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Abstract—The current literature in wind power forecast is 

focused in generating accurate uncertainty forecasts and 

communicating this information to the end-user. Multi-

temporal decision-making problems require information 

about the temporal trajectory of wind power for the next 

hours. Presently, this information is provided through a set of 

temporal trajectories (or scenarios). This paper aims at 

contributing with an alternative approach for communicating 

this information through simultaneous prediction intervals. 

These intervals include the temporal dependency of forecast 

errors since they provide information about the probability of 

having the observed wind power trajectory fully inside the 

quantiles forming the interval. First, a learning sample of 

temporal trajectories are generated with the Gaussian copula 

method and using the marginal prediction intervals. Then, two 

methods proposed in the literature are used to construct the 

simultaneous intervals. The quality of these intervals is 

evaluated for three real wind farms.   
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I. INTRODUCTION

Driven by a new generation of decision-aid tools 
developed to support the renewable energy integration into 
the power system and electricity market, research on 
renewable energy forecasting evolved from point to 
uncertainty forecast [1]. Examples of tools within the 
stochastic optimization/decision-making paradigm are: 
setting the power system operating reserve [2], stochastic 
unit commitment [3] and optimal wind power bidding [4]. 

Recent research has been focused on producing 
uncertainty forecasts, taking into account the form of 
probabilistic forecasts, risk indices, ramps and trajectories 
(or short-term scenarios) of wind power generation.  

In order to produce a set of prediction intervals, Pinson 
and Kariniotakis [5] proposed a fuzzy inference model 
combined with adapted resampling to determine the 
distributions of forecast errors associated with power output 
forecast. Bessa et al. [6] described a time-adaptive 

conditional kernel density estimation method with a non-
parametric copula for modelling the dependency between 
numerical weather predictions (NWP) and wind power.

Pinson et al. [7] proposed a risk index, named 
Normalized Prediction Risk Index, which reflects the spread 
of an ensemble of wind power forecasts for a single look-
ahead time or over a forecast period. It consists of a single 
numerical value (or qualitative value) that provides an a 
priori warning on the expected level of prediction error.
Pinson et al. [8] proposed a method to generate temporal 
trajectories of wind power forecasts that include the 
temporal dependency of forecast errors; a similar method is 
also proposed by Ma et al. [9] to capture wind power 
variability and uncertainty. Numerical weather prediction 
(NWP) ensembles, which are a set of NWP produced by 
perturbing the initial conditions or result from a different 
parameterization of a NWP model, can be converted into 
power and also represent a set of temporal trajectories [10]. 
Bossavy et al. [11] described a method based on detecting 
ramp forecasts from the members of a wind power 
ensemble, which produces a forecast of wind power ramp 
event (i.e., prediction intervals with associated probabilities 
of ramp occurrence).  

The EU Project Safewind explored alternative methods 
to communicate wind power uncertainty to end-users [12]: 
(a) communicating the variability in wind power 
fluctuations through the calculation of the cumulative 
probability of negative and positive changes and the 
comparison with a Gaussian distribution; (b) using the 
colour and risk levels currently employed by the Met Office 
for describing extreme weather events (e.g., ramps, cut-
offs); (c) assessing the probability of specific extreme events 
leading to a binary output; (d) geographic map that enables 
end-user to identify areas with high forecast errors. 

Communication of uncertainty forecasts to end-users is 
currently an active area of research in different areas. A 
general discussion about this topic can be found in [13] and 
[14]. 

This work was made in the framework of the BEST CASE project 
(“NORTE-07-0124-FEDER-000056”) financed by the North Portugal 
Regional Operational Programme (ON.2 – O Novo Norte), under the 
National Strategic Reference Framework (NSRF), through the European 
Regional Development Fund (ERDF), and by national funds, through 
Fundação para a Ciência e a Tecnologia (FCT).  
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Traditionally, the uncertainty in multi-temporal decision-
making problems is modelled with a set of temporal 
trajectories (or short-term scenarios) [15]. Two examples 
related to the power systems area are the stochastic unit 
commitment [3] and the storage-wind farm coordination 
[16]. With this type of representation, it may be 
computationally very demanding to find the optimal solution 
in a minimum running time and an end-user may have 
difficulties in interpreting the temporal trajectories of wind 
power. 

