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Abstract

We propose a new linear regression model for interval-valued variables. The

model uses quantile functions to represent the intervals, thereby considering

the distributions within them. In this paper we study the special case where

the Uniform distribution is assumed in each observed interval, and we analyse

the extension to the Symmetric Triangular distribution. The parameters of the

model are obtained solving a constrained quadratic optimization problem that

uses the Mallows distance between quantile functions. As in the classical case,

a goodness-of-fit measure is deduced. Two applications on up-to-date fields are

presented: one predicting duration of unemployment and the other allowing

forecasting burned area by forest fires.

Keywords: interval data, linear regression, Symbolic Data Analysis, quantile

functions

1. Introduction

The extensive and complex data that emerged in the last decades made it

necessary to extend and generalize the classical concept of data sets. Data tables

where the cells contain a single quantitative or categorical value were no longer

sufficient. More complex data tables were needed, with cells that include more

accurate and complete information, e.g. expressing the variability or imprecision
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of the records of each observed unit. Data with variability occur when each unit

represents a specific group/class, or when values express characteristics that

float along a period of time. Imprecise data occur when an interval associated

with each unit under analysis represents the uncertain value of the record. This

paper comes within the framework of Symbolic Data Analysis (SDA) (Billard

and Diday, 2006; Noirhomme-Fraiture and Brito, 2011; Brito, 2014), which is

concerned with data presenting variability. This variability may emerge due

to the aggregation of single observations. In particular, we consider symbolic

variables whose realizations are intervals, i.e., interval-valued variables (Bock

and Diday, 2000; Billard and Diday, 2006).

Data at aggregated level are also used in other frameworks, as for example

Granular Computing (see Pedrycz, 2014). Information granules are groups of in-

dividual observations capturing the semantics of the abstract entities of interest.

When the data are numerical, granules may be defined by cartesian products

of intervals. Information granules may be expressed and treated considering

fuzzy, rough, interval and probabilistic models. A comprehensive treatise on

the subject may be found in Pedrycz (2013).

The linear regression models for interval-valued variables previously pro-

posed are very different from the one presented in this work. Most linear regres-

sion models developed for interval-valued variables in the context of SDA are de-

scriptive (see Billard and Diday, 2000, 2002, 2006; Lima Neto and De Carvalho,

2008, 2010; Giordani, 2014); nevertheless, some papers recently published pro-

pose probabilistic models and inference studies (see Ahn et al., 2012; Lima Neto

et al., 2011; Brito and Duarte Silva, 2012). The noteworthy descriptive models

allow predicting a response variable from p explicative variables. However those

models do not treat the intervals as such, rather they require the adjustment of

classical linear regression models for their lower and upper bounds or for their

centers and half ranges. In other words, these models are based on differences

between real values and do not quantify the closeness between intervals. There-

fore, the elements estimated by the models may fail to build an interval; to solve

this problem the Constrained Center and Range Method (CCRM) proposed by
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Lima Neto and De Carvalho (2010) imposes non-negative constraints in the lin-

ear regression between the half ranges of the intervals. More recently, Giordani

(2014) proposed a Lasso approach, that as Lima Neto and De Carvalho (2008,

2010) considers two regression models, one for the centers and another for the

half ranges, but whose parameters are related.

Linear regression models have also been proposed for intervals represent-

ing imprecise data. Aznar and Guijarro (2007) proposed a programming opti-

mization technique that allows predicting real values and estimating regression

parameters from imprecise information, represented by intervals. A review on

some linear regression analysis for imprecise interval-valued data may be found

in Blanco-Fernández et al. (2013).

The linear regression model proposed here is a descriptive method that comes

within the SDA framework. Borrowing the idea of using quantile functions

to represent variables expressing variability from Dias and Brito (2015), we

propose a model that allows considering intervals as such, i.e., we do not fit

separate linear models to the corresponding bounds or midpoints and ranges.

The innovations of the proposed model are the following: 1) the model considers

the distribution within the intervals; in this paper the Uniform distribution is

in general assumed, and the extension to the Symmetric Triangular distribution

is investigated, other distributions may also be considered; 2) the intervals are

represented by quantile functions; 3) the model allows predicting a response

variable from p explicative variables and the predicted range of values always

constitutes an interval; 4) the linear relations between the centers and half

ranges, induced by the model, are jointly obtained, but although related, these

relations are different; 5) a goodness-of-fit measure is derived from the model.

In Section 2, we introduce the representation of intervals by quantile func-

tions and present the linear regression model for interval-valued variables. Sec-

tion 3 reports a simulation study and discusses its results. In Section 4, real

applications are presented. Finally, Section 5 concludes the paper, pointing out

directions for future research.
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2. Regression Model with interval-valued variables

In this section a linear regression model for interval-valued variables and

the respective goodness-of-fit measure are proposed assuming, in general, the

Uniform distribution within the intervals. The model is however quite flexible: it

reduces to the classical linear regression when it is applied to degenerate intervals

(classical numerical variables) and it may be adapted to other distributions

within the intervals.

2.1. Representation of the intervals by quantile functions

According to Bock and Diday (2000) and Billard and Diday (2006) interval-

valued variables are formally defined as follows.

Definition 2.1. Y is an interval-valued variable when to each unit j ∈ {1, . . . , n}

of the set under study corresponds an interval Y (j) of real numbers. Y (j) may

be represented by the interval IY (j) =
[
IY (j), IY (j)

]
; alternatively, the inter-

val Y (j) may be represented by its center cY (j) =
IY (j)+IY (j)

2 and half-range

rY (j) =
IY (j)−IY (j)

2 , then IY (j) =
[
cY (j) − rY (j); cY (j) + rY (j)

]
.

Definition 2.2. The symbolic mean of an interval-valued variable Y is defined

in Billard and Diday (2006) as:

Y =
1

n

n∑
j=1

cY (j).

Irpino and Verde (2006) proposed using quantile functions to represent em-

pirical distributions. In this work we particularize this representation to in-

tervals. Notice that a similar representation has already been considered by

Bertoluzza et al. (1995) and named “parametrization of the interval”. Assum-

ing an Uniform distribution in each interval Y (j), we may represent Y (j) by

the respective empirical quantile function as follows:

Ψ−1Y (j)(t) = IY (j) +
(
IY (j) − IY (j)

)
t, 0 ≤ t ≤ 1.

or using the center cY (j) and half-range rY (j) as
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Ψ−1Y (j)(t) = cY (j) + rY (j)(2t− 1), 0 ≤ t ≤ 1.

As empirical quantile functions are the inverse cumulative distribution func-

tions, which in the particular case of the intervals are continuous linear functions

with domain [0, 1] , we shall use the usual arithmetic operations with functions.

However, when we use arithmetic operations with quantile functions, problems

may arise. Since for all intervals IY ≤ IY , the quantile function that represents

an interval is always a non-decreasing function. The addition of quantile func-

tions is a non-decreasing function, but when we multiply a quantile function by

a negative real number we obtain a function that is not non-decreasing. Con-

sider an interval IY = [cY −rY , cY +rY ] and let −IY = [−cY −rY ,−cY +rY ] be

the respective symmetric interval; if Ψ−1Y (t) = cY + rY (2t − 1), 0 ≤ t ≤ 1, is

the quantile function that represents IY , the quantile function that represents

−IY is −Ψ−1Y (1− t) = −cY + rY (2t− 1), 0 ≤ t ≤ 1 (which is non-decreasing)

- and not −Ψ−1Y (t). Some properties met by the usual symmetric elements are

not met when these elements are ranges of values. The addition of interval IY

with −IY is not the null interval, so that the difference between ranges of values

does not provide information on how dissimilar the intervals are. The difference

between two equal intervals is an interval with symbolic mean (as defined by

Billard and Diday (2006)) zero i.e., an interval with center zero and symmetric

bounds. For more details about the behavior of quantile functions, see Dias

(2014).

Since we need to measure the similarity between predicted and observed in-

tervals, it is necessary to select an adequate distance. In this paper the Mallows

distance will be the considered to evaluate the similarity between intervals. In

recent literature (Arroyo and Maté, 2009; Irpino and Verde, 2015), the Mallows

distance is considered an adequate measure to evaluate the similarity between

distributions. Arroyo and Maté (2009) study several di,stances and conclude

that, in addition to the interesting properties for error measurement (positive

definiteness, symmetry, and triangle inequality) the Mallows distance has intu-

itive interpretations related to the Earth Mover’s Distance (EMD), and it is the
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one that better adjusts to the concept of distance as assessed by the human eye.

This distance has also been considered in cluster analysis for histogram data,

proposed by Irpino and Verde (2006). In a classification context, Hofer (2014)

uses the EMD distance between distributions, also making a link with the Mal-

lows distance. In spite of the fact that the Mallows distance has mainly been

applied to distributions, intervals being considered a special case, the applica-

tion of this distance to intervals is not completely new. The Mallows distance

is a particular case of the Bertoluzza distance, used in the literature to measure

the distance between two intervals (Bertoluzza et al., 1995); a generalization of

this distance is also used in linear regression models for interval-valued random

sets (Blanco-Fernández et al., 2011; González-Rodŕıguez et al., 2007; Gil et al.,

2002).

Definition 2.3. Given two quantile functions Ψ−1X(j)(t) and Ψ−1Y (j)(t) represent-

ing the values of interval-valued variables X and Y for an observation j, the

square of the Mallows distance is defined as follows (Mallows, 1972):

D2
M (Ψ−1X(j),Ψ

−1
Y (j)) =

∫ 1

0

(Ψ−1X(j)(t)−Ψ−1Y (j)(t))
2dt.

Irpino and Verde (2006) have simplified the expression for the squared Mal-

lows distance between two distributions represented by the quantile functions as-

sociated with the corresponding histograms, assuming the Uniform distribution

within the histograms’ intervals. Particularizing for interval-valued variables,

we may then rewrite the squared Mallows distance as the sum of the squared

differences between the centers and one third of the square of the differences

between the half-ranges. We notice that the weight of the difference between

the centers is larger than the weight of the difference between the half-ranges.

Proposition 2.1. Given two quantile functions Ψ−1X(j)(t) and Ψ−1Y (j)(t) repre-

senting the values of interval-valued variables X and Y for an observation j, and

assuming uniformity within each interval, the squared Mallows distance may be

expressed as:
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D2
M (Ψ−1X(j),Ψ

−1
Y (j)) = (cX(j) − cY (j))

2 +
1

3
(rX(j) − rY (j))

2

where cX(j), cY (j) are the centers and rX(j), rY (j) are the half-ranges of the in-

tervals X(j) and Y (j), respectively, with j ∈ {1, 2, . . . , n} .

