
1

Statistically robust evaluation of stream-based
recommender systems

João Vinagre, Alı́pio Mário Jorge, Conceição Rocha, and João Gama

Abstract—Online incremental models for recommendation are nowadays pervasive in both the industry and the academia. However,
there is not yet a standard evaluation methodology for the algorithms that maintain such models. Moreover, online evaluation
methodologies available in the literature generally fall short on the statistical validation of results, since this validation is not trivially
applicable to stream-based algorithms. We propose a k-fold validation framework for the pairwise comparison of recommendation
algorithms that learn from user feedback streams, using prequential evaluation. Our proposal enables continuous statistical testing on
adaptive-size sliding windows over the outcome of the prequential process, allowing practitioners and researchers to make decisions in
real time based on solid statistical evidence. We present a set of experiments to gain insights on the sensitivity and robustness of two
statistical tests – McNemar’s and Wilcoxon signed rank – in a streaming data environment. Our results show that besides allowing a
real-time, fine-grained online assessment, the online versions of the statistical tests are at least as robust as the batch versions, and
definitely more robust than a simple prequential single-fold approach.

Index Terms—Recommender systems, data streams, evaluation

F

1 INTRODUCTION

IN several fields of fundamental and applied research, on-
line algorithms have been introduced to learn predictive

and analytical models from continuous streams of data. In
the case of recommender systems, online algorithms main-
tain recommendation models by updating them incremen-
tally with data from a stream of user feedback. Evaluating
such algorithms remains an open issue. The importance of
making decisions based on solid evidence is undeniable
not only in the industry, but also in the academic commu-
nity, where robust, interpretable and repeatable evaluation
methodologies are essential to conduct empirical studies.
Bad decisions, supported by weak evidence – or no evidence
at all –, potentially lead to loss of income or customer trust
in the industry, and cause inefficiencies in the scientific
discovery process.

Although there are several well studied methodologies
to evaluate batch recommendation algorithms and static
models [1], two important challenges are still present when
evaluating incremental algorithms.

The first challenge is how to evaluate an ever-evolving
recommender system. Static models can be easily evaluated
by splitting available data in learning and testing subsets,
training the model with the first and measuring the model’s
performance with the latter. Although it is possible to
use the same methodology with incremental models in an
offline setting, it is not trivial how to apply it in online

• J. Vinagre (jnsilva@inesctec.pt), is with LIAAD - INESC TEC, Porto,
Portugal and FCUP, University of Porto, Portugal.

• A. M. Jorge is with LIAAD - INESC TEC, Porto, Portugal and FCUP,
University of Porto, Portugal.

• C. Rocha is with CPES - INESC TEC, Porto, Portugal and ESTG,
Politécnico do Porto, Felgueiras, Portugal.

• J. Gama is with LIAAD - INESC TEC, Porto, Portugal and FEP,
University of Porto, Portugal.

environments, where the model is continuously updated
with fresh data. In essence, batch evaluation protocols are
designed for models learned offline and simply do not
attempt to simulate the real-world environments in which
incremental algorithms are designed to operate.

The second challenge is how to statistically validate
hypotheses. In a batch environment, we can make statisti-
cally robust comparisons between several algorithms over
several datasets using widely discussed methods [2], [3],
[4]. In a data stream environment, the simple comparison
between two algorithms over a single data stream remains
insufficiently studied [5]. This happens for two reasons.
First, performing multiple trials over a data stream is not a
straightforward task, and therefore only instance-based tests
such as McNemar are applicable [6]. Second, assuming that
algorithms deal with an unbounded amount of data points,
the scope of any assessment is obviously limited in time,
which necessarily calls for protocols that implement fre-
quent or continuous assessment. This paper provides a step
forward in the evaluation of stream-based recommender
systems, by applying Wilcoxon, an on-demand trial-based
statistical test, over the outcome of any two alternative
algorithms.

The application of statistical tests to stream-based rec-
ommender systems has been proposed in [7], [8], [9], using
prequential evaluation. However, some questions remain
unanswered:

1) When comparing the outcome of two alternative al-
gorithms over the same data stream, can we observe
the significance of the differences between them at any
desired point in time?

2) Can we use trial-based tests – such as Wilcoxon – in a
streaming setting?

3) Assuming we are able to perform statistical tests online,
how robust are those tests to Type I and Type II errors?

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2019.2960216

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

Question 1 has been partially answered in [7], using
McNemar’s test over a sliding window. However, there is
no trivial method to set the window size, that is critical to
the outcome of the statistical test. In this paper, we propose
a methodology in which the window size is automatically
adjusted online, enabling a parameter-free real-time moni-
toring of the statistical significance of differences between
algorithms.

We also answer questions 2 and 3. Our starting point
is the work on evaluation of classification methods over
data streams by Bifet et al. [5], which we adapt to the
recommendation problem and extend with the ability to
provide continuous, online statistical validation.

We present the following contributions:

• We propose a framework to conduct anytime, on-
demand statistical testing, with adaptive-size windows,
using McNemar and Wilcoxon, two well-known non-
parametric tests;

• We adapt and extend the three distributed k-fold vali-
dation methods proposed in [5], which are designed for
classification problems, to recommendation problems,
to enable the usage of trial-based tests in streaming
environments;

• We provide insights on the sensitivity and robustness
of the above methodologies, using two non-parametric
statistical tests commonly used with machine learning
algorithms;

• We illustrate the usefulness of our methodology by
applying it to a scenario where we wish to decide, con-
tinuously and in real time, the best of two concurrent
recommendation algorithms.

An always-available statistically robust assessment of
algorithms is especially helpful in online evaluation meth-
ods that include user action [10], including A/B or mul-
tivariate testing [11]. Another advantage is the ability to
automate many decisions based on the continuous compar-
ison between algorithms. Potential applications include the
automatic switching between algorithms, online parameter
adjustment, or re-weighting of ensemble models. It can also
help in the deployment of new algorithms, automatically
activating them when the learning phase is stabilized. From
a more analytical perspective, it allows us to gain insights on
a long term evolution of the performance of recommenda-
tion models. We focus on the field of recommender systems,
but we strongly believe that our findings can be generalized
to other online learning tasks, such as online regression,
reinforcement learning or semi-supervised learning.

In the remainder of the paper, we describe related work
in Section 2, then we introduce the particular environment
of online, stream-based recommender systems in Section
3, and prequential evaluation in Section 4, with emphasis
in its application in the field of recommender systems.
The framework to perform statistical tests with prequential
evaluation in online streaming environments, is described
in Section 5. Our experiments are described in Section 6,
followed by a discussion with recommendations and limi-
tations of this work in Section 7. In Section 8 we provide
an illustrative application of our framework. Finally, we
conclude in Section 9.

2 RELATED WORK

Evaluation of online algorithms for classification problems
is thoroughly studied in the field of data stream mining
[12]. In [13], Gama et al. discuss a series of issues in the
evaluation of stream-based classifiers. The authors illustrate
the benefits of using prequential evaluation, by maintain-
ing statistics of the outcome of the incremental learning
process in sliding windows with arbitrary size, or using
fading factors with fixed magnitude. More recently, Bifet et
al. [5] propose a k-fold evaluation methodology, enabling
statistical testing of classifiers that learn from data streams,
inspired by the typical k-fold cross-validation of batch-
learning algorithms. In the same paper, the authors also
propose the usage of adaptive windows [14] in prequential
evaluation, eliminating the need of arbitrarily setting the
size for sliding windows.

