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Preface

This volume contains the Late Breaking Papers of ILP 2013: the 23rd International Con-
ference on Inductive Logic Programming held on August 28-30, 2014 in Rio de Janeiro,
Brazil. The ILP conference series, started in 1991, is the premier international forum on
learning from structured data. Originally focusing on the induction of logic programs,
it broadened its scope and attracted a lot of attention and interest in recent years. The
conference now focuses on all aspects of learning in logic, multi-relational learning and
data mining, statistical relational learning, graph and tree mining, relational reinforcement
learning, and other forms of learning from structured data.

This edition of the conference solicited three types of submissions:

1. long papers (12 pages) describing original mature work containing appropriate ex-
perimental evaluation and/or representing a self-contained theoretical contribution.

2. short papers (6 pages) describing original work in progress, brief accounts of orig-
inal ideas without conclusive experimental evaluation, and other relevant work of
potentially high scientific interest but not yet qualifying for the above category.

3. papers relevant to the conference topics and recently published or accepted for
publication by a first-class conference such as ECML/PKDD, ICML, KDD, ICDM,
etc., or journals such as MLJ, DMKD, JMLR, etc.

We received 42 submissions, 18 long, 21 short submissions, and 3 previously published
papers. Each submission was reviewed by at least 3 program committee members. The
short papers were evaluated on the basis of both the submitted manuscript and the pre-
sentation at the conference. Accepted papers presenting work in progress, i.e., reports on
ongoing research are collected in this volume.

The conference program included 3 invited talks. Professor Jure Leskovec introduced on-
going work on Exploring the Structure of On-Line Networks and Communities. Social
interactions of hundreds of millions of people on the Web create massive digital traces,
which can naturally be represented, studied and analyzed as massive networks of interac-
tions. By computationally analyzing such network data we can study phenomena that were
once essentially invisible to us: the social interactions and collective behavior of hundreds
of millions of people. In his talk he discussed how computational perspectives and math-
ematical models can be developed to abstract online social phenomena like: How will a
community or a social network evolve in the future? What are emerging ideas and trends
in the network? How does information flow and mutate as it is passed from a node to node
like an epidemic?

Professor Hendrik Blockeel discussed Lifted variable elimination: faster correct inference
in probabilistic-logical models. He started from an intriguing observation, that first-order
logic allows inference on the level of variables, that is, we can reason about an object’s
properties without knowing the object. This boosts inference efficiency. It is not yet clear
to what extent probabilistic inference can, similarly, be ”lifted” to the level of logical vari-
ables. In recent years, many results have been obtained that contribute towards solving this
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question. A number of them were discussed in his talk, focusing on intuition rather than
technical detail. He discussed how variable elimination, perhaps the simplest approach
to probabilistic inference, can be lifted by identifying and exploiting particular kinds of
symmetry in a probabilistic-logical model. He also discussed a number of theoretical and
experimental results, both positive and negative, that provide insight into the circumstances
under which lifting is (not) possible.

Professor William W. Cohen discussed Learning to Construct and Reason with a Large
Knowledge Base of Extracted Information. Carnegie Mellon University’s ”Never Ending
Language Learner” (NELL) has been running for over three years, and has automatically
extracted from the web millions of facts concerning hundreds of thousands of entities
and thousands of concepts. NELL works by coupling together many interrelated large-
scale semi-supervised learning problems. In this talk he discussed some of the technical
problems the group encountered in building NELL, and some of the issues involved in
reasoning with this sort of large, diverse, and imperfect knowledge base. Professor Co-
hen presented joint work with Tom Mitchell, Ni Lao, William Wang, and many other
colleagues.

The General Chair was Gerson Zaverucha, the Program Chairs were Gerson Zaverucha
and Vı́tor Santos Costa, and the Local Chair was Aline Paes. We would like to thank
the guest speakers for coming to ILP’13 and for their availability during the Confer-
ence. The conference was kindly sponsored by FAPERJ, the Fundação de Amparo à
Pesquisa do Estado do Rio de Janeiro through grant E-26/101.541/2010. The Univer-
sidade Federal do Rio de Janeiro (UFRJ) generously supported ILP’13 by allowing us
to use the conference venue, Casa da Ciência. We would like to thank its helpful staff:
Camila Costa, Angela Monteiro and Claudia Pereira. We would like to thank Maria
de Fatima Cruz Marques for her valuable suggestions. Vı́tor Santos Costa was sup-
ported by the grant SIBILA, NORTE-07-0124-FEDER-000059, and the FCT grants ADE,
PTDC/EIA-EIA/121686/2010, and ABLe, PTDC/EEI-SII/2094/2012 (FCOMP-01-0124-
FEDER-029010). The Machine Learning journal supported research in this area by open-
ing a special issue on ILP’13. Springer Verlag will publish the ILP’13 main proceedings,
and CEUR is publishing the late breaking papers. We would like to thank Easychair.org
for supporting submission handling. Last, but not least, we would like to thank the Lo-
cal Organizing Committee: Kate Revoredo and Fernanda Baião helped throughout in the
organization, and Roosevelt Sardinha created and maintained the web-site.

June, 2014
Rio de Janeiro and Porto

Gerson Zaverucha
Vı́tor Santos Costa

Aline Paes
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Incremental Construction of Complex
Aggregates: Counting over a Secondary Table

Clément Charnay1, Nicolas Lachiche1, and Agnès Braud1

ICube, Université de Strasbourg, CNRS
300 Bd Sébastien Brant - CS 10413, F-67412 Illkirch Cedex
{charnay,nicolas.lachiche,agnes.braud}@unistra.fr

Abstract. In this paper, we discuss the integration of complex aggre-
gates in the construction of logical decision trees. We review the use of
complex aggregates in TILDE, which is based on an exhaustive search in
the complex aggregate space. As opposed to such a combinatorial search,
we introduce a hill-climbing approach to build complex aggregates incre-
mentally.

1 Introduction and Context

Relational data mining deals with data represented by several tables. We focus
on the typical setting where one table, the primary table, contains the target
column, i.e. the attribute whose value is to be predicted, and has a one-to-many
relationship with a secondary table. A possible way of handling such relationships
is to use complex aggregates, i.e. to aggregate the objects of the secondary
table which meet a given condition, using an aggregate function on the objects
themselves (count function) or on a numerical attribute of the objects (e.g. max,
average functions). For instance, we may want to classify molecules. Molecules
have atoms. They can be represented as a table of molecules and a table of atoms,
with a foreign key in the table of atoms indicating the molecule it belongs to.
Then, the class of a molecule may depend on the comparison between the average
of the charge of the carbon atoms of the molecule and some threshold value. This
example also shows what a complex aggregate relies on: an aggregate function
(here the average), a condition to select the objects to aggregate (here we select
only the carbon atoms), the attribute to aggregate on (here the charge of the
atoms), an operator and a threshold to make a comparison with the result of
the aggregation.

Previous work showed that the expressivity of complex aggregates can be
useful to solve problems such as urban blocks classification. [1,2] introduced
complex aggregates in propositionalisation. But their use increases the size of
the feature space too much, and they cannot be fully handled. This is the reason
why we focus on introducing them in the learning step. To our knowledge, only
one relational learner, TILDE [3], has implemented complex aggregates, but its
exhaustive approach is not adapted to too complex problems. The main motiva-
tion for our work is to elaborate new heuristics to handle complex aggregates in
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relational models. This article presents a logical decision tree learner which uses
complex aggregates to deal with secondary tables, using a hill-climbing heuristic
to build them incrementally. We introduce this heuristic in the context of logical
decision trees, but it could be applied to other approaches. In this article, we
focus on counting over a secondary table, i.e. the aggregate function considered
will be the count function.

The rest of this paper is organized as follows. In Sect. 2, we review the use
of complex aggregates in TILDE. In Sect. 3, we describe our heuristic to explore
the complex aggregate space. Finally, in Sect. 4, we detail future work.

2 TILDE and Complex Aggregates

TILDE [3] is a first-order decision tree learner. It uses a top-down approach
to choose, node by node, from root to leaves, the best refinement to split the
training examples according to their class values, using gain ratio as a metric to
guide the search. TILDE relies on a language bias: the user specifies the literals
which can be added in the conjunction at a node. In this relational context, to
deal with secondary tables, the initial version of TILDE introduces new variables
from these secondary tables using an existential quantifier.

Then, TILDE has been extended [4] to allow the use of complex aggregates,
and a heuristic has been developed to explore the search space [5]. This heuristic
is based on the idea of a refinement cube, where refinement space for the aggre-
gate condition, aggregate function and threshold are the dimensions of the cube.
This cube is explored in a general-to-specific way, using monotone paths along
the different dimensions: when a complex aggregate (a point in the refinement
cube) is too specific (i.e. it fails for every training example), the search does not
restart from this point.

However, the implementation does not allow more than two conjuncts in the
aggregate query ”due to memory problems” [6, p. 32], which limits the search
space. Numerical attributes are handled by a comparison to a threshold in prob-
lems such as geographical ones. It is possible to discretize numerical attributes
beforehand and to define predicates to make those comparisons between the val-
ues of the attributes and the thresholds given by the discretization. Nevertheless,
enumerating all the combinations of thresholds over all the numerical attributes
takes space in memory, and hence the approach is not tractable. To summarize,
this combinatorial approach which handles complex aggregates in TILDE has
limitations. We intend to overcome these limitations by not trying to explore
the search space exhaustively, but by finding a heuristic to explore the search
space and to build complex aggregates incrementally.

3 Incremental Construction of Complex Aggregates with
Hill-Climbing

Our goal is to build a logical decision tree, like TILDE, which uses complex ag-
gregates to deal with secondary tables. To explore the refinement cube of com-
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plex aggregates, we choose to use a hill-climbing method. This section details the
method. We use the general notation ”function(condition){operator}threshold”
to refer to a complex aggregate.

3.1 Refinement of Complex Aggregates

When testing an aggregate, we make a refinement to find the best aggregate,
and a hill-climbing is performed from a starting aggregate. In this paper, we
limit ourselves to the count function to aggregate secondary tables. The starting
conditions are detailed below. We then try to refine it with hill-climbing, allow-
ing a non-strict climbing: if there is no strictly improving refinement, we allow
picking a refinement with the same score as in the previous step, if it has not
been visited before. To achieve that, we store all previous refinements chosen
in the hill-climbing path. From the current aggregate, there are several ways to
modify it:

– Firstly, given the examples, we compute the possible results of the aggregate
function, which will serve as possible thresholds. To these values, we add one
threshold depending on the operator: strictly lower than the other values
if the operator is ≤ (so that the complex aggregate is true for none of the
examples) and strictly higher if the operator is ≥. Such thresholds are chosen
to be respectively MAX DOUBLE and its opposite. The current threshold
is then set to the closest possible threshold if it is lower than the minimum
or higher than the maximum of the possible thresholds. For instance, if the
current refinement to try is ”the count of atoms in the molecule is less than
or equal to MAX DOUBLE” and, in the training set, there are between
13 and 42 atoms in a molecule, the threshold will be immediately set to 42.

– Then, we can refine the aggregate by increasing or decreasing the threshold
(among the possible thresholds).

– Other possibilities are to remove a literal from the aggregate condition, or
to add one.

The Starting Conditions Given this, if we refer to the maximum threshold
as max, 2 starting conditions will be count(true) ≤ max and count(true) ≥
MAX DOUBLE. From the point of view of the examples considered, they are
opposite: if one succeeds for an example, the other will fail. The former is the
most general (i.e. it succeds for every example), the latter the most specific. We
then observe that refinements for one will have the same effect on information
gain for the other (the final branch of the examples will be inverted between
both), so on the training set, they are equivalent, and will be refined equiva-
lently. In the end, we get two conditions count(condition) ≤ someThreshold
and count(condition) ≥ nextThreshold which are opposite. To conclude on this
point, considering both starting conditions is not necessary, since they will be
refined following similar paths and will yield the same information gain after
the hill-climbing process. Of course, the same reasoning applies for starting con-
ditions count(true) ≤ −MAX DOUBLE and count(true) ≥ min, this is the
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reason why we consider only two starting conditions, arbitrarily with the oper-
ator ≥.

