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Abstract—This paper describes the application of the clonal 

selection algorithm to the reconfiguration problem of 

distribution networks considering non-uniform demand levels. 

The Clonal Algorithm, CLONALG, is a combinatorial 

optimization technique inspired in the immunologic bio system 

and it aims at reproducing the main properties and functions of 

this system. The reconfiguration problem of distribution 

networks with non-uniform demand levels is a complex problem 

that aims at identifying the most adequate radial topology of the 

network that complies with all technical constraints in every 

demand level while minimizing the cost of active losses along an 

extended operation period. This work includes results of the 

application of the Clonal algorithm to distribution systems with 

33, 84 and 136 buses. These results demonstrate the robustness 

and efficiency of the proposed approach.  

Index Terms—Distribution System Reconfiguration, Variable 

Demands, Clonal Selection Algorithm, Artificial Immune 

Systems, Mixed-Integer Nonlinear Programming Problem. 

I. INTRODUCTION 

In recent year distribution networks were the object of 
large investments in order to modernize them and to improve 
their automation level. These investments are designed to 
improve the reliability, the efficiency and the security of these 
networks. In this scope a lot of work has also been done at the 
scientific level namely to address the reconfiguration problem 
of distribution networks usually termed as DSR, Distribution 
System Reconfiguration. 

The DRS problem aims at identifying the most adequate 
radial topology of the distribution system taking advantage of 
the operation of sectionalizers and breakers so that an 
objective is optimized. Typically, this search for a solution of 
this problem is driven by the minimization of active losses, 
provided that a number of operation conditions are satisfied, 
namely related with nodal voltage ranges, branch flow limits, 
radial nature of the system in operation and first and second 
Kirchhoff Laws. Apart from this typical general formulation, 
the DSR problem can also address the improvement of the 
voltage profile, keep or enhance the reliability level of the 
system, to isolate faults and to perform preventive 
maintenance actions [1]. 

The DSR problem has combinatorial nature and it can be 
modeled as a mixed integer non-linear optimization problem 
(MINLOP) [2]. Accordingly, as the size of the system under 
analysis increases, the solution of this problem using exact 
optimization approaches becomes increasingly difficult. This 
is the main motivation for the adoption of alternative methods 
as heuristics, artificial networks, metaheuristics including 
genetic algorithms, simulated annealing and Tabu Search. In 
recent years the use of immunologic artificial systems has also 
been reported to solve the DSR problem because it includes 
strategies that enable reducing the search space so that a good 
solution can be identified in an efficient way. 

As mentioned before, the DSR problem has been widely 
addressed in the literature considering fixed demand levels. 
However, some authors address this problem considering 
variable demand levels. In this case, the DSR problem aims at 
identifying the most adequate radial topology of the 
distribution system (one unique topology) that complies with 
all operation constraints in all considered demand levels and 
that minimizes the overall cost of energy losses along an 
extended operation period. 

Among the most relevant research works in the literature 
on the DSR problem assuming fixed demand levels it is 
possible to mention approaches using heuristic algorithms [2-
3], metaheuristics as Genetic Algorithms [4], Simulated 
Annealing [5], Tabu Search [6], Ant Colonies [7], GRASP [8], 
Artificial Neural Networks [9] and Immunologic Systems 
[10]. On the other hand, references [11-13] address the DSR 
problem assuming variable demand levels. 

In this work we solve the DSR problem considering 
variable demand levels using the Clonal Selection Algorithm 
(CLONALG) [14]. In this algorithm a population of 
antibodies is submitted to a selection, a cloning and a 
hypermutation process that envisages the improvement of the 
affinity of the anti-bodies, in this case represented by the cost 
of energy losses associated with each radial topology under 
analysis. The algorithm also includes a metadynamic 
procedure that is designed to maintain the diversity level of 
the population, substituting in each iteration the worse anti 
bodies by new ones generated in a random way. In order to 
evaluate the quality of each candidate radial topology it is run 



 

a power flow study specially designed to address radial 
networks [15] for each demand level to be analysed. As a 
result, it is possible to obtain the cost of energy losses along 
the specified operation period. In order to illustrate the 
application of the CLONALG, this paper also includes results 
obtained for distribution networks with 33, 84 and 136 buses. 
The results confirm the robustness and the efficiency of the 
proposed approach. 