2.2. The Interval Distributional regression model

The proposed model, defined for p explicative variables, is the first lin-

ear regression model within the SDA framework that predicts intervals from

other intervals without decomposing them in their bounds or centers and half

ranges. Following the principle of a quantile function representation for data

with variability (Dias and Brito, 2015), in this model the observations of the

interval-valued variables are represented by quantile functions, assuming a spe-

cific distribution within the intervals. However, as mentioned above, when we

multiply a quantile function by a negative number we obtain a function that

is not a non-decreasing function and consequently is not a quantile function.

As a consequence, the functional linear relation between interval data may not

be just an adaptation of the classical model, since, if the linear relation model

between interval-valued variables were the classical linear model then, if the

values of the parameters were negative, the function predicted for Y (j) might

not be a quantile function (Ψ−1
Ŷ (j)

(t) might be a decreasing function). For the

predicted element to be a quantile function it would be necessary to impose

non-negativity constraints on the parameters of the model. However, these

restrictions would always force a direct linear relation between the variables.

Therefore, and although non-negative constraints on the parameters are neces-

sary (the parameters of the model cannot be negative) it is obviously required

to define a model that allows for a direct or inverse linear relation between

the response variable Y and the independent variables Xi. For this reason, in

our model both the quantile functions corresponding to the observations of the

explicative interval-valued variables, Ψ−1Xi(j)
(t) and the quantile functions that

represent the respective symmetric intervals, −Ψ−1Xi(j)
(1− t), are included. Con-

sequently, the linear relation between the intervals is not necessarily direct, even
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though positivity constraints are imposed on the parameters. For each unit it

is hence possible to predict response quantile functions/intervals from other

quantile functions/intervals.

The Interval Distributional (ID) regression model is defined as follows.

Definition 2.4. Consider the interval-valued variables X1;X2; . . . ;Xp. The

quantile functions that represent the range of values that these variables take for

each unit j are denoted by Ψ−1X1(j)
(t), Ψ−1X2(j)

(t), . . . , Ψ−1Xp(j)
(t) and the quantile

functions that represent the respective symmetric intervals are denoted −Ψ−1X1(j)
(1−

t),−Ψ−1X2(j)
(1− t), . . . , −Ψ−1Xp(j)

(1− t), with t ∈ [0, 1]. For the response variable

Y , each quantile function Ψ−1Y (j) may be expressed as Ψ−1Y (j)(t) = Ψ−1
Ŷ (j)

(t)+ej(t)

where Ψ−1
Ŷ (j)

(t) is the predicted quantile function for unit j, obtained from

Ψ−1
Ŷ (j)

(t) = v +

p∑
i=1

aiΨ
−1
Xi(j)

(t)−
p∑

i=1

biΨ
−1
Xi(j)

(1− t) (1)

with t ∈ [0, 1] ; ai, bi ≥ 0, i ∈ {1, 2, . . . , p} and v ∈ R.

When we assume uniformity within the observed intervals, and since Ψ−1Xi(j)
(t) =

cXi(j)+(2t−1)rXi(j) and −Ψ−1Xi(j)
(1−t) = −cXi(j)+(2t−1)rXi(j), the predicted

quantile function Ψ−1
Ŷ (j)

in expression (1) may be rewritten as follows:

Ψ−1
Ŷ (j)

(t) =

p∑
i=1

(ai − bi) cXi(j) + v +

p∑
i=1

(ai + bi) rXi(j) (2t− 1) (2)

with t ∈ [0, 1] ; ai, bi ≥ 0, i ∈ {1, 2, . . . , p} , and v ∈ R.

The lower and upper bounds of each IŶ (j) are obtained from expression (2)

for t = 0 and t = 1, respectively, as follows:

Ψ−1
Ŷ (j)

(0) =

p∑
i=1

ai
(
cXi(j) − rXi(j)

)
−

p∑
i=1

bi
(
cXi(j) + rXi(j)

)
+ v

Ψ−1
Ŷ (j)

(1) =

p∑
i=1

ai
(
cXi(j) + rXi(j)

)
−

p∑
i=1

bi
(
cXi(j) − rXi(j)

)
+ v,

For each unit j, the predicted interval IŶ (j) may then be obtained from

IŶ (j) =

[
p∑

i=1

(
aiIXi(j) − biIXi(j)

)
+ v,

p∑
i=1

(
aiIXi(j) − biIXi(j)

)
+ v

]
. (3)
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The error, for each unit j, is a linear function, but not necessarily a quantile

function, given by ej(t) = Ψ−1Y (j)(t)−Ψ−1
Ŷ (j)

(t), t ∈ [0, 1].

To be possible to define a linear regression model in the requested conditions,

it was necessary to include in the model two parameters for each explicative

variable - one associated with the quantile function that represents each inter-

val Xi(j) and the other associated with the quantile function that represents

the respective symmetric interval. This solution increases the number of pa-

rameters to estimate, it is therefore important to bear in mind that the number

of observations should be higher than the total number of parameters. Notice

that a similar situation occurs for other models, as the MinMax, CRM, CCRM,

where the bounds, or the centers and half ranges, of the intervals are separately

estimated, and therefore two parameters must be estimated for each explicative

variable.

For the ID Model, the center cŶ (j) and the half range rŶ (j) (or the bounds)

predicted for the interval-valued variable Y may be described, respectively, by

a classical linear relation for the centers cXi(j) and by a classical linear relation

for the half ranges rXi(j) (or the bounds), of the explicative interval-valued

variables. These linear relations, obtained from (3), are the following:

cŶ (j) =

p∑
i=1

(ai − bi) cXi(j) + v; rŶ (j) =

p∑
i=1

(ai + bi) rXi(j) (4)

with ai, bi ≥ 0, i ∈ {1, 2, . . . , p} and v ∈ R.

Considering the expression that allows predicting the centers and considering

that v = Y −
p∑

i=1

(ai − bi)Xi, (Dias and Brito, 2015), it is easily proven that the

sum of the errors between the observed and predicted centers of the intervals is

zero.

From these expressions we may observe that the parameters that define the

linear regressions between the centers and between the half ranges are not the

same but are related. In spite of the fact that this model is defined between

intervals and that the relation may be direct or inverse, it always induces a

direct linear relation between the half ranges. The direct or inverse relation
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between the interval-valued variables is always in accordance with the linear

relation between the centers. An interval-valued variable Xk is in direct linear

relation with Y when ak > bk and the linear relation is inverse if ak < bk. When

we predict one interval-valued variable Y from only one interval-valued variable

X, the following relations result from (4):

Proposition 2.2. Consider the intervals predicted from an interval-valued vari-

able X by the ID Model. From (4) we may conclude that:

1. The centers of the predicted intervals Ŷ (j) are obtained from a classical

linear relation on the centers of the observed intervals of the variable X.

2. The ratio of the half ranges of the predicted intervals Ŷ (j) to the half

ranges of X(j), for j ∈ {1, . . . , n}, is constant.

Two interval-valued variables X and Y may be represented in a scatter

plot. In this representation, each interval may be represented by a line joining

the points (IX(j), IY (j)) and (IX(j), IY (j)), these lines are the diagonals of the

rectangles that more usually are used to represent scatter plots of intervals

(Billard and Diday, 2006). Figure 1 illustrates the results in Proposition 2.2

for a perfect linear relation: it induces a perfect linear regression between the

centers of the intervals and the ratio (slope) of the ranges of the intervals is

constant for all observations. In Figure 1(a) the linear relation is direct because

a > b, in Figure 1(b) as a < b the relation is inverse.

2.3. Parameters of the ID Model

The non-negative parameters of the ID Model in Definition 2.4, are de-

termined solving a quadratic optimization problem, subject to non-negativity

constraints on the unknowns. The distance used to quantify the dissimilarity be-

tween the predicted and the observed quantile function is the Mallows Distance

(Mallows, 1972) as in Proposition 2.1.

Consider the centers cY (j) and half ranges rY (j) of the observed intervals

Y (j) and the centers cŶ (j) and half ranges rŶ (j) of the predicted intervals Ŷ (j).
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X(j)
(1− t).

Figure 1: Scatter plots of the intervals and the respective centers.

The quadratic optimization problem to be solved to obtain the parameters of
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the model is then:

min
n∑

j=1

[(
cY (j) −

p∑
i=1

(ai − bi) cXi(j)
− v

)2

+ 1
3

(
rY (j) −

p∑
i=1

(ai + bi) rXi(j)

)2
]

subject to −ai,−bi ≤ 0, i ∈ {1, 2, . . . , p}, with v ∈ R.

(5)

The optimization problem (5) may be written in matricial form as a classical

constrained quadratic optimization problem or alternatively, as a constrained

least squares problem.

Consider the n−dimensional vectors of the observed centers and half ranges

of the response variable Y : yc =
(
cY (1), . . . , cY (n)

)T
, yr =

(
rY (1), . . . , rY (n)

)T
;

and the vector of the parameters of the model with dimension 2p + 1, b =

(a1, b1, . . . , ap, bp, v)
T
. From the vectors xc(j) =

(
cX1(j),−cX1(j), . . . , cXp(j),−cXp(j), 1

)
,

xr(j) =
(
rX1(j), rX1(j), . . . , rXp(j), rXp(j), 0

)
; we may build the following n×(2p+

1) matrices:

Xc = [xc(1) xc(2) . . . xc(n)]T and Xr = [xr(1) xr(2) . . . xr(n)]T .

The minimization problem (5) may then be rewritten in matricial form as :

min
∥∥∥yc −Xcb

∥∥∥2 +
1

3

∥∥∥yr −Xrb
∥∥∥2

subject to −ai,−bi ≤ 0, i ∈ {1, 2, . . . , p}, with v ∈ R.
(6)

As the parameters for the centers and half ranges may not be obtained

independently, we may rewrite the optimization problem (5) as the following

least squares problem:

min

∥∥∥∥∥∥∥∥∥

 yc

1√
3
yr

−
 Xc

1√
3
Xr

b

∥∥∥∥∥∥∥∥∥
2

=
∥∥Y −Xb

∥∥2

subject to −ai,−bi ≤ 0, i ∈ {1, 2, . . . , p}, with v ∈ R.

(7)

Several methods may be found in the literature to solve the constrained least

squares problem (7) and therefore the constrained quadratic optimization prob-

lem (5). As the quadratic function to optimize is convex and the feasible region
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as well, it may be ensured that the vectors that verify the Kuhn Tucker condi-

tions (see Winston, 1994) are the vectors where the function reaches the smallest

value i.e., are the optimal solutions. In cases where the objective function is

strictly convex we may ensure that the optimal solution is unique.