Moving in the Complex Aggregate Space We now discuss our method for
refinement of the aggregate. If we add a literal to the aggregate condition, it
will yield a specialization and less objects will be selected. The threshold range
discussed above will not be the same, and the current threshold, associated to the
previous, more general condition, will not be relevant since it may be too high.
Hence, the refinement will yield a poor gain ratio and will not be chosen. For
instance, in the training set, there are between 13 and 42 atoms in a molecule,
but only between 5 and 20 carbon atoms. If the current aggregate states that
”the count of atoms is less than or equal to 30”, and we try to refine it to ”the
count of carbon atoms is less than or equal to 30”, this last aggregate will be true
for every example, yielding zero gain, and hence will not be chosen. Of course,
the problem will be similar if we consider the other way, i.e. if we drop a literal
from the aggregate condition, yielding a generalization.

To avoid modifying the aggregate condition without modifying the threshold,
we do as follows. When modifying the aggregate condition, we consider the
number of possible thresholds n1 given by the current aggregate condition, and
the number of thresholds n2 given by the next (after modification) aggregate
condition. We sort those two sets those thresholds in increasing order, such that
the current threshold is in position c1 with indices going from 0 to n1 − 1, the
next threshold chosen, in position c2 between 0 and n2 − 1 will be picked such

that c2
n2−1 is closest to c1

n1−1 . Mathematically: c2 = round( c1·(n2−1)
n1−1 ). Since we

add a threshold to a list which already contains at least one element, there are
always at least two possible thresholds and hence the case n1 = 1 is not an issue.

3.2 Dealing with Empty Sets

We finally discuss a problem that will occur with aggregate functions other than
count : the computation of a value for empty sets. Indeed, an aggregate condition
might select no object, and aggregation over a numerical attribute is not possible
in this case. For instance, how can the mean of the charge of the oxygen atoms
in a molecule be computed when the molecule does not have any oxygen atom?
Only the count function can deal in a natural way with empty sets, while another
solution has to be chosen for numerical aggregate functions. Some possibilities
to deal with this issue have been discussed in [7]:

– Fixing an arbitrary value as the result.
– Using a value depending on the aggregate condition, as close as possible to

the values for examples for which the aggregate condition does not result in
an empty set, or as far as possible.

– Failing the aggregate when the aggregate function cannot be applied.
– Discarding the aggregate from being chosen as a refinement if the aggregate

function cannot be applied for at least one example.

Incremental Construction of Complex Aggregates: Counting over a Secondary Table
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In our opinion, the two first options are not easy to apply for every function.
Indeed, for functions min or max, one can choose values as low or as high as
possible so that the aggregate always succeeds or fails if the function cannot
be applied directly. But for the average function, using a fixed value such as
0 is not relevant if the attribute can take both positive and negative values,
neither is choosing positive or negative infinity. Moreover, the fact that the set to
aggregate is empty can be meaningful, and by assigning a result to the aggregate
function we lose this significance. The third option also gives to the empty set a
meaning we do not necessarily want it to have: the failure of the aggregate should
mean the inequality between the result of the aggregation and the threshold
is wrong. However, this is not the meaning of the empty set. Actually, it is
implied by the failure of the existential quantifier for the aggregate condition,
i.e. count(condition) ≥ 1 fails.

Then we see two ways to address the issue of empty sets: firstly to consider
them as a third branch in our decision trees, since they do not correspond to a
success or a failure of the inequality, they are a third possibility. However, this
option breaks the binary structure of the tree, which is not necessarily a problem.
Nevertheless, we present another option to preserve the binary tree structure:
the principle is to create a node with the count(condition) ≥ 1 aggregate before
adding a node with an aggregate with a function which may not be applicable. In
the left branch, we can then add the aggregate function(condition) ≥ threshold
without the empty set problem, since we know from the parent node that
condition will select at least one object. This adapts the three-branch idea to
preserve the binary tree structure, using two nodes instead of one. An example is
shown in Fig. 1, where the aggregate ”the average charge of the carbon atoms in
the molecule is greater than or equal to 0.542” is ”protected” by the existential
quantifier which tests the presence of at least one carbon atom in the molecule,
i.e. the aggregate ”the count of carbon atoms in the molecule is greater than or
equal to 1”. If the latter succeeds, then the former can be evaluated because
it is meaningful to compute the average value of a non-empty set. If the exis-
tential quantifier fails, then the average is not computed because it would be
meaningless.

4 Conclusion and Future Work

The method described in Sect. 3 is implemented and will be evaluated. The next
step in this work is to consider other aggregate functions, on numerical attributes
of the secondary objects, and to allow the change of the aggregate function in
the refining process of the aggregates, by taking advantage of their ordering as
in [5]. Then, another step will be to allow recursivity in the aggregates, i.e.
create complex aggregates which have complex aggregates in their aggregate
condition, to use the whole database. However, this will inevitably raise new
issues, since this will add other levels of refinements. A more complex problem
will be to handle many-to-many relationships, since the complex aggregates can

Incremental Construction of Complex Aggregates: Counting over a Secondary Table
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...

count(B, (atom(A,B),
atom type(B,carbon)), Res1), Res1
≥ 1

avg(C, (atom(A,B), atom type(B,carbon),
atom charge(A,C)), Res2), Res2 ≥ 0.542

...

tr
ue

...

false

tr
ue

...

false

Fig. 1. Example of three-branch structure to deal with empty sets.

be formed both ways with such relationships, which can possibly lead to loops
in the recursivity discussed above.

References

1. El Jelali, S., Braud, A., Lachiche, N.: Propositionalisation of continuous attributes
beyond simple aggregation. In Riguzzi, F., Zelezný, F., eds.: ILP. Volume 7842 of
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Abstract. In this paper we propose a reconfiguration model based on switched 
flat system. The interest to have flat subsystems is to assure the property of 
transitivity. Transitivity is one the key points of a resilient system keeping the 
dependability. To reconfigure the system in the case of unexpected phenomena 
we use default logic. 

1   Introduction 

In this paper we present a reconfigurable model of resilient systems. The 
reconfiguration is an important method of resilient systems keeping stability. This 
approach could be applied to a large category of systems having a nonlinear dynamic, 
from biological systems to robots and aircraft. What characterizes all these systems is 
the high complexity. The increasing complexity makes systems more and more 
vulnerable for faults and chaotic behavior. The system state may either evolve 
continuously for some duration of time according to one set of differential equations 
or be abruptly reset to a new value from which evolution is governed by another set of 
differential equations. The commutations are typically triggered by the occurrence of 
some discrete event.   
During the last decades the adjective Resilient has been used for labeling the systems, 
which are faults tolerant but ignoring the unexpected aspect of the phenomena that the 
systems have to face, therefore the necessity of a fault-diagnosis and fault-tolerant 
control. Monitoring and diagnosis of any resilient system depend on the ability to 
estimate the system state given the observations. Estimation for hybrid systems is 
particularly challenging because it requires keeping track of multiple models and the 
transitions between them.  
The different approaches are related to the a priori representation of the knowledge. 
The physical models basically represented by differential equations “mime” physical 
structure and give a synoptic view. The engineering aspect is defined by functional 
models, which describe the chain of functions realized by the system. The 
representation of knowledge about the system leads to other type of models: 
informational, which are supposed to gather signals and find out the relations 
causality/effects.  
Our viewpoint is all complex or resilient systems could be modeled by hybrid 
dynamical subsystems. Therefore the state may either evolve continuously for some 
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duration of time according to one set of differential equations or be abruptly reset to a 
new value from which evolution is governed by another set of differential equations, 
with the switches typically triggered by the occurrence of some discrete event, 
therefore the signal abstraction could be very useful.  Two types of data exist in 
generic databases describing the hybrid systems: numerical and symbolic.   
In the case of hybrid dynamic systems the quantity of data describing the evolution of 
the complex system can be very important and difficult to figure out the analytical 
model therefore a supervised learning model seems to be the only solution.  
We point out the problem of discretization, which influences the results either by an 
over fitting (i.e. finding meaningless regularity in data due to a large number of 
possible hypotheses) or by missing important events.  
The resilience is the property of a complex system to successfully recover 
environmental perturbations or disturbances. Contrary, of the feeling that stability is a 
property of resilient systems, resilience is one of the properties of stable dynamic 
systems.  
The misunderstandings and problems that continue to occur will eventually cause 
fatal damage to the system must be avoid by the construction or modeling of resilient 
systems. 
The notion of resilience has been introduced in different fields: 
1. in ecology [4], referring to moving from a stability domain to another one 

under the influence of disturbances; 
2. in business [5], referring to the  capacity to reinvent a business model before 

circumstances force to; 
3. in industrial safety [6], referring to anticipating risk changes before damage 

occurrence. 
 
Our definition of resilience is: 
“The capacity of a complex system to react in presence of disturbances by switching 
from one dynamical model to another one by keeping the global stability properties”.  

 
The main idea of flatness is to connect the different subsystems in a new 
configuration. 

2.   Flat Systems 

There is a three-step process for describing equations of physics that is often helpful 
in clarifying the distinction between different types of ideas. The first step is to 
describe the kinematics of the process, i.e. the basic variables in the problem and the 
physically inherent restrictions of them. Next, one poses universal laws that govern all 
processes of the type under consideration. Finally, one postulates constitutive laws 
that differentiate one physical situation from another.  
In the case of resilient systems we should be able to determine the state of the system 
and to control it from the outputs. A special type of systems named flat satisfies this 
request.  Intuitively, a system is said to be differentially flat if a set of variables called 
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flat outputs can be found for which all states and actions can be determined from them 
without integration. 
A general nonlinear system given by :  
 ( )UXFX ,=! , nX R∈ , mU R∈ ,            (A-1)  
where  is a smooth mapping, is said explicitly flat with respect to the output vector  , 
if   is an  order vector which can be expressed analytically as a function of the current 
state, the current input and its derivatives, while the state and the input vectors can be 
expressed analytically as a function of   and a finite number of its derivatives. Then 
there exists smooth mappings XG , UG  , and ZG  such as:                                

( ))(,,, zn
Z UUXGZ …=      A-2 
( ))(,,, xn

X ZZZGX …!=      A-3 
( )( )1,,, += xn

U ZZZGU …      A-4 

where nz and nx are integer numbers. Vector Z  is called a flat output for the nonlinear 
system. There is no systematical way to determine flat outputs and eventually to 
prove its uniqueness, the flat outputs usually possess some physical meaning.  

The explicit flatness property is of particular interest for the solution of control 
problems when physically meaningful flat outputs can be related with their objectives. 
In many situations, the control problem can be formulated as a flat output trajectory 
following problem. In general, for these cases, the flat output of equation (A-2) can be 
reduced, through state transformation, to a function of a single argument, the new 
system state itself: 
   ( )XGZ Z=         A-5 
We would like to make the dissociation between resilience and stability: it is noted 
that “a system can be very resilient and still fluctuate greatly, i.e., have high stability” 
and that “high stability seems to introduce high resilience”; 

2 Modeling of Switched Systems 

We have considered in this models that “Switched systems are more than the sum of 
their subsystems”, which is the most important property of complex and resilient 
systems.  A switched systems is represented: 
V = U ∪ Y ∪ X:  Input, output, and internal (state) variables 
Q:  States, a set of valuations of X 
Θ ⊆  Q :  Start states 
A = I ∪ O ∪ H:  Input, output, and internal actions 
D ⊆ Q ´ A ´ Q:  Discrete transitions 
T: Trajectories for V.  
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3 Causality and Classical Inference 

If the inference of classical logic A → B  or A ⊢ B is fully described formally, with 
all the "good" logic properties (tautology, not contradiction, transitivity, 
contraposition, modus ponens, ...), a description of the properties of causality is not 
simple. Causality cannot be seen as a classical logic relation.  
A basic example is "If it rains the grass is wet". This expression cannot be translated 
by the formula Rain → lawn-wet, which means if it rains the grass is always wet. 
Indeed, there may be exceptions to this rule (the lawn is under a shed ...). You can 
also change the environment (we cover the lawn).  
The rules with exceptions are well known in Artificial Intelligence. They drive, in 
particular, to nonmonotonic logics and revision theories. On the other hand and more 
technical, we find here all the classic problems that arise when one wants to try to 
formalize and use of negation by failure in programming languages such Solar [3]. In 
this paper we describe a very simple and efficient form of causality necessary and 
probably sufficient for the application to complex and resilient systems. 
To describe interactions between subsystems we use a language L of classical logic 
(propositional or first order logic). The proposition A (resp. ¬ A) says that A is true 
(false).   
If the system is subject to some unexpected perturbations represented as   reability → 
¬perturbation, could be interpreted by « something » protects against perturbations. 
We are in a logical framework, so it is possible to represent almost everything in a 
natural way. But the price to pay is the complexity. If you use the entire first order 
language can be the combinatorial explosion of algorithms and incompleteness.  
The goal of this paper is the interactions between subsystems view as a very simple 
form of causality. To express these interactions it is common to represent by two 
binary relations connect(A,B) and failed(A,B).  The first relation means, for example, 
a subsystem A stands of a subsystem B. The second relation is a failure.  
Conventionally, these relations are represented by   A è B and A ⊣ B.  Of course, 
this causality is basic and a lot of research papers describe this type of representation 
of the causality. 
Depending on the context, true could be interpreted as  known, certain, believed ... or, 
more technically in a system of automated theorem proved.   
The first idea is to express these laws in classical logic by axioms:  

 cause(A, B)  ∧  A è  B  
 failed(A, B)  ∧  Aè  ¬B  

 
Therefore, to provide the causal links between our relations connect and failed in a 
classical language (propositional calculus or first order logic) it is necessary to 
describe :  
1. the internal characteristics of relations and cause and block failure   
2. the links between these relations and classical logic 
They can also be weakly expressed more by rules of inference, close to  Modus 
Ponens :  

 cause(A, B),   A ⊢    B  
 failed(A, B),  A  ⊢  ¬B  
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But these two formulations are problematic when a conflict appears.  
For example, a set of four formulas F = {A, B, cause(A, C), failed(B, C)},  leading to 
infer from F, B and ¬ B and  this is inconsistent. To solve such conflicts, we can try to 
use some methods inspired by constraint programming, as the negation by failure.  
It is also possible to use a defeasible reasoning, especially a nonmonotonic logic. The 
first method (negation by failure) poses many theoretical and technical problems if 
you leave the simple cases. These problems are often solved by adding properties to 
the formal system, properties that pose other problems. 