Apart from this Introduction section, this paper is 
structured as follows. Section II details the CLONALG 
algorithm and Section III describes its application to the DSR 
problem. Then, Section IV presents the illustrative results 
considering three test systems and finally Section V outlines 
the main conclusions of this research. 

II. CLONAL SELECTION ALGORITMH 

The CLONALG algorithm was originally proposed in 
[14], and its development was inspired on the biological 
principle of the clonal selection of B lymphocytes that takes 
place in the immunologic system. It can be applied to pattern 
recognition problems, machine learning and also to 
combinatorial optimization problems.  

The general flowchart of the CLONALG applied to 
optimization problems is Figure 1 and its main steps as 
detailed below [14]. 

 
Figure 1. Flowchart of the CLONALG algorithm. 

 

Step 1: Generate a population P with N antibodies interpreted 
as candidate solutions to the problem under analysis. 

Step 2: Evaluate the affinity (objective function) of each 
antibody and select (selection procedure) the n better 
antibodies in the population P, obtaining the set P{n}; 

Step 3: Reproduce (cloning procedure) the n selected 
antibodies, creating a population C with Nc clones. The 
number of clones of each antibody is proportional to its 
affinity; 

Step 4: The population of clones C is submitted to an 
hypermutation process, in which the mutation rate is 
inversely proportional to the affinity of the antibody. At the 

end of this process it is obtained a population C* of mutated 
antibodies; 

Step 5: The affinity of each antibody in C* is now evaluated. 
Then the n better antibodies in C* are selected creating the set 
C*{n}.  These n antibodies in C*{n} will then be used to 
replace antibodies in the original population P. 

Step 6: d antibodies having low affinity are substituted by 
new antibodies in P{d} (diversity/metadynamic process). In 
this process, the antibodies having lower affinity are assigned 
a larger probability of being substituted. 

Step 7: The steps 2 to 6 are repeated until the stopping 
criterium is valid. 

The antibodies correspond to candidate solutions and can 
be coded in real or binary format depending on the problem. 
Each antibody generates a total number of Nc. The clones can 
go under mutation using a rate that is inversely proportional 
to its affinity (objective function). During the execution of the 
algorithm, the antibodies having lower affinity are substituted 
by new antibodies generated in a random way. 

Using [16], the number Nc of clones generated in step 3for 
each antibody i is given by (1). In this expression β is a 
multiplicative factor in [0,1], N is the total number of 
antibodies in the population P, and round(.) is the operator 
that outputs the nearest integer of its argument. 
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Following [16], the mutation rate α of its clone is given by 
(2). In this expression ρ is a parameter that controls the output 
of the exponential function and D* is the normalized value of 
the affinity function. 

*)Dexp( ρα   (2) 

The D* parameter is calculated using (3) for 
maximization problems and (4) for minimization [16]. In 
these expressions, Dmax and Dmin represent the maximum and 
the minimum values of the affinity function. 
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The number of mutations affecting each clone of an 
antibody [17] is given by (5). In this expression m is the 
number of mutations that will affect a clone of an antibody, 
round(.) is the operator that outputs the nearest integer of its 
argument and N(0,1) is value taken from a Gaussian 
probability function with o mean and standard deviation 1. 

)),(N*(roundm 10α  (5) 

III. PROPOSED METHODOLOGY 

This section details the application of the CLONALG 
algorithm to the solution of the DSR problem.  This includes 
the codification of the candidate solutions, the strategy to 
generate the initial population and the operators (evaluation of 
the affinity, cloning, hypermutation and metadynamic used in 
the CLONALG algorithm. 



 

A. Coding of the Candidate Topologies 

In this work each candidate solution to the DSR problem 
was coded using the approach detailed in [18] using integer 
numbers to indicate the branches that are disconnected/ 
opened. This coding strategy has the advantage of reducing 
the search space as well as only working with topologic 
feasible solutions thus allowing the developed CLONALG 
algorithm to be efficient, fat and robust. 

In order to implement this coding strategy, we use (6) to 
calculate the number of fundamental loops in the graph of the 
grid under analysis e it is obtained the size of the vector that is 
used to code each candidate solution. In this expression, LF o 
is the number of fundamental loops in the graph, nl is the 
number of branches and nb is the number of buses. After 
obtaining the number of fundamental loops in the graph, it is 
necessary to identify and store them. It should also be noticed 
that branches in purely radial areas are set as connected along 
all the CLONALG algorithm because this is a necessary 
condition to have all the demand supplied. 

1 bl nnLF  (6) 

Figure 2 presents a test system with 14 buses and 16 
branches. As indicated above, branch 9 in red in Figure 2 is a 
terminal one and so it is set as connected all through the 
CLONALG algorithm in order to ensure that the demand in 
bus 10 is supplied. Therefore, when using (6), nl and nb are 
taken as 15 and 13 and so LF = 15- 13 +1 =3. Figure 2 
presents the 3 fundamental loops in the graph. These loops are 
coded in (7) considering the branches in each one. 

 
Figure 2. Fundamental loops of the 14 bus system. 
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This 14 bus test system has 3 fundamental loops. 
Therefore, in order to ensure that every candidate solution is 
radial, three branches have to be disconnected in each 
solution. This means that the coding vector of each candidate 
solution has three positions, each one related with one branch 
that is opened in the topology associated with that solution. 

Departing from the fundamental loops in (7) we choose in a 
random way a branch to be disconnected, so that a radial 
topology is obtained. For instance, choosing the branches C8, 
C11 and C4 we obtain the coding vector for a candidate 
solution as given by (8). 

[8    11    4] (8) 

When choosing the three branches to be opened in a 

specific candidate solution, we must ensure that each of them 

belongs to one fundamental loop and that they are not 

repeated. In fact, it is usual that different fundamental loops 

share some branches. This means that the same branch should 

be selected only once, although being shared by more than 

one fundamental loop.  

B. Strategy to Generate the Initial Population 

In order to generate the initial population of the 
CLONALG algorithm we used concepts detailed in the 
previous section and the coding of the candidate solutions and 
the fundamental loops of the graph of the network.  

The initial population is constituted by a number of 
antibodies (each of them associated to a candidate solution) 
that are generated in a random way. Its solution is coded by a 
vector having as many positions as the number of fundamental 
loops and in each position it is an integer associated to the 
branch that is disconnected in the fundamental loop. 
Following [18], the strategy to generate the initial population 
P is described by the Pseudocode 1 given below. Given that 
each candidate solution is associated to an opened branch in 
each fundamental loop, we are ensuring that all candidate 
solutions are radial, that is they are feasible from a topologic 
point of view. 

Pseudocode 1: Heuristic to generate the initial population 

1 Read the fundamental loops (L) and obtain the number of loops (LF); 
2 Define the size of the population (N);  

3 do i=1 until N do 

4 for j=1 until LF do 
5 At random, select a circuit that belongs to the 

fundamental loop j (Lj), so that the circuit does not form 

part of the solution topology i in another fundamental 
loop; 

6 end for 

7 end for 

C. Operator to Evaluate the Affinity 

The operator to evaluate the affinity is responsible for the 
calculation of the value of the affinity of each candidate 
solution (each antibody) in the population P. This value is 
associated with the cost of the energy losses associated with 
that topology when supplying a specified demand level in 
each bus. In order to obtain the amount of losses it is run a 
power flow study specially designed to address radial 
networks [15]. It is important to mention that if a particular 
topology associated with an antibody is infeasible from a 
technical point of view (namely because nodal voltage limits 
or branch current limits are violated) it is then penalized in an 
inherent way when running the power flow. If several demand 
scenarios are under analysis, then a power flow exercise is run 
for each of them and at the end (9) is used to obtain the 
affinity value of the associated topology. In this expression Nd 
is the number of demand levels to be analysed, Ki is the cost of 



 

energy losses for the demand level i, and Ti and Pi are the 
duration and amount of energy losses associated with the 
demand level i. 
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D. Selection Operator 

Along the iterative process of the CLONALG algorithm, 
the selection operator is in charge of selecting the antibodies 
to use in the cloning and hypermutation processes as well as 
selecting the best mutated antibodies from the population P. 

The selection is performed using the value of the affinity 
function of each antibody in the population P. After 
computing the value of the affinity function for each antibody 
according to the concepts detailed in section III.C, it is 
possible to conduct the selection process identifying the best 
n antibodies (the ones associated with the smaller cost of 
energy losses along the planning period) in the population P 
in order to create a subpopulation of antibodies denoted as 
P{n}. 

E. Cloning Operator 

After completing the selection step of the CLONALG 

algorithm and obtaining a subpopulation P{n} it is run the 

cloning operator in order to create a subpopulation of clones 

C. This population of clones C includes Nc clones of each 

antibody in the subpopulation P{n}. The number of clones to 

obtain from each antibody in P{n} is obtained using (1). 

F. Hypermutation Operator 

The hypermutation operator is used to create mutated 
antibodies in the neighborhood of the antibodies included in 
the population of clones C described in Section III.E. This 
leads to a new population of mutated clone antibodies 
designated C*. In order to implement the hypermutation 
process it is necessary to calculate the mutation rate α using 
(2) and then identify the number of mutations that each 
antibody will undergo using (5). After doing this, a number of 
random mutations are performed according to the Pseudocode 
2 below. 

Pseudocode 2: Hypermutation Operator 

1 Read C and obtain Nc (number of clones of population C); 
2 for i=1 until Nc do 
3 Calculate the number of mutations (m) for the antibody i; 
4 for j=1 until m do 
5 Select randomly a position l of the antibody i. This 

position l represents a fundamental loop (l ∈ LF); 
6 Choose a circuit of the fundamental loop selected that 

is not disconnected in another position of the antibody i 
and use it to replace the circuit of the position l; 

7 end for 
8 Store in C* the matured antibody i; 
9 end for 
10 return C*; 

Figure 3 illustrates the hypermutation process just 
described. In this example we used the fundamental loops of 
the 14 bus test system indicated in (7). The antibody in (8) 
was selected to undergo the hypermutation process. 

Considering this example, let us admit that position 2 of 

the vector associated with this antibody was randomly 
selected to undergo mutation. This means that the mutation 
process will affect a branch in the fundamental loop 2. It 
should then be randomly selected a branch in loop 2 so that 
the change of its position (connected/disconnected) originates 
a different code regarding the original antibody. Given that 
branch 11 was already in the vector associated to this 
antibody it can no longer be selected. Let us then assume that 
branch 10 was chosen which means that branch 10 will 
substitute branch 11 in the original antibody creating a new 
antibody in the neighborhood of the initial one.  

 
Figure 3. Hypermutation process. 

After mutating all the antibodies using the procedure that 
was just illustrated, we finally get a new population of 
mutated cloned antibodies designated as C*. 

G. Metadynamic Operator 

The metadynamic operator is used to maintain or increase 
the diversity of the population of antibodies used along the 
CLONALG algorithm. In each iteration, this operator is used 
to generate new antibodies and to substitute worse antibodies 
in the population P (the ones having the largest values of the 
affinity parameter) by the new ones. In particular, the d worse 
antibodies in the population P are substituted by d new 
antibodies generated in a similar way as what was used to 
create the initial population, as described in Section III.B. 

H. Stoping Criteria 

The CLONALG algorithm stops if the affinity value of the 
best antibody in the population did not change for a specified 
number of iterations and the average value of the affinity 
value of the antibodies in the population doesn’t change more 
than a specified percentage along a specified number of 
iterations. If the two above conditions hold, then the algorithm 
ends indicating that a final solution was obtained. If not, the 
iteration counter is increased by 1. If the maximum number of 
iterations was reached then Stop indicating that a final solution 
was not obtained. If not, return to Step 2 of the algorithm. 

IV. APPLICATIONS AND RESULTS 

This section presents the results that were obtained using 
the CLONALG algorithm in the solution of the DSR problem. 
The CLONALG algorithm was implemented in the Borland 
C++ 6.0® [19] platform. In order to obtain the active losses 
for each demand level and for each candidate solution (each 
antibody in the population) it was used the power flow model 
detailed in [15]. The tests were done using distribution 
systems with 33, 84 and 136 buses and the respective data is 
available in [20], [21] and [6]. 



 

A. Used Demand Scenarios 

The tests were developed considering a period of 24 hours, 
and for each of these hourly periods it was specified a demand 
level for each node in the test systems. The demand was 
organized in three classes as follows (a) residential, (b) 
commercial and (c) industrial and for each of them a typical 
load diagram was specified as illustrated in Figure 4.a), b) and 
c). In order to obtain the demand in a specific bus the load 
factor of the end consumer in that bus is multiplied by the 
active and reactive powers associated with the typical load 
curves below. The selection of the type of end consumer 
connected to each bus was done in a random way assuming 
that 60% of the consumers are residential, 25% are 
commercial and 15% are industrial. Table I presents the load 
factors associated to each type of consumer along the 24 hours 
of the simulation period. 

 
Figure 4. Typical active power demand load curves. 

Figure 5 shows how the cost of active losses varies along 
the 24 hours. In each hourly period, these values are 
multiplied by the active losses calculated by the power flow 
study in order to obtain the value of the affinity function 
associated with a particular antibody, that is with a candidate 
topology solution. 

 
Figure 5. Cost of the energy losses (US$/kWh). 

TABLE I. Load factors of the consumers and cost of active losses. 

Demand 
level 

Consumer type Cost 
(US$/kWh) Residential Commercial Industrial 

1 0.3600 0.2838 0.0625 0.0650 
2 0.2600 0.2973 0.1000 0.0650 
3 0.2400 0.2838 0.0750 0.0650 
4 0.2200 0.3108 0.1188 0.0650 
5 0.2400 0.2938 0.1000 0.0650 
6 0.4200 0.3378 0.0875 0.0650 
7 0.5400 0.4054 0.1375 0.1100 
8 0.5600 0.5270 0.3875 0.1100 
9 0.5400 0.7297 0.7438 0.1100 
10 0.5800 0.8311 0.7625 0.1100 
11 0.4300 1.0000 0.9000 0.1100 
12 0.4800 0.9595 1.0000 0.1100 
13 0.5800 0.9324 0.6188 0.1100 
14 0.5200 0.9595 0.6875 0.1100 
15 0.4100 0.9730 0.7875 0.1300 
16 0.4600 0.9595 0.7625 0.1300 
17 0.4200 0.9730 0.8125 0.1300 
18 0.4900 0.9189 0.8750 0.1300 
19 0.7900 0.7838 0.6188 0.1500 
20 0.9840 0.7162 0.3563 0.1500 
21 0.9700 0.6622 0.2375 0.1500 
22 1.0000 0.5811 0.1250 0.0650 
23 0.5400 0.5000 0.1188 0.0650 
24 0.4200 0.3229 0.0832 0.0650 

B. Parameters of the CLONALG Algorithm 

The tests using the three mentioned distribution systems 
were conducted using the parameters in Table II where ε is the 
tolerance of the power flow algorithm detailed in [15]. 

TABLE II. Parameters used in the CLONALG. 

Paramters 
Distribution system 

33 and 84 buses 136 buses 

N 30 50 

β 0.3 0.3 

ger 30 50 

n 10 10 

d 5 5 

ρ 4 4 

ε 10-6 10-6 

C. Distribution System with 33 Buses 

This test system has 33 buses, 32 of which are demand 
buses. It is connected to the upward voltage level by one 
substation and it has 37 branches. It is established at 12.66 kV, 
and the total active and reactive powers are 3715 kW and 
2315 kVAr [20].  

TABLE III. Results obtained for the 33 bus system. 

Topology Open branches 
Daily cost of 
losses (US$) 

initial 33-34-35-36-37 187.86 

1 demand level 7-9-14-32-37 134.30 

final 7-9-14-28-32 128.81 

Table III details the results obtained by the CLONALG 
algorithm for this system. The solution identified by the 
CLONALG has a total daily cost of 128.81 US$, that 
represents an improvement of 31.43% regarding the cost of 
the initial solution. On the other hand, the topology presented 
in [10] just for one demand level has a larger cost of energy 



 

losses when compared with the cost associated with the 
topology selected by the CLONALG. Finally, the computation 
time was 0.294 seconds. 

D. Distribution System with 84 Buses 

This test system is established at 11.40 kV, it has 84 buses, 
from which 83 are demand buses. It is connected to the 
upstream voltage level by one substation and the total active 
and reactive powers are 28350 kW and 20700 kVAr [21]. 
Table IV present the results for this test system, regarding the 
initial topology, the topology for just one demand level and 
the topology output by the CLONALG algorithm. 

The solution identified by the CLONALG algorithm has a 
daily cost of losses of 410.53 US$, that corresponds to an 
improvement of 10.05% regarding the cost associated with the 
initial topology. On the other hand, the topology mentioned in 
[10] just for one load level has a larger cost of energy losses 
regarding the topology obtained by the CLONALG. Finally, 
the computation time required by the CLONALG was 3.978 
seconds. 

TABLE IV. Results obtained for the 84 bus system. 

Topology Open branches 
Daily cost of 
losses (US$) 

initial 
84-85-86-87-88-89-90-91-
92-93-94-95-96 

456.41 

1 demand level 
7-13-34-39-42-55-62-72-
83-86-89-90-92 

417.29 

final 
7-34-39-63-72-83-84-86-
88-89-90-92-95 

410.53 

E. Distribution System with 136 Buses 

This test system has 136 buses, one substation, 135 
demand buses and 155 branches. Its nominal voltage is 13.80 
kV, and the total active and reactive loads are 18313.80 kW 
and 9384.82 kVAr [6]. Table V details the results that were 
obtained, namely the initially used topology, the topology 
given in [10] just for one demand level and the topology that 
was identified by the CLONALG algorithm. 

TABLE V. Results obtained for the 136 bus system. 

Topology Open branches 
Daily cost of 
losses (US$) 

initial 
136-137-138-139-140-141-142-
143-144-145-146-147-148-149-
150-151-152-153-154-155-156 

288.50 

1 demand 
level 

7-35-51-90-96-106-118-126-
135-137-138-141-142-144-145-
146-147-148-150-151-155 

272.97 

final 
7-38-51-54-84-90-96-106-118-
126-135-137-138-141-144-145-
147-148-150-151-155 

256.89 

The daily cost of the energy losses associated with the 
topology obtained by the CLONALG is 256.89 US$, which 
represents a reduction of 10.95% regarding the cost associated 
with the initial topology. On the other hand, the topology in 
[10] for one demand level has a cost of energy losses larger 
than the one obtained by the CLONALG. Finally, the 
computation time of the CLONALG algorithm was in this 
case of 19.752 seconds. 

V. CONCLUSION 

This work describes the application of the CLONALG 
algorithm to the Distribution System Reconfiguration problem 
considering nodal demand levels that change along the 
planning period, 24 hours in this case. The search for the most 
adequate topology is driven by the minimization of the cost of 
active losses, assuming a unit cost that also varies along the 
day. The CLONALG algorithm was tested using 3 distribution 
test systems, with 33, 84 and 136 buses and in all analysed 
cases the CLONALG was able to identify topologies that are 
feasible from a technical point of view and also better 
regarding solutions provided in the literature. Finally, the 
CLONALG algorithm had a very satisfactory behavior, 
namely considering its robustness, efficiency and computation 
time. 
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