In the case of a single linear regression we obtain explicit expressions for the

parameters a, b and v of the model. These are obtained for different conditions

imposed on the relations between the centers and half ranges of the intervals of

the explicative and response variables, which emerge from the non-negativity of

the parameters a and b. Four cases must be considered, as in Proposition 2.3

below.

Proposition 2.3. Consider the minimization problem (5) with only one ex-

plicative variable X. When the function to minimize is strictly convex and the

centers of all intervals of the explicative variable are not all the same, the opti-

mal solution b∗ = (a∗, b∗, v∗), i.e., the values of the parameters of the ID Model

where the objective function reaches the minimum value, are as follows:

I. a∗ = 0; b∗ = 0; v∗ = Y if
n∑

j=1

1

3
rX(j)rY (j) =

n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

)
= 0;

II. a∗ = 0; b∗ =

n∑
j=1

1
3rX(j)rY (j) −

n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

)
n∑

j=1

(
cX(j) −X

)2
+

n∑
j=1

1
3r

2
X(j)

; v∗ = Y + b∗X

if
n∑

j=1

1

3
rX(j)rY (j) ≥

n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

)
and

n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

) n∑
j=1

1

3
r2X(j) ≤ −

n∑
j=1

1

3
rX(j)rY (j)

n∑
j=1

(
cX(j) −X

)2
;
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III. a∗=

n∑
j=1

1
3rX(j)rY (j) +

n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

)
n∑

j=1

(
cX(j) −X

)2
+

n∑
j=1

1
3r

2
X(j)

; b∗ = 0; v∗ = Y − a∗X

if
n∑

j=1

1

3
rX(j)rY (j) ≥ −

n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

)
and

n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

) n∑
j=1

1

3
r2X(j) ≥

n∑
j=1

1

3
rX(j)rY (j)

n∑
j=1

(
cX(j) −X

)2
;

IV. a∗ =

n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

) n∑
j=1

1
3r

2
X(j) +

n∑
j=1

1
3rX(j)rY (j)

n∑
j=1

(
cX(j) −X

)2
2

n∑
j=1

(
cX(j) −X

)2 n∑
j=1

1
3r

2
X(j)

;

b∗ =

−
n∑

j=1

(
cY (j) − Y

) (
cX(j) −X

) n∑
j=1

1
3r

2
X(j) +

n∑
j=1

1
3rX(j)rY (j)

n∑
j=1

(
cX(j) −X

)2
2

n∑
j=1

(
cX(j) −X

)2 n∑
j=1

1
3r

2
X(j)

;

v∗ = Y − (a∗ − b∗)X if

−
n∑

j=1

1

3
rX(j)rY (j)

n∑
j=1

(
cX(j) −X

)2≤ n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

) n∑
j=1

1

3
r2X(j)

and

n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

) n∑
j=1

1

3
r2X(j)≤

n∑
j=1

1

3
rX(j)rY (j)

n∑
j=1

(
cX(j) −X

)2
.

Proof. The proof is given in Supplementary Material.

As the ID Model uses both the quantile function Ψ−1Xi(j)
(t) representing the

interval Xi(j) and the quantile function −Ψ−1Xi(j)
(1 − t) representing the re-

spective symmetric interval, we analyze the behavior of the model when these

functions are collinear. Proposition 2.4 below allows deducing the collinearity

conditions.
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Proposition 2.4. The quantile functions Ψ−1Xi(j)
(t) = cXi(j)+rXi(j)(2t−1) and

−Ψ−1X(j)(1−t) = −cXi(j)+rXi(j)(2t−1) with t ∈ [0, 1] that represent the intervals

IXi(j) and −IXi(j), respectively, for j ∈ {1, . . . , n}, are collinear if at least one

of the following conditions occurs:

1. the interval IXi(j) has cXi(j) = 0, i.e., the interval is symmetric;

2. rXi(j) = 0, i.e., the interval is reduced to a real number.

When all quantile functions Ψ−1Xi(j)
(t) and −Ψ−1Xi(j)

(1 − t) are collinear, ex-

pression (1) reduces to the classical linear regression model: between the centers

when all intervals of the explicative interval-valued variables are degenerate or

between the half ranges when all intervals of the explicative interval-valued

variables are symmetric (see expressions (4)).

When, for all observations of the explicative variables, collinearity between

Ψ−1Xi(j)
(t) and −Ψ−1Xi(j)

(1 − t) occurs, the optimization problem has an optimal

solution which is not unique since the quadratic function to optimize is not

strictly convex (the columns of X in the optimization problem (7) are linearly

dependent). However, all values of the parameters where the smallest value is

attained allow obtaining the same model, that in these cases is a classical model

between the centers or the half ranges.

The optimal solution of the quadratic optimization problem (5) verifies the

Kuhn Tucker conditions (Winston, 1994; Dias and Brito, 2015).

2.4. Model evaluation measures

Let
(
a∗1, b

∗
1, · · · , a∗p, b∗p, v∗

)
be an optimal solution of the optimization problem

in (5). According to Dias and Brito (2015) we may prove that:

• the symbolic mean of the predicted values is Ŷ =

p∑
i=1

(a∗i − b∗i )Xi + v∗;

• using the Mallows distance, and as in classical regression, the total vari-

ation may be decomposed into sum of squares due to error and sum of

squares due to regression, according to:

n∑
j=1

D2
M

(
Ψ−1Y (j)(t), Y

)
=

n∑
j=1

D2
M

(
Ψ−1Y (j)(t),Ψ

−1
Ŷ (j)

(t)
)

+

n∑
j=1

D2
M

(
Ψ−1

Ŷ (j)
(t), Y

)
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This decomposition allows defining the goodness-of-fit measure for the ID

Model for interval-valued variables.

Definition 2.5. Consider the observed and predicted ranges of values of the

interval-valued variable Y represented, respectively, by their quantile functions

Ψ−1Y (j)(t) and Ψ−1
Ŷ (j)

(t) with t ∈ [0, 1] . Consider also the symbolic mean of the

interval-valued variable Y, Y . The goodness-of-fit measure Ω is given by

Ω =

n∑
j=1

D2
M

(
Ψ−1

Ŷ (j)
(t), Y

)
n∑

j=1

D2
M

(
Ψ−1Y (j)(t), Y

) =

n∑
j=1

((
cŶ (j) − Y

)2
+

1

3
r2
Ŷ (j)

)
n∑

j=1

( (
cY (j) − Y

)2
+

1

3
r2Y (j)

) .

As in classical linear regression, where the coefficient of determination R2

ranges from 0 to 1, the goodness-of-fit measure Ω also ranges between 0 and 1

(Dias, 2014). The goodness-of-fit measure Ω is used to evaluate the linearity of

the ID Model.

To measure the dissimilarity between the observed and predicted intervals,

it is usual to compute the lower and the upper bound Root Mean Square Errors

(Lima Neto and De Carvalho, 2008, 2010),

RMSEL =

√√√√ 1

n

n∑
j=1

(
I Ŷ (j) − IY (j)

)2
; RMSEU =

√√√√ 1

n

n∑
j=1

(
I Ŷ (j) − IY (j)

)2
and a measure defined with the Mallows distance proposed by Irpino and Verde

(2015):

RMSEM =

√√√√ 1

n

n∑
j=1

∫ 1

0

(
Ψ−1

Ŷ (j)
(t)−Ψ−1Y (j)(t)

)2
dt.

2.5. Flexibility of the ID Model

2.5.1. The ID Model with degenerate intervals

The ID Model under uniformity is a theoretical generalization of the de-

scriptive classical linear regression model. This generalization is in accordance
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with the purpose of SDA, where symbolic variables are defined to generalize

the classical concept of variable. Hence, the statistical concepts and methods

defined for symbolic variables should also generalize the classical ones.

The ID linear regression Model may be written for classical variables whose

values may be considered as degenerate intervals (the upper and lower bounds

are equal, i.e. IXi(j) = IXi(j)
= uXi(j)). In this particular case, expression

(1) that allows predicting the values of response variable Y, is simplified to

ŷ(j) = v +
p∑

i=1

(ai − bi)uXi(j) with ai, bi ≥ 0, i ∈ {1, 2, . . . , p} and v ∈ R. As

we have referred above, in this situation, the function to optimize is not strictly

convex, and therefore more than one optimal solution exists. However, for all

optimal solutions for ai and bi we obtain the same diference ai− bi and since no

constraint is imposed on ai− bi, we have in this case a classical linear regression

model. Moreover, the goodness-of-fit measure for interval-valued variables is

also a generalization of the coefficient of determination R2 for classical variables.

2.5.2. The ID Model assuming the Symmetric Triangular distribution

The flexibility of the ID Model goes beyond the reduction to the classical

model and the generalization to histogram-valued variables (Dias and Brito,

2015). When applied to interval-valued variables, the method may be defined

considering different distributions within the intervals. In this paper a detailed

study for the Uniform distribution is presented. To consider other distributions

within the intervals, it is necessary to include new definitions and deduce new

results. It is important to notice that almost all theoretical results presented

in this section take into account the uniformity condition. To put in evidence

the potential of the proposed model, we present in this subsection some results

for the case where a Symmetric Triangular distribution is assumed within the

intervals of the observed interval-valued variables.

Consider a interval-valued variable Y for which the Symmetric Triangular

distribution is assumed within all intervals Y (j), with j ∈ {1, 2, . . . , n}. Each

interval Y (j) with center cY (j) and half-range rY (j), may be represented by the
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empirical quantile function defined as follows:

Ψ−1Y (j)(t) =

 cY (j) − rY (j) + rY (j)

√
2t, 0 ≤ t ≤ 1

2

cY (j) + rY (j) − rY (j)

√
2(1− t), 1

2 < t ≤ 1
(8)

In this case the empirical quantile functions that represent the intervals are

piecewise irrational functions with domain [0, 1] and with t = 1
2 as the boundary

point between the two expressions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
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(a) Uniform distribution.
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3

4
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(b) Symmetric Triangular distribution.

Figure 2: Quantile functions assuming two different distributions.

In this case, again, −Ψ−1Y (j)(t) is not the quantile function that represents

the symmetric of the interval Y (j). As in the case where the Uniform distribu-

tion is assumed, it is necessary to make a function transformation besides the

multiplication by −1. The quantile function that represents the symmetric of

the interval Y (j) is given by

−Ψ−1Y (j)(1− t) =

 −cY (j) − rY (j) + rY (j)

√
2t, 0 ≤ t ≤ 1

2

−cY (j) + rY (j) − rY (j)

√
2(1− t), 1

2 ≤ t1

In SDA, uniformity within the intervals is generally assumed. Therefore,

Definition 2.2 of symbolic mean for interval-valued variable of Billard and Diday

(2006) was deduced considering the density function of this distribution. It may

be easily proven that, when considering the Triangular density function for the

symmetric case, we obtain the same expression for the symbolic mean.