In the field of recommender systems, several proposals
have been made on incremental methods. Many of these
proposals are based on classic train/test protocols designed
for batch algorithms [15], [16], [17], [18], [19], [20], [21].
Other proposals evaluate algorithms using a chunk-based
sequential approach [22] and [23]. The idea is to divide the
dataset in N sequential chunks, using chunk n as training
data and chunk n+ 1 for testing.

Prequential evaluation has been used in [8], [24], [25],
[26], [27] in stream-based recommendation problems, but
without statistical testing. In [7] the focus is on the actual
prequential evaluation methodology, and proposes statisti-
cal testing, using McNemar’s test over a sliding window
with arbitrary size. Prequential evaluation is also used in
a more elaborated protocol in [28], [29], [30], [31] with
initial batch training, mainly to avoid cold-start issues. This
protocol is divided in three stages. First, an initial model is
learned in batch from the available data. Then, the model
initiates incremental learning and uses the incoming data
to evaluate the batch model. Finally, at the third stage,
prequential evaluation is applied, with incoming data points
being used for both learning and evaluation. Matuszyk et
al. use statistical testing in [28] to validate results. The
authors divide the dataset in non-overlapping subsets, and
then apply the Friedman test [2]. Each subset is treated as
an individual trial. This protocol enables straightforward
application if trial-based statistical tests. However, although
evaluation can be performed online – at least at the final
stage –, statistical significance is only possible to asses
offline, since it requires pre-processing a fixed size dataset.

In this paper we propose a methodology based on
contributions by Bifet et al. [5] and Vinagre et al. [7], but
extending them to the evaluation of Top-N recommender
algorithms that learn from data streams. We additionally
propose a methodology to enable on-demand statistical val-
idation of results in real time by automatically maintaining
variable-size windows with the outcome of the prequential
process. This paper addresses the two challenges stated in
Section 1, solving the limitations of previously contributed
methodologies. We specifically focus on the limitations of
[7] in the pairwise comparison of algorithms over a single
data stream, namely the uncertainty about statistical tests
over a single instance of the problem, and the usage of data
windows with arbitrary sizes.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2019.2960216

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

3 STREAM-BASED RECOMMENDER SYSTEMS

With the explosion of the volume, speed and variety of
user-feedback data, recommendation with online streaming
data has become an active field of study [32]. Stream-based
algorithms make no assumptions on the order and rate of
arrival of data. Runtime requirements are accounted for in
three simple rules:

1) The data processing rate must be at least the same as
the data arrival rate;

2) The amount of memory required by the algorithm
must be independent of the amount of data points;

3) The algorithm must be able to learn from data in a
single pass.

Many batch algorithms can be trivially used in a streaming
environment as long as the above requirements are met.
Perhaps the key difference between incremental and batch
algorithms comes from rule 3: given that storage is not
infinite, data will be archived, aggregated or discarded at
some point, and therefore algorithms cannot assume past
data is available.

Unlike batch approaches, stream-based recommendation
does not have well-established and widely adopted method-
ologies to evaluate and compare algorithms. This raises two
problems. First, comparison between contributions made by
different authors is often misleading or even impossible.
Second, it reduces reproducibility due to the added com-
plexity of implementing the evaluation protocols. It also
increases the chance of error and misinterpretation of results
– either by over- or under-estimating them. In the following
section, we briefly describe prequential evaluation, an eval-
uation method for algorithms that learn from data streams.
We then argue in section 4.1 that prequential evaluation can
be effectively used in recommendation problems.

4 PREQUENTIAL EVALUATION

Stream-based algorithms can be evaluated using two al-
ternative methods. The first alternative is to test the al-
gorithm against a previously gathered holdout set, used
exclusively for testing. This method is similar to batch
evaluation methods, in the sense that an independent test
set is used to measure the predictive ability of the model.
The second method is prequential evaluation. This method
does not require an independent test set. Instead, evaluation
is performed over every data element in the data stream
before it is used to update the model. In typical classification
or regression problems, a model M is maintained over a
stream D, consisting of vectors in the form (x, y), in which
x is a set of features and y is the known label or target
value. Prequential evaluation, using any given metric �
goes through the following steps:

For every data element (x, y) in D:
1) Ask M for a prediction ŷ, given the feature set x;
2) Score the prediction �(ŷ, y);
3) Use (x, y) to update the model;
Statistics over the score �(ŷ, y) can be maintained dur-

ing the learning process. The prequential evaluation process
is illustrated in Figure 1.

Prequential evaluation has the advantage of not requir-
ing an independent test set for testing, given that it performs

Predict with
current model

Evaluate
prediction

Update
model

Collect online
statistics

Fading factorSliding window

Incoming
observation

Discard / archive
observation

Figure 1. Prequential evaluation

testing on the actual stream. Furthermore, the prequential
method has been shown to converge to the holdout evalua-
tion method [13].

4.1 Using prequential evaluation in recommendation
problems
Prequential evaluation for recommendation problems is
made treating incoming user feedback data as a data stream
[7], in the same test-then-learn scheme as depicted in Fig-
ure 1: whenever a new user-item interaction arrives, the
corresponding prediction is scored according to the actual
observation. This new observation is then used to update
the model.

In this paper, we focus on prequential evaluation with
Top-N recommendation problems with implicit preference
data. Each observation consists of a simple user-item pair
(u, i) that indicates a positive interaction between user u
and item i. For example, user u bought item i in an online
store, user u “liked” a post i in a social network, or user u
streamed track i in a music streaming service. The following
steps are performed in the prequential evaluation process,
for each new user-item pair (u, i):

1) If u is a known user, use the current model to recom-
mend a list of items to u, otherwise go to step 3;

2) Score the recommendation list against the actual ob-
served item i;

3) Update the model with (u, i) (optionally);
4) Proceed to – or wait for – the next observation
One convenient feature of prequential evaluation is that

it is entirely applicable not only to incremental algorithms,
but also to batch algorithms. This is the reason why step 3.
is annotated as optional.

5 STATISTICAL TESTS OVER DATASTREAMS

Given two algorithms learning from the same data, the null
hypothesis is that both have the same performance for a
given metric. A Type I error occurs if the test wrongfully
rejects the null hypothesis – i.e. if it detects a difference when
there is none. A Type II error consists of failing to detect
differences when they exist – i.e. to wrongfully fail to reject
the null hypothesis.

There are two well known non-parametric tests widely
used to compare two learning algorithms that learn from
the same data: the McNemar’s test and the Wilcoxon test.

McNemar’s test is performed at the level of individual
observations – no comparison between trials is involved –
which makes it especially easy to use online with stream-
based algorithms. Given two alternative algorithms A and
B, it works by keeping count of two quantities: the number

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2019.2960216

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

of instances n10 for which the prediction of A is correct and
the prediction of B is wrong, and the number of instances
n01 for which the opposite occurs. These quantities are used
to calculate the statistic:

M =
(n10 � n01)2

n10 + n01
(1)

M asymptotically follows a �2 distribution with one
degree of freedom. For a significance level ↵ = 0.01, the
critical value M = 6.635 is used. If M > 6.635 the null
hypothesis is rejected. Given that McNemar is an instance-
based test, the treatment of folds is done by concatenating
them in the same order for the two alternatives. This is
possible because the samples are perfectly paired and order
is not relevant to calculate M . One problem with McNe-
mar is that it fails to provide a reliable approximation if
n10 + n10 < 25. Whenever this succeeds, the exact binomial
test can be used instead of McNemar’s. In the remainder of
the paper, we refer to this conditional McNemar / Binomial
test as McNemar only.