3.1. Causality and default logic 

To resolve conflicts seen above, the intuitive idea is to lighten the formulation of rules 
of causality:  

 
 (1 ') If A causes B, if A is true, and it is possible that B, then B is true.  
 (2 ') If A blocks B, if A is true, and it is possible that B is false then B is false.  
 
The question then is to describe as formally as possible. This question began to arise 
in artificial intelligence thirty years ago, when it was formalized the natural human 
reasoning. In this type of reasoning, it is necessary to reason with incomplete 
information, uncertain and subject to revision and sometimes false information. On 
the other hand we have to choose between several possible conclusions contradictory. 
The basic example is: {The penguins are birds, birds fly, penguins do not fly}. If 
Tweety is a penguin we arrive at a contradiction, the system is inconsistent. This 
inconsistency can be ignored if we can handle the exception by replacing "Birds fly" 
with "Typically birds fly". The nonmonotonic logic formally describes the modes of 
reasoning that takes into account these phenomena.  
To represent the reconfiguration of resilient systems we propose to use default logic 
of Reiter. In this logic, the rules (1) and (2) will be expressed intuitively.  
 
(1) If A causes B, if A is true, and if B is not contradictory, then B is true.  
(2 ) If A blocks B (because A failed), if A is true, and if ¬ B is not contradictory then 
¬ B is true.  
In default logic, these rules can  be represented by normal defaults and written:  

d1   =   A     : B       /  B   
d2  =   A   :  ¬ B   /  ¬ B    

Therefore, the information is represented here using defaults theory   ∆ =  {W,  D }, 
where W is a set of classical logic formula and is the set of defaults used to represent 
the uncertainty of some information. 
The classical definition of extension is based on the utilization of W and a subset of 
defaults D. The condition to use a default starts by checking the prerequisites are 
satisfied and the consequence doesn’t lead to contradiction. In a simple manner that 
means his negation is not verified. If this request is TRUE we add the consequence to 
W and the algorithm is restarted until all defaults has been used. 
For example, consider  Δ  = {W,  D}  with    W ={ A }  and D = {d1 , d2}.  
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The 2 extensions are : 
   E1 =  { A,  B}   if d1 is used. 
   E2 =  { A,  B}   if d2 is used. 

By using default logic, the conflict is resolved, but it is not possible to rank the 
extensions:  B is true or false ? In fact this will really depend on the context. Some 
times the positive interactions are preferred to negatives. Another possibility is to use 
probabilistic or statistical methods or to weight each extension based on the 
evaluation of the knowledge. From algorithmic viewpoint of the ranking of extension 
could be evaluated also during the calculation of the extensions even the off-line 
ranking is preferred.  

4  Representation of Resilient Systems Reconfiguration  

How it is described above the defaults are used to manage incomplete information. Its 
most general form, a default is an expression of the form: 

 
D=(Ax (X):By (X)⋀C(X))/(C(X))           A-5                                                   

 
where Ax(X), By(X) and C(X) (x = 1,2, ..., m,  y = 1,2, ..., l) are well-formed formulas 
which contain first order as free variable X or X = (x1, x2, x3, …, xn) as a vector of free 
variables. Ax(X) are the prerequisites, By(X) are the justifications and C(X) is the 
consequent. 
The default (A-5) means informally: if Ax(X) are verified (at some moment ti), if 
possible that By(X) are real (By(X) are consistent), and if possible that C(X) is true (at 
the moment ti+1), then we infer C(X) (at the moment ti+1). 
The use of defaults increases the number of formulas derived from the knowledge 
base W: we get extensions that are sets of theorems derivable monotonically. 
An extension of the default theory Δ = (D, W) is a set E of formulas, closed for the 
deduction, containing W and satisfying the following property: if d is a default of D 
whose prerequisites Ax(X, ti) are in E, without the negation of justifications By(X) and 
of consequent C(X, ti+1) are in E, then the consequent of d is in E.  
Formally, the extensions are defined as follows: 
 

  

E  is an extension of  Δ iff  E =  Ei
i=0,∞
∪ ,  with

E0  =  W  
and  for  i > 0,

Ei+1 = ThEi ∪{C(X,t j+1) /
(Ax (X) :By ∧C(X))

C(X)
∈D,Ax (X)∈Ei at  t j( ),¬By∉Ei,

¬CX ∉Ei at  t j+1( )}
where Th Ei( )  denotes the set  of  theorems obtained  monotonically from
Ei :ThEi = {w / Ei├w}.
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The calculation of extensions allows to study the defaults one by one and to retain 
those who respond to the problem and are compatible with each other. Each extension 
corresponds to a possible solution of the problem. To calculate an extension, we must 
verify that the negation of justification does not belong to Ei. We can therefore use an 
incremental algorithm for computing extensions. 

For a default theory Δ = (D, W), with the set of defaults D and the knowledge base 
W, the calculation is extended according to the algorithm: 

 
Input : E=θ; (set of extensions E is empty). 
Output : E=∪(i=0,N) Ei. 
calcul_extension(E) : 
{ 
while there is a default D=(Ax (X):By(X)⋀C(X))/(C(X)) 
that has not yet been inspected do 

- Select the default D, 
- Verify that the prerequisites Ax(X) are true (at 
some moment tj), 
- Verify that the justifications By(X) are 
consistent with W, 
- Verify that the consequent C(X) is consistent 
with W (at the moment tj+1), 
- Add By(X) and C(X, tj+1) to W. 

end while 
End of the calculation for an extension. 
Backtracking (Deleting the last C(X,tj+1) and By(X) added 
to W). 
calcul_extension(E). 
} 
 

In our model, to provide links between these subsystems active and non-active by 
failure, the intuitive idea is to weaken the formulation of 3 causation rules: 
 

(1) If  
system(A,ON,ti) , connect(A,B) and connect(B,C) are true,  
and if  
it is possible that reliable(A,B), non_reliable(B,C)  and system(B,ON,ti+1), 
then  
system(B,ON, ti+1) is true. 

 
(2) If  

system(A,ON,tj), connect(A,B), and connect(B,C) are true,  
and if  
it is possible that not_reliable(A,B), reliable(B,C) and system(B,OFF,tj+1), 
then  
system (B,OFF, tj+1) is true. 
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(3) If  
system(A,OFF,tk), connect(A,B) are true,  
and if it is possible that reliable(A,B) and system (B,OFF,tk+1),  
then  
system(B,OFF, tk+1) is true. 

 
The predicate reliable has the meaning of activity of two entities and the first entity 
trigs the second one.  
Formally the possible connectivity between 3 subsystems A,B,C are described in 
default logic by : 
 

(1’)     If  
         system(A,ON,ti), connect(A,B) and connect(B,C) are true,  

and if 
connect(A,B),non_connect(B,C) and system(B,ON,ti+1) are not   
contradictory, 

           then  
         system(B,ON, ti+1) is true 
 
(2’)  If  

system(A,ON,tj), connect(A,B) and connect(B,C) are true,  
and if  
non_connect(A,B), reliable(B,C) and system (B,OFF,tj+1) are not 
contradictory, 

  then  
system (B,OFF, tj+1) is true 

 
(3’)  If  

system(A,OFF,tk) and connect(A,B) are true,  
and if  
reliable(A,B) and system(B,OFF,tk+1) are not contradictory,  
then  
system(B,OFF, tk+1) is true 

 
 

In default logic, these rules will be represented by the set of defaults D and written as: 
 

d1:(system A,ON( )∧ connect A,B( )∧ connect B,C( ) :reliable A,B( )∧ non_ reliab B,C( )∧ system B,ON( )) / system B,ON( )( )
d2 :(system A,up( )∧ connect A,B( )∧ connect B,C( ) :non_ reliable A,B( )∧ reliable B,C( )∧ system B,OFF( )) / system B,OFF( )( )
d3 :(system A,OFF( )∧ connect A,B( ) :reliable A,B( )∧ system B,OFF( )) / system B,OFF( )( )
 

 
Therefore, the conflict has been resolved. 
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If we consider a plant with 5 entities A,B,C,D,E connected between them, and A is 
submitted to a perturbation. We want to know what is the possible reconfigurations of 
B,D,C and E. 
 Using default theory Δ = (D, W), in that W = {perturbation(A, up, t0)}, by applying 
the algorithm above, we have 12 exceptions.  
 
The following is one of them: 
 

joint(system(A,ON,t0),non_reliable(A,B),reliable(B,D)) -> system(B,OFF,t1) 
joint(system(B,OFF,t1),reliable(B,C)) -> system(C,OFF,t2) 
joint(system(B,OFF,t1),reliable(B,D)) -> system(D,OFF,t2) 
joint(system(D,OFF,t2),reliable(D,E)) -> system(E,OFF,t3) 
 

This result us the worst one because the configuration of the complex systems is not 
able assure a healthy behavior in the case of a Fault on the subsystem A even if A 
keeps nominal parameters and it is considered ON.  

5  Conclusion  

We have introduced a new-switched system model based on a hybrid approach. To 
switch from one dynamic to another one we use Default Logic. The most important 
property, which assumes the reliability, is the flatness of the subsystems.  
All these representations consider the problems of uncertain and revision.  For the 
first aspect a minimum and necessary link between two causal relationships, it was 
necessary to formalize by using default logic.  
All this approach offers a model of simulation for resilient systems and the future 
work will consider the structure network as fundamental of complex systems. 
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Abstract. Description logics based languages have became the stan-
dard representation scheme for ontologies. They formalize the domain
knowledge using interrelated concepts, contained in terminologies. The
manual definition of terminologies is an expensive and error prone task,
therefore automatic learning methods are a necessity. In this paper we
lay the foundations of a multiple concept learning method that uses vir-
tual concepts to aid the learning process, yielding more compact and
readable terminologies. In this paper, we define virtual concepts and
how they can be implemented in the current concept learning methods.
We show through experiments how the method stacks up against other
multiple concept learning methods.

1 Introduction

Description logics (DLs) [1] form a family of knowledge representation languages,
with different expressive power, that are typically decidable fragments of first
order logic (FOL). With DL it is possible to represent domain concepts and their
relations. Moreover, due to their computational power and expressiveness, they
have been widely used in Semantic Web [2] for ontology representation.

The task of defining the domain knowledge through a DL is usually done
manually, which is time consuming and error prone, even more because the do-
main experts themselves do not always agree about the definitions of concepts
and their relationships [3]. Therefore, to consider applying machine learning
techniques [4] for automatically learning in DLs is relevant and sometimes even
required. A number of DL learning approaches have been proposed in the litera-
ture [5] [6]. In these approaches each concept is learned independently from each
other, thus, none of the concepts being learned are considered in the definition
of the others. If this assumption is removed, the final ontology could be clearer
and closer to the way that the concepts are related in the underlying domain.
In this sense, another question arises: ”What is the best order to learn a set of

1 The first author would like to thank CAPES for the financial support through a
master scholarship.
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related concepts?” In [7], we address this problem by defining an algorithm that
discovers a taxonomy of the concepts being learned and then uses this taxonomy
to define the order for learning the concepts. However, since the order is defined
by a heuristic aimed at finding relations between concepts and subconcepts, it
may be the case that the ordering found does not yield the best solution for
the learning task. Moreover, during the learning process only previously learned
concepts are considered.

