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Abstract— The process of decision making in humans involves
a combination of the genuine information held by the indi-
vidual, and the external influence from their social network
connections. This helps individuals to make decisions or adopt
behaviors, opinions or products. In this work, we seek to
investigate under which conditions and with what cost we can
form neighborhoods of influence within a social network, in
order to assist individuals with little or no prior genuine in-
formation through a two-phase recommendation process. Most
of the existing approaches regard the problem of identifying
influentials as a long-term, network diffusion process, where
information cascading occurs in several rounds and has fixed
number of influentials. In our approach we consider only one
round of influence, which finds applications in settings where
timely influence is vital. We tackle the problem by proposing
a two-phase framework that aims at identifying influentials in
the first phase and form influential neighborhoods to generate
recommendations to users with no prior knowledge in the
second phase. The difference of the proposed framework with
most social recommender systems is that we need to generate
recommendations including more than one item and in the
absence of explicit ratings, solely relying on the social network’s
graph.

Index Terms— social network, greedy algorithm, dominating
set, influentials, social recommender systems

I. INTRODUCTION

Humans make decisions, adopt behaviors and form opin-
ions through a process that takes as input a combination
of the genuine information held by the individual, and
the external influence from their peers. This leads to a
common phenomenon, where behaviors and opinions deviate
depending on the context, whether this is a demographic
group, a geographic location, or a different point in time.
One way to explain this phenomenon is that this behavior
is adopted by a portion of the individual’s peers, henceforth
referred to as their neighborhood.

For example, consider the case where a University wants
to increase the number of female students in STEM fields by
reaching out to the student population in local schools. This
is often done with summer camps or one-day events, where
female students are introduced to STEM disciplines in the
University hoping they will be inspired to follow a related
career path and thus consider applying to one of the programs
offered. However, Universities have limited resources, both
in terms of time and budget. Such events run once per year
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and only a few students can attend. Ideally, we need to
identify and invite the influential students of each social
neighborhood, who will not only get convinced to follow
such a career path, but will potentially convince their peers
to do so. Taking this one step further, the influence happens
in two levels of abstraction: a high-level one that guides to a
potential STEM career, and a more specific one that guides
the decision to a specific major. In this case, and viewed by
the “influenced” student’s point of view, her active peers’
major preferences will also influence her own.

The problem of identifying influentials in a social network
has gained a lot of attention from various research commu-
nities, as it has applications in viral marketing, disease pre-
vention, disease propagation, politics etc. This line of work
is drawing inspiration by social correlation theories such as
homophily and social influence [21], [25]. However most of
the existing approaches regard this as a long-term, network
diffusion process, where information cascading occurs in
several rounds [4], [15], [13]. Additionally, the assumption
is that there is a fixed number of influential neighbors each
node must have [8]. Such models do not fit situations like the
one described above, where only one round of influence is
assumed (e.g. only one group of prospective female students
can be invited each academic year).

In this work, we seek to investigate under which conditions
and with what cost we can form neighborhoods of influence
within a social network, to assist individuals with little
or no prior genuine information. In more technical terms,
given a social network, we model it as a graph, where the
vertices correspond to individuals and the edges are the
corresponding social ties. The graph theoretic problem is
to identify which vertices (i.e. people) in the social graph
need to be “activated” (i.e. targeted) such that the remaining
vertices can make decisions by taking into consideration the
opinion of active vertices in their immediate neighborhood,
given specific constraints. This is a generalized version of
the classical minimum dominating set [10]. We assume that
the edges are undirected and consider different models of
influence that don’t include cascading. We describe and solve
a graph theoretical problem similar to the self-monopolies
of [23]. Rather than requiring the majority the model requires
vertex-depended thresholds. We view this model as a com-
ponent of a social graph-based recommendation framework,
aimed at assisting users with no prior information to make
decisions. This two-phase framework aims at identifying
influential neighborhoods (i.e. active vertices) in the first
phase, and, in the absence of explicit item ratings, generating
recommendations to the users with no prior knowledge in



the second phase. The difference of the proposed framework
with most social recommender systems is that we need to
generate recommendations including more than one item
without the use of explicit ratings, solely based on the social
network’s graph.