From Definition 2.5 and considering the quantile functions defined as in

expression (8), the squared Mallows distance may now be rewritten as the sum
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of the squared differences between the centers and one-sixth of the square of the

differences between the half-ranges. We notice that the weight of the difference

between the half-ranges with the Sf Symmetric Triangular distribution is lower

than with the Uniform distribution.

Proposition 2.5. Given two quantile functions Ψ−1X(j)(t) and Ψ−1Y (j)(t) repre-

senting the values of interval-valued variables X and Y for an observation j,

and assuming the Symmetric Triangular distribution within each interval, the

squared Mallows distance may be expressed as:

D2
M (Ψ−1X(j),Ψ

−1
Y (j)) = (cX(j) − cY (j))

2 +
1

6
(rX(j) − rY (j))

2

where cX(j), cY (j) are the centers and rX(j), rY (j) are the half-ranges of the in-

tervals X(j) and Y (j), respectively, with j ∈ {1, 2, . . . , n} .

The ID linear regression model proposed in Definition 2.4 may be applied to

interval-valued variables under these new conditions and the predicted quantile

function in this case is the following:

Ψ−1
Ŷ (j)

(t) =


v +

p∑
i=1

[(ai − bi)cXi(j) − (ai + bi)rXi(j)(1−
√

2t)], 0 ≤ t ≤ 1
2

v +
p∑

i=1

[(ai − bi)cXi(j) − (ai + bi)rXi(j)(1 +
√

2(1− t))], 1
2 < t ≤ 1

(9)

The closeness between the expressions of the Mallows distance when the

Uniform or Symmetric Triangular distributions are assumed (see Definitions

2.1 and 2.5, respectively), leads to a similar behavior of the ID Model in both

situations in spite of the different type of expressions of the quantile functions.

The parameters of the model are now obtained by solving a quadratic opti-

mization problem very similar to the one presented in expression (5):

min
n∑

j=1

[(
cY (j) −

p∑
i=1

(ai − bi) cXi(j)
− v

)2

+ 1
6

(
rY (j) −

p∑
i=1

(ai + bi) rXi(j)

)2
]

subject to −ai,−bi ≤ 0, i ∈ {1, 2, . . . , p}, with v ∈ R.
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The conditions, in Section 2.4, that allow deducing the goodness-of-fit mea-

sure associated to the ID Model are also verified and consequently, Definition

2.5 for the measure named Ω, may also be rewritten for interval-valued variables

under the condition of the Symmetric Triangular distribution.

In the applied examples studied in Section 4 - Applications to real data sets,

we will present the ID Model results assuming both distributions.

3. Experiments with simulated data

In this section we evaluate the performance of the proposed method, as done

in the literature, see (Irpino and Verde, 2015; Blanco-Fernández et al., 2011).

With this objective, two studies are presented: 1) a simulation study designed

to evaluate the behavior of the ID Model parameters under different conditions

and considering two levels of linearity, as evaluated by the measure Ω and 2)

experiments with interval data simulated with different configurations, aimed

at analysing the performance of the ID model.

3.1. Evaluating the behavior of the ID Model parameters

3.1.1. Building the data sets

To build the simulated symbolic data tables it is necessary to generate the

observations of the explicative interval-valued variables Xi, i = {1, . . . , p} and

of Y , the response variable.

• To obtain the n observations of variable Xi, we start by uniformly simu-

lating 5000 real values for each unit. Then from these xji(w) values we

build the corresponding intervals considering the minimum and maximum

values. We considered different patterns of variability:

i) Low variability - when the intervals associated with variable Xi have

similar centers and small half ranges.

xji(w) ∼ U(δ1(j), δ2(j)) are randomly generated considering for each

j ∈ {1, . . . ,m} and i ∈ {1, 2, 3} :
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◦ i = 1 : δ1(j) ∼ U(17, 19) and δ2(j) ∼ U(21, 23) (centers around

20 and half ranges around 2);

◦ i = 2 : δ1(j) ∼ U(13.5, 15) and δ2(j) ∼ U(15, 16.5) (centers

around 15 and half ranges around 0.5);

◦ i = 3 : δ1(j) ∼ U(8, 10) and δ2(j) ∼ U(10, 12) (centers around 10

and half ranges around 1).

ii) High variability - when the intervals associated with variable Xi have

similar centers and high half ranges.

xji(w) ∼ U(δ3(j), δ4(j)) are randomly generated considering for each

j ∈ {1, . . . , n} and i ∈ {1, 2, 3} :

◦ i = 1 : δ3(j) ∼ U(4, 6) and δ4(j) ∼ U(34, 36) (centers around 20

and half ranges around 15);

◦ i = 2 : δ3(j) ∼ U(4, 6) and δ4(j) ∼ U(24, 26) (centers around 15

and half ranges around 10);

◦ i = 3 : δ3(j) ∼ U(1, 3) and δ4(j) ∼ U(17, 19) (centers around 10

and half ranges around 8).

iii) Mixed variability - when the intervals associated with the variable Xi

have diverse half ranges and centers. In this case, the intervals of Xi

have centers between 8 and 22 and half ranges between 1 and 15.

• The intervals that are the observations of the interval-valued variable Y

are obtained in two steps:

1. First, we consider a perfect linear regression, without error, given by

Ψ−1Y ∗(j)(t) = v +

p∑
i=1

aiΨ
−1
Xi(j)

(t) −
p∑

i=1

biΨ
−1
Xi(j)

(1 − t) for particular

values of the parameters ai, bi and v. The interval-valued variables

Xi and Y ∗ are in a perfect linear relation.

2. To disturb the perfect linear relations we introduce an error function,

Ψ−1Y (j)(t) = Ψ−1Y ∗(j)(t) + ej(t). This error function is a linear function

defined by ej(t) = c̃(j) + (2t− 1) r̃(j), t ∈ [0, 1]. The values of c̃(j)
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and r̃(j) are randomly selected from intervals with low or high vari-

ation depending on whether we want the linear regression between

the variables to be better (error level I) or worse (error level II).

For each j ∈ {1, . . . , n} , the values of c̃(j) and r̃(j) are randomly

generated as follows:

i) Level I: c̃(j) ∼ 0.1× U(−Mr,Mr) and r̃(j) ∼ 0.1× U(−mr,mr);

ii) Level II: c̃(j) ∼ U(−Mr,Mr) and r̃(j) ∼ U(−mr,mr)

where Mr = max
j∈{1,...,n}

{
rY ∗(j)

}
and mr = min

j∈{1,...,n}

{
rY ∗(j)

}
.

Note 1. The values of r̃(j) have a limitation: each half range rY (j) in the

quantile function Ψ−1Y (j)(t), that results from the perturbation of Ψ−1Y ∗(j)(t)

by the error function ej(t), is obtained by rY (j) = rY ∗(j) + r̃(j), for each

unit j. As it is not imposed that the error function is a quantile function,

the values of r̃(j) may be negative but cannot be lower than −rY ∗(j) else

for this unit j the half range rY (j) would be negative.

Note 2. To select the error levels, a preliminary simulation study has been

made, to analyze the behavior of the error function and see if it is possible

to establish a relation with Ω. Therefore, it is important to understand:

1) how much it is necessary to disturb the model to obtain a weak/strong

linear relation between intervals, i.e. how small/large should be the values

composing the error function for which the coefficient of determination Ω

evaluates the linear relation as weak or strong and 2) whether the pattern

of variability influences the values of Ω. From this preliminary study, we

concluded that the disturbance of the centers must be sufficiently large to be

“detected” by Ω. It can be observed that, independently from r̃(j), the val-

ues of Ω are only lower than 0.5 when the values of Mr are close or larger

than the maximum of the half ranges of the intervals
[
IY ∗(j), IY ∗(j)

]
, with

j ∈ {1, . . . , n}. For this reason, to obtain similar values of Ω for different

patterns of variability, the error functions depend on the values of the half

ranges involved in the linear relations.
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Four selections of parameters were considered. For p = 1 : a = 2; b = 1;

v = −1 (a and b are close); a = 2; b = 8; v = 3 (a is smaller than b); a = 6;

b = 0; v = 2 (a is larger than b) and for p = 3 : a1 = 2; b1 = 1; a2 = 0.5;

b2 = 3; a3 = 1.5; b3 = 1; v = −1. For each selection, we analyze the behavior of

the ID Model considering symbolic data tables with different sample sizes (n =

10; 30; 100; 250); the three different patterns of variability in the explicative

variables and the two levels of linearity between the interval-valued variables, as

defined above. For each case, 1000 data tables were generated. The mean values

of the obtained results are organized in tables provided in the Supplementary

Material.

3.1.2. Results and discussion

The results obtained for the ID Model with one or three explicative variables

are in general similar (see tables in Supplementary Material) and therefore we

will analyze in detail only the results obtained when p = 1.

In general, the results show that the behavior of the parameters’ estimation

is independent from the number of explicative variables and from the values of

the parameters selected for the model. For each selection of parameters, three

patterns of variability in the explicative variables Xi were considered, each of

them with two levels of linearity and a different behavior was observed.

When we consider an error function of level II, the behavior of the estimated

parameters is more unstable and their mean values are more distant from the

original values. Consequently, the mean square errors (MSE) for the parameters

are not close to zero. This is not surprising because other models may exist

that adjust the interval data better. The behavior of the parameters is more

unstable when the number of observations is low and when the variability in

the explicative variables is high.

When the linear relation between the variables is strong (error functions of

level I), the estimated parameters are close to the initial parameter values and

the closeness is more obvious as the number of units in the sample increases. The

values of the MSE, associated with each parameter, decrease and approach zero
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as the number of observations increases. The values of the MSE and the values

of the standard deviation associated with the mean value of the parameters are

more distant from zero when the half ranges of the intervals of Y are larger -

which occurs when the variability of X is similar and high and when the values

of the parameters are far apart. The justification may be that, under these

conditions, the disturbance is “larger”, in absolute terms.

The boxplots in Figures 3 to 5 illustrate the behavior of the parameters for

the situations where p = 1, the original values of the parameters are a = 2; b =

8; v = 3 and when the level I error is considered.

n=10 n=30 n=100 n=250 n=10 n=30 n=100 n=250 n=10 n=30 n=100 n=250
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10 Mixed variabilityLow variability High variability

Figure 3: Boxplots of the estimates of the parameter a, under different conditions, when ID

Model with a = 2; b = 8; v = 3 is applied and when the level I error is considered.