In this paper, we lay the foundations of multiple concept learning using the
ideas discussed in [7] as motivation. Thus, we propose a learning strategy that
allows concepts not yet learned to appear in the definition of other concepts,
thus making possible to learn more compact and readable terminologies.

The paper is organized as follows. In Section 2, Description Logic and concept
learning are reviewed. In Section 3, we present the proposed approach to learn
multiple concepts. Section 4 presents some preliminary experimental results.
Section 5 concludes the paper and presents the next steps of the research.

2 DLs and concept learning in DLs

DLs knowledge bases (KB) have two components: a TBox and an ABox. The TBox
contains intensional knowledge in the form of a terminology. Knowledge is ex-
pressed in terms of individuals, concepts, and roles. Thus, the terminology con-
sists of concepts, which denote a set of individuals and roles which denote binary
relationships between individuals. In this paper, we assume the common assump-
tion made about DL terminologies: (i) only one definition for a concept name and
(ii) concept definitions are acyclic. The ABox is composed of assertions about
the individuals of the domain. An assertion states that an individual belongs
to a concept or that a pair of individuals satisfies a role. Attached to a DL’s
KB there must be a reasoning mechanism, responsible for inferring information
about individuals from the KB.

There are a number of existing approaches to automatically learn DLs con-
cepts, most of them [5] [6] [8] are inspired by Inductive Logic Programming(ILP) [9]
techniques. The goal is to induce concept descriptions from existing evidences.
When learning a concept, one has the purpose of finding a generalized and cor-
rect definition of such a concept from a set of examples, as defined below:

Definition 1 (Concept Learning)
Given:

– a knowledge base KB,
– a target concept Target such as Target /∈ KB,
– a set of target examples E, divided into positive (Ep) and negative (En) exam-

ples, such that E = Ep ∪ En
Find:

– A definition of the concept C(Target ≡ C) such that KB ∪ C |= Ep and
KB ∩ C 6|= En.
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Although Definition 1 requires that the learned concept covers all the positive
examples and none of the negative examples, these hard criteria are usually
relaxed to enable the induction.

The concept learning task can be expanded to multiple concept learning, as
defined below:

Definition 2 (Multiple Concept Learning)
Given:

– knowledge base KB,
– n concept learning tasks {AC1

, AC2
, . . . , ACn

}, where ACi
= {Epi

, Eni
}

Find:

– KB′ = KB ∪ T , where T is a taxonomy which holds the concepts definitions
found in the n concept learning tasks.

In this paper we focus on multiple concept learning methods that return a
T that have compact definitions.

In [7] we presented a pre-processing method for multiple concept learning
called terminology learning. It yields compact terminologies by defining an order
to execute each concept learning task. This order is definied by finding, before the
learning process, all the subsumee and subsumer relationships among the concept
learning tasks using the shared individuals in the example sets as evidence.

However, although the subsumee and subsumer relation is important when
devising an order, it is not the only relationship among concepts that can impact
the later learned definition. Thus, in this paper we follow a different approach
to find out the concepts that should be used to define another concept. Instead
of directly finding a taxonomy from the set of examples, we let the learning
algorithm decide what is the best way of defining each concept.

3 Multiple DL Concept Learning

The concept learning task can be viewed as a search problem over the space
of concepts, created using three basic elements [5]: (i) a refinement operator
to build the search tree of concepts; (ii) a search algorithm to control how this
search tree is traversed; (iii) a scoring function to evaluate the nodes of the tree
and to point out the best current concept candidate.

The refinement operator is responsible for defining a number of rules, from
which a valid candidate definition for a concept is yielded. The candidate defini-
tions are created from combinations of known concepts, roles and constructors.
The constructors are different according to the DL language chosen. We propose
to take into account an additional type of concept when the refinement operator
is generating a concept definition, henceforth called virtual concept.

Virtual concepts are concepts that do not have an explicit definition yet. As
usual, these concepts have a set of examples related to it, divided into positives
and negative examples. Once a definition for a concept is learned, it should have
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considered the individuals marked as positive examples as belonging to it. On
the other hand, the negative examples are the individuals that do not belong
to that concept and its definition should be able to indicate that. Since each
concept has these sets of examples associated to it, it is possible to take into
account the set of examples instead of the concept definition when referring to
a concept. In this way, we can say that, while a concept is not selected to be the
target one, it also behaves as a virtual concept.

In order to consider virtual concepts in the concept learning task, it is neces-
sary to make the scoring function cope with them. Usually, the scoring function
is either the cover relationship or a variation of it. The cover relationship is a
function that evaluates how many positive and negative examples are inferred
by a candidate definition. So this can be achieved by transforming the example
sets of a virtual concept into assertion inside the ABox, e.g., Albert ∈ Ep of C,
then the assertion C(Albert) will be added to the ABoxes of all concept learning
tasks that could use the virtual concept C.

We argue that adding the assertions of a virtual concept can have the same
result as that of the regular inference if the following assumptions holds: all the
virtual concepts in the multiple concept learning task should share the same
ABox and all the relevant individuals for a particular virtual concept should be
covered in one of its example sets. If that is indeed the case, it is possible to use
virtual concepts in the same way that other non-target instantiated concepts are
used inside the concept learning task. Moreover, the addition of virtual concepts
in the learning process will allow it to find concept definitions more compact
then the ones found with the terminology learning method [7]. The terminology
learning method only deals with one type of usage relationship between virtual
concepts, the subsumee and subsumer relationship. This kind of relationship
is only related to the concept and subconcept relationship, e.g. in the kinship
domain we have Grandfather v Father. However, it can not reliably work with
relationships that differs from subsumer and subsumee, for example, the disjunc-
tion between Grandfather and Grandmother to define Grandparent. The method
proposed in this paper is capable of dealing with it because we turn the learning
task into the responsible component for finding relationships between concepts.

The proposed method has the local goal to find the most compact definition
for a single virtual concept. The major concern that arises from this is the for-
mation of cycles. This could be avoided by two different approaches: (i) when
constructing the ABox’ for a target concept, the addition of facts associated to
virtual concepts that uses the current target concept in their definition can be
avoided. (ii) with a post-processing procedure. The first one is likely to be more
efficient in returning a solution, but does not guarantee that this is the optimal
solution, while the second may have a better chance to return the optimal solu-
tion, but some concepts may be relearned several times, i.e., the learning process
can become less efficient.
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4 Preliminary Experiments

To evaluate the proposed method some experiments were devised considering
the concepts GRANDPARENT (GP), GRANDFATHER (GF) and GRAND-
MOTHER (GM) from the Family ontology.

A knowledge base of the family domain was used to run the experiments 3.
Each individual cited in the knowledge base is either a positive example or a
negative example to a concept. The description learning component chosen to
learn the concepts is the DL-Learner system with default settings, since it is a
largely used environment to learn DLs.

The first analysis we conducted showed that our proposal, Multiple Concept
Learning (MCL), is able to learn a terminology more compact and readable than
the Concept Learning (CL) approach, which learns the concepts individually and
independently. Table 1 shows the definition for the three concepts. Notice that
GRANDPARENT is defined as a disjunction of the two other concepts.

Another evaluation concerns whether MCL is able to learn a more compact
terminology when compared with the Terminology Learning (TL) task. For this
comparison, we considered two concept orders for MCL:

(i) < GRANDPARENT,GRANDFATHER,GRANDMOTHER > and

(ii) < GRANDMOTHER,GRANDFATHER,GRANDPARENT >.

The first one, was found by the approach proposed in [7] and then is the same
one used by TL. Moreover, we avoid cycles by changing the correspondent ABox
as described in Section 3. The results in Table 1 shows that different learning
orders yield different results, and that the proposed method can achieve the same
result as the terminology learning by reversing the order. This demonstrates that
the proposed method is more versatile than the terminology learning, because it
isn’t bound to a learning order, while still maintaining the accuracy.

To sum up, these results point out that the method has the potential for
finding compact solutions when avoiding cycles with pre-processing (MCL +
Order 1 or 2), and its ability to find optimal solutions, if a post processing
method to avoid cycle is used (MCL).

5 Conclusion and future remarks

In this paper we laid the foundations over which a multiple concept learning
method could be built. We defined a new type of concept, the virtual concept,
analogous with the definition of the concept learning task, but with a twist to
make it usable inside the existing learning process of another concept. The pro-
posed method opens the possibility of finding all the possible usage relationships
among virtual concepts. Because of this, we argued that the use of virtual con-
cepts could yield better results than the ones found with the method presented
in [7] and in regular concept learning methods. We also presented directions to
deal with the cycle problem that may appear with the use of this method. An

3 ftp://ftp.cs.utexas.edu/pub/mooney/forte
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Table 1. Resulting Concepts Definition on All Learning Experiments

Experiment Concept Definition Length

CL

GP EXISTS parent.EXISTS parent.TOP. 5

GF (male AND EXISTS parent.EXISTS parent.TOP). 7

GM (female AND EXISTS parent.EXISTS parent.TOP). 7

MCL

GP (grandfather OR grandmother). 3

GF (grandparent AND male). 3

GM (grandparent AND female). 3

TL=CL+Order

GP EXISTS parent.EXISTS parent.TOP. 5

GF (grandparent AND male). 3

GM (grandparent AND female). 3

MCL+Order 1

GP (grandfather OR grandmother). 3

GF (male AND EXISTS married.grandmother). 5

GM (female AND EXISTS parent.EXISTS parent.TOP). 7

MCL+Order 2

GP EXISTS parent.EXISTS parent.TOP. 5

GF (grandparent AND male). 3

GM (grandparent AND female). 3

experiment concerning the Kinship domain showed that it is possible to learn a
clearer and more compact terminology without requiring a good ordering of the
concepts.

In the future we would like to analyze the behavior of the method on different
data sets and different DL languages, since we believe the proposed method is
capable to work with all possible constructors sets.
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Abstract. In this paper we present a method to enrich the hypothesis
language which is used to construct the bottom clause. This approach,
which is embedded in the Aleph system, is based on numerical fixed
subintervals and categorical subsets. Each subinterval/subset contains
values, for each attribute which is predefined, that are related with the
example to saturate. The enriched language allows to reduce the number
of rules of the final theories and, in some cases, to improve the accuracy.

Keywords: Artificial Intelligence, ILP, discretization, grouping, numerical
attributes, categorical attributes

1 Introduction

Most of the ILP algorithms induce one clause at a time in order to find a theory
T . Each clause in T is usually constructed with a single numerical (or categorical)
value for each attribute1. This may result in inaccurate theories with a lot of
rules. To overcome these drawbacks, some ILP systems use approaches which
are based in the following strategies:

Discretization. Some ILP systems discretize numerical attributes in a global
way, and the final intervals are used during the learning process. TILDE [3] and
ECL-GSD [5] follow this strategy. In [9], a global binary discretization method
is presented, but in addition to this each categorical attribute is grouped in two
subsets. Propositionalization. These strategies consist in transforming a re-
lational problem into a propositional problem. The main objective it is to solve
a problem that was originally a relational problem, with faster and more effi-
cient propositional algorithms than the relational systems. LINUS and DINUS
[7] systems follow that procedure. Genetic algorithms. To deal with numerical
attributes, some systems implement genetic refinement operators which search
globally the best intervals. In [5], several refinement operators are presented, and
a genetic algorithm is used to test the intervals. Numerical Reasoning. In
[11], new relations (equalities, inequalities, regression models, etc.) are added a
priori into the background knowledge. These relations are lazily evaluated dur-
ing the bottom clause construction. Numerical reasoning is improved in [1], since

1 We refer to the arguments of predicates as attributes.

23



it proposes to improve noise handling by mean of statistical-based techniques.
Regarding the categorical data, we think that using grouping algorithms for
categorical attributes can also improve the final theories.

In this paper we present a method to enrich the hypothesis language which is
used to construct the bottom clause. This approach deals with both categorical
and numerical attributes, in a local or global way. The enriched language allows
to reduce the number of rules of the final theories and, in some cases, to improve
the accuracy. This paper is organized as follows: section 2 describes the proposed
method; section 3 shows the experimental results on several data sets; finally,
section 4 presents our conclusions and future work.