The rest of the paper is organized as follows. The
two-phase social recommendation framework is outlined
in Section II. We formally describe the model related to
neighborhood formation and recommendation process and
propose an algorithmic solution to the first phase in Section
III. We evaluate the proposed algorithm in different types
of networks and discuss our findings in Section IV. An
overview of the related work is provided in Section V. Our
conclusions and plans for future work are included in Section
VL

II. A TWO-PHASE SOCIAL RECOMMENDATION
FRAMEWORK

Social recommender systems leverage social relations to
improve the rating-based recommendation process, based
on the assumption that a user’s preferences are likely to
be similar to, or influenced by these of her friends. This
assumption roots from the concepts of homophily and social
influence ([21], [25]). In this paper, we address a slightly
different problem, that of generating recommendations for
users with no or little prior knowledge, in the absence
of a rating system that could enable a more traditional,
collaborative filtering approach.

Consider, for example, the scenario described before,
where a student is first influenced to follow a STEM career
(phase 1) and then has to decide which specific major to
pursue (phase 2). Another example highlighting the need
of a two-phase social recommendation framework is the
election process. Consider, for instance, the U.S. primaries,
or any local election procedure with multiple candidates.
The candidates face two hurdles: convincing the citizens
to vote for them, but most importantly, convincing them to
vote (abstention reached an abysmal 68% in the 2014 U.S.
elections'). Thus candidates need to first identify influential
active voters who can convince their peers to show up
on election day (phase 1). Each of them holds their own
preference list of candidates and conveys it to the ones who
haven’t formed an opinion yet and should, in turn decide
who to vote for (phase 2). Moreover, the time is usually
limited (especially for local elections, when the campaign
period is short), and thus we cannot rely on those newly
informed citizens to influence others in turn. While such
scenarios do not follow the typical set-up of a recommender
system (with users, items, and explicit ratings), the ultimate
objective is the same, that of providing a user with some
form of recommendation?.

Source: http://www.idea.int/vt/countryview.cfm?
CountryCode=US

Note that, in the real-world the second phase that is primarily a mental
process can be enhanced by the outcomes of such a system, while both
examples transfer to online communities and social networks, where a
recommender system may be employed.

A. Influence-based Social Recommendations

In this work, we propose an influence-based social recom-
mendation framework that enables recommendations in the
presence of specific constraints and characteristics that set it
apart from typical social recommender systems:

o Two-phase recommendations. Recommendations hap-
pen in two levels of abstraction, mapped to a two-phase
process: a) a higher level of abstraction, where an “in-
active” user gets influenced by “active” users in making
a decision (e.g. follow a STEM career or vote), and b) a
finer-grained level of abstraction, where the influenced
user is provided with explicit item recommendations
(e.g. which major to follow or candidate to support).

e Recommendations only for cold-start users. We assume
that the active, influential users whom we target first,
have already formed an opinion/made a decision (during
the first phase). The focus is on the “cold-start” users,
who have little or no prior knowledge and for whom the
system only knows their social connections. The second
phase of the recommendation framework addresses only
these inactive users.

o Single round of influence. Because of time constraints,
there can be only one full round of influence (i.e. active
users can only influence their direct connections) and
thus further influence diffusion is not guaranteed.

o Absence of ratings. The user similarity can no longer be
defined in terms of similar ratings, as in collaborative
filtering systems. Instead, only the social connections
can be leveraged and used as input to the recommen-
dation process.

o Personalized, preference-based recommendations. Each
of the influential users maintains a preference list of
items (e.g. majors or candidates). The final recommen-
dation to each inactive user should be a personalized
aggregated list and not a single item.

In what follows, we define a two-phase social recom-
mendation framework with no influence propagation. The
framework consists of two main modules, the neighborhood
formation module, and the recommendations’ generation
module. An example of this two-phase process is illustrated
in Figures 1 and 2. We formulate the social network as a
graph, where the vertices correspond to individuals and the
edges correspond to the social relationships between them.
We should also note that such a framework is context-aware
since, depending on the context, the social graph of the users
is different (e.g. use the school social graph to choose a
major and the friends social graph to decide on a vacation
destination).