The Wilcoxon test uses the ranking of algorithms over
several trials using different parts of the data for each
trial. The test works by taking k trials and measuring the
differences between the average score of the two algorithms
A and B in each trial i: xA,i�xB,i, then ranking the absolute
differences. For k trials, the statistic W is calculated based
on the ranks Ri:

W =
kX

i=1

[sign(xA,i � xB,i) ·Ri] (2)

For a significance level ↵ = 0.01 with k = 10, the
critical value W = 3 is used. If W > 3, then a significant
difference between the two algorithms is detected, and the
null hypothesis is rejected.

Contrary to the McNemar’s test, it is not trivial how to
use the Wilcoxon test online over a single data stream, given
that it requires multiple trials over different parts of the data.

5.1 Trial-based statistical tests over datastreams
The McNemar’s test is convenient for data streams, since it
has been shown to be effective without requiring multiple
trials [6]. However this test is hardly considered robust. In
fact, it is known to overestimate differences in many cases
[5], incurring in Type I errors.

In an batch setting, the Wilcoxon test is currently con-
sidered the best alternative to assess the difference between
two algorithms [2]. The problem with this approach is that
it is not trivial to apply in stream-based scenarios. In [5],
three alternative methods are proposed to perform K-fold
validation with classifiers that learn from data streams. The
main idea is to distribute data points across k versions of
the classifier in one of the following ways:

• k-fold split-validation: each data example is used for
training in k� 1 classifiers and testing in the remaining
classifier;

• k-fold bootstrap valuation: each example is assigned for
training to each classifier according to a Poisson(1)
distribution, and used for testing in the remaining
classifiers;

• k-fold cross-validation: each example is used for train-
ing in 1 classifier and for testing in the other k � 1
classifiers.

The prequential version of the above methods simply
uses all training examples also for testing, using the pre-
quential workflow. This translates into a setting in which
every example is tested in all k versions of the classifier, and
only used for training in some of them, according to one
of the three distribution strategies. A statistical test can be
used in conjunction with the distributed k-fold validation
methods, using each fold as a trial.

5.2 Continuous statistical testing
In [13], Gama et al. have illustrated the usage of statistical
tests over data streams using McNemar’s test, using a
sliding window over the outcome. This technique has also
been used in [7] for recommendation problems, partially
answering our first research question. However, the size of
the sliding window is a user-given parameter that has a
critical impact on the outcome, and one that is not trivial to
set. Very large windows tend to underestimate differences,
whereas very short ones potentially overestimate them. To
fully answer research question 1, we need an method that
automatically handles the window size.

To solve this problem, we propose using ADWIN [14],
a data-based mechanism to automatically resize a sliding
window over a data stream. We use this mechanism to
maintain a window that we can use to perform statistical
tests any point in time. In [5], Bifet et al. propose the usage
of ADWIN to monitor performance metrics in a prequential
evaluation process, but in a single fold, and they do not
perform continuous statistical testing.

Given a pair of stream-based recommender algorithms,
we measure their performance separately, using a com-
mon metric. For example, we may have two alternative
algorithms A and B running in parallel, from which we
take a sequence of measurements using a specific metric.
The measurements from both algorithms form a pair of
sequences, consisting of individual scores obtained in the
prequential process. We wish to be able to automatically
perform a statistical test to assess the significance of the
differences between A and B at any point of the learning
process. To do this, we use the most recent pair of windows,
containing the outcomes of both recommenders. Naturally,
these sequences have different sizes – if they are different.
The problem here, is that to use statistical tests that require
paired samples, we need sequences with the same size, for
both recommenders, in which case we have four choices:

• Compute window sizes separately and use the shortest
one;

• Compute window sizes separately and use the largest
one;

• Compute window sizes separately and use a window
with the average size;

• Compute a window size on a third sequence obtained
by combining the two original sequences.

We use the first option, that is to compute window
sizes separately for both recommenders and use the shortest
one. The idea is that we wish to detect changes in the
performance of each algorithm relative to the other. ADWIN

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2019.2960216

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

reduces the window size when change is detected in the
distribution of the sequence. This means that the fastest
changing sequence will have a shorter window. Choosing
the largest window for both sequences, or even an average
size window, would underestimate the changes of the fastest
changing algorithm – the one with the shortest window –
because a too large, non-representative window would be
used. We argue that the risk of over-estimating fluctuations
in the recommender with the largest window as a result of
artificially shortening it is already mitigated by the fact that
ADWIN has not triggered the shortening of the window in
the first place, which is a strong indication that it is within a
stationary interval.

5.3 Dealing with independence
Given the data dependence problem in recommendation,
we propose user-based distribution of data points for k-
fold distributed validation, using the same three methods
proposed in [5]. By distributing users, rather than indi-
vidual observations, across folds, we greatly reduce the
dependence between folds. While we know that total in-
dependence does not exist between users, given the effects
of local, gloabal and item-level changes, the independence
assumption becomes much safer nevertheless.

User-based distribution is only possible in the prequen-
tial version of the distributed k-fold validation methods
described in Section 5.1, because all user-item pairs (u, i)
can be evaluated in the folds to which user u was assigned.
In the original version of the validation methods, any data
point appearing in the stream would have to be used either
for training or for testing, but never for both. This would be
impossible in a user-based split of the data points because
the standard usage-based recommendation model is unable
to make predictions for unknown users – a well known
problem in all recommendation tasks, known as cold-start.

We revisit the three k-fold validation methods described
in Section 5.1, adapting them to the recommendation prob-
lem. The k-fold distribution methods basically consist of
building k models in k user-based samples of the original
stream, with the following characteristics:

• k-fold split validation: each fold has a model built in
completely independent user sets;

• k-fold bootstrap validation: each fold has a model built
over a bootstrap sample of the users from the original
stream;

• k-fold cross-validation: each fold has a model built in a
stream containing roughly k�1

k users from the original
stream.

The distribution can easily be performed online, using a
u ! k mapping matrix. For every new user, we randomly
select the fold(s) to which she is assigned, according to one
of the above three methods.

As in [5], the only alternative in which there is no
overlap between folds is split validation, however each
fold is learned over a potentially small proportion of the
data, which increases sparsity in the inverse proportion.
High sparsity is known to be problematic in recommenda-
tion problems [33]. Additionally, online learning algorithms
may have different convergence speeds, which potentially
biases evaluation, favoring fast-converging algorithms if

not enough data is available. On the other extreme, cross-
validation trains each fold on a potentially high proportion
of the data, which alleviates the sparsity and convergence
speed problems, at the cost of increased computation. How-
ever, it also causes folds to be trained in largely overlapping
subsets of the data, for which assumptions of independence
cannot be held.

5.4 Trial-based tests for stream-based recommenders
To address our second research question, we apply the three
data-distribution strategies proposed in [5]. However, the
direct application to recommender systems is not straight-
forward. All three methods presented in Section 5.1 are
designed and studied for classification problems, for which
several assumptions about data are relatively safe to make.
One assumption in classic supervised learning is that the
probability distributions of class labels or target values are
stationary, at least most of the time. When a concept drift
occurs – i.e. there is a change on the probability distribution
–, detection mechanisms can be used to adapt the model.
In a stationary data stream – or within a stationary interval
–, individual observations are not inter-correlated. In other
words, the sequence of events is not important. This allows
us to randomly distribute data across instances of the al-
gorithm – folds – without hurting the assumption that each
fold is an independent instance of the problem, and thus en-
abling the usage of a trial-based statistical test of our choice,
such as is done in [5]. However, the same assumptions
cannot be safely made about user feedback data. One basic
principle of recommender systems is that observations taken
from the same user are highly correlated. Furthermore,
several works surveyed in [34] and [32] actually exploit time
or sequence dependence to improve recommendation accu-
racy, which proves that dependence between observations
exists – otherwise it would not be exploitable. Moreover,
drift detection mechanisms for classification or regression
cannot be trivially applied to recommendation problems,
given that user preferences may change independently of
each other. At most, we can use them to detect global
changes, which may be useful, but do not detect changes
of individual users.