2 The method

To enrich the hypothesis language our method tests different numerical subinter-
vals (or categorical subsets) according to an evaluation function, then the best
qualified are added into the background knowledge. Due to the great amount
of subintervals/subsets that can be created we decided to use an evolutive ap-
proach to generate and evaluate them. This method was embedded in the basic
algorithm of Aleph as follows:

0. State parameters. In addition to the mode declarations, types and deter-
minations, users can also declare the attributes to be discretized/grouped in any
of the two following ways:

i. lit(. . . , Attr, . . .), goal(. . . , Class)
Where Attr is the attribute to discretize/group respect to Class which
can have more than two values. The predicate lit is into the background
knowledge (it is possible to declare two or more attributes in lit), and goal
is the target predicate.

ii. lit(. . . , Attr, . . .)
In this case the corresponding classes are positive and negative.

1. Select an example e. In this step, a subset of values of Attr are related to
the example selected. For instance, let e = goal(a) be the example selected and
lit(a, 12), lit(a, 15), lit(a, 20), lit(b, 30), lit(b, 35) be five facts in the background
knowledge then the values 12, 15, 20 are related to e. If Attr is a numerical
attribute, then these values form a FixedSubinterval. If Attr is a categorical
attribute, then we call FixedSubset to these subset of values. These are fixed
because it will invariably be in all subintervals/subsets that will be tested.

1.5 Discretization/Grouping. Before saturation each attribute declared by
the user is processed. Depending on the attribute type there are two possible
cases.

i. Let Attr be a numerical attribute and FixedSubinterval = [min,max] be the
interval that contains all values in Attr that are related to e. Then the proposed
genetic algorithm returns a set of numerical intervals In such that: |In| is defined
by the user and In = {x | x = [min′,max′] ∧min′ ≤ min ∧max ≤ max′}.

Furthermore each element in In represents a chromosome. To evolve the
chromosomes several mutation operators are defined. These can enlarge or
shrink an interval, either on the left side, on the right side, or on both sides. The
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fitness function for a chromosome x is given by the information gain, see Eq. (1).
In this case the GA maximizes the information gain to find better subintervals.

IG(x) = ent(Int)− count(x)

count(Int)
ent(x) (1)

The corresponding entropy for some interval Int is:

ent(Int) = −
|S|∑

j=1

p(Int, j)log2(p(Int, j))

where: |S| = number of classes, Int is the numerical interval of Attr, count(Int) =

numeric values into interval Int, p(Int, j), is the proportion of values in Int that belong to

the jth class.

ii. Let Attr be a categorical attribute and FixedSubset be the set of all values
related to e. The proposed GA searches the best |C| subsets of categorical values
with the following constraint: C = {y | FixedSubset ⊆ y}.

A chromosome is represented by a subset y. The mutation operators defined
add a new categorical value in y, delete an element from the chromosome, or
swap an element between the chromosome and the rest of categorical values, but
maintaining the FixedSubset into each new chromosome. The crossover operator
swaps an element between two chromosomes.

In this case, the fitness function is based on the distance between two values
of a categorical attribute. The fitness for a chromosome y is the total sum of
the distances for each value pair in y. In addition to this, if the sum of distances
for two or more chromosomes is the same, then the value 1

|y| is added, because
we want to minimize and to favor the subsets with more values. This fitness
function, called DILCA [6], is showed in Eq. (2).

Fitness(y) =
∑

cicj∈y

√ ∑

st∈S

(P (ci | st)− P (cj | st))2 +
1

|y| (2)

where: ci, cj ∈ y such as i 6= j. S is the set of classes defined, P (ci | st) is the conditional

probability for ci given st, and P (cj | st) is the conditional probability for cj given st.

In both cases the user can give the number of chromosomes to be added.
2. Build a bottom clause that entails the example e. The enriched language

is used to build a bottom clause. Consider the goal relation no payment(S)
which is true for those students who do not need to repay its loan. If literals in
background knowledge are unemployed(S), enrolled(S, School, Units), where Units
is numerical and School is categorical, then a bottom clause would be like this:

no_payment(A) :- unemployed(A),enrolled(A,B,C),

interval(C,[11.0,13.4]),interval(C,[11.7,12.5]),interval(C,[11.3,13.3]),

interval(C,[11.3,14.0]),interval(C,[11.0,13.5]),interval(C,[10.0,12.3]),

member(B,[occ,smc,uci,ucla,ucsd]),member(B,[smc,ucb,ucla,ucsd]).

3. Search. Aleph uses several search strategies (best first, depth first search,
etc.), refinement operators, and evaluation functions (as mentioned earlier).

4. Remove covered (redundant) examples and add the best clause found to
the current theory. Go to step 1.

In the next section we present the experiments performed to compare the
accuracy of our method.
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3 Experiments

In this section we compare our method (we call it Extended Aleph) with the
standard Aleph, and the lazy evaluation in Aleph [11]. Our method works as
the latter, namely with the bottom clause construction as our method. A 10-
fold, cross-validation was performed to compare the accuracy and the simplicity
(number of rules) of the final theories.

From the UCI machine learning repository [2], we used Australian Credit
Approval, Pittsburgh Bridges, Japanese Credit Screening, German Credit, Iris,
Moral Reasoner, Ecoli, and Student Loan datasets. We also performed tests over
the well-known ILP datasets: Carcinogenesis [12], KRK illegal chess position
(KRKi) [8], and mutagenesis [10] (on “regression friendly” data).

All these methods were executed in Yap Prolog version 6.0, with the global
parameters: minpos = 2, and noise = 5; the remaining of the parameters are
fixed by default in Aleph. All experiments were performed on a modern multicore
PC machine.

Extended Aleph vs Aleph. Table 1, shows that our implementation im-
proves the accuracy in most databases, with the exception of two datasets: Pitts-
burgh Bridges and Moral Reasoner. We can also see (figure 1) that the increase
of the accuracy for the datasets Japanese Credit Screening and Iris is signifi-
cant, 15% and 7.8% respectively. Regarding the simplicity of the final theories,
extended Aleph system does not improve the simplicity with two datasets: Ger-
man Credit and KRKi, but with the other datasets (excepting Moral Reasoner)
our approach decreases the number of rules in the final theories. In particular,
with Iris and Student Loan the reduction is almost 50% (figure 2).

Extended aleph vs Lazy Evaluation in Aleph. As in the previous
case, Extended Aleph improves the accuracy except in two datasets: Moral Rea-
soner and Student Loan (table 1). Furthermore, Lazy Evaluation overcomes our
method only in one single dataset: Student Loan, (figure 2). Although both have
the same accuracy.

Dataset Accuracy (%) Number of rules

Aleph Ext. Aleph Lazy Aleph Ext. Aleph Lazy

Australian Credit Approval (Aus) 82 83 80.5 27.40 24.70 29.9

Pittsburgh Bridges (Pitts) 89 89 88.7 13.2 13.1 13.4

Japanese Credit Screening (Japan) 53 69 65 13.2 8.6 11.8

German Credit (German) 70.9 71.2 70.8 51.4 52.8 53.4

Iris 85.9 93.7 89.1 26.9 13.7 22.6

Moral Reasoner (Moral) 96 96 96 1 1 1

Ecoli 91 92 91 37.3 35.4 43.5

Student Loan (Student) 93.7 97.6 97.6 46.6 25.7 21.5

Carcinogenesis (Carcino) 58.6 61.3 56.3 21.9 18.6 28.9

KRKi 49.4 50.4 49.4 66.7 68.1 66.7

Mutagenesis (Muta) 77.1 80.8 78.3 11.2 9 10.4

Table 1. Predictive accuracies and number of rules of the analyzed datasets.
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In general, Extended Aleph improves or maintains the accuracy (figure 1),
and decreases the number of rules for most of datasets. With regard to the
running time, Extended Aleph significantly exceeds this measure with Carcino-
genesis: Aleph 36.1s, Lazy 222.33s, Ext. Aleph 698.9s; and Ecoli: Aleph 11.5s;
Lazy 63.2s; Ext. Aleph 707.5s.

Fig. 1. Extended Aleph maintains or improves the accuracy.

Fig. 2. Percentage reduction of the number of rules in final theories.

4 Conclusions and Future Work

With the obtained results, we can draw some conclusions: this method does not
guarantee to improve the accuracy and simplicity of the theories in all cases.
The improvement depends on the selected attributes, namely if an attribute is
relevant in the theory construction then its processing will help to improve the
final theory. ILP problems whose final theories do not need constants to be in-
duce on them can not benefit from this method. In this case, variables are useful
to better explain that concept. The size of the search space can be affected with
the proposed method. On one hand a discretized/grouped attribute which is
not relevant can generate a large amount of unnecessary candidate rules. On
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the other hand a discretized/grouped attribute which is relevant can decrease
significantly the number of candidate rules. Users do not know in advance which
attributes will be most useful, therefore the intuition is an important element to
select each attribute. Our method allows to experiment easily with different at-
tributes. Finally, unlike other genetic approaches like SMART+ [4], our method
can deal with both categorical and numerical attributes.

Some considerations for further work are as follows. Since not all cases were
successful it is necessary to test other fitness functions and more datasets. These
tests will help us to identify the factors which affect both accuracy and simplicity
of the final theories, as well as the search space size. Another path of research
is to look into multivariable predicates, if there are correlations between two or
more attributes. Thus, we want to investigate if these correlations are relevant
to improve the performance in ILP (accuracy and simplicity) and what kind of
problems can be treated with these predicates. Finally, we want to implement
in Aleph system these ideas and compare performance with other ILP systems
that handle data types.
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Abstract. Building relational models for the structured output classi-
fication problem of sequence labeling has been recently explored in a
few research works. The models built in such a manner are interpretable
and capture much more information about the domain (than models
built directly from basic attributes), resulting in accurate predictions.
On the other hand, discovering optimal relational features is a hard task,
since the space of relational features is exponentially large. An exhaus-
tive search in this exponentially large feature space is infeasible. There-
fore, often the feature space is explored using heuristics. Recently, we
proposed a Hierarchical Kernels-based feature learning approach (Struc-
tHKL) for sequence labeling [18], that optimally learns emission fea-
tures in the form of conjunctions of basic inputs at a sequence position.
However, StructHKL cannot be trivially applied to learn complex rela-
tional features derived from relative sequence positions. In this paper,
we seek to learn optimal relational sequence labeling models by lever-
aging a relational kernel that computes the similarity between instances
in an implicit space of relational features. To this end, we employ rela-
tional subsequence kernels at each sequence position (over a time window
of observations around the pivot position) for the classification model.
While this method of modeling does not result in interpretability, re-
lational subsequence kernels do efficiently capture relational sequential
information on the inputs. We present experimental comparison between
approaches for explicit learning and implicit modeling of relational fea-
tures and explain the trade-offs therein.

Keywords: Subsequence Kernels, StructSVM, Sequence Labeling

1 Introduction

Structured output classification has gathered significant interest in the machine
learning community during the last decade [24, 6, 21, 15].The goal of such works is
to classify complex output structures such as sequences, trees, lattices or graphs,
in which the class label at each node/position of the structure has to be inferred
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based on observed evidence data. The possible space of structured outputs tends
to be exponential and thus structured output classification is a challenging re-
search area. We, in our research work, focus on a specific structured output clas-
sification problem, popularly known as sequence labeling. As in any classification
setting, the sequence labeling domain is also characterized by complex relation-
ships among entities and uncertainties in their relationships. Efficient models
can be constructed by exploiting these relationships. However, discovering re-
lationships that enhance the discriminative power of classifiers is a hard task,
since the relationship space is often too large. Therefore, most of the research in
sequence labeling and other structured output space classification, either ignore
the complex relationships or use heuristics to learn the relationships. In this
work, we focus on exploiting complex relationships in both the input as well as
the output space in an efficient way to improve sequence labeling models. We
begin with a brief introduction to the task of sequence labeling.