1) Phase 1 - Neighborhood formation: During the neigh-
borhood formation phase, the goal is to identify, given a
social graph, which vertices need to be activated such that the
remaining vertices can make decisions given some threshold.
For instance, if the threshold is 50%, each inactive node can
make decisions if at least half of their connected vertices are
active. The threshold is a parameter of the framework and
changes depending on the application domain (e.g. in spam



networks, only 30% of the vertices need to be malicious
to influence the rest). We describe the active connections of
each inactive node as its neighborhood and these are the only
vertices that will be used as input in the recommendations’
generation process in the next phase. Note that the measures
that are broadly used in recommender systems to identify
similar users (e.g. Pearson correlation or latent factor models)
are not applicable here since there are no explicit item
ratings.

The first phase is depicted in Figure 1. The influential
users are first identified, given a specific threshold (in this
example threshold is 50%, and the influentials are shown in
white shirts). The influentials are targeted (for example, they
are invited to attend a STEM-related activity). Only the direct
connections of each user (example user is shown enlarged)
are part of her neighborhood (non-neighborhood users are
shown transparent) and influence her (e.g. to follow a STEM
career).
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Fig. 1.
influence.

Phase 1 - Identifying influentials to form neighborhoods of

2) Phase 2 - Generating Recommendations: Once the
neighborhood of each inactive node has been established,
the next phase involves generating specific recommendations.
We assume that each of the influential (active) vertices has
already formed an opinion/made a decision in the previous
phase. Thus, contrary to collaborative filtering recommender
systems, where recommendations are generated for all the
users, the focus of this phase is solely on the inactive users.
Depending on the input items and the objective of the rec-
ommendation process, it can be modelled as a classification
or a ranking/preference aggregation problem.

The second phase is depicted in Figure 2. Assuming
that the user (shown enlarged) has been convinced by their
neighboring influentials to make a decision/form an opinion
in the previous phase (in this example, follow a STEM
career), they now need to make a finer-grained decision
(e.g. which STEM major to follow). In the case where the
influentials hold preference lists, the recommendation needs
to be the result of some sort of voting mechanism.

In the Section that follows, we define in more technical
terms the problems of neighborhood formation and prefer-
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Fig. 2. Phase 2 - A voting mechanism used to generate recommendations.

ence aggregation. We propose an algorithm for a generalized
dominating set problem in a social network that identifies
influential vertices given specific constraints. The second
module of the recommendation framework, involving the
preference aggregation process, is out of the scope of this
paper and will be discussed in detail in future work.

III. FORMAL PROBLEM DEFINITION

In the first phase of the neighborhood formations, we
seek to find an appropriate subset of individuals that will
act as influentials. A social network is modeled as a graph
G = (V, E), where V is the set of individuals and FE is the
set of their connections. We consider the model of influence
without cascading. The problem that result from this model is
a generalized versions of the classical minimum dominating
set. A vertex is influenced if a portion of her immediate
neighbors are influentials (active). The portion that each
vertex v requires in order to get influenced is a threshold
function thr(v). We assume that the edges are undirected.

We define and solve a graph theoretical problem similar
to the self-monopolies of [23], but the threshold is not fixed
to 0.5. Rather than requiring the majority of neighbors to
be active so that a vertex is influenced, in our model each
vertex has its own threshold.

Before we move to the formal definitions, let us define
some notation: let D be the set of influential vertices, N (v)
be the set of the neighboring vertices of vertex v, degree(v)
be the degree of v, thr(v) € [0, 1] be the threshold of v, W
be the set of influenced vertices and A be all vertices that
are neither influentials or influenced. Additionally, let h(v)
denote the number of neighbors of v that should be in D so
that v is influenced:

h(v) = thr(v) - degree(v).

The value of the domination of a node v € V by D is defined
as:

e value(D) = min{h(v),|N(v) N D|}, if v € V' \ D.

o value(D) = h(u), if v € D.



The function of the remaining cost f(G, D) in a graph
G with a set D is defined as: f(G,D) = > . h(v) —
> vey value(v).

The remaining cost quantifies the difference between hav-
ing all vertices either as an influencer or as influenced and
the total value of all vertices with set D.