The aim of this paper is to explore the simultaneous 
prediction intervals concept [17], which is an alternative 
approach to communicate uncertainty in multi-temporal 
stochastic decision-making problems. Simultaneous 
prediction intervals differ from marginal prediction intervals 
since they take into account the temporal dependency of 
forecast errors. Two methods proposed by Kolsrud in [18] 
are used in this paper to construct simultaneous prediction 
intervals for temporal trajectories generated with a Gaussian 
copula method [8] for the next 48 hours.  

The paper is organized as follows: section II discusses 
the concept of simultaneous prediction intervals; section III 
describes the temporal trajectories generation method and 
the two methods to construct simultaneous prediction 
intervals; section IV presents results for three real wind 
farms; section V presents the conclusions and future work. 

II. SIMULTANEOUS PREDICTION INTERVALS

Several methods were developed to generate wind power 
probabilistic forecasts, represented by quantiles, prediction 
intervals, probability density function (pdf), moments (e.g., 
skewness, kurtosis) [19]. A typical output from these 
methods is illustrated in Fig. 1 (frequently called “fan 
chart”) through a set of 48 hours-ahead prediction intervals 
for one wind farm, obtained from the conditional pdf 
predicted by the quantile-copula method described in [6]. 

These prediction intervals only represent information 
from marginal distributions, thus they can be named 
marginal or pointwise prediction intervals (MPI). Charts 
similar to the one in Fig. 1 may give misleading information 
to a decision-maker. For instance, the decision-maker may 
interpret each one of the quantiles as a temporal trajectory in 
time, which is not correct. In fact, the marginal intervals can 
only be interpreted individually for each hour, and are 
mathematically defined as: 

 { } αττττ
−=−=≤≤ 1PPPProb ttt

LHHL

 (1) 

where �H and �L are the quantile nominal proportions of 
the interval limits, � the coverage rate and Pt the wind power 
in hour t. 

For instance, in hour 12h00 of the first day there is a 
probability of 1-�=90% (limited by quantiles 95% and 5%) 

that the observed value is within 22.0Pt =
Lτ  and 87.0Pt =

Hτ . 

However, temporal trajectories, which include the 
temporal dependency of forecast errors, can be generated 
from the probabilistic forecast depicted in Fig.1. An 
example with 100 scenarios generated by a Gaussian copula 
(described in section III.A) is depicted in Fig. 2 for the same 
time horizon. In contrast to the quantiles illustrated in Fig.2, 

each trajectory (or scenario) represents a possible realization 
of wind power generation in the time horizon and is equally 
probable.    

This information can be directly included in stochastic 
optimization problems, but it does not provide clear 
information to the end-user and can increase cognitive load 
(concept discussed in [13]). An alternative representation, 
which is a hybrid of the information contained in Fig. 1 and 
2, is the simultaneous prediction intervals (SPI). 

Fig. 3 depicts SPI constructed from the scenarios in Fig. 
2 and using the Chebyshev distance-based method that will 
be described in section III.B. These intervals are 
mathematically defined as: 

 { } αττττ
−=−=≤≤ +→+→+→ 1PPPProb Tt1Tt1Tt1

LHHL

 (2) 

where T is the time horizon, 
Lτ

Tt1P +→
 and 

Hτ

Tt1P +→
quantiles 

trajectories between 1 and T, and 
Tt1P +→

the observed wind 

power trajectory.  

Eq. 2 means that the observed wind power is completely 
contained inside the SPI during all hours of the time horizon 
T. For example, in Fig. 3, the dark blue area means that there 
is a 10% probability of having the observed wind power 
trajectory completely inside the interval defined by quantiles 
45% and 55%.  

The comparison between Fig. 1 and 2 shows the 
following differences: (a) the SPI with lower coverage are 
wider than the MPI; (b) the shape of the quantile curves 
from the MPI is similar to the point (or deterministic) 
forecast. 
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Figure 1. Marginal prediction intervals (MPI) for a 48 hour-ahead time 

horizon. 
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Figure 2. Temporal trajectories (or short-term scenarios) for a 48 hour-

ahead time horizon. 
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Figure 3. Simultaneous prediction intervals (SPI) for a 48 hour-ahead 

time horizon. 