The objective in sequence labeling is to assign a state (class label) to every in-
stance of a sequence of observations. Typical sequence labeling algorithms learn
probabilistic information about the neighboring states along with the proba-
bilistic information about the observations. Hidden Markov Models (HMM) [19],
Conditional Random Fields (CRF) [9] and StructSVM [24] are three models used
popularly for sequence labeling problems. The training objective can be posed
as learning feature weights that make the score F (F : X ×Y → R), of the true
output sequence Y greater than any other possible output sequence, given an
input sequence X. The score is defined as:

F (X,Y ; f) = 〈f ,ψ(X,Y )〉 (1)

where ψ is the feature vector (describing observations and transitions), and f is
the weight vector. Inference is performed by the decision function F : X → Y
defined by

F(X; f) = arg max
Y ∈Y

F (X,Y ; f) (2)

Recent works have shown that learning the relational structure between input
features improves the efficiency of sequence labeling models [13, 17, 12]. However,
the space of relational features is exponential in the number of basic observa-
tions, making the discovery of useful features a difficult task. For instance, the
simple case of learning features that are conjunctions of basic observations at
any single sequence position results in a feature space that is exponential. The
problem is further exacerbated if we consider complex relational features built
from observations at different relative positions. An exhaustive search in this ex-
ponentially large feature space is infeasible. Therefore, most systems that learn
relational features follow a greedy search strategy based on heuristics to select
useful features. These approaches start with an initial (possibly empty) set of
features and iteratively search (using some ordering of the feature space) for
refinements that improve the heuristic score.

In our previous work [18], we propose and develop a Hierarchical Kernels
based approach for optimally learning features which are conjunctions of basic
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features at a particular sequence position (simple conjuncts or SCs) for each la-
bel. The approach is referred to as Hierarchical Kernel Learning for Structured
Output Spaces (StructHKL) 4. Although it optimally learns the most discrim-
inative SCs, its applicability in learning complex relational features that are
derived from observations at different relative positions in a sequence, is non-
trivial and challenging. To address this issue, our follow-up work [16], determines
simple feature classes that can be composed to yield complex ones, with the goal
of formulating efficient yet effective relational feature learning procedures. We
identify feature classes called absolute features (AF) and composite features
(CF) in increasing order of their complexity respectively 5. It is posited that
optimal relational features can be learned by enumerating AFs and discovering
their useful compositions (CF) using StructHKL. However, the space of AFs is
prohibitively large and it is not feasible to enumerate all of them in a domain. To
circumvent this issue, we propose to selectively enumerate AFs based on some
relevance criteria such as the support of AFs in the training set.

An AF is formed by combining one or more predicates which share variables.
The partial ordering of AFs does not comply with the requirement of StructHKL
that the descendant kernels should be summable in polynomial time. This limits
the possibility of leveraging StructHKL to optimally learn features in the space
of AFs (and its super-space of CFs). For this reason, in the current piece of
work, we leverage a relational kernel that computes the similarity between in-
stances in an implicit feature space of CFs. To this end, we employ the relational
subsequence kernel [2] at each sequence/pivot position (over a time window of
observations around it) for the classification model. We would like to learn com-
posite features which capture relational information about basic observations at
positions relative to the pivot position for every sequence step. This sequence
information would provide a rich feature space for the algorithm to learn a more
expressive model. However, explicitly enumerating such a feature space is not
feasible due to the high dimensionality of the feature space. Relational subse-
quence kernels implicitly capture the effectiveness of this rich feature space. We
also show that the feature space of CFs (explicit features) are captured by the
relational subsequence kernels (implicit features). While this way of modeling
does not result in interpretability, relational subsequence kernels do efficiently
capture the relational sequential information on the inputs.

We evaluate the performance of our approaches on publicly available activity
recognition datasets. Our experiments show improvements over other standard
and state-of-the-art sequence labeling techniques. The paper is organized as fol-
lows.

Section 2 discusses background work. We discuss our approach in Section 3.
Experimental setup and results are discussed in Section 4 and we conclude the
paper in Section 5.

4 StructHKL is derived from StructSVM in which we use sparsity inducing hierarchical
regulariser for observation features.

5 For the definitions and examples of AF , CF and other feature classes, please refer
to [16].
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2 Background

Approaches to learning relationships for sequence labeling could be based on ba-
sic input features at a single sequence step or input features at multiple sequence
steps and/or relationships among output variables. Some of these approaches are
discussed below.

McCallum [14] as well as Nair et. al [17] propose feature induction meth-
ods that iteratively construct feature conjunctions that increase an objective.
These approaches start with an initial set of features (conjunctions or atomic)
and at each step, consider a set of candidate features that are refinements of
the current set of features. Features whose inclusion will lead to maximum in-
crease in the objective are selected. Weights for the new features are trained. The
steps are iterated until convergence. While McCallum trains a CRF model and
uses conditional log-likelihood as the objective for the greedy induction, Nair
et. al train an HMM and use prediction accuracy on a held out dataset (part of
the training data) as the objective. This effectively solves the problem of incor-
rect assumption, that individual observations are independent, while not dealing
with exponential observation space. Although these greedy feature induction ap-
proaches have been shown to improve performance, they cannot guarantee an
optimal solution. An exhaustive search to find the optimal solution is expensive
due to the exponential size of the search space.

Kersting et. al. [8] discusses the Logical Hidden Markov Model which is a
relational representation of HMM. However, this work does not investigate learn-
ing the input structure. Thon et. al ([22], [23]) elaborate on relational markov
processes which are concerned with efficient parameter learning and inference.
They assume that a structure has been provided upfront. Similarly, a relational
bayesian network learning is discussed in [20] with the goal of learning the pa-
rameters given the structure of the bayes-net.

Hierarchical Kernel Learning for Structured Output Spaces (StructHKL)
[18], optimally and efficiently learns discriminative features for multi-class struc-
tured output classification problems such as sequence labeling. StructHKL builds
on the Support Vector Machines for Structured Output Spaces (StructSVM)
model [24] for sequence prediction problems, wherein, all possible SCs form
the input features while the transition features are constructed from all possible
transitions between state labels. A ρ-norm hierarchical regularizer is employed to
select a sparse set of SCs. Since there is a need to preserve all possible transitions,
a conventional 2-norm regularizer is employed for state transition features. The
exponentially large observation feature space is searched using an active set al-
gorithm and the exponentially large set of constraints is handled using a cutting
plane algorithm.

In our follow-up work [16], we learn complex relational features derived from
relative sequence positions. We propose to enumerate AFs and leverage Struc-
tHKL to learn their compositions, which are CFs. However, it is noted that the
space of AFs is prohibitively large and therefore it is not feasible to enumerate
all AFs in a domain. As a solution we selectively enumerate AFs based on some
relevance criteria such as support of the AF in the training set. A feature is
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considered to be strongly relevant if it helps the classification model to discern
classes optimally. On the other hand, a feature is weakly relevant if it covers at-
least a threshold percentage of examples. As discovering strongly relevant AFs
is a hard task, the focus is on discovering weakly relevant AFs using Inductive
Logic Programming tools. Pattern mining approaches are employed to discover
a relevant set of AFs. Specifically, a relational pattern miner called Warmr [3]
is used. Warmr uses a modified version of Apriori algorithm [1] to find frequent
patterns (AFs) which have minimum support, as specified by the user. Once a
set of relevant AFs are enumerated, StructHKL is used to learn useful composi-
tions of AFs and their parameters to get the final model. This can be viewed as
projecting the space of complex relational features such as CFs into the space
of SCs and leveraging StructHKL.

TildeCRF [5] has an objective similar to our approach, where the relational
structure and parameters of a CRF for sequence labeling are learned. Tilde-
CRF uses relational regression trees and gradient tree boosting for learning the
structure and parameters. Unlike in TildeCRF, in this work, we derive convex
formulations for learning relational models.

In this paper, we provide operative definitions of the feature classes such
as AF and CF . For a more detailed exposition of the feature classes and the
relationships between them, the reader is pointed to our previous work [16].

3 Implicit Modeling of Features for Sequence Labeling

In Section 1, we have stated our objective as exploiting complex relationships
among input variables in sequence labeling problems to improve the efficiency
of classification. We now formalize our intuitions and present our proposed ap-
proach in detail.

We have presented the training and inference objectives of sequence labeling
problems in equations (1) and (2), where the features and feature weights are
represented by ψ and f , respectively. Elements of ψ correspond to the emission
(basic input/observation) features and the transition features. We represent the
emission and transition parts of the vector ψ as ψE and ψT , respectively. We
assume that both ψE and ψT are vectors of dimension equal to the dimension
of ψ with zero values for all elements not in their context. That is, ψE has
dimension of ψ, but has zero values corresponding to the transition elements. In
the dual space, we represent the kernels corresponding to transition and emission
as κT and κT respectively. Our proposed approach is to leverage (implicitly
or explicitly) discriminative observation features (ψE) that capture complex
relationships among input variables in an implicit manner.

In the previous sections, we have identified CFs as the class of features that
explicitly capture complex relationships among input variables at relative se-
quence positions. We have also defined CFs as compositions of AFs and that,
since the partial ordering of AFs does not comply with the requirements of
StructHKL, it is not feasible to leverage StructHKL for learning features in the
space of AFs (and its super-space of CFs). For this reason, in the sequence
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labeling model, we leverage a relational kernel that computes the similarity be-
tween instances in an implicit feature space of CFs. To this end, we employ the
relational subsequence kernel [2] at each sequence position (over a time window
of observations around the pivot position) for the classification model. We now
briefly discuss about relational subsequence kernels in the following paragraph.

Subsequence kernels have been used to extract relations between entities
in natural language text [2], where the relations are between protein names in
biomedical texts. The features are (possibly non-contiguous) sequences of word
and word classes anchored by the protein names at their ends. They extend the
string kernels [11] for this task.

We have defined CFs as explicit features that capture the subset of features
at the current position as well as its relative positions. To implicitly capture
this feature space, we employ a relational subsequence kernel at each position of
the input sequence, with the current position as the pivot position. Suppose we
consider an input xpi at position p for example i. Let the previous k positions

relative to p have inputs xp−1i , . . .xp−ki and next l positions relative to p have

inputs xp+1
i , . . .xp+li . Let there be N basic features at a time-step t denoted by

x1
t

. . . xN
t

.6 Essentially our sequence for the particular time-step pivoted at p,
denoted by Qp, is as follows:

Qp = {x1p−k

, . . . xN
p−k}, . . . , {x1p−1

, . . . xN
p−1},

{x1p , . . . xNp}, {x1p+1

, . . . xN
p+1} . . . {x1p+l

, . . . xN
p+l}

Given two sequences Qp and Qq, we define the relational subsequence kernel
SSK(Qp, Qq) as elaborated in [2]. This kernel will implicitly enumerate all pos-
sible common subsequences between Qp and Qq. We now show that the feature
space of CFs are captured by our relational subsequence kernel.

Claim: Relational subsequence kernels implicitly enumerate all the features in
the feature space defined by Composite Features (CF) given a constant context
window.

Proof. By their definition the relational subsequence kernel SSK(Qi, Qj) will
implicitly enumerate all possible common subsequences between Qi and Qj .
CFs are conjunctions of features in the present time-step with features present
in time-steps before and after the current time-step, which can be represented by
AFs. Since we are considering all the sub-sequences in the given context (time)
window in the relational kernel, we implicitly enumerate space of CFs.

We now define the kernel for StructSVM framework below, which represents
the kernel resulting from the difference in values for the original and the candi-
date sequences. This stands for the inner product, 〈ψi

δ(Y ),ψi
δ(Y

′
)〉 with ψδi (Y )

defined as: ψδi (Y ) = ψ(Xi, Yi)−ψ(Xi, Y ). The kernel, which is a combination of
transition (κT ) and emission (κE) kernels, is defined as follows:

6 Ignoring the example number i for simplicity
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κ
(
(Xi, Yi, Y ), (Xj , Yj , Y

′
)
)

= κT (Yi, Y, Yj , Y
′
) + κE

(
(Xi, Yi, Y ), (Xj , Yj , Y

′
)
)

(3)

where

κT
(
Yi, Y, Yj , Y

′
) = κT (Yi, Yj) + κT (Y, Y

′
)− κT (Yi, Y

′
)− κT (Yj , Y ),

(4)

κT (Yi, Yj) =

li−1∑

p=1

lj−1∑

q=1

Λ(ypi , y
q
j )Λ(yp+1

i , yq+1
j )

=

li∑

p=2

lj∑

q=2

Λ(yp−1
i , yq−1

j )Λ(ypi , y
q
j ), (5)

Λ(ypi , y
q
j ) = 1 if ypi = yqj ; 0 otherwise. and

κE
(
(Xi, Yi, Y ), (Xj , Yj , Y

′
)
)

=

li∑

p=1

lj∑

q=1

κE(xpi , x
q
j)
(
Λ(ypi , y

q
j ) + Λ(yp, y

′q)− Λ(ypi , y
′q)− Λ(yp, yqj )

)

(6)

In our setting of subsequence kernels for StructSVM, the kernel κE(xpi , x
q
j) is

the relational subSequence kernel, where we may be considering some window
time steps before and after p and q, with p and q as pivots.