6 EXPERIMENTS AND VALIDATION

To assess the robustness of our methodology, we conduct
two sets of experiments. In the first set of experiments,
we wish to evaluate how robust are the statistical tests to
changes in the initialization of an algorithms that are not
expected to induce significant changes in their outcome.
This set of experiments provides insights regarding the
propensity of statistical tests to Type I errors. In the second
set of experiments, we measure the sensitivity of the tests to
controlled perturbations in the outcome of algorithms. This
set of experiments allows us to verify which test signals
significant changes faster, providing valuable clues on the
propensity to Type II errors.

We use the same framework to compare rejection rates
between offline tests – as would be done in a batch scenario
– and ADWIN tests. The difference is that the first goes
through the complete prequential process for the entire

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2019.2960216

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

dataset and performs the statistical test at the end, while
with the latter we continuously perform statistical tests
during prequential evaluation, effectively simulating a real-
world online environment. Although feasible, for the sake of
computational resources, we do not perform statistical tests
with each new observation. Instead, we issue statistical tests
at regular intervals, at every N th example in the stream. In
all our experiments we use N = 100. Note that the actual
number of statistical tests performed is the length of the data
stream (so far) divided by N , whereas a single statistical test
is performed in the offline case.

We use McNemar’s test and the Wilcoxon signed-rank
test to measure rejection rates. Both are non-parametric
statistical tests, but only Wilcoxon is a trial-based test. In
order to use the McNemar’s test, we simply concatenate the
10 folds for each trial – using the same order – and run the
test over these two concatenated sequences.

6.1 Algorithm and metric
To assess the robustness to changes in the random seed, we
need an incremental recommendation algorithm that has a
random initialization, allowing us to run two different, but
hypothetically equivalent versions. We use ISGD [24], since
it is the simplest algorithm that fulfills the requirement.

We measure top-N accuracy using the Hit Ratio at cutoff
20 – HR@20. This metric is measured in the prequential
evaluation process. At the prediction step for pair (u, i), we
recommend 20 items to user u and score the prediction with
HR@20 = 1 if the item i is within the 20 recommended items,
and HR@20 = 0 otherwise. This produces a binary sequence
of 0s and 1s, corresponding to the scores obtained for each
observation. The exception is when any user u first occurs –
a cold-start situation. It is not trivial to make a recommen-
dation to a user that is not yet modeled. Given that in this
paper we are not interested in cold-start problems, for such
cases, we bypass the prediction and evaluation step and the
user-item pair (u, i) is only used for training.

6.2 Datasets
We use four publicly available datasets, described in Table 1.
PLC-PL1 is a dataset gathered from a music social network,
with music playlisting activity. Each tuple (u, i, t) consists
of a user u adding a music track i to her personal playlist, at
timestamp t. The dataset is ordered by timestamp, allowing
us to feed a stream of (u, i) pairs to an incremental algo-
rithm. PLC-STR was collected from the same source as PLC-
PL, however, it consists of a music streaming log. ML1M is a
binary version of the Movielens-1M movie ratings dataset2,
in which we keep only the rating 5 – in a 0 to 5 scale.
Given that the ratings are timestamped, we are also able to
produce a stream of pairs (u, i) from that dataset. YMUSIC
is a subset of the Yahoo! Music dataset3, which originally
contains ratings given by users to music tracks in a 0 to
100 scale. We first filter out ratings lower than 90 and then
randomly sample 2000 users.

1. https://rdm.inesctec.pt/dataset/cs-2017-003 -
playlisted tracks.tsv

2. https://grouplens.org/datasets/movielens/
3. https://webscope.sandbox.yahoo.com/catalog.php?datatype=r -

Dataset R2

Dataset Application Events Users Items

PLC-PL Music playlisting 111 942 10 392 26 117
PLC-STR Music streaming 588 851 7 580 30 092
ML1M Movie rating 226 310 6 014 3 232
YMUSIC Music rating 152 183 2 000 60 215

Table 1
Dataset description

6.3 Robustness to Type-I errors
In the first set of experiments, we follow the same strategy of
[5] to measure the robustness of the evaluation methodology
to slight changes, with an incremental Top-N recommen-
dation algorithm that has random initialization. We run
the algorithm 100 times with different random seeds, with
four publicly available datasets, for each of the three k-fold
distributed validation strategies – split, bootstrap, and cross-
validation – with k = 10, in a total of three-hundred ten-fold
runs for each dataset. We also run the the algorithm 100
times using a single fold, for reference. We then perform
statistical tests over distinct 50 pairs of runs, and measure
the significance of the differences between the two runs
of each pair. Then we count how many times the null
hypothesis is rejected. We formulate the null hypothesis that
two versions of the same algorithm, using the same data
and the same hyperparameters, have the same accuracy,
independently of the random seed.

Here, we make the assumption that changing the ran-
dom seed does not induce significant changes in the algo-
rithm’s outcome. In principle, random initialization should
not introduce significant changes, otherwise it should be
treated as a hyperparameter. Under this assumption, the
proportion of null hypothesis rejections should not be
higher than the significance level 0.01.

Table 2 contains the null hypothesis rejection rate over all
four datasets – rates are the average of datasets, weighted by
dataset length –, using the batch and prequential versions of
Wilcoxon and McNemar. Each row in the table corresponds
to a validation method. The first line corresponds to one-
fold test, which is only compatible with McNemar. The
ADWIN version of the one-fold test is similar to the statis-
tical testing framework used in [7], except that here we are
using adaptive windows, while in [7], arbitrary fixed-size
windows are employed. Note that for the offline versions, a
single test is made for each of the 50 runs, whereas for the
ADWIN version, a test is performed every 100 examples, in
each of the 50 runs. Naturally, the number of tests is much
higher with the ADWIN version.

The differences between Wilcoxon and McNemar are
depicted in Figure 2. The gray line marks the 0.01 signif-
icance level. We can make three observations. First, it is
obvious that McNemar triggers null hypothesis rejections
much more often than Wilcoxon, regardless of if we are
using the offline test, or the online ADWIN test. While
the Wilcoxon test remains below the significance level of
0.01 in most cases, McNemar largely overshoots it in most
cases. Second, online tests tend to have a slightly higher
rejection rate with Wilcoxon and slightly lower rejection rate
with McNemar. However, the difference between offline and
online tests are not large. Third, McNemar is much more

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2019.2960216

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

Method Wilcoxon W. ADWIN McNemar M. ADWIN

One-fold - - 0.121 0.097

Split 0.004 0.010 0.044 0.021
Bootstrap 0.003 0.007 0.088 0.070
Crossval 0.002 0.016 0.150 0.144

Table 2
Null hypothesis rejection rate for same algorithm with different

initialization seed, over all datasets.

sensitive to the data distribution strategy. For example, the
rejection rate of the online ADWIN version of McNemar
varies from 0.021 with split validation, to 0.144 with cross-
validation, while Wilcoxon yields 0.010 to 0.016 respectively,
much closer to the expected significance value of 0.01. Both
offline and online Wilcoxon obtain very similar rejection
rates with all three validation methods.