We may then conclude that when an error function of level I is considered,

the estimates of the independent parameter may be quite different from the

original. Consequently, the standard deviation associated with the mean value

of the independent parameters and the respective values of the MSE are much

higher than the values of the standard deviation and the MSE associated with

the other parameters. The larger instability of the independent parameters (see

Figure 5) may be explained because they are obtained from the other parame-

ters: v∗ = Ŷ −
p∑

i=1

(a∗i − b∗i )Xi.

This simulation also allowed confirming the empirical consistency of the

parameters’ estimation. Estimated values close to the original parameters, with
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Figure 4: Boxplots of the estimates of the parameter b, under different conditions, when ID

Model with a = 2; b = 8; v = 3 is applied and when the level I error is considered.
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Figure 5: Boxplots of the estimates of the parameter v, under different conditions, when ID

Model with a = 2; b = 8; v = 3 is applied and when the level I error is considered.

associated MSE that approach zero as the number of observations increases,

was to be expected when the linear relation is strong, i.e. Ω is close to one.

To evaluate the behavior of the parameters’ estimates under different condi-

tions and considering two levels of linearity, it is important to verify that Ω has

the expected behavior, according to the preliminary study (see Note 2). The

models slightly disturbed (error level I) present values of Ω close to one. On

the other hand, when the error function causes a high disturbance in the linear

relation (error level II), the values of Ω are more distant from one and closer
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to zero. It is important to bear in mind that the level of the error takes into

account the variability within the intervals of Y ∗. Also, the mean values of Ω are

consistent with the respective mean values of RMSEM ; RMSEL and RMSEU .

In general, as expected, in each situation and for the respective pattern of vari-

ability in the explicative variables, the highest values of Ω correspond to the

lowest values of RMSEM . Small values in RMSEM ; RMSEL and RMSEU

mean that the observed and predicted intervals are close and in this case we

expected values of Ω close to one.

3.2. Analysing ID performance

The main goal of this section is to evaluate the performance of the ID linear

regression model, and compare it to that of the CRM (Lima Neto and De Car-

valho, 2008) and the CCRM (Lima Neto and De Carvalho, 2010).

It should be noticed, however, that given the nature of the method, and the

constraints imposed, it cannot be expected that the ID Model under uniformity

provides better prediction results than CRM or CCRM. ID models directly

interval-valued variable Y from interval-valued variablesXi, providing one single

model. Under uniformity, this model then induces linear relations between the

centers and betwen the half ranges, which are related and not independent. On

the other hand, both CRM and CCRM model centers and half ranges separately,

using classical linear regression, and not imposing any connection between the

two models. Therefore, the search space is larger for CRM and CCRM, which

then implies that more accurate predictions should be expected. Notice that

CCRM, imposing a constraint on the half ranges model, already often reduces

the quality of predictions as compares to CRM (Lima Neto and De Carvalho,

2010).

This study is based on synthetic interval-valued data sets built according to

the following strategy:

To obtain the n observations of variable Xi, i = {1, . . . , p} we started by

simulating uniformly 5000 real values for each observation, and then built the

corresponding interval from the minimum and maximum obtained values, as in
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the previous simulation. From the observations of the intervals Xi, the centers

cXi(j) and half ranges rXi(j) of each interval are computed. The intervals that

are the observations of the response variable Y are obtained as follows:

cY (j) = a0 +

p∑
i=1

aicXi(j) + ec(j) and rY (j) = b0 +

p∑
i=1

birXi(j) + er(j).

Considering the process described above, we defined that the intervals as-

sociated with the variables Xi would have centers between 18 and 40 and half

ranges between 0 and 4. The situations considered comprise cases of single

regression (cases A to H) and of multiple regression with three explicative vari-

ables (cases I to L). For the single regression, in cases A,B,C and D the

relation between the half ranges is positive whereas in cases E,F,G and H it is

negative. Different levels of linearity between the centers and between the half

ranges are considered, according to the values of the errors ec(j) and er(j). The

relations between the centers and between the half ranges, as well as the levels

of linearity considered in this simulation, are presented in Table 1.

Table 1: Relations and levels of linearity between the centers and between the half ranges.

Cases Parameters Center error Half Range error

A

a0 = 3; a1 = 2; b0 = 1; b1 = 0.5

ec(j) ∼ U(−5, 5) er(j) ∼ U(0.5, 1.5)

B ec(j) ∼ U(−5, 5) er(j) ∼ U(1, 5)

C ec(j) ∼ U(−20, 20) er(j) ∼ U(0.5, 1.5)

D ec(j) ∼ U(−20, 20) er(j) ∼ U(1, 5)

E

a0 = 3; a1 = 2; b0 = 1; b1 = −3

ec(j) ∼ U(−5, 5) er(j) ∼ U(0.5, 1.5)

F ec(j) ∼ U(−5, 5) er(j) ∼ U(1, 5)

G ec(j) ∼ U(−20, 20) er(j) ∼ U(0.5, 1.5)

H ec(j) ∼ U(−20, 20) er(j) ∼ U(1, 5)

I
a0 = 3; a1 = 2; a2 = 1;

a3 = −0.5; b0 = 1; b1 = 0.25;

b2 = −0.5; b3 = 1

ec(j) ∼ U(−5, 5) er(j) ∼ U(0.5, 1.5)

J ec(j) ∼ U(−5, 5) er(j) ∼ U(1, 5)

K ec(j) ∼ U(−20, 20) er(j) ∼ U(0.5, 1.5)

L ec(j) ∼ U(−20, 20) er(j) ∼ U(1, 5)

For each case we simulated 1000+250×100+30×100 observations that were
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grouped into two learning data sets, one with n = 30 and another with n = 250,

and a test set comprising 1000 observations. For each of the two learning data

sets, 100 replicates were created. The models ID, CRM and CCRM were applied

to the learning sets and the parameters of the respective model were predicted.

With these parameters, we applied the 100 replicates created for each of the

models to the test set. The dissimilarity between the observed and predicted

intervals is measured by the RMSEM . The mean values of these measures are

presented in Supplementary Material.

We note that centers on the one hand, and half ranges on the other hand,

are modeled according to a linear regression that is not obtained from the ID

Model, and could not be recovered by the method (since the linear relations

between centers and between half ranges do not present the restriction induced

by the ID Model).

The results for all three methods in single and multiple regression are quite

similar, although, as expected, the ID Model performs slightly worse than CRM

and CCRM. The differences are however not too important, considering that the

data was generated by separate linear models for the centers and half ranges,

and therefore in conditions following CRM and CCRM, but not ID Model.

4. Applications to real data sets

In this section we show that when analysing data with variability, consider-

ing interval-valued variables is a good option as an alternative to summarizing

data by central statistics (e.g., mean, median), to allow for a representation

by classical real variables. In each case we analyze the relation between vari-

ables representing the variability within each observation, and we evaluate the

performance of the ID Model.

4.1. Employment data: Relation between time of unemployment and years of

activity

The 2008 Portuguese Labour Force Survey provides individual information

about the people that live in Portugal. Here we analyze whether the time of

28



unemployment (in months) is related to the previous time of activity (in years).

However, we are not interested in performing this study for each individual, but

rather to determine what happens in certain categories, such as ‘young women

from the North of Portugal’. Since each of these categories consists of several

individuals, the observed “values” are no longer single points but intervals. In

this case, the symbolic data table is built considering that the units are classes

of individuals obtained by crossing gender×region×age×education. There are

two genders (female (F), male (M)), four regions (North (N), Center (C), Lisbon

and Tagus Valley (L), South (S)), three age groups (15 to 24 (A1), 25 to 44

(A2), 45 to 64 (A3)) and three levels of education (basic (B), secondary (S) and

graduate (G)), leading to 2×4×3×3 = 72 possible classes (categories). The time

of unemployment and the time of activity are now interval-valued variables.

Table 2 represents a portion of the symbolic table resulting from the original

data, for the variables U (time of unemployment) and E (time of activity before

unemployment). Only 58 classes (units) were created, since there are no cases

corresponding to the remaining 14.

Table 2: Symbolic data table where time of unemployment (U) and time of activity before

unemployment (E) are interval-valued variables (partial view).

Units U E Units U E Units U E

F×C×A1×B [3; 49] [0; 4] F×N×A3×S [0; 123] [23; 35] M×L×A3×B [1; 244] [22; 57]

F×C×A1×S [1; 6] [0; 2] F×S×A1×B [1; 52] [1; 7] M×L×A3×S [2; 65] [25; 50]

We analyze the linear relation between the logarithm of the time of unem-

ployment, LNU (LNU = ln(U + 2)), and the time of activity before unemploy-

ment, E, for the classes of individuals as described above.

The prediction, with the ID Model, of the quantile functions for the interval-

valued variable LNU , is in this case:

Ψ−1
L̂NU(j)

(t) = 2.2277 + 0.0779Ψ−1E(j)(t)− 0.0503Ψ−1E(j)(1− t), t ∈ [0, 1].

Equivalently, the predicted interval for each unit j, is given by[
2.2277 + 0.0276cE(j) − 0.1282rE(j), 2.2277 + 0.0276cE(j) + 0.1282rE(j)

]
.
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The value of the goodness-of-fit measure Ω is 0.7715, that shows that 77% of

the total variation in the interval-valued variable LNU is explained by the linear

relation. According to the interpretation given in Section 2.2, the interval-valued

variables E and LNU have a linear relation that tends to be direct, because the

estimate of parameter a = 0.0779 is slightly higher than that of b = 0.0503. For

the set of classes of individuals which the data refers to, when the symbolic mean

of the time of activity before unemployment increases one year, the symbolic

mean of the LNU (in months) increases 0.0276. From the linear relation between

the half-ranges induced by the model (see Table 3), it is possible to conclude

that the variability of time unemployment and the variability of time of activity

before unemployment present a ratio of 0.13.

We compare the ID Model resulting from assuming the Uniform distribu-

tion (identified by ID) and the Symmetric Triangular distribution (identified

by IDT ) with those obtained by other models proposed within the SDA con-

text: CM (Billard and Diday, 2000); MinMax Method (MinMax) (Billard and

Diday, 2002); Billard and Diday Method (BD) (Billard and Diday, 2006); CRM

(Lima Neto and De Carvalho, 2008) and CCRM (Lima Neto and De Carvalho,

2010). In Tables 3 and 4 we present the obtained model expressions, the Root

Mean Square Error (RMSE) values and the mean of the areas between the

observed and predicted quantile functions (Area).

In this example, the CRM and CCRM models are the same because in the

CRM the parameters estimated for the half ranges are all non-negative, i.e. the

constraints imposed in the CCRM are met. The linear regression induced by the

ID Model for the centers of the intervals is the one obtained by the models for

which a linear regression between the centers is considered. In this situation,

the values of the parameters (to the second decimal) are the same for both

distributions considered within the observations of the interval-valued variables.