The dual of the primal SVM formulation as defined by Tsochantaridis et. al.
[24] for structured output spaces with the new kernel can be written as,

max
α

∑

i

∑

Y ∈Si

αiY − 1

2

∑

i

∑

Y ∈Si

∑

j

∑

Y
′∈Sj

αiY αjY ′
(
κδT (Yi, Y, Yj , Y

′
) + κδE

(
(Xi, Yi, Y ), (Xj , Yj , Y

′
)
))

s.t. ∀i,∀Y ∈ Si, αiY ≥ 0

∀i, m
∑

Y ∈Si

αiY
∆(Yi, Y )

≤ C. (7)

where α is the Lagrange dual variable, ∆ is the loss function, Si and Sj are
the active constraint sets for example i and j respectively.

Now the margin violation cost function for a candidate output sequence Y
for example i (for the cutting plane algorithm) can be written as,

H(Y ) =
(

1− 〈ψδi (Y ), f〉
)
∆(Yi, Y )

. =
(

1−
∑

j

∑

y
′∈Sj

αjY ′ 〈ψ
δ
i (Y ),ψδj(Y

′
)〉
)
∆(Yi, Y )

. =
(

1−
∑

j

∑

y
′∈Sj

αjY ′κ
(
(Xi, Yi, Y ), (Xj , Yj , Y

′
)
))
∆(Yi, Y ) (8)

where Sj is the active constraint set for example j.
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The dual objective and the margin violation cost function can be plugged into
the cutting plane algorithm to solve the objective. While this way of modeling
does not result in interpretability, relational subsequence kernels do efficiently
capture the relational sequential information on the inputs.

As in typical sequence labeling systems, we perform inference using a dynamic
programming approach called the Viterbi algorithm [4].

The next section discusses our experiments and results.

4 Experiments

Our entire implementation is in Java. Our experiments are carried out on two
publicly available activity recognition datasets. The first is the data provided
by [7]. The dataset is extracted from a household fitted with 14 binary sensors.
Eight activities have been annotated for 4 weeks. Activities are daily house hold
activities like sleeping, usingToilet, preparingDinner, preparingBreakfast,
leavingOut, etc. A data instance is recorded for a time interval of 60 seconds
and there are 40006 such data instances. Since the authors of the dataset are
from the University of Amsterdam, we will refer to the dataset as the UA data.
The second data is the relational activity recognition data provided by [10] of
Katholieke University, Leuven. We refer to the data as KU data. The data has
been collected from a kitchen environment with 25 sensors/RFID attached to
objects. There are 19 activities annotated. The data has been divided into 20
sequences. In this data, we perform our experiments in a leave one out cross-
validation setup and report average of the accuracies returned from each fold.

In UA data, We use 25% of data for training and the rest for testing and
report all accuracies by average across the four folds (the dataset is split into
different sequences and each sequence is treated as an example). We report
both micro-average and macro-average prediction accuracies. The micro-average
accuracy is referred to as time-slice accuracy by [7], and is the average of per-
class accuracies, weighted by the number of instances of the class. Macro-average
accuracy, referred to as class accuracy by [7], is simply the average of the per-
class accuracies. Micro-averaged accuracy is typically used as the performance
evaluation measure. However, in data that is biased towards some classes, too
worse macro-average is an indicator of a bad prediction model.

As we discussed previously, we leverage a relational kernel that computes
the similarity between instances in an implicit feature space of CFs. To this
end, we employ the relational subsequence kernel [2] at each sequence position
(over a time window of observations around the pivot position) for the classifi-
cation model. We refer to this approach as Relational Subsequence Kernels for
StructSVM approach (SubseqSVM).

We have compared our approach against TildeCRF [5], StructSVM [24] and
enumAF [16]. While we treat StructSVM as a baseline for our experiments,
TildeCRF is a state-of-the-art approach for learning relational features for se-
quence labeling, and operates in the same feature space that we are interested
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in. In our experiments with StructSVM, individual basic features are assumed
to be conditionally independent given the label.

The comparison of results on the UA dataset is outlined in Table 1. Re-
sults show that enumAF and our approach for learning complex features for
sequence labeling viz. SubseqSVM performed better than the baseline approach
(StructSVM) and the state-of-the-art approach (TildeCRF). Although enumAF
optimally finds CFs as conjunctions of (selectively enumerated) AFs, the step
for selectively enumerating AFs is based on heuristics. In contrast, SubseqSVM
works on a convex formulation and learns an optimal model. This explains the
better performance of SubseqSVM.

The comparison of results on the KU dataset is outlined in Table 2. As a
single sequence step in this data has only one input feature, the feature space is
not rich enough to evaluate the efficiency of our approach. The baseline reported
the best performance. While the performance of SubseqSVM approach is slightly
inferior to the baseline and the state-of-the-art, enumAF performed poorly on
this dataset.

In the case of the UA dataset, both enumAF and SubseqSVM took 24 hours
approximately to train the model. In comparison, TildeCRF and StructSVM
took 0.5 hours and 20 hours, respectively. On the KU data, enumAF took around
24 hours and SubseqSVM took approximately 1.5 hours to train the model. In
comparison, TildeCRF and StructSVM took 10 minutes and 15 hours, respec-
tively. We now present an analysis of the progression of results on UA data,
using different categories of features we have experimented with.

Micro avg. Macro avg.

tildeCRF 56.22(±12.08) 35.36 (±6.55)
StructSVM 58.02 (±11.87) 35.00 (±05.24)
enumAF 60.36 (±6.99) 30.39 (±4.31)
SubseqSVM 65.25(±4.81) 29.34 (±2.78)

Table 1: Micro average accuracy and macro
average accuracy of classification in per-
centage using various approaches on UA
data.

Micro avg. Macro avg.

tildeCRF 66.04 (±13.50) 84.01 (±8.76)
StructSVM 66.35 (±17.16) 66.64 (±16.04)
enumAF 33.24 (±15.72) 23.02 (±11.13)
SubseqSVM 64.66 (±8.42) 63.08 (±7.05)

Table 2: Micro average accuracy and macro
average accuracy of classification in per-
centage using various approaches on KU
data.

The progression on experiments on UA data based on feature categories is
shown in Table 3. The baseline for sequence labeling can be one among the
approaches that assume conditional independence among individual features,
given the label. HMM, CRF, and StructSVM falls into this category. These
approaches consider input features at a sequence step and assumes conditional
independence among them given the label. Since StructSVM is the state-of-the-
art in this category, we use StructSVM results for comparison. The next level
of features is the set of simple conjuncts SC, which are conjunctions of input
features at a single sequence step. SCs capture relationships among co-occurring
features. We present the StructHKL results for this. Next is the category of CFs,
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which are capable of capturing input relationships across time steps in sequence
labeling. We present the results of SubseqSVM in this category.

Feature Approach Micro avg. Macro avg.

Basic StructSVM 58.02 (±11.87) 35.00 (±05.24)
SC StructHKL 63.96 (±05.74) 32.01 (±03.04)
CF SubseqSVM 65.25(±4.81) 29.34 (±2.78)

Table 3: Progression on sequence labeling experiments on the UA dataset based on
feature categories.

5 Conclusion

Recent works have shown the importance of learning the input structure, in the
form of relational features, for sequence labeling problems [13, 17, 12]. Most of
the existing feature learning approaches employ greedy search techniques to dis-
cover relational features. In this work, we discussed approaches that looked into
learning optimal relational features for sequence labeling. We identify that the
relational feature space is exponentially large and therefore, learning explicit fea-
tures of arbitrary complexity in our most general feature subspace, is a hard task.
To this end, we presented an approach that learns relational sequence labeling
models (capturing the richness of relational features implicitly) by leveraging re-
lational subsequence kernels in the dual objective of the StructSVM framework.
From our discussions and empirical analysis, we conclude that it is desirable to
use powerful kernels that capture the relational features implicitly, although the
resulting model may not be interpretable.
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Uplift Modeling with ROC: An SRL Case Study
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Abstract. Uplift modeling is a classification method that determines
the incremental impact of an action on a given population. Uplift mod-
eling aims at maximizing the area under the uplift curve, which is the
difference between the subject and control sets’ area under the lift curve.
Lift and uplift curves are seldom used outside of the marketing domain,
whereas the related ROC curve is frequently used in multiple areas.
Achieving a good uplift using an ROC-based model instead of lift may
be more intuitive in several areas, and may help uplift modeling reach a
wider audience.

We alter SAYL, an uplift-modeling statistical relational learner, to use
ROC instead of lift. We test our approach on a screening mammography
dataset. SAYL-ROC outperforms SAYL on our data, though not signif-
icantly, suggesting that ROC can be used for uplift modeling. On the
other hand, SAYL-ROC returns larger models, reducing interpretability.

1 Introduction

Uplift modeling is a modeling and classification method initially used in market-
ing to determine the incremental impact of an advertising campaign on a given
population [8]. Seminal work includes Radcliffe and Surry’s true response mod-
eling [8], Lo’s true lift model [4], and Hansotia and Rukstales’ incremental value
modeling [3]. In some applications, especially medical decision support systems,
gaining insight into the underlying classification logic can be as important as
system performance. Reviewing the classification logic in medical problems can
be an important method to discover disease patterns that may not be known
or easily otherwise gleaned from the data. Such insight can be achieved using
rule-learners. Decision trees [9, 10], inductive logic programming (ILP) [7], and
statistical relational learning (SRL) [6] methods have been proposed.

Uplift modeling aims at maximizing uplift, which is the difference in a model
or intervention M ’s lift scores over the subject and control sets:

UpliftM = LiftM (subject)− LiftM (control). (1)

Given a fraction ρ such that 0 ≤ ρ ≤ 1, a model M ’s lift is defined as the
number of positive examples amongst the model’s ρ-highest ranking examples.
Uplift thus captures the additional number of positive examples obtained due to
the intervention. Quality of an uplift model is often evaluated by computing an
uplift curve [9], generated by ranging ρ from 0 to 1 and plotting UpliftM . The
higher the uplift curve, the more profitable a marketing model/intervention is.
The area under the uplift curve (AUU) is often used as a metric to optimize.
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Let P be the number of positive examples and N the number of negative
examples in a given dataset D. Lift represents the number of true positives
detected by model m amongst the top-ranked fraction ρ. Varying ρ ∈ [0, 1]
produces a lift curve. The area under the lift curve (AUL) for a given model and
data becomes:

AUL =

∫
Lift(D, ρ)dρ ≈ 1

2

P+N∑

k=1

(ρk+1− ρk)(Lift(D, ρk+1) +Lift(D, ρk)) (2)

Let s be the subject set, and c the controls. For a given ρ, we can rewrite
equation 1 as:

UpliftM (ρ) = LiftM (s, ρ)− LiftM (c, ρ). (3)

Since uplift is a function of a single value for ρ, the area under the uplift curve
(AUU) is the difference between the areas under the lift curves (AUL) for the
subjects and the controls, ∆(AUL):

AUU = AULs −AULc = ∆(AUL). (4)

Lift and uplift curves are seldom used outside of the marketing domain,
whereas the related ROC curve is frequently used in the machine learning and
biomedical informatics communities. Especially in the biomedical domain, using
ROC may be more intuitive, and may help uplift modeling reach a wider audi-
ence. This work investigates the use of the area under the ROC curve (AUR)
as an alternate scoring method, while still resulting in a good model uplift. We
alter SAYL [6], the state-of-the-art relational uplift modeling algorithm, to se-
lect rules that optimize ∆(AUR) instead of ∆(AUL). We test our approach on
a screening mammography dataset.