For a vertex v we say that:

(a) v is an influential, if v € D.
(b) v is influenced, if |D N N(v)| > thr(v) - degree(v).

Recall, that the goal of the first problem is to select an
appropriate subset of vertices as active so that all inactive
vertices have a proportion of thr(v) active neighbors. We
are ready to define the first problem MIN-TBIDS as follows:

[PROBLEM:] THRESHOLD-BOUNDED INFLUENCE DOM-
INATING SET, MIN-TBIDS
Instance: G = (V, E) is an undirected graph, and a threshold
function thr : V — [0, 1].

Feasible solution: find a subset D C V such that all v €
V'\ D are influenced, i.e., W =V \ D.
Goal: find a minimum D.

veV

A. New Greedy Algorithm

The following Greedy algorithm that was proposed in [23]
will be the basis of our new (enhanced) Greedy algorithm
shown in Algorithm 1: we are looking for a minimum subset
D of MIN-TBIDS, and let A denote the subset of vertices not
influenced yet. Initially D = () and A = V. While W # 0,
pick a vertex v € V \ D maximizing |N(v) N A|, add v
to D and remove from A any vertex that is now influenced
by D. Since the problem is submodular, it is easy to see,
using an analysis similar for submodular problems that the
resulting set D is at most In|E| + 1 times greater than the
minimum one. In Algorithm 1, we add a preprocessing step
to deal with all vertices of degree one. Figure 3 provides
an instance of MIN-TBIDS with thr = 0.5, in which the
new greedy algorithm makes a better choice with set D =
{4,7,8,15} (colored red) than the greedy one that takes D =
{2,5,7,8,15} (colored red). Note that all remaining blue
vertices have at least half of their neighbors red.
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Fig. 3. Example of Greedy vs New Greedy algorithm for MIN-TBIDS
with thr = 0.5.

The running time using Fibonacci heaps is O(nlgn + m).
The new greedy algorithm is slightly slower in practice but
with the same running time.

Algorithm 1 New Greedy for MIN-TBIDS.
Input: Graph G = (V, E) and threshold thr = {0,...,1}
Output: Subset D of V such at all vertices in V' \ D are
influenced.
1: initialize D = ()
2: for each v € V do

3: compute degree d(v)

4: dd(v) = d(v)

5: y(v) =0 > proportion of neighbors in D
6: end for

7: while Jv € V' \ D: v(v) < thr do

8 if 3v € V\ D: d(v) =1 and v(v) < thr then
9: select s = argmazv{d(v)lv € V'\ D}

10: D=DUs

11 dd(s) =0

12: yw) =1

13: else

14: select u = argmazv{dd(v)lv € V'\ D}

15: D=DnNu

16: for each neighbor v of w and v € V'\ D do
17: dd(v) =dd(v) — 1

15 A1) = 7(v) + 1/d(v)

19: end if
20: end while
21: output D

B. Recommendation Process

Once the neighborhood N(v) of user v has been es-
tablished, it can be used as input to the next step of the
recommendation process. Our objective is to estimate the
quantity R(v,t;) that represents the rating/rank/preference
of user v for each item ¢; € T, where T' represents the
set of items/options available. We consider two variations
of the same problem, depending the desired outcome of the
recommendation process.

1) Recommendation of single item: In the first case, we
assume that each influential node contributes a singular
opinion/vote (out of a selection of many). Referring to our
previous examples, this could amount to each influential
supporting “Yes” on a specific ballot measure, or selecting
one particular major. In this setup, a simple majority rule
of the user’s neighborhood can be held to generate the
final recommendation. This process is very similar to K-
NN classification, with the difference that similarity is not
defined in the Euclidean space, and K is not common for all
the vertices, but varies depending on each node’s threshold
thr(v) and number of influential neighbors.In this context,
R(v,t;) is defined as follows:

ZWEN(U}OD Sim(vv Ui) : R(Ui, tj)
ZWEN(’U)QD Sim(’U, Ui)

In other words, the preference score for each item ¢; for
the user v is the aggregation of the preference scores of the
influentials in v’s neighborhood, weighted by their similarity.
In networks where the edges are all of the same strentgh,

R(U, tj) =



sim(v,v;) = 1. When the graph has weighted edges, in
other words when we differentiate between strong and weak
ties in the social network, the similarities can be updated
accordingly. The outcome of this recommendation process
is to recommend the item ¢; that maximizes the preference
score R for user v : max; R(v,t;).