The SPI are wider in the centre intervals because of the 
variability in the scenarios depicted in Fig. 2. 

The estimation of SPI also results in quantile trajectories 
that represent a certain probability of having an observed 
wind power lower or equal to that trajectory. This type of 
information can be included in multi-temporal decision-
making problems, as an alternative to a set of temporal 
trajectories. However, it is not an objective of this paper to 
discuss how this information can be included in those 
problems.  

III. CONSTRUCTION OF SIMULTANEOUS PREDICTION 

INTERVALS

The construction of simultaneous prediction intervals is 
divided into three steps: (a) generation of probabilistic 
forecasts, i.e. marginal distributions (see references [5, 6]); 
(b) generation of a large set of temporal trajectories 
(described in section III.A); (c) construction of simultaneous 
intervals (described in section III.B).  

A. Gaussian Copula to Generate Temporal Trajectories 

The MPI are forecasted for each lead-time by employing 
the time-adaptive quantile-copula method with the point 
forecast and wind direction as inputs [6]. The temporal 
trajectories are generated with the NORTA (NORmal To 
Anything) method proposed by Cario and Nelson [20], 
which inspired the method described in [8].  

This method generates N temporal trajectories of wind 

power ( [ ]n

Tt1

P̂
+→

) by the following procedure:  

1. generates N random vectors Z from a multivariate 
Gaussian distribution (i.e., Gaussian copula) with 
zero mean and empirical covariance matrix �Z

estimated from a learning sample; 

2. transforms Z with Eq. 3 to obtain a random vector 
[ ] [ ] [ ][ ]n

t

nn PP ˆ,,ˆP̂ 1
Tt1

�=
+→

; 

 [ ] [ ]( )( )n

ii

n

i ZFP Φ=
−1  (3) 

where ( )⋅−1

iF  is the inverse of the cumulative 

distribution function interpolated from the forecasted 
quantiles (i.e., inverse of the marginal distributions) 
and � the distribution function of a standard normal 
random variable. 

The generated temporal trajectories ( [ ]n

Tt1

P̂
+→

) will have the 

forecasted marginal distributions. The dependency structure 
between the lead-times is modelled with a Gaussian copula 
and the covariance matrix can be estimated with different 
correlation measures [21]. In this paper, the Pearson’s 
correlation coefficient is used to compute the empirical 
covariance of variable Zt defined as follows: 

 ( )( )tt PFZ ˆ1−
Φ=  (4) 

The covariance matrix is computed from a learning 
sample of past observations of Z. 

B. Contruction of Simultaneous Intervals 

Departing from a set of temporal trajectories, Kolsrud 
[18] proposed two methods to construct simultaneous 
prediction intervals, which are described in the next sub-
sections. 

1) Adjusted Intervals (AI) 

The adjusted intervals (AI) method is very intuitive and 
basically consists in increasing the coverage of the MPI until 
the SPI coverage matches 1-�. It should be stressed that the 
learning sample is the set of N temporal trajectories 
generated by the method described in the previous section 
and the SPI coverage is given by the number of temporal 
trajectories completely inside the lower and upper quantiles 
of the SPI interval. 

The method can be summarized as follows: 

1. for each lead-time t=1…T, increase the MPI 
uniformly by including the nearest sample point 
(from the set of N trajectories) above and below the 
interval limits;  

2. compute the coverage of the SPI by counting the 
number of temporal trajectories completely inside the 
lower and upper quantiles; 

3. if the coverage is less than the nominal value 1-�, go 
to step (1); else, end the algorithm. 

Steps 1-3 can be repeated for any �. Note that the final 
SPI can have a coverage slightly greater than 1-� since in 
each iteration at least two trajectories are included inside the 
SPI. 

2) Chebyshev-based Intervals (CI) 

The Chebyshev-based method (CI) sorts the trajectories 
according to the Chebyshev distance to the centre trajectory 
(mean value) of the learning sample. The SPI is the 
envelope of a subsample containing the (1- �) .N trajectories 
with the shortest distance to the mean. 

The method can be summarized as follows: 

1. compute the weighted Chebyshev distance (Eq. 5) of 
each trajectory to the mean trajectory 

[ ] [ ] [ ][ ]n

t

nn PP ˆ,,ˆP̂ 1
Tt1

�=
+→

 . 

 [ ] [ ] [ ] [ ]
�
�
�

�
�
� −=�

�
��

�
�

+→+→
t

nn

t

nn

WC sd σ
ttTt1Tt1

P̂P̂max,P̂,P̂  (5) 



where �t is the pointwise standard deviation 
calculated for each lead-time t; 

2. sort the trajectories in ascending order according to 
its Chebyshev distance and construct a subsample 
with the first (1-�).N; 

3. compute the envelope (Eq. 6 – the narrowest interval 
containing all trajectories in the subsample) of the m
trajectories in the subsample. The SPI with coverage 
1-� is equal to the envelope. 

 [ ]
[ ]( ) [ ]

[ ]( )[ ]( )T
t

m

tm

m

tm PP
1

ˆmax,ˆminenvelope
=

=  (6) 

Steps 1-3 can be repeated for any �. 

The distance of Eq. 5 is weighted by the pointwise 
standard deviation to account for possible heteroscedasticity 
in the learning sample.  

IV. CASE-STUDY RESULTS

A. Description 

The case-study consists of the first three real wind farms 
from the Global Energy Forecasting Competition 
(GEFCOM 2012) dataset, which is freely available in [22]. 
Three years of data are available and consists of historical 
power measurements and weather predictions extracted 
from the European Centre for Medium-range Weather 
Forecasts model (ECMWF) with hourly time resolution. The 
wind power values were normalized between 0 and 1 by the 
respective rated power of the wind farms. 

The last year was used to generate a set of wind power 
trajectories, estimate the SPI prediction intervals and 
evaluation. The time horizon T is 48 hours-ahead.  

In the literature, a vast number of metrics are available to 
evaluate the quality of MPI and quantiles. Some examples in 
[23] are calibration, sharpness, quantile score and 
continuous ranking probabilistic score (CRPS).  

However, for SPI it is not straightforward to derive 
equivalent metrics. The only exception is calibration. For 
SPI, it is possible to measure calibration by counting the 
number of times the observed temporal trajectory is fully 
inside each interval. An SPI is perfectly calibrated if this 
empirical coverage matches the nominal coverage of each 
interval. 

Sharpness is more difficult to quantify since it would be 
necessary to find a metric that summarizes the amplitude of 
the SPI. In this paper, the average size of the SPI is used to 
measure sharpness. Metrics, such as the quantile score or the 
CRPS, are strictly proper scoring rules that summarize into a 
single metric multiple aspects of the uncertainty forecast, 
such as calibration and sharpness. However, deriving such 
metric to SPI is still an open line of research and it is not 
possible to find a single publication covering this issue. 
Therefore, the evaluation of the SPI in the next section is 
conducted in terms of calibration and sharpness.   

B. Results 

This section evaluates the sharpness and calibration of 
MPI and SPI. The SPI were generated with the two methods 
described in section III.B [adjusted (AI) and Chebyshev 

(CI)] and using two different types of scenarios (or temporal 
trajectories): (a) generated with the Gaussian copula 
described in section III.A; (b) generated assuming 
independence between the lead-times. 

Fig. 4 depicts, for wind farm 1, the deviation from 
perfect calibration (i.e., empirical minus nominal coverage) 
for intervals with nominal coverage ranging between 10% 
and 90% and obtained with the different models. The MPI 
show a poor performance in terms of calibration. Moreover, 
all these deviations are negative, meaning an overestimation 
of the coverage probability. For instance, for the nominal 
coverage 10%, the empirical value, which is the number of 
observed trajectories inside the 55% and 45% quantiles of 
the MPI, is zero. This means a -10% deviation. The same is 
valid for the 90% nominal coverage, with only 19.7% of the 
observed trajectories from the evaluation period inside the 
MPI. 

The calibration of the SPI is much better compared to 
the one obtained by the MPI. The scenarios generated 
assuming independence resulted in SPI with the worst 
performance in calibration, compared to the SPI constructed 
from scenarios generated with the Gaussian copula, e.g. the 
highest deviation of the SPI-AI is 8%, while the one of SPI-
AI (indep.) is 31%.  
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Figure 4. Calibration results for wind farm 1. 