However, for the Symmetric Triangular distribution the value of Ω = 0.7086 is

slightly lower.

Applying the Leave-One-Out method, we may verify that the RMSE values

and the mean of the areas between the observed and predicted quantile functions
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Table 3: Expressions of the symbolic linear regression models for interval-valued variables in

Table 2.

Models Expressions that allow predicting the intervals

ID
Ψ−1

L̂NU(j)
(t) = 2.2277 + 0.0779Ψ−1

E(j)(t)− 0.0503Ψ−1
E(j)(1− t)

c
L̂NU(j)

= 2.2277 + 0.0276 cE(j) and r
L̂NU(j)

= 0.1282 rE(j)

IDT

Ψ−1

L̂NU(j)
(t) = 2.2277 + 0.0779Ψ−1

E(j)(t)− 0.0503Ψ−1
E(j)(1− t)

c
L̂NU(j)

= 2.2277 + 0.0276 cE(j) and r
L̂NU(j)

= 0.1282 rE(j)

CM c
L̂NU(j)

= 2.2277 + 0.0276 cE(j)

BD L̂NU(j) = 1.9009 + 0.0468E(j)

MinMax I
L̂NU(j)

= 1.2236 + 0.0206IE(j) and I
L̂NU(j)

= 2.8704 + 0.0436IE(j)

CRM c
L̂NU(j)

= 2.2277 + 0.0276 cE(j) and r
L̂NU(j)

= 0.5321 + 0.0855 rE(j)

CCRM c
L̂NU(j)

= 2.2277 + 0.0276 cE(j) and r
L̂NU(j)

= 0.5321 + 0.0855 rE(j)

Table 4: Comparison of the Root Mean Square Error values when Leave-One-Out is not/is

applied together with the proposed models for the data in Table 3.

Models
Without Leave-One-Out With Leave-One-Out

RMSEL RMSEU RMSEM Area RMSEL RMSEU RMSEM Area

ID 0.5745 0.6710 0.4679 0.3674 0.5866 0.6829 0.4797 0.3773

IDT 0.5745 0.6710 0.4197 0.3674 0.5866 0.6829 0.4317 0.3773

CM 1.1622 1.3146 0.7759 0.6192 1.1651 1.3188 0.7818 0.6246

BD 1.0368 1.1499 0.7255 0.5730 1.0410 1.1589 0.7337 0.5805

MinMax 0.4725 0.7329 0.4621 0.3700 0.4940 0.7568 0.4781 0.3829

CRM 0.4457 0.6541 0.4397 0.3565 0.4597 0.6740 0.4539 0.3682

CCRM 0.4457 0.6541 0.4397 0.3565 0.4597 0.6740 0.4539 0.3682

are very similar in all models compared, see Table 4. As expected, the RMSE

values when the Leave-One-Out method is applied are slightly higher than those

obtained without the Leave-One-Out.

The values of the RMSE and the mean values of the areas between the

observed and predicted quantile functions allow comparing the predicted and
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the observed intervals of the response variable LNU. These measures may be

used for an independent comparison of results. The mean values of the areas

are in accordance with the other measures. From Table 4 we may conclude that

the ID Model and CRM (and CCRM) provide similar results. It may also be

observed that the values of the RMSEL, RMSEU and the mean of the Area

are the same when the two distributions studied in this paper are considered.

It is when the Symmetric Triangular distribution is assumed that the value of

RMSEM is the lowest, with and without the Leave-One-Out.

4.2. Forest fires data: predicting burned area in the northeast region of Portugal

This study concerns forest fire data from the Montesinho natural park, in

the northeast of Portugal. The original data was collected from January 2000

to December 2003 using two sources. The first database was collected by the re-

sponsible for the Montesinho fire occurrences, registering date, spatial location,

type of vegetation involved, the six components of the FWI system (FFMC,

DMC, DC, ISI, BUI, FWI) and the total burned area. The second database

was collected by the Bragança Polytechnic Institute, and contains the weather

observations recorded (temperature, relative humidity, wind, rain) by a mete-

orological station located in the center of the Montesinho park. Details are

described in Cortez and Morais (2007).

For this study we selected the response variable area (the forest burned

area (in ha)) and three explicative variables that better explain the hectares of

area burned: DMC (index from the FWI system that is a numeric rating of

the average humidity content of lightly compacted organic layers of moderate

depth); wind (wind speed in km/h); rh (relative humidity in percentage). As

in the study of Cortez and Morais (2007), the response variable area was trans-

formed with a ln(x+ 1) function and we represent it as LNarea. We aggregated

the information according to the coordinates of the spatial location within the

Montesinho park map, thereby obtaining the symbolic data (macrodata). The

units (higher units) of this study are locations defined by spatial coordinates,

the observations of the variables DMC, wind, rh and LNarea for each location
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are organized in intervals. To build these macrodata we only considered the

places and records in which forest fires occurred. Under these conditions, from

269 first-level units in the microdata, 33 higher-level units were obtained (after

spatial aggregation), the locations with forest fires recorded. In nine of these

33 locations only one fire occurred and consequently the “symbolic values” as-

sociated with all variables are degenerate intervals. Table 5 presents the data

with the first five records, organized in two different ways. In the even columns

we have symbolic variables obtained from the spatial aggregation of the set of

records associated with each variable. In the odd columns we registered the log-

arithm of the total burned area LNareaT, and the mean values of the DMC,

wind and rh for each place, i.e., the classical variables.

Table 5: Data with information about the total burned area and other four variables: LNarea,

DMC, wind and rh, organized according the spatial location (partial view).

Units LNarea LNareaT DMC DMC wind wind rh rh

1 [0.44; 5.37] 8.26 [51.30; 163.20] 110.98 [1.80; 5.40] 3.48 [31; 53] 39.75

2 [0.29; 4.27] 16.18 [91.30; 276.30] 144.83 [2.20; 6.70] 4.53 [29; 73] 44.43

3 [0.36; 4.43] 20.75 [87.70; 276.30] 144.66 [1.80; 7.60] 3.69 [28; 88] 50.0

4 [0.90; 4.57] 10.11 [126.50; 149.30] 137.68 [2.20; 3.10] 2.55 [27; 42] 32.25

5 [0.42; 5.31] 27.68 [3.60; 231.10] 124.03 [0.90; 7.20] 3.75 [22; 79] 44.36

The symbolic models that allow predicting the intervals of LNarea from the

explicative interval-valued variables DMC,wind and rh, for each location j, are

presented in Table 6.

This example aims at illustrating the behavior of the ID Model in a situation

of multiple regression, assuming the Uniform and the Symmetric Triangular

distributions and compare it with that of other proposed models. For all these

models, if we know the interval for the DMC, wind and relative humidity for one

location, we may predict the range of burned forest area. Since in this case the

microdata is known, a comparison with two approaches based on classic linear
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Table 6: Comparison of the symbolic linear regression models for the data in Table 5.

Models Expressions that allow predicting the intervals

ID

Ψ−1
̂LNarea(j)

(t) = 1.0307 + 0.0062Ψ−1
DMC(j)(t)− 0.0005Ψ−1

DMC(j)(1− t)+

+0.2742Ψ−1
wind(j)(t) + 0.0076Ψ−1

rh(j)(t)− 0.0153Ψ−1
rh(j)(1− t)

c ̂LNarea(j)
= 1.0307 + 0.0057cDMC(j) + 0.2742cwind(j) − 0.0077crh(j)

r ̂LNarea(j)
= 0.0067rDMC(j) + 0.2742rwind(j) + 0.0229rrh(j)

IDT

Ψ−1
̂LNarea(j)

(t) = 1.0172 + 0.0062Ψ−1
DMC(j)(t)− 0.0005Ψ−1

DMC(j)(1− t)+

+0.2780Ψ−1
wind(j)(t) + 0.0075Ψ−1

rh(j)(t)− 0.0152Ψ−1
rh(j)(1− t)

c ̂LNarea(j)
= 1.0172 + 0.0057cDMC(j) + 0.2780cwind(j) − 0.0077crh(j)

r ̂LNarea(j)
= 0.0067rDMC(j) + 0.2780rwind(j) + 0.0227rrh(j)

CM c ̂LNarea(j)
= 1.0016 + 0.0057cDMC(j) + 0.2825cwind(j) − 0.0078crh(j)

BD ̂LNarea(j) = 2.4393− 0.0023DMC(j) + 0.0079wind(j)− 0.0039rh(j)

MinMax
I ̂LNarea(j)

= −1.0974 + 0.0039IDMC(j) + 0.4819Iwind(j) + 0.0325Irh(j)

I ̂LNarea(j)
= 0.9308 + 0.0061IDMC(j) + 0.2546Iwind(j) + 0.0043Irh(j)

CRM
c ̂LNarea(j)

= 1.0016 + 0.0057cDMC(j) + 0.2825cwind(j) − 0.0078crh(j)

r ̂LNarea(j)
= 0.1356 + 0.0074rtemp(j) + 0.2233rwind(j) + 0.0206rrh(j)

CCRM
c ̂LNarea(j)

= 1.0016 + 0.0057cDMC(j) + 0.2825cwind(j) − 0.0078crh(j)

r ̂LNarea(j)
= 0.1356 + 0.0074rDMC(j) + 0.2233rwind(j) + 0.0206rrh(j)

regression models will also be considered.

For the ID Model the value of the goodness-of-fit measure is Ω = 0.5506, for

the case of the IDT Model this value is a bit lower, Ω = 0.4280.

As all of the estimated parameters of the model associated with the half

ranges in CRM are non-negative, the expression for the half ranges in CCRM

is the same. Moreover, the relations between the centers and half ranges induced

by the ID Model are very similar to those obtained by CRM and CCRM. This

behavior was also observed in the previous example, but it should be underlined

that it is not always the case.

In Figure 6 we may observe the prediction of the burned area (LNarea) for

five locations, obtained with the symbolic methods in Table 6. The locations

34



are represented in the xx-axis and the observed and predicted intervals are

represented in the yy-axis.
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Figure 6: Observed and predicted intervals of the burned area in five locations of the Mon-

tesinho natural park.

In Table 7, for the models selected, it is possible to compare the measures

RMSEL, RMSEU , RMSEM and the mean value of the areas between the

predicted and observed quantile functions (Area), with and without Leave-One-

Out.

As observed in the example of Section 4.1, when the Leave-One-Out method

is not applied, the results of the RMSE and the Area, for the CRM, CCRM,

ID and IDT models are again very similar. These results are also similar to the

ones obtained for the MinMax model. The values of RMSE with and without

the Leave-One-Out method are in general close. The slight difference observed

for the ID Model shows that the model was not overfitting the data. The lowest

value of the RMSEM with and without the Leave-One-Out method is observed

when the Symmetric Triangular distribution in the ID Model is assumed.

Since in this situation the microdata is known, alternatively to the symbolic

study we performed 1) a classical study and 2) another approach that we named
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Table 7: Comparison of the Root Mean Square Error values when Leave-One-Out is not/is

applied together with the proposed models for the data in Table 5.

Models
Without Leave-One-Out With Leave-One-Out

RMSEL RMSEU RMSEM Area RMSEL RMSEU RMSEM Area

ID 0.7824 1.1246 0.8773 0.7157 0.9056 1.2787 1.0148 0.8236

IDT 0.7818 1.1251 0.8529 0.7159 0.9071 1.2819 0.9931 0.8258

CM 1.0382 1.2558 0.9483 0.7744 1.1267 1.3767 1.0756 0.8761

BD 1.6874 1.8036 1.2411 1.0229 1.7139 1.8730 1.3155 1.0812

MinMax 0.7598 1.1087 0.8666 0.7084 0.9154 1.2595 1.0053 0.8172

CRM 0.7837 1.1168 0.8758 0.7127 0.9258 1.2872 1.0239 0.8296

CCRM 0.7837 1.1168 0.8758 0.7127 0.9258 1.2872 1.0239 0.8296

classic-symbolic.

1. The classical study allows predicting the value of the total burned area

from the mean values of the three weather-related variables, associated

with each location: DMC, wind and rh (see Table 5). However, in

this case we lose the variability of the data and the predicted results are

less informative. The classical linear regression model for these data is:

̂LNareaT (j) = −8.3425−0.0617DMC(j) + 2.1984wind(j) + 0.5908rh(j).

The classical coefficient of determination of the model is r2 = 0.1051, i.e.,

only 10.5% of the variance of the value of the total burned area is explained

by the variations of the DMC component of the FWI system and the

weather variables wind and relative humidity. Although the burned area

of the forest seems to be influenced by the FWI system components and

weather factors in the model, in this case it is not the classical linear

regression that better explains the relations between these variables.

2. The classic-symbolic study is an alternative to analyze data with variabil-

ity using classical methods. The first step is the prediction of the burned

area. Applying classical linear regression to all values observed for each
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first level unit, the microdata, the obtained model is:

̂LNarea(j) = 2.0857 + 0.0110DMC(j)− 0.0061wind(j) + 0.0446rh(j).

The value of r2 = 0.0104 associated with this model shows that there is

no linear relation between the variables in the microdata.

Afterwards, the predicted values are aggregated by location obtaining, for

each specific location, the range of hectares of the burned area. As after

the aggregation the elements are of different nature, the behavior between

the variables may be different. Comparing the observed and predicted

intervals obtained by the classic-symbolic approach, we verify that we do

not obtain good predictions. In this case, the Root Mean Square Error

values are RMSEL = 1.5217, RMSEU = 3.5896 and RMSEM = 2.3139.

The results obtained show that the relation between the classical variables is

not linear, nevertheless the symbolic models allow obtaining reasonable spatial

predictions for the burned area of forest fires.

5. Conclusion

In this paper we propose a linear regression model for interval-valued vari-

ables which allows analyzing situations where the data have intrinsic variability.

This is done by assuming a distribution within the observed intervals. The clas-

sical approach that consists in reducing the observations to measures of central

tendency is not the most adequate, since much information is lost. The proposed

method provides a model relating the interval-valued variables directly and as a

whole, as an alternative to considering separate relations for the lower and up-

per bounds or centers and half ranges. In this paper, the Uniform distribution

is considered for modeling the within observations variability. The ID Model

has however the potential of considering other distributions in the intervals as-

sociated with the observations of the interval-valued variables. In this paper we

show the ID Model developed for the Symmetric Triangular distribution in the

intervals. As in most studies of Symbolic Data Analysis uniformity is assumed
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within the observed intervals, all other necessary concepts would also have to be

redefined. Experiments with simulated and real data show that the method has

a good performance. For prediction purposes, the user should consider different

alternative methods, and retain the one providing more accurate results in the

problem at hand.

As future research perspectives, other models and methods in Symbolic Data

Analysis based on linear relations between interval-valued variables, such as

logistic regression and discriminant analysis, may now be developed using the

proposed approach.
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Supplementary Material

Proof of Proposition 2.3.

Before proving Proposition 2.3 it is necessary to consider two theorems (Win-

ston, 1994) and to define the function to optimize, in matricial form.

Theorem A1. Consider the optimization problem (5). If b∗ = (a∗, b∗, v∗)

is an optimal solution of this problem, b∗ must satisfy the constraints of the

optimization problem and the Kuhn Tucker conditions:

• Constraints: −a∗ ≤ 0 and −b∗ ≤ 0

• Kuhn Tucker conditions:

1. ∂f
∂a (b∗)− λ = 0

2. ∂f
∂b (b∗)− δ = 0

3. ∂f
∂v (b∗) = 0

4. λa∗ = 0

5. δb∗ = 0

6. λ, δ ≥ 0.

Theorem A2. Consider the minimization problem (5). If f(a, b, v), g1(a, b, v)

and g2(a, b, v) are convex functions, then any vector that satisfies the hypotheses

of Theorem A1 is an optimal solution of the optimization problem in (5).

In the particular case of the minimization problem (5), the optimization

function f(a, b, v) may be rewritten in matricial form as:

f(a, b, v) =
1

2
bTH1b + wT

1 b +K (10)

where the matrices and vectors involved are the following:

1



• H1 is the hessian matrix, a symmetric matrix of order 3,

H1 =



n∑
j=1

2c2X(j) + 2
3r

2
X(j)

n∑
j=1

−2c2X(j) + 2
3r

2
X(j)

n∑
j=1

2cX(j)

n∑
j=1

−2c2X(j) + 2
3r

2
X(j)

n∑
j=1

2c2X(j) + 2
3r

2
X(j)

n∑
j=1

−2cX(j)

n∑
j=1

2cX(j)

n∑
j=1

−2cX(j) 2n


;

• w1 is the column vector of independent terms,

w1 =



n∑
j=1

−2cY (j)cX(j) − 2
3rY (j)rX(j)

n∑
j=1

2cY (j)cX(j) − 2
3rY (j)rX(j)

n∑
j=1

−2cY (j)


;

• b is the column vector of parameters b = (a, b, v)T ;

• K is a real value, K =

n∑
j=1

c2Y (j) +
1

3
r2Y (j).

Proof. Consider the optimization problem (5) where:

- the functions g1(a, b, v) and g2(a, b, v) that define the non-negative con-

straints are convex, so that the feasible region of the optimization problem

is a convex set;

- f(a, b, v) is a convex function. Consider the matrix X defined in Expres-

sion (7) but now only for one explicative variable. In this particular case,

we have:

X =



cX(1) −cX(1) 1
...

...
...

cX(n) −cX(n) 1

1√
3
rX(1)

1√
3
rX(1) 0

...
...

...

1√
3
rX(n)

1√
3
rX(n) 0


As H1 = 2XTX, the matrix H1 is positive semi-definite, therefore f(a, b, v)

is a convex function.
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- the intervals of the explicative variable X are not all degenerate (∃j ∈

{1, . . . , n} : rX(j) 6= 0) or symmetric (∃j ∈ {1, . . . , n} : cX(j) 6= 0).

In this situation, the columns of X are linearly independent, so H1 is

positive definite and consequently the function f(a, b, v) is strictly convex,

and therefore the optimal solution is unique.

Since the function to optimize is convex and the feasible region too, it may be

ensured by Theorem A2, that the vectors that verify the Kuhn Tucker conditions

are optimal solutions.

Note that in this proof, the following simplifications were considered:

n∑
j=1

((
cX(j) −X

)
cX(j)

)
=

n∑
j=1

(
cX(j) −X

)2
; (11)

n∑
j=1

((
cX(j) −X

)
cY (j)

)
=

n∑
j=1

(
cX(j) −X

) (
cY (j) − Y

)
(12)

with X =
1

n

n∑
j=1

cX(j) and Y =
1

n

n∑
j=1

cY (j).

As the optimization problem (5) verifies the conditions of Theorem A1, it is

possible to find the expressions of the parameters for the simple linear regression

model.

The objective function f(a, b, v) of the minimization problem (5) is,

f(a, b, v) =

n∑
j=1

[(
cY (j) − (a− b) cX(j) − v

)2
+

1

3

(
rY (j) − (a+ b) rX(j)

)2]
Consider the expressions of the first order partial derivatives of this function:

∂f

∂a
= 2a

n∑
j=1

(c2X(j) + 1
3r

2
X(j)) + 2b

n∑
j=1

(−c2X(j) + 1
3r

2
X(j)) + 2v

n∑
j=1

cX(j)−

−2
n∑

j=1

(cY (j)cX(j) + 1
3rY (j)rX(j));

∂f

∂b
= 2a

n∑
j=1

(−c2X(j) + 1
3r

2
X(j)) + 2b

n∑
j=1

(c2X(j) + 1
3r

2
X(j))− 2v

n∑
j=1

cX(j)+

+2
n∑

j=1

(cY (j)cX(j) − 1
3rY (j)rX(j));
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∂f

∂v
= 2(a− b)

n∑
j=1

cX(j) + 2nv − 2
n∑

j=1

cY (j).

Consider the Kuhn Tucker conditions 1 to 3 in Theorem A1. From condition

3 we have,
∂f

∂v
(b∗) = 0⇔ v = Y − (a∗ − b∗)X. (13)

Substituting Expression (13) in Kuhn Tucker conditions 1 and 2, and applying

the Expressions (11) and (12), we obtain:

∂f

∂a
(b∗) = λ ⇔ 2a∗

n∑
j=1

[(
cX(j) −X

)2
+ 1

3r
2
X(j)

]
+ 2b∗

n∑
j=1

[
−
(
cX(j) −X

)2
+ 1

3r
2
X(j)

]
+2

n∑
j=1

[
−
(
cX(j) −X

) (
cY (j) − Y

)]
− 2

n∑
j=1

1
3rX(j)rY (j) = λ;

(14)

∂f

∂b
(b∗) = δ ⇔ 2a∗

n∑
j=1

[
−
(
cX(j) −X

)2
+ 1

3r
2
X(j)

]
+ 2b∗

n∑
j=1

[(
cX(j) −X

)2
+ 1

3r
2
X(j)

]
+2

n∑
j=1

(
cX(j) −X

) (
cY (j) − Y

)
− 2

n∑
j=1

1
3rX(j)rY (j) = δ.

(15)

From the Kuhn Tucker conditions 4 : λa∗ = 0 and 5 : δb∗ = 0, substituting

λ and δ by the Expressions (14) and (15), respectively, it is possible to build

the system:



(a∗)2
n∑

j=1

[(
cX(j) −X

)2
+ 1

3r
2
X(j)

]
+ a∗b∗

n∑
j=1

[
−
(
cX(j) −X

)2
+ 1

3r
2
X(j)

]
−

−a∗
n∑

j=1

(
cX(j) −X

) (
cY (j) − Y

)
− a∗

n∑
j=1

1
3rX(j)rY (j) = 0

a∗b∗
n∑

j=1

[
−
(
cX(j) −X

)2
+ 1

3r
2
X(j)

]
+ (b∗)2

n∑
j=1

[(
cX(j) −X

)2
+ 1

3r
2
X(j)

]
+

+b∗
n∑

j=1

(
cX(j) −X

) (
cY (j) − Y

)
− b∗

n∑
j=1

1
3rX(j)rY (j) = 0

Solving this system, four possible solutions may occur:

Case I: a∗ = 0 and b∗ = 0. In this case the parameters are non-negative, as

required.
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However, the Kuhn Tucker condition 6 has to be verified, i.e. λ, δ ≥ 0.

Substituting in Expressions (14) and (15), a∗ = 0 and b∗ = 0 we have,


−

n∑
j=1

(cX(j) −X)(cY (j) − Y ) ≥
n∑

j=1

1
3rX(j)rY (j))

n∑
j=1

(cX(j) −X)(cY (j)Y ) ≥
n∑

j=1

1
3rX(j)rY (j))

So, a∗ = 0; b∗ = 0; v∗ = Y if

n∑
j=1

1

3
rX(j)rY (j) =

n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

)
= 0.

Case II: a∗ = 0 and b∗ =

n∑
j=1

1
3rX(j)rY (j) −

n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

)
n∑

j=1

(
cX(j) −X

)2
+

n∑
j=1

1
3r

2
X(j)

.

From the conditions of Theorem A1, we have that b∗ ≥ 0 and λ, δ ≥ 0.

As it is assumed that the intervals of the explicative variable X are not

all degenerate (∃j ∈ {1, . . . , n} : rX(j) 6= 0) and the centers of all these

intervals are not all the same, we may ensure that

n∑
j=1

(
cX(j) −X

)2
+

n∑
j=1

1

3
r2X(j) > 0.

For the expression that defines b∗ to be non-negative it is necessary that,

n∑
j=1

1

3
rX(j)rY (j) ≥

n∑
j=1

(
cY (j) − Y

)(
cX(j) −X

)
.

As λ, δ ≥ 0, substituting the a∗ = 0 and b∗ for the expression above in

Expressions (14) and (15), we conclude that



−
n∑

j=1

(
cY (j) − Y

) (
cX(j) −X

) n∑
j=1

1
3r

2
X(j) −

n∑
j=1

1
3rX(j)rY (j)

n∑
j=1

(
cX(j) −X

)2
n∑

j=1

(
cX(j) −X

)2
+

n∑
j=1

1
3r

2
X(j)

≥ 0

δ = 0

.
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So, a∗ = 0; b∗ =

n∑
j=1

1
3rX(j)rY (j) −

n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

)
n∑

j=1

(
cX(j) −X

)2
+

n∑
j=1

1
3r

2
X(j)

;

v∗ = Y + b∗X if

n∑
j=1

1

3
rX(j)rY (j) ≥

n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

)
and

n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

) n∑
j=1

1

3
r2X(j) ≤ −

n∑
j=1

1

3
rX(j)rY (j)

n∑
j=1

(
cX(j) −X

)2
.

Case III: a∗ =

n∑
j=1

1
3rX(j)rY (j) +

n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

)
n∑

j=1

(
cX(j) −X

)2
+

n∑
j=1

1
3r

2
X(j)

and b∗ = 0.

From the conditions of Theorem A1, we have that a∗ ≥ 0 and λ, δ ≥ 0.

Analogously to case II, we have that the expression that defines a∗ is

non-negative if,

n∑
j=1

1

3
rX(j)rY (j) ≥ −

n∑
j=1

(
cY (j) − Y

)(
cX(j) −X

)
.

As λ, δ ≥ 0, substituting the b∗ = 0 and a∗ for the expression above in

Expressions (14) and (15), we conclude that

λ = 0
n∑

j=1

(
cY (j) − Y

) (
cX(j) −X

) n∑
j=1

1
3r

2
X(j) −

n∑
j=1

1
3rX(j)rY (j)

n∑
j=1

(
cX(j) −X

)2
n∑

j=1

(
cX(j) −X

)2
+

n∑
j=1

1
3r

2
X(j)

≥ 0

So, a∗ =

n∑
j=1

1
3rX(j)rY (j) +

n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

)
n∑

j=1

(
cX(j) −X

)2
+

n∑
j=1

1
3r

2
X(j)

; b∗ = 0 ;

v∗ = Y − a∗X if

n∑
j=1

1

3
rX(j)rY (j) ≥ −

n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

)
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and

n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

) n∑
j=1

1

3
r2X(j) ≥

n∑
j=1

1

3
rX(j)rY (j)

n∑
j=1

(
cX(j) −X

)2
.

Case IV:

a∗ =

n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

) n∑
j=1

1
3r

2
X(j) +

n∑
j=1

1
3rX(j)rY (j)

n∑
j=1

(
cX(j) −X

)2
2

n∑
j=1

(
cX(j) −X

)2 n∑
j=1

1
3r

2
X(j)

b∗ =

−
n∑

j=1

(
cY (j) − Y

) (
cX(j) −X

) n∑
j=1

1
3r

2
X(j) +

n∑
j=1

1
3rX(j)rY (j)

n∑
j=1

(
cX(j) −X

)2
2

n∑
j=1

(
cX(j) −X

)2 n∑
j=1

1
3r

2
X(j)

To ensure the conditions λ ≥ 0 and δ ≥ 0, the expressions that define a∗

and b∗ have to be substituted in Expressions (14) and (15). Performing

these substitutions we obtain λ = 0 and δ = 0.

For the reasons enumerated in the last points, it is ensured that the de-

nominator of the expressions is non-negative.

As a∗ and b∗ are non-negative parameters, their expressions verify these

conditions only if

−
n∑

j=1

1

3
rX(j)rY (j)

n∑
j=1

(
cX(j) −X

)2≤ n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

) n∑
j=1

1

3
r2X(j)

and

n∑
j=1

(
cY (j) − Y

) (
cX(j) −X

) n∑
j=1

1

3
r2X(j)≤

n∑
j=1

1

3
rX(j)rY (j)

n∑
j=1

(
cX(j) −X

)2
.
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Table 13: Performance of the symbolic linear regression models considering the different cases

described in Section 3.2.

RMSEM (s)

n Case ID Model IDT Model CRM CCRM

30

A 3.0214 (0.0791) 2.9525 (0.0814) 2.8852 (0.0836) 2.8852 (0.0836)

B 3.1414 (0.0677) 3.0435 (0.0689) 3.0261 (0.0696) 3.0261 (0.0696)

C 11.8054 (0.3209) 11.7901 (0.3236) 11.7757 (0.2771) 11.7757 (0.2771)

D 11.9001 (0.3486) 11.8744 (0.3494) 11.8690 (0.3495) 11.8690 (0.3495)

E 2.9824 (0.1022) 2.9681 (0.1031) 2.9608 (0.1035) 2.9829 (0.1034)

F 3.2803 (0.0690) 3.1869 (0.0721) 3.1973 (0.0747) 3.2086 (0.0739)

G 11.8197 (0.3445) 11.8194 (0.3460) 11.8158 (0.3476) 11.9131 (0.3592)

H 11.8728 (0.3297) 11.8495 (0.3326) 11.8535 (0.3349) 11.8564 (0.3348)

I 3.6560 (0.1636) 3.4304 (0.1593) 3.1172 (0.1958) 3.1267 (0.1954)

J 3.4058 (0.1643) 3.2511 (0.1671) 3.1845 (0.2168) 3.1899 (0.2163)

K 12.5075 (0.5631) 12.5554 (0.6596) 12.8183 (1.0025) 12.8205 (1.0023)

L 12.3471 (0.7177) 12.3497 (0.7423) 12.4626 (0.8404) 12.4645 (0.8404)

250

A 2.9646 (0.0163) 2.8936 (0.0167) 2.8240 (0.0173) 2.8240 (0.0173)

B 3.0782 (0.0089) 2.9800 (0.0091) 2.9591 (0.0091) 2.9591 (0.0091)

C 11.5258 (0.0371) 11.5081 (0.0373) 11.4911 (0.0376) 11.4911 (0.0376)

D 11.5885 (0.0480) 11.5622 (0.0481) 11.5556 (0.0481) 11.5556 (0.0481)

E 2.9081 (0.0106) 2.8937 (0.0107) 2.8856 (0.0107) 2.9081 (0.0106)

F 3.2266 (0.0101) 3.1310 (0.0106) 3.1381 (0.0123) 3.1450 (0.0108)

G 11.5447 (0.0654) 11.5409 (0.0656) 11.5387 (0.0658) 11.5448 (0.0658)

H 11.5470 (0.0359) 11.5209 (0.0363) 11.5226 (0.0366) 11.5242 (0.0366)

I 3.7344 (0.1214) 3.3619 (0.1027) 2.9091 (0.0716) 2.9186 (0.0714)

J 3.2677 (0.0674) 3.0845 (0.0649) 2.9616 (0.0668) 2.9696 (0.0666)

K 11.9848 (0.1858) 11.9280 (0.1943) 11.8938 (0.2538) 11.8961 (0.2538)

L 11.6344 (0.2703) 11.5933 (0.2742) 11.5841 (0.2789) 11.5842 (0.2788)
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Observed and Predicted quantile functions of the LNU in Section 4.1.
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Figure 7: Observed and predicted quantile functions considering all methods presented in

Table 3.

18


	Introduction
	Regression Model with interval-valued variables
	Representation of the intervals by quantile functions
	The Interval Distributional regression model
	Parameters of the ID Model
	Model evaluation measures
	Flexibility of the ID Model
	The ID Model with degenerate intervals
	The ID Model assuming the Symmetric Triangular distribution 


	Experiments with simulated data
	Evaluating the behavior of the ID Model parameters
	Building the data sets
	Results and discussion

	Analysing ID performance

	Applications to real data sets
	Employment data: Relation between time of unemployment and years of activity
	Forest fires data: predicting burned area in the northeast region of Portugal

	Conclusion