2 Lift and ROC Area Under the Curve

There is a strong connection between AUL and AUR. Let π = P
P+N be the prior

probability for the positive class or skew, then:

AUL = P ∗ (
π

2
+ (1− π) AUR) [11, p.549]. (5)

Uplift modeling aims at optimizing uplift, the difference in lift over two sets.
It constructs a new classifier such that:

∆(AUL∗) > ∆(AUL) (6)

As discussed in [6], by expanding and simplifying we get:

AUL∗
s −AUL∗

c > AULs −AULc
Ps(

πs
2

+ (1− πs)AUR∗
s)− Pc(

πc
2
− (1− πc)AUR∗

c) >

Ps(
πs
2

+(1− πs)AURs)− Pc(
πc
2
− (1− πc)AURc)

Ps(1− πs)AUR∗
s − Pc(1− πc)AUR∗

c > Ps(1− πs)AURs − Pc(1− πc)AURc
Ps(1− πs)(AUR∗

s −AURs) > Ps(1− πs)(AUR∗
c −AURc)
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and finally
AUR∗

s −AURs
AUR∗

c −AURc
>
Pc
Ps

1− πc
1− πs

. (7)

In a balanced dataset, we have πc = πs = 1
2 and Pc = Ps, so we have that

Pc

Ps

1−πc

1−πs
= 1. If the subject and control sets have the same numbers and skew,

we can conclude that ∆(AUL∗) > ∆(AUL) implies ∆(AUR∗) > ∆(AUR).
If the two sets are skewed or their numbers differ, we cannot guarantee that
∆(AUL∗) > ∆(AUL) implies ∆(AUR∗) > ∆(AUR), as we can increase uplift
with rules that have similar accuracy but cover more cases in the positive set. In
general, the two metrics are related, with uplift being more sensitive to variations
in coverage when the two groups have different size.

3 SAYL-ROC

SAYL [6] is a Statistical Relational Learner based on SAYU [1] that integrates
uplift modeling with the search for relational rules. Similar to SAYU, every
valid rule generated is used to construct a Bayesian network (alongside with
current theory rules) via propositionalization, but instead of constructing a single
classifier, SAYL constructs two TAN [2] classifiers; one Bayes net for each of the
subject and control groups. Both classifiers use the same set of attributes, but
are trained only on examples from their respective groups. SAYL uses the TAN
generated probabilities to construct the lift and uplift curves. If a rule improves
AUU by threshold θ, the rule is added to the attribute set. Otherwise, SAYL
continues the search.

Algorithm 1 SAYL

Rs← {};Ms
0 ,M

c
0 ← InitClassifiers(Rs)

while DoSearch() do
e+s ← RandomSeed();
⊥

e+s
← saturate(e);

while c← reduce(⊥
e+s

) do

Ms,Mc ← LearnClassifiers(Rs ∪ {c});
if Better(Ms,Mc,Ms

0 ,M
c
0 ) then

Rs← Rs ∪ {c};Ms
0 ,M

c
0 ←Ms,Mc;

break
end if

end while
end while

The SAYL algorithm is shown as Algorithm 1. SAYL maintains a current set
of clauses, Rs, and current reference classifiers for the subjects Ms and controls
M c. SAYL requires separate training and tuning sets, accepting a rule only
when it improves the score on both sets. This requirement is extended with the
threshold of improvement θ, and a minimal rule coverage requirement minpos.
Finally, SAYL has two search modes, greedy and exploration. Refer to [6] for
details.

Uplift Modeling with ROC: An SRL Case Study

42



SAYL guides the rule search by using the AUU score. It computes AUU by
computing AUL for each of the groups using the two classifiers, and returning the
difference ∆(AUL) (Equation 4). We implement SAYL-ROC, a SAYL variant
that computes AUR instead for each of the groups using the two classifiers, and
returns ∆(AUR) as a rule score to guide the search. SAYL thus optimizes for
∆(AUL), while SAYL-ROC optimizes for ∆(AUR).

4 Experimental Results

We test SAYL-ROC on a breast cancer mammography dataset, fully described
in [5]. Our subject and control sets are respectively older and younger patients
with confirmed breast cancer. Positive instances have in situ cancer, and negative
instances have invasive cancer. The aim is to maximize the in situ cases’ uplift.

The older cohort has 132 in situ and 401 invasive cases, while the younger
one has 110 in situ and 264 invasive. The skews are Ps = 132, πs = 132

132+401

(older), and Pc = 110, πc = 110
110+264 (younger). Thus equation 7 becomes:

AUR∗
s −AURs

AUR∗
c −AURc

> 0.86. (8)

We use 10-fold cross-validation, making sure all records pertaining to the
same patient are in the same fold. We run both SAYL and SAYL-ROC with a
time limit of one hour per fold. For each cross-validated run, we use 4 training,
5 tuning and 1 testing folds. For each fold, we used the best combination of
parameters according to a 9-fold internal cross-validation using 4 training, 4
tuning and 1 testing folds. We try both search modes, vary minpos between 7
and 13 (respectively 5% and 10% of older in situ examples), and set θ to 1%,
5% and 10%. We evaluate the final SAYL and SAYL-ROC models using their
final uplift curves, concatenated from the results of each testing set.

Table 1. 10-fold cross-validated SAYL-ROC and SAYL performance. Rule number
averaged over the 10 folds of theories. For comparison, we include results of Differential
Prediction Search (DPS) and Model Filtering (MF) methods [7]. We compute the p-
value comparing each method to SAYL, * indicating significance.

Algorithm AUU AULs AULc Rules Avg p-value

SAYL-ROC 62.99 95.64 32.65 24.7 0.4316
SAYL 58.10 97.24 39.15 9.3 -

DPS 27.83 101.01 73.17 37.1 0.0020 *
MF 20.90 100.89 80.99 19.9 0.0020 *

Baseline 11.00 66.00 55.00 - 0.0020 *

Table 1 compares SAYL-ROC, SAYL, and the ILP-based methods Differen-
tial Prediction Search (DPS) and Model Filtering (MF) [7], both of which had
minpos = 13 (10% of older in situ). A baseline random classifier achieves an
AUU of 11. We use the paired Mann-Whitney test at the 95% confidence level
to compare two sets of experiments. We plot the uplift curves in Figure 1.
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Fig. 1. Uplift curves for SAYL-ROC, SAYL, ILP methods Differential Prediction
Search (DPS) and Model Filtering (MF), both with minpos = 13 [7], and baseline
random classifier. Uplift curves start at 0 and end at 22, the difference between older
(132) and younger (110) total in situ cases. The higher the curve, the better the uplift.
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5 Discussion and Future Work

SAYL and SAYL-ROC significantly outperform previous methods (Table 1, Fig-
ure 1), but there is no significant difference between the two. Even though SAYL-
ROC is optimizing for ∆(AUR) during its training phase, it returns a slightly
better testing ∆(AUL) than SAYL, which optimizes for ∆(AUL).

This result suggests that, on a moderately subject/control skewed data, AUR
can indeed be used for uplift modeling. ROC is more frequently used than lift,
and may be more intuitive in many domains. Nevertheless, more experiments
are needed to establish ROC-based uplift performance. We plan on measuring
∆(AUL) vs. ∆(AUR) for various Equation 7 skews.

SAYL-ROC produces as many rules as ILP-based methods, more than twice
that of SAYL. The ILP theory is a collection of independent rules that each indi-
vidually increases uplift [7]. It is thus easy to interpret the final model. SAYL and
SAYL-ROC theory rules are conditioned on each other as nodes in a Bayesian
network, decreasing rule interpretability especially in larger graphs. Individual
rules may not increase uplift, but the final network does. At an average of 9.3
rules, a SAYL model is interpretable, whereas at 24.7, SAYL-ROC sacrifices
interpretability.

We note that Equation 7 depends on both the positive number and skew.
Even if the subject and control positive skews were equal, say Pc = 100, Nc =
200, Ps = 10 and Ns = 20, we will have 1−πc

1−πs
= 1 but Pc

Ps
= 10, maintaining a

subject/control Equation 7 skew.
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This work uses the definition of lift as the number of positives amongst the ρ-
highest ranking examples. An alternative lift definition is the fraction of positives
amongst the ρ-highest ranking examples. Equation 7 then becomes:

AUR∗
s −AURs

AUR∗
c −AURc

>
1− πc
1− πs

, (9)

eliminating the dependence on the number of positive instances. We plan on
investigating how ∆(AUL) and ∆(AUR) empirically relate under this definition.

In conclusion, SAYL-ROC exhibits a similar performance to SAYL on our
data, suggesting that ROC can be used for uplift modeling. SAYL-ROC returns
larger models, reducing interpretability. More experiments are needed to test
ROC-based uplift over different subject/control skews.

Acknowledgments We thank NIH grant R01-CA165229, the Carbone Cancer
Center, and NCI grant P30CA014520 for support.
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Abstract. Uncertain information is ubiquitous in the Semantic Web,
due to methods used for collecting data and to the inherently distributed
nature of the data sources. It is thus very important to develop proba-
bilistic Description Logics (DLs) so that the uncertainty is directly rep-
resented and managed at the language level. The DISPONTE semantics
for probabilistic DLs applies the distribution semantics of probabilistic
logic programming to DLs. In DISPONTE, axioms are labeled with nu-
meric parameters representing their probability. These are often difficult
to specify or to tune for a human. On the other hand, data is usually
available that can be leveraged for setting the parameters. In this pa-
per, we present EDGE that learns the parameters of DLs following the
DISPONTE semantics. EDGE is an EM algorithm in which the required
expectations are computed directly on the binary decision diagrams that
are built for inference. Experiments on two datasets show that EDGE
achieves higher areas under the Precision Recall and ROC curves than
an association rule learner in a comparable or smaller time.

1 Introduction

Due to the ubiquity of uncertain information, many authors [9, 17, 8] have re-
cently studied approaches to add uncertainty to the Semantic Web. Since De-
scription Logics (DLs) are at the basis of the Semantic Web, in [12] we proposed
the DISPONTE (“DIstribution Semantics for Probabilistic ONTologiEs”, Span-
ish for “get ready”) semantics. DISPONTE applies the distribution semantics of
probabilistic logic programming [15] to DLs.

In [14] we presented an algorithm, called EDGE for “Em over bDds for
description loGics paramEter learning”, for learning the parameters of proba-
bilistic DLs that follow the DISPONTE semantics. EDGE starts from examples
of instances and non-instances of concepts and builds a set of Binary Decision
Diagrams (BDDs) that represent their explanations. The parameters are then
tuned using an EM algorithm [6] in which the required expectations are com-
puted directly on the BDDs. In [14] the parameters learned by EDGE were com-
pared with those given by the confidence of Association Rules (ARs for short in
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the following) on a dataset extracted from educational.data.gov.uk. EDGE
achieved significantly higher areas under the Precision Recall and the Receiver
Operating Characteristics curves (AUCPR and AUCROC).

In this paper we extend the experiments presented in [14] by also consider-
ing a dataset extracted from DBPedia and by recording the time required by
EDGE and by the computation of ARs’ confidence. EDGE achieves again higher
AUCPR and AUCROC. Moreover, the time taken by EDGE is comparable to
the one required for computing ARs’ confidence.

The paper is organized as follows. Section 2 introduces DLs and the DISPONTE
semantics while Section 3 introduces EDGE. Section 4 discusses related works
and Section 5 shows the results of experiments. Section 6 concludes the paper.

2 Description Logics and the DISPONTE semantics

DLs are particularly useful for representing ontologies and have been adopted
as the basis of the Semantic Web. They are usually represented using a syntax
based on concepts and roles. A concept corresponds to a set of individuals of the
domain while a role corresponds to a set of couples of individuals of the domain.
In the following we consider and describe ALC [16].

We use A, R and I to indicate atomic concepts, atomic roles and individuals,
respectively. A role is an atomic role R ∈ R. Concepts are defined as follows.
Each A ∈ A, ⊥ and > are concepts. If C, C1 and C2 are concepts and R ∈ R,
then (C1 u C2), (C1 t C2) and ¬C are concepts, as well as ∃R.C and ∀R.C.

Let C and D be concepts, R be a role and a and b be individuals, a TBox T
is a finite set of concept inclusion axioms C v D, while an ABox A is a finite
set of concept membership axioms a : C and role membership axioms (a, b) : R.
A knowledge base (KB) K = (T ,A) consists of a TBox T and an ABox A.

A KB is usually assigned a semantics using interpretations of the form I =
(∆I , ·I), where ∆I is a non-empty domain and ·I is the interpretation function
that assigns an element in ∆I to each individual a, a subset of ∆I to each
concept C and a subset of ∆I ×∆I to each role R. The mapping ·I is extended
to all concepts (where RI(x) = {y|(x, y) ∈ RI} and #X denotes the cardinality
of the set X) as:

>I = ∆I

(¬C)I = ∆I \ CI

(C1 t C2)I = CI
1 ∪ CI

2

(∃R.C)I = {x ∈ ∆I |RI(x) ∩ CI 6= ∅}

⊥I = ∅
(C1 u C2)I = CI

1 ∩ CI
2

(∀R.C)I = {x ∈ ