d.]).
[3] [n. d.]. Android Studio. https://developer.android.com/studio/. ([n. d.]).
[4] [n. d.]. Apache Tomcat. http://tomcat.apache.org/. ([n. d.]).
[5] [n. d.]. Google Protocol Buffers. https://developers.google.com/protocol-buffers/.

([n. d.]).

[6] [n. d.]. OpenSignal. https://opensignal.com/. ([n. d.]).
[7] [n. d.]. QGis. http://www.qgis.org/. ([n. d.]).
[8] [n. d.]. SQLite. https://www.sqlite.org/. ([n. d.]).
[9] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. 2002. A Survey on

Sensor Networks. IEEE Communications Magazine 40, 8 (2002), 102–114.
[10] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,

and P. McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-sensitive
and Lifecycle-aware Taint Analysis for Android Apps. In Proc. PLDI. ACM, 259–
269.

[11] B. Guo and Z. Wang and Z. Yu and Y. Wang and N. Y. Yen and R. Huang and X.
Zhou. 2015. Mobile Crowd Sensing and Computing: The Review of an Emerging
Human-Powered Sensing Paradigm. ACM Computing Surveys 48, 1 (2015), 1–31.

[12] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. 2011. A Study of Android
Application Security. In Proc. SEC. USENIX, 21–21.

[13] G. Ferro, R. Silva, and L. Lopes. 2015. Towards Out-of-the-Box Programming
of Wireless Sensor-Actuator Networks. In Proc. CSE. IEEE, 110–119. https:
//doi.org/10.1109/CSE.2015.20

[14] C.-L. Fok, G.-C. Roman, and C. Lu. 2005. Rapid Development and Flexible De-
ployment of Adaptive Wireless Sensor Network Applications. In Proc. ICDCS.
IEEE, 653–662.

[15] C. L. Fok, G. C. Roman, and C. Lu. 2009. Agilla: A Mobile Agent Middleware for
Self-adaptive Wireless Sensor Networks. ACM Trans. Auton. Adapt. Syst. (2009),
16:1–16:26. https://doi.org/10.1145/1552297.1552299

[16] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. 2003. The
nesC Language: A Holistic Approach to Network Embedded Systems. In Proc.
PLDI. ACM, 1–11.

[17] P. Hari, K. Ko, E. Koukoumidis, U. Kremer, M. Martonosi, D. Ottoni, L.-S. Peh, and
P. Zhang. 2008. SARANA: Language, compiler and run-time system support for
spatially aware and resource-aware mobile computing. Philosophical Transactions
of the Royal Society A 366 (2008), 3699–3708.

[18] S. Hu, L. Su, H. Liu, H. Wang, and T. F. Abdelzaher. 2015. SmartRoad: Smartphone-
Based Crowd Sensing for Traffic Regulator Detection and Identification. ACM
Transactions on Sensor Networks (2015), 55:1–55:27. https://doi.org/10.1145/
2770876

[19] S. Lahiri and S. Qadeer. 2008. Back to the Future: Revisiting Precise Program
Verification Using SMT Solvers. In Proc. POPL. ACM, 171–182.

[20] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell. 2010.
A Survey of Mobile Phone Sensing. IEEE Communications Magazine 48, 9 (2010),
140–150.

[21] C. F. Mass and L. E. Madaus. 2014. Surface pressure observations from smart-
phones: A potential revolution for high-resolution weather prediction? Bulletin
of the American Meteorological Society 95, 9 (2014), 1343–1349.

[22] R. Newton and M. Welsh. 2004. Region Streams: Functional Macroprogramming
for Sensor Networks. In Proc. DMSN. ACM, 78–87.

[23] P. Piejko. [n. d.]. Global Mobile Statistics 2017. https://mobiforge.com/
research-analysis/13-statistics-on-mobile-web-performance-in-2017. ([n. d.]).

[24] M-R. Ra, B. Liu, T. F. La Porta, and R. Govindan. 2012. Medusa: A Programming
Framework for Crowd-sensing Applications. In Proc. MobiSys. ACM, 337–350.
https://doi.org/10.1145/2307636.2307668

[25] J. Rodrigues, J. Silva, R. Martins, L. Lopes, U. Drolia, P. Narasimhan, and F. Silva.
2016. Benchmarking Wireless Protocols for Feasibility in Supporting Crowd-
sourced Mobile Computing. In Proc. DAIS. Springer, 96–108.

[26] P. M. P. Silva, J. Rodrigues, J. Silva, R. Martins, L. Lopes, and F. Silva. 2017. Using
Edge-Clouds to Reduce Load on Traditional WiFi Infrastructure and Improve
Quality of Experience. In Proc. ICFEC. IEEE, 61–67.

[27] R. Simpson, K. R. Page, and D. De Roure. 2014. Zooniverse: Observing theWorld’s
Largest Citizen Science Platform. In Proc. WWW. ACM, 1049–1054.

[28] The Internet Society. 2015. Internet Society Global Report 2015 - Mobile
Evolution and Development of the Internet. https://www.internetsociety.org/
globalinternetreport/2015/assets/download/IS_web.pdf. (2015).

[29] T. Parr. [n. d.]. ANTLR (ANother Tool for Language Recognition). http://www.
antlr.org/. ([n. d.]).

[30] D. T. Wagner, A. Rice, and A. R. Beresford. 2013. Device Analyzer: Understanding
Smartphone Usage. In Proc. MobiQuitous. Springer, 195–208.

[31] M. Welsh and G. Mainland. 2004. Programming Sensor Networks Using Abstract
Regions. In Proc. NSDI. USENIX Association.

[32] M. Wisniewski, G. Demartini, A. Malatras, and P. Cudré-Mauroux. 2013.
NoizCrowd: A Crowd-Based Data Gathering and Management System for Noise
Level Data. In Proc. MobiWIS. Springer, 172–186. https://doi.org/10.1007/
978-3-642-40276-0_14

[33] H. Xiong, Y. Huang, L. E. Barnes, andM. S. Gerber. 2016. Sensus: A Cross-platform,
General-purpose System for Mobile Crowdsensing in Human-subject Studies. In
Proc. UbiComp. ACM, 415–426. https://doi.org/10.1145/2971648.2971711