We break down these results by dataset in Table 3. With
Wilcoxon, rejection rates appear to be consistent across all
datasets, whereas McNemar has higher variability – espe-
cially noticeable with ML1M.

Figure 2. Rejection rate over all datasets with varying random seed.
Note that the scale is truncated to 0.15 rejection rate, to facilitate the
visualization of rates close to the significance value of 0.01.

6.4 Robustness to Type II errors

To assess the robustness to type II errors, we are interested
in detecting how often is the null hypothesis wrongfully
retained. To do that, we follow a slightly different strategy
from [5]. Bifet et al. introduce noise in the predictions of one
version of the algorithm and test it against a clean version.
Our strategy is to artificially improve one of the sequences
of prequential scores, and test it against the non-modified
version, changing the scores rather than changing the ac-
tual recommendations. We do this because we are dealing
with a top-N recommendation problem, in which randomly
changing recommended items has an unpredictable impact
on the metric. For instance, in a recommendation list of 10
items, changing one random item in that list during the
prequential process would most of the time have little or
no impact in most top-N metrics. By directly changing the
outcome, we have a measurable difference between runs.
We take the score sequences from 50 runs – initialized with

different random seeds – and then duplicate them and ar-
tifically improve the duplicated versions. Then we test each
one of the original outcomes against its “improved” version.
If this change is significant, the statistical test should be able
to detect a difference between the two runs and reject the
null hypothesis. Note that tests applied here are one-sided,
given that we know that the induced differences are always
in the same direction.

We measure how often the null hypothesis is retained
under 3 different levels of positive perturbations. Our ap-
proach is to test the original output of ISGD against an artifi-
cially improved version of itself. In our setting, the outcome
of the prequential process is a binary sequence of 0’s and
1’s that are the HR@20 measured at each step. We change
this binary sequence, randomly replacing 0s with 1s, with
three different probabilities � 2 {0.0001, 0.0005, 0.001}. We
then compare the original and the modified versions under
the null hypothesis that there is no significant difference
between them. Although we cannot definitely read the re-
jections as Type II errors, we can use them to understand the
behavior of statistical tests and between the three data dis-
tribution methods – split vs. bootstrap vs. cross-validation.

In Table 4, we summarize the results of experiments
similar to the ones in section 6.3, but using this strategy.
For the sake of space, we aggregate all three values of p in
the same column for the batch versions, since all yield the
same result – except the one-fold version, as noted. We also
present plots for the same results in Figures 3, 4 and 5. In
these plots, we omit the batch versions of the tests. Note
that here, if we assume that the null hypothesis is wrong,
the rejection rate should be close to 1.

The first observation is that the offline validation meth-
ods almost always reject the null hypothesis, independently
of the algorithm improvement level �. The only exception is
the offline McNemar test with one-fold which yields a lower
rejection rate. The second observation is that naturally,
rejection rates increase as we increase �, regardless of the
test. Another immediate observation is that McNemar has
consistently higher rejection rates. In this set of experiments,
rejection rates are more sensitive to the validation method.
Split validation as a much lower rejection rate for all three
levels of �.

We also present results broken down by dataset in Table
5 for reference.

Figure 3. Rejection rate over all datasets with noise filter � = 0.0001

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2019.2960216

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

Dataset Wilcoxon Wilcoxon ADWIN McNemar McNemar ADWIN

PLC-PL one-fold - - 0.020 0.128

PLC-PL split 0 0.017 0.080 0.027
PLC-PL bootstrap 0 0.005 0.180 0.056
PLC-PL crossval 0.020 0.025 0.160 0.145

PLC-STR one-fold - - 0.120 0.103

PLC-STR split 0 0.007 0.040 0.018
PLC-STR bootstrap 0 0.002 0.080 0.070
PLC-PL crossval 0 0.020 0.200 0.186

ML1M one-fold - - 0.020 0.014

ML1M split 0.020 0.010 0.040 0.011
ML1M bootstrap 0 0.018 0 0.020
ML1M crossval 0 0.002 0.020 0.020

YMUSIC one-fold - - 0.220 0.171

YMUSIC split 0 0.016 0.040 0.045
YMUSIC bootstrap 0.020 0.012 0.180 0.156
YMUSIC crossval 0 0.011 0.140 0.168

Table 3
Null hypothesis rejection rate for same algorithm with different initialization seed, broken down by dataset

Method Wilcoxon Wilcoxon ADWIN McNemar McNemar ADWIN
� all .0001 .0005 .001 .0001 others .0001 .0005 .001

One-fold - - - - 0.896 1 0.214 0.817 0.912

Split 1 0.073 0.424 0.589 1 0.168 0.801 0.920
Bootstrap 1 0.631 0.870 0.927 1 0.857 0.980 0.990
Crossval 1 0.679 0.873 0.908 1 0.869 0.987 0.995

Table 4
Null hypothesis rejection rate for same algorithm with noise filter p, over all datasets

Dataset Wilcoxon Wilcoxon ADWIN McNemar McNemar ADWIN
� all .0001 .0005 .001 .0001 others .0001 .0005 .001

PLC-PL 1-fold - - - - 0 1 0 0.757 0.935

PLC-PL split 1 0.026 0.398 0.756 1 0.082 0.805 0.937
PLC-PL bootstrap 1 0.555 0.885 0.954 1 0.820 0.965 0.988
PLC-PL crossval 1 0.625 0.910 0.974 1 0.854 0.975 0.993

PLC-STR 1-fold - - - - 1 0.115 0.778 0.898

PLC-STR split 1 0.002 0.267 0.442 1 0.002 0.736 0.902
PLC-STR bootstrap 1 0.569 0.822 0.900 1 0.830 0.981 0.991
PLC-STR crossval 1 0.591 0.811 0.854 1 0.828 0.988 0.996

ML1M 1-fold - - - - 1 0.551 0.915 0.957

ML1M split 1 0.267 0.724 0.828 1 0.559 0.918 0.955
ML1M bootstrap 1 0.805 0.951 0.975 1 0.925 0.985 0.993
ML1M crossval 1 0.871 0.966 0.982 1 0.954 0.990 0.995

YMUSIC 1-fold - - - - 1 0.254 0.865 0.935

YMUSIC split 1 0.091 0.607 0.756 1 0.292 0.876 0.937
YMUSIC bootstrap 1 0.672 0.924 0.954 1 0.888 0.977 0.988
YMUSIC crossval 1 0.775 0.949 0.974 1 0.915 0.985 0.993

Table 5
Null hypothesis rejection rate for same algorithm with noise filter p, broken down by dataset

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2019.2960216

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

Figure 4. Rejection rate over all datasets with noise filter � = 0.0005

Figure 5. Rejection rate over all datasets with noise filter � = 0.001

7 DISCUSSION

In Section 6.3, our main objective is to assess how consistent
the statistical test is with a reasonable assumption that the
null hypothesis is true. There is still a chance that the same
algorithm with different initialization can actually yield
significantly different results. However, we know that in
at least most of the 50 runs, with different initialization
for both versions of the algorithm, changing the random
seed should not trigger the rejection of the null hypothesis.
From the practitioner’s point of view, changing the random
seed should originate slightly different, but in any case
equivalent models, at least in terms of accuracy.