2) Recommendation of ranked list: When we assume that
each influential node maintains a preference list of items,
the objective of the recommendation process is to generate
a preference (i.e. ranked) list as recommendation to each
user. Referring back to our examples, this would be a ranked
list of majors or a ranked list of local government officials.
In this scenario, there is no natural way to average the
preferences of the neighborhood influentials as the input can-
not be mathematically averaged. Therefore a more elaborate
voting process needs to be designed. Voting is particularly
useful when the participating influentials disagree because of
genuine divergence of their subjective evaluations [7].

More formally, the outcome of this recommendation pro-
cess for user v, is a personalized preference list P,(T") of
the set T', where t; =, t; signifies that alternative ¢t; ¢ T
comes before t; € T in v’s ranked list.

Calculating the preference list P,(T") is not a straight-
forward procedure. A naive approach would be to rely
again on simple majority ruling, where the preference scores
R(v,t;) are calculated using only the first preference in
each infuential neighbor’s list. Then the preference list is
created such that ¢; >, ¢, if R(v,t;) > R(v,ty) (weak
preferences can be defined in a similar way). However, this
approach disregards the subsequent preference order of the
neighboring nodes, and might rank higher items that would
be in lower ranks if they were taken into consideration.

In general, when ranked lists are provided, voting systems
based on majority rule suffer from several pathodologies,
as identified by the Condorcet Paradox, as they become
susceptible to strategic agenda-setting [7]. Positional voting
(such as the Borda Count) could also be considered but
these also present their own pathologies, with many plu-
rality voting election systems, including that of some U.S.
states, demonstrating them. When weights are introduced to
the edges of the graph, the problem becomes even more
complicated and alternative voting systems and preference
aggregation mechanisms must be devised. Further analysis
of this problem is out of the scope of this paper and part of
our future work.

IV. EXPERIMENTAL EVALUATION

The model of neighbourhood formation that was previ-
ously presented is portraying a distinct situation. This section
presents the results on both synthetic and real-world data sets
of this model. The objective is to assess the best approach,
given different conditions and under different circumstances,
in order to solve the problem presented in Section III, which
refers to the first phase of the proposed social recommenda-
tion framework: the identification of influential vertices.

The MIN-TBIDS problem is a minimization problem,
where the objective is to find the minimum set D of vertices

in order to influence all the remaining vertices in the graph.

To solve the problem we will base our experiments in
two algorithms. The first is the greedy algorithm proposed
in [23]. The second is the new greedy algorithm presented in
Section III-A. The following sections detail the experiments
and the evaluation of each set of used data.

A. Synthetic Data

Given the examples which serve as a motivation for this
paper, we designed a set of experiments based on synthetic
data in order to evaluate the algorithms used to solve the
problems set forth. This decision lies on the ability of
enabling a more controlled setting of the constraints and
therefore a more objective study of the performance of each
algorithm.

A significant amount of observed networks are usually
categorized as scale-free networks, which relates to the fact
they possess a power-law (or scale-free) degree distribution.
These types of networks are associated with examples of
Internet topology, neural networks and even the Web [22].
Small-world networks [30], which are characterized by their
small diameter and high clustering coefficient, are usually
observed in scientific collaboration networks. These types of
networks are also used to characterize social networks. As
such, we based our synthetic evaluation on the generation
of multiple networks of three different types: /) Barabasi-
Albert, 2) Small-world and 3) degree sequence networks. The
latter is a power-law network, characterized by its monotonic
non-increasing sequence of the vertex degrees.

For each of these types of networks, 250 examples were
generated with different sizes: for each size s € (100, 200,
300, 400, 500) we generated 50 undirected networks. As
for parameters, in the case of the Barabasi networks, we
defined a power of preferential attachment of 1.5. In small-
world networks we set nez, the neighborhood within which
the vertices of the lattice will be connected to 2 and the
rewiring probability p as 0.3. Finally, concerning the degree
sequence networks, we used a sequence of degrees following
an exponential function of power —0.5 * N, where N is the
sequence of the number of nodes n, N = (1,...,n).

We evaluate the application of both algorithm as to the
proportion of the number of vertices chosen to solve the
problem. Regarding the constraints we defined a set of dis-
tinct thresholds (0.1, 0.2,0.25,0.33,0.5) in order to evaluate
the performance of each algorithm in different constraint
scenarios.

The results presented in Figure 4 show that our proposed
algorithm provides some advantage to the standard algorithm
proposed in [23]. In the small-world networks most of the
results show a tie or a residual improvement by our proposal.
However, in scale-free networks such as the Barabasi-Albert
and degree sequence our proposal shows a clear improve-
ment.

Reporting to the evaluation concerning the scale-free net-
works, results show that in the MIN-TBIDS model, the
algorithms approximate their results as the threshold grows.
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Fig. 4. Threshold-bounded Influence Dominating Set (TBIDS) with Synthetic Graphs. The top values of the grid represent threshold values.

B. Real-World Data

In addition to the synthetic data described in the former
section, we evaluated the application of the greedy algo-
rithms with real-world data sets. Our objective is the same: to
evaluate the performance of the algorithms given the model
of neighborhood formation.

TABLE I
REAL-WORLD DATA SETS

Dataset AstroPhy  CondMat  DBLP

# Nodes 18772 23133 317080
# Edges 198050 93439 1049866
Avg. Degree  21.10 8.08 6.62
Max Degree 504 279 343

We used three datasets, described in Table I: the Astro
Physics and Condense Matter collaboration networks [17]
and the DBLP collaboration network [32]. For each of these
data sets we induced subgraphs by finding a set of vertices
of a size no bigger than 600 and no smaller than 100,
through the following procedure: beginning with the addition
of a random vertice of the graph, we added its neighbours;
if necessary the neighbours of the neighbours were also
included.

Concerning constraints we used the same as in the for-
mer evaluation of synthetic data sets: a set of thresholds
(0.1,0.2,0.25,0.33,0.5) in the first problem; this same set of
values in the second problem to represent the size of the par-
tial sets of vertices in the network that we wish to influence;
and 5 budgets k, where k& € (0.05,0.1,0.15,0.2,0.25) * n,
where n is the size of the graph. Also, for the second and
third problem the threshold for all vertices was set at 0.1.
Results are presented in Figure 5.

In comparison to the previous evaluation, the evaluation of
real-world data sets show that, overall, our approach provides
an advantage, while it is not of the magnitude observed in the
former results. This evaluation shows that, besides a residual
gain in the model MIN-TBIDS, when the threshold is 0.1, the
application of both algorithms shows a very similar outcome.

V. RELATED WORK
A. Identification of influential users

The problem of identifying influentials has gained a lot of
attention from several research communities as it has appli-
cations in viral marketing [16], [3], [31], disease prevention
[14] and propagation [24], politics [11], [6], etc.

Identifying the most influential users of a market in order
to propagate influence, was first studied as an algorithmic
problem by Domingos and Richardson [5]. In their work
they apply data mining techniques to viral marketing, by
modeling markets as social networks. They study the spread
of influence using probabilistic models of interactions. Each
vertex is associated with a value that quantifies how much
she can influence other vertices and is used to optimally
determine which vertices to choose as influentials. In their
empirical study, using the EachMovie database, their pro-
posed market strategy performs much better than two simple
existing strategies.

Later, Kempe, et al. [13] formulate that problem as an
maximization problem and propose three models of propa-
gation. They prove that the problem is NP-hard and design
a greedy approximation algorithm based upon submodular
maximization with an (1 — 1/e)-approximation algorithm.
Consecutive work is focused on proposing optimizations of
the greedy algorithm for better efficiency, see [18], [1]. In
our model we don’t consider cascading, the influence is in
one round and each influencer can influence only vertices in
the immediate neighborhood,i.e., one hop neighbors.

Motivated by failures in distributed systems Peleg [23]
uses the idea of majority ruling to study problems related to
discovering an optimal subset of controlling vertices, called
coalition. A vertex v is controlled if the majority of its
neighbors belong to the coalition. The two special types
of coalitions are considered: the monopoly, if it controls
every vertex in the graph and the self-ignoring monopoly
M, if it controls only every vertex in V \ M. Problems
regarding the amount of vertices that can be controlled, given
the size of the coalition and how small a monopoly can
be are investigated. The self-ignoring monopoly problem
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is NP-hard and since it is submodular, the simple greedy
algorithm yields to (In|E|) + 1l-approximation ratio. This
work focuses in providing theoretical lower bounds for the
general problems as well as for specific instances. The self-
ignoring monopoly is close to our model and for that type
no lower bound is given, when a vertex can control only its
immediate neighbors. We extend this problem with different
thresholds and enhance the greedy algorithm proposed there
and through experimental results manage to outperform it.
Chen [2] shows that MIN-TBIDS is hard to approximate
within a polylogarithmic factor, even for some special cases
such as bounded-degree graphs or majority thresholds. How-
ever, for trees this problem is in P.

The k-dominating set is a generalization of the classical
dominating set. In this problem each vertex not in the k-
dominating set has at least k£ neighbors in that set. Compared
to our problem this is a special case with the threshold of
every vertex set to [k/degree(v)]. An efficient algorithm
with a (1.7 4+ lgA)-approximation ratio, where A is the
maximum degree, is given in [8].

In Wang [29], the Positive Influence Dominating Set
(PIDS) problem is introduced in which a minimum subset
D of vertices is sought so that every vertex (even in D)
has at least half of its neighbors in D. They propose and
algorithm which iteratively adds classic dominating sets with
an H(d), where H is the harmonic function and d is the
maximum vertex degree of the graph. Additionally, they
prove that the problem is AP X hard. For power law graphs
the approximation factor is a constant [33].

B. Social recommender systems

Social recommender systems have gained a lot of attention
from the research in an effort to leverage social relationships
to improve the recommendation process. This line of work
is based on the assumption that users’ preferences are influ-
enced more by these of their connected friends, than these

of unknown users [31], rooted in the sociology concepts
of homophily and social influence [21]. Tang et al. [28]
give a narrow definition of social recommendation as “any
recommendation with online social relations as an additional
input, i.e., augmenting an existing recommendation engine
with additional social signals” (a broader definition, not
applicable to this work, refers to recommender systems
targeting social media domains [9]).

The various proposed approaches can be categorized de-
pending on the type of social relationship (trust, friendship
etc.), the type of the underlying recommendation algorithm
(model-based, memory-based, etc.), and the level of inte-
gration of the social information in the recommendation
process. A common approach is to enhance the memory-
based collaborative filtering process by forming the user’s
neighborhood using similarities deriving from the users’
ratings and/or their social relationships, focusing on trust An
alternative line of work involves ways to enhance model-
based recommender systems with social connections, again
most often expressed as trust. This can be done through co-
factorization, where the assumption is that the users share
the same preference vector in both the rating and the social
spaces (e.g. [26]), ensemble methods, where the resulting
recommendation is derived by the linear combination of two
systems (e.g. [19], [27]), or regularization, where priority is
given to the social-based ratings (e.g. [12], [20]).

Most of the work in social recommender systems assumes
some form of influence/trust propagation. Moreover, these
are attempts to enhance the typical recommendation process
with social data, assuming that item ratings are also available.
In our work we assume that limited time that prevents
influence propagation to affect the recommendation process
and that explicit ratings are not available.



VI. CONCLUSIONS AND FUTURE WORK

In this work we present a graph algorithm based on
threshold-bounded dominating sets and employ it to identify
influential individuals in a social network. This process
consists the neighborhood formation phase of a social recom-
mender system, that addresses applications where influence
cannot propagate and there are no explicit item ratings.
The experimental evaluation of the proposed algorithm,
considering our model, and using both synthetic and real-
world datasets, have shown that our approach outperforms
the previously proposed algorithm in most cases. As part
of our future work we plan to design more efficient algo-
rithms, explore the effect of weak and strong ties in the
social network, and develop a preference mechanism for the
recommendation generation phase.
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