Finally, the two methods used to construct SPI achieved 
different results in terms of calibration. The SPI-AI shows, 
for coverages between 10% and 60%, an underestimation of 
the coverage probability (positive calibration) and the SPI-
CI shows an overestimation (negative calibration). The 
maximum deviation is -10% and -12% for the AI and CI 
methods correspondingly and both for the 90% coverage.    

Fig. 5 depicts the sharpness results for the methods 
discussed in Fig. 4. As discussed in section II, the SPI are 
wider than the MPI, which results in a higher sharpness.  

Methods with a good performance in sharpness have a 
tendency to present a worse performance in calibration. 
However, there are also methods that show a poor 
performance in both metrics. In the case of Fig. 4 and 5, the 
SPI-AI (Indep.) and SPI-CI (Indep.) methods show a worse 
performance in both sharpness and calibration, when 
compared to the SPI constructed from the copula-based 
temporal trajectories. These results clearly show the 
importance of including information about the temporal 
dependency of forecast errors in the generation of temporal 
trajectories and construction of SPI. 
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Figure 5. Sharpness results for wind farm 1. 

Fig. 6 depicts the calibration results for wind farm 2. The 
conclusions are analogous to the ones obtained for wind 
farm 1. However, for this wind farm, the method SPI-CI 
achieves a lower deviation in calibration compared to SPI-
AI. Furthermore, the sharpness of this method (depicted in 
Fig. 7) is also lower than SPI-AI. 

Fig. 8 depicts the calibration results for wind farm 3. In 
this wind farm, the SPI-AI is the one that achieves the best 
performance in terms of calibration. However, this method 
shows a higher sharpness (depicted in Fig. 9) compared to 
SPI-CI.  

These results were consistent with the ones obtained for 
the other two wind farms, which indicates that the 
conclusions derived in this paper are independent of the 
wind farm under analysis. 
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Figure 6. Calibration results for wind farm 2. 
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Figure 7. Sharpness results for wind farm 2. 

In summary, these results show that SPI, compared to 
MPI, provide more accurate probabilistic information about 
the future trajectory of wind generation and the two methods 
proposed by Kolsrud [18] provide intervals with acceptable 
calibration. The Chebyshev-based Intervals (CI) showed a 
good performance in the three wind farms and it is 
computationally faster than the Adjusted Intervals (AI) 
method. 
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Figure 8. Calibration results for wind farm 3. 
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Figure 9. Sharpness results for wind farm 3. 

V. CONCLUSIONS

This paper described a methodology for constructing 
simultaneous prediction intervals for wind power forecasts. 
The methodology is based on a learning sample of temporal 
trajectories (or short-term scenarios) of wind power and 
explores two methods proposed by Kolsrud [18]. The main 
goal of this work was to describe how the prediction interval 
should be constructed and represented, in order to provide 
information to the decision-maker about the temporal 
evolution of wind power and avoid misconceptions related 
to the classical representation through marginal prediction 
intervals.  

The following conclusions were derived from the 
evaluation results for three real wind farms:  

a) simultaneous prediction intervals are wider than 
marginal prediction intervals but provide more 
reliable probabilistic information about the temporal 
trajectory of wind power generation;  

b) the temporal dependency of forecast errors cannot be 
neglected when generating the temporal trajectories 



since this also impacts the simultaneous prediction 
intervals quality (i.e., both calibration and sharpness);  

c) the two methods proposed by Kolsrud [18] show an 
acceptable performance in terms of calibration 
(however, the suggested bootstrapping method for 
adjusting the intervals was not explored in this 
paper).    

This work paves the way towards future avenues of 
research. The first topic is related to integrating the 
information from simultaneous prediction intervals in 
decision-making problems. This information is certainly 
valuable for multi-temporal problems, however it might also 
demand for significant changes in the formulation of such 
problems. An interesting development is provided in [24], 
where the concept of an uncertainty envelope is much 
related to these intervals.  

The second topic for future work is to derive proper 
scoring rules to evaluate the overall quality of these 
intervals. Finally, the third topic is to develop new methods 
for generating simultaneous intervals, which might be 
estimated from a learning sample of random vectors or 
directly from the joint distribution function.   
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