We know that an overly sensitive statistical test will be
more likely to yield Type I errors. Conversely, we know that
a more conservative statistical test will be more likely to
yield Type II errors. Carefully looking at results of Tables
2 and 4 together, we are able to observe that McNemar is
generally more sensitive to changes. However it is also more
unstable with respect to both data and validation method.
When changing the random seed of the algorithm, McNe-
mar has an inconsistent behavior regarding the dataset, with
a much lower rejection rate with ML1M than with other
datasets. This is especially true for the offline version of
the tests. Online statistical testing with Wilcoxon correctly
fails to reject the null hypothesis more often than McNemar
– see Table 2. At the same time, the differences between
McNemar and Wilcoxon are smaller when we expect to see

high rejection rates – see Table 4. In short, Wilcoxon is almost
as sensitive as McNemar, but at the same time it is less likely
to incur in Type I errors.

Another dimension is the data distribution technique.
McNemar tends to trigger the rejection of the null hypothe-
sis more often as we increase the number of available points.
With split-validation, McNemar has lower rejection rate,
followed by bootstrap-validation. With cross-validation, the
rejection rate is even higher. Wilcoxon, on the other hand, is
more stable, although we see in Section 6.4 that its rejection
rate is also lower with split-validation.

Casting multiple instances of the problem involves a
considerable computational overhead in most cases. From
this perspective, the strategy that requires less computa-
tional resources is the split-validation method. In this case
the computational effort is practically the same as running a
single instance of the problem with all the users in the data
stream. This is also the method that guarantees more inde-
pendence between folds, since every user is only present in a
single fold. The disadvantage of split validation is that each
recommendation model is built using only a small fraction
of the data – more specifically, 1/kth of the data with k folds.
This increases sparsity by the same factor. Recommendation
algorithms are sensitive to sparsity and tend to degrade as
sparsity increases. Moreover, split-validation increases by
a factor of k the number of necessary examples for tested
algorithms to converge to their optima.

On the other extreme, each instance in cross-validation
uses most of the data available – k � 1/k examples with k
folds. This makes each instance of the problem very similar
to the outcome of the algorithm if trained with all the
users in the data stream, which is the real-world scenario.
However, there is a big overlap between folds, which raises
questions about the independence between folds. Cross-
validation is also the most resource-demanding option, with
a computational overhead many times higher than a single
instance of the problem with the original data stream.

Bootstrap validation can be seen as a trade-off between
the problems described above – computational overhead,
data requirements and independence. Most of the users in
the data stream are modeled in all instances, but there some
separation is provided by bootstrap sampling. Computa-
tional effort is also reduced in relation to cross-validation.

7.1 Recommendations
Taking our experimental results into account, we devise a
summary of recommendations in Table 6. This table indi-
cates which variants of the methodology are robust to Type
I and Type II errors, using either Wilcoxon or McNemar.

We recommend the bootstrap method with the Wilcoxon
signed-rank test as a rule of thumb. However we stress
that this choice is dependent on the practical problem in
hands, and necessarily needs to consider several factors,
such as data availability, available resources and the overall
objective of the online statistical tests. These can be used for
a variety of tasks, such as automatic hyperparameter tuning,
changing weights of individual algorithms in ensembles,
simple swapping between algorithms, or online tests – e.g.
A/B or multivariate tests – involving measurements of
user activity. All these examples naturally have different
requirements and constraints.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2019.2960216

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

Method Wilcoxon ADWIN McNemar ADWIN
Error type Type I Type II Type I Type II

One-fold - - ↵ ↵

Split X ↵ ⇠ ⇠
Bootstrap X X ↵ X
Crossval X X ↵ X

Table 6
Test robustness to Type I and Type II errors. Methods are marked as

robust (X), moderately robust (⇠) and not robust (↵).

We point out that the main contribution of this paper
is a framework that enables the usage of trial-based statis-
tical tests on stream-based recommendation problems. The
comparison between McNemar and Wilcoxon in the context
of this paper does not replace an in-depth study about the
robustness of the statistical tests themselves and therefore
should not be generalized to other settings or tasks.

7.2 Limitations
The methodology proposed in this paper enables the on-
demand assessment of which one of two concurrent rec-
ommendation algorithms is better. As we have shown, it
can be used with recommenders running in production
settings. However, its application scope is naturally limited
to the setting with two algorithms that run over a single
user feedback stream. The Friedman test is typically used
in batch learning to rank multiple algorithms for a given
dataset. To perform this evaluation over multiple datasets,
Demsǎr et al. recommend using a post-hoc test [2]. However,
the possibility to apply the Friedman test online to stream-
based recommenders remains an open problem.

From an operational perspective, distributing data across
several running nodes obviously has computational costs.
However, given that stream-based algorithms have a single
core sequential processing nature, added that our proposal
is trivially parallelizable, this overhead can be easily han-
dled by standard multicore processing units in real time.

8 CASE STUDY: DYNAMICALLY SELECTING THE
BEST OF TWO ALGORITHMS

In this section, we provide an example application of our
framework. We perform continuous online testing to two
concurrent algorithms that learn from the same data stream.
The task is to perform continuous statistical tests to auto-
matically determine which is the best algorithm at any point
during the prequential process.

8.1 Experimental setup
To illustrate how one of two competitor algorithms A and
B may be ideal at different stages, we need to setup an
experiment where we know beforehand that a shift between
the performance of the two algorithms occurs, and when
it occurs. The statistical test(s) should be able to detect a
statistically significant improvement of one algorithm with
respect to the other close to the region where the change
occurs. To enable such observation, our strategy is to use
two datasets X and Y with the two algorithms A and B.

Figure 6. Evolution of HR@1 using a moving average with n = 1000 (top
plot). The bottom three plots depict the outcome of the continuous sta-
tistical tests over the sequence depicted on the top plot, using the three
variants of the methodology – split-, bootstrap- and cross-validation.

Datasets X and Y are chosen with the prior knowledge that
algorithm A has higher accuracy than algorithm B with
dataset X and that the opposite occurs with dataset Y. If we
simply concatenate both datasets and compare algorithms
A and B with our online evaluation framework on the
concatenated dataset, we should be able to detect the change
with statistical guarantees provided by the tests.

Using this strategy, we compare ISGD against an incre-
mental version of a popularity-based algorithm (MostPopu-
lar) that simply recommends the most popular items. This
algorithm has no personalization whatsoever. Recommen-
dations consist of a list of the top-N most frequently seen
items, regardless of the user.

8.2 Dataset
The simplicity of the MostPopular algorithm allows us to
easily synthesize a dataset for which the algorithm achieves
optimal performance. We synthesize a dataset composed of
5000 virtual users and 10 virtual items. All possible (u, i)
pairs occur exactly once in the dataset, in randomized order,
leading to 50.000 interaction pairs. This means that all users
see the same 10 items. In this dataset, the MostPopular
algorithm should obviously have fast convergence, since it
only needs to recommend the same 10 items to all users.

Next, we concatenate PLC-STR to this synthesized
dataset. As a consequence, the resulting dataset contains
an abrupt shift after its 50.000th point, where the transition
between the synthesized dataset and PLC-STR occurs. Nat-
urally, ISGD has a clear advantage with PLC-PL, given its
ability to deal with more complex problems.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2019.2960216

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

8.3 Experiment protocol
We apply the methodology proposed in Sections 5.1 and
measure the results using Hit Ratio at cutoff 1 – HR@1 – for
both ISGD and MostPopular (MP). We perform continuous
statistical tests over the stream of results to assess the signif-
icance of the differences between the two outcomes, using
all three distributed validation methods – split validation,
bootstrap validation and cross-validation. We then plot both
the outcome of HR@1 for both algorithms and the outcome
of the statistical tests in Figure 6.

8.4 Results
The top plot in Figure 6 depicts the evolution of HR@1
for ISGD and MostPopular (MP). The shift between the
two original datasets – i.e. the point where they were
concatenated – predictably shows a steep degradation of
both algorithms. After this point, ISGD is able to recover
closely after, given its ability to personalize recommenda-
tions, while MP drops to approximately zero, and never
recovers. The three bottom plots in Figure 6 depict the
evolution of two statistical tests – McNemar and Wilcoxon –
corresponding to the same experiment, and using the three
validation variants studied in this paper. The three plots
are intentionally aligned with the top plot to facilitate the
correspondence between both types of illustration. Using
split validation, we observe relatively few fluctuations of the
significant tests. There is also a clearly longer delay until the
statistical tests detect a rather obvious superiority of ISGD
after the dataset shift. Bootstrap validation signals more
fluctuations between the relative performance of algorithms,
and reacts much faster to the dataset shift. Finally, cross-
validation with McNemar is very similar to the same test
using bootstrap, except that it reacts slightly faster to the
shift. The Wilcoxon test shows more fluctuations, even those
that are not easily seen in the HR@1 plot.

In general, all tests and testing variants are consistent
with the actual results in terms of Hit Ratio, which is not
surprising. However, we see that we are able to react to
changes faster using the Wilcoxon test. This is consistent
with the experimental work shown in Section 6.

9 CONCLUSIONS AND FUTURE WORK

Reliable evaluation of online, incremental recommendation
algorithms is an important issue for both the academia
and industry. In this paper, we propose a methodology to
evaluate incremental recommender systems with the ability
to compare algorithms online, in real-time, with statistically
validated results. To our current knowledge, this is the
first systematic and comprehensive work that organizes
a robust framework to conduct experiments online, using
prequential evaluation, and at the same time statistically
validate results. We conduct a series of experiments to assess
the robustness of online statistical tests over automatically
adaptive-size windows over the prequential outcome in any
given metric. Our results suggest that using a bootstrap-
based splitting of users online across several folds is benefi-
cial, especially using the Wilcoxon signed-rank test. Future
work includes studying the behaviour of statistical tests
with non-binary metrics, more specifically ranking metrics.

Special attention should also be given to highly dynamic do-
mains such as news and Point-Of-Interest recommendation.

ACKNOWLEDGEMENTS

This work is financed by National Funds through the Por-
tuguese funding agency, FCT - Fundação para a Ciência e a
Tecnologia within project: UID/EEA/50014/2019.

REFERENCES

[1] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. Riedl, “Eval-
uating collaborative filtering recommender systems,” ACM Trans.
Inf. Syst., vol. 22, no. 1, pp. 5–53, 2004.

[2] J. Demsar, “Statistical comparisons of classifiers over multiple data
sets,” Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[3] S. Garcia and F. Herrera, “An extension on“statistical comparisons
of classifiers over multiple data sets”for all pairwise comparisons,”
Journal of Machine Learning Research, vol. 9, no. Dec, pp. 2677–2694,
2008.

[4] A. Benavoli, G. Corani, and F. Mangili, “Should we really use
post-hoc tests based on mean-ranks?” Journal of Machine Learning
Research, vol. 17, pp. 5:1–5:10, 2016.

[5] A. Bifet, G. D. F. Morales, J. Read, G. Holmes, and B. Pfahringer,
“Efficient online evaluation of big data stream classifiers,” in
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Sydney, NSW, Australia,
August 10-13, 2015. ACM, 2015, pp. 59–68.

[6] T. G. Dietterich, “Approximate statistical test for comparing su-
pervised classification learning algorithms,” Neural Computation,
vol. 10, no. 7, pp. 1895–1923, 1998.

[7] J. Vinagre, A. M. Jorge, and J. Gama, “Evaluation of recommender
systems in streaming environments,” in Proceedings of the Work-
shop on Recommender Systems Evaluation: Dimensions and Design in
conjunction with the 8th ACM Conference on Recommender Systems
(RecSys 2014), Foster City, CA, USA, October 10, 2014., 2014, pp.
1–6.

[8] Z. F. Siddiqui, E. Tiakas, P. Symeonidis, M. Spiliopoulou, and
Y. Manolopoulos, “xstreams: Recommending items to users with
time-evolving preferences,” in 4th International Conference on Web
Intelligence, Mining and Semantics (WIMS 14), WIMS ’14, Thessa-
loniki, Greece, June 2-4, 2014. ACM, 2014, pp. 22:1–22:12.

[9] P. Matuszyk, J. Vinagre, M. Spiliopoulou, A. M. Jorge, and J. Gama,
“Forgetting techniques for stream-based matrix factorization in
recommender systems,” Knowledge and Information Systems, pp. 1–
30, 8 2017.

[10] P. Pu, L. Chen, and R. Hu, “Evaluating recommender systems from
the user’s perspective: survey of the state of the art,” User Model.
User-Adapt. Interact., vol. 22, no. 4-5, pp. 317–355, 2012.

[11] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne,
“Controlled experiments on the web: survey and practical guide,”
Data Min. Knowl. Discov., vol. 18, no. 1, pp. 140–181, 2009.

[12] G. Hulten, L. Spencer, and P. M. Domingos, “Mining time-
changing data streams,” in Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining, San
Francisco, CA, USA, August 26-29, 2001. ACM, 2001, pp. 97–106.

[13] J. Gama, R. Sebastião, and P. P. Rodrigues, “On evaluating stream
learning algorithms,” Machine Learning, vol. 90, no. 3, pp. 317–346,
2013.

[14] A. Bifet and R. Gavaldà, “Adaptive learning from evolving data
streams,” in Advances in Intelligent Data Analysis VIII, 8th Inter-
national Symposium on Intelligent Data Analysis, IDA 2009, Lyon,
France, August 31 - September 2, 2009. Proceedings, ser. Lecture Notes
in Computer Science, vol. 5772. Springer, 2009, pp. 249–260.

[15] E. Diaz-Aviles, L. Drumond, L. Schmidt-Thieme, and W. Nejdl,
“Real-time top-n recommendation in social streams,” in Sixth
ACM Conference on Recommender Systems, RecSys ’12, Dublin, Ire-
land, September 9-13, 2012. ACM, 2012, pp. 59–66.

[16] M. Blondel, Y. Kubo, and N. Ueda, “Online passive-aggressive
algorithms for non-negative matrix factorization and completion,”
in Proceedings of the Seventeenth International Conference on Artificial
Intelligence and Statistics, AISTATS 2014, Reykjavik, Iceland, April 22-
25, 2014, ser. JMLR Workshop and Conference Proceedings, vol. 33.
JMLR.org, 2014, pp. 96–104.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2019.2960216

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

[17] Y. Huang, B. Cui, J. Jiang, K. Hong, W. Zhang, and Y. Xie, “Real-
time video recommendation exploration,” in Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016. ACM, 2016,
pp. 35–46.

[18] T. Yu, O. J. Mengshoel, A. Jude, E. Feller, J. Forgeat, and N. Radia,
“Incremental learning for matrix factorization in recommender
systems,” in 2016 IEEE International Conference on Big Data, BigData
2016, Washington DC, USA, December 5-8, 2016. IEEE Computer
Society, 2016, pp. 1056–1063.

[19] X. He, H. Zhang, M. Kan, and T. Chua, “Fast matrix factorization
for online recommendation with implicit feedback,” in Proceedings
of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval, SIGIR 2016, Pisa, Italy, July
17-21, 2016. ACM, 2016, pp. 549–558.

[20] J. Yin, C. Liu, J. Li, B. Dai, Y. Chen, M. Wu, and J. Sun, “Online
collaborative filtering with implicit feedback,” in Database Systems
for Advanced Applications - 24th International Conference, DASFAA
2019, Chiang Mai, Thailand, April 22-25, 2019, Proceedings, Part II,
ser. Lecture Notes in Computer Science, vol. 11447. Springer,
2019, pp. 433–448.

[21] P. Liu, L. Zhang, and J. A. Gulla, “Real-time social recommen-
dation based on graph embedding and temporal context,” Int. J.
Hum.-Comput. Stud., vol. 121, pp. 58–72, 2019.

[22] K. Subbian, C. C. Aggarwal, and K. Hegde, “Recommendations
for streaming data,” in Proceedings of the 25th ACM International
Conference on Information and Knowledge Management, CIKM 2016,
Indianapolis, IN, USA, October 24-28, 2016. ACM, 2016, pp. 2185–
2190.

[23] X. Huang, L. Wu, E. Chen, H. Zhu, Q. Liu, and Y. Wang, “In-
cremental matrix factorization: A linear feature transformation
perspective,” in Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19-25, 2017. ijcai.org, 2017, pp. 1901–1908.

[24] J. Vinagre, A. M. Jorge, and J. Gama, “Fast incremental matrix
factorization for recommendation with positive-only feedback,”
in User Modeling, Adaptation, and Personalization - 22nd International
Conference, UMAP 2014, Aalborg, Denmark, July 7-11, 2014. Proceed-
ings, ser. Lecture Notes in Computer Science, vol. 8538. Springer,
2014, pp. 459–470.

[25] R. Pálovics, A. A. Benczúr, L. Kocsis, T. Kiss, and E. Frigó, “Ex-
ploiting temporal influence in online recommendation,” in Eighth
ACM Conference on Recommender Systems, RecSys ’14, Foster City,
Silicon Valley, CA, USA - October 06 - 10, 2014. ACM, 2014, pp.
273–280.

[26] A. M. Yagci, T. Aytekin, and F. S. Gürgen, “Scalable and adaptive
collaborative filtering by mining frequent item co-occurrences in a
user feedback stream,” Eng. Appl. of AI, vol. 58, pp. 171–184, 2017.

[27] C. Lin, L. Wang, and K. Tsai, “Hybrid real-time matrix factoriza-
tion for implicit feedback recommendation systems,” IEEE Access,
vol. 6, pp. 21 369–21 380, 2018.

[28] P. Matuszyk, J. Vinagre, M. Spiliopoulou, A. M. Jorge, and J. Gama,
“Forgetting methods for incremental matrix factorization in rec-
ommender systems,” in Proceedings of the 30th Annual ACM Sym-
posium on Applied Computing, Salamanca, Spain, April 13-17, 2015.
ACM, 2015, pp. 947–953.

[29] T. Kitazawa, “Sketching dynamic user-item interactions for online
item recommendation,” in Proceedings of the 2017 Conference on
Conference Human Information Interaction and Retrieval, CHIIR 2017,
Oslo, Norway, March 7-11, 2017. ACM, 2017, pp. 357–360.

[30] M. Al-Ghossein, T. Abdessalem, and A. Barré, “Dynamic local
models for online recommendation,” in Companion of the The Web
Conference 2018 on The Web Conference 2018, WWW 2018, Lyon ,
France, April 23-27, 2018. ACM, 2018, pp. 1419–1423.

[31] M. Al-Ghossein, P. Murena, T. Abdessalem, A. Barré, and
A. Cornuéjols, “Adaptive collaborative topic modeling for online
recommendation,” in Proceedings of the 12th ACM Conference on
Recommender Systems, RecSys 2018, Vancouver, BC, Canada, October
2-7, 2018. ACM, 2018, pp. 338–346.

[32] J. Vinagre, A. M. Jorge, and J. Gama, “An overview on the
exploitation of time in collaborative filtering,” Wiley Interdisc. Rew.:
Data Mining and Knowledge Discovery, vol. 5, no. 5, pp. 195–215,
2015.

[33] G. Adomavicius and A. Tuzhilin, “Toward the next generation
of recommender systems: A survey of the state-of-the-art and
possible extensions,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 6,
pp. 734–749, 2005.

[34] P. G. Campos, F. Dı́ez, and I. Cantador, “Time-aware recommender
systems: a comprehensive survey and analysis of existing evalu-
ation protocols,” User Model. User-Adapt. Interact., vol. 24, no. 1-2,
pp. 67–119, 2014.

João Vinagre is a researcher at the Laboratory
of Artificial Intelligence and Decision Support
(LIAAD) of INESC TEC and an invited professor
at the Faculty of Sciences of the University of
Porto (FCUP). He obtained his PhD from the
joint doctoral programme by the Universities of
Minho, Aveiro and Porto. His research focuses
on recommender systems and user modeling,
with special emphasis on stream-based algo-
rithms, evaluation issues and incremental en-
semble models. He has published several jour-

nal and conference papers on these subjects, and co-organized two
editions of ORSUM, the workshop on Online Recommender Systems
and User Modeling, held at The Web Conference 2018 and at ACM
RecSys 2019.

Alı́pio Mário Jorge is an associate professor
at the Department of Computer Science of the
Faculty of Science of the U. Porto and the co-
ordinator of LIAAD/INESC TEC, the Artificial In-
telligence and Decision Support Lab of U. Porto
since 2012. He received his PhD in Computer
Science at U. Porto. His research interests are
Data Mining and Machine Learning, in particular
Recommender Systems, NLP and Web Intelli-
gence. He lectures on information processing
and data mining. He leads research projects on

data mining and Web intelligence. He co-chaired international con-
ferences (ECML/PKDD 2005, Discovery Science 2009, ECML/PKDD
2015), workshops and seminars in data mining and artificial intelligence.
More in http://www.dcc.fc.up.pt/⇠amjorge.

Conceição Rocha is researcher at INESC TEC.
She received her Ph.D. degree in Applied Mathe-
matics from the University of Porto, Portugal. Her
main interests are data validation, data collecting
techniques, modelling, statistics, predictive mod-
elling, classication, text mining/data mining. She
has published some journal and conference pa-
pers on diverse subjects, and co-organized three
workshops: the last three national workshops
on Classification and Data Analysis (JOCLAD
2017, 2018 and 2019) and the 2018 international

workshop in Symbolic Data Analysis (SDA2018).

João Gama received his Ph.D. degree in Com-
puter Science from the University of Porto, Por-
tugal. He is Associate Professor at the University
of Porto and a senior researcher at LIAAD In-
esc Tec. His main interests are Machine Learn-
ing, Data Mining, mainly in the context of data
streams. He published more than 200 papers
in major International conferences and journals,
served as chair at ECML05, DS09, ADMA09,
IDA11, and ECML PKDD 2015. He co-organized
a series of workshops on learning from data

streams in conjunction with ECML PKDD, KDD, SAC and ICML. He is
member of the editorial board of MLJ, DAMI, NGC, KAIS, and PAI, and
he authored a recent book in Knowledge Discovery from Data Streams.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2019.2960216

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.View publication statsView publication stats

https://www.researchgate.net/publication/337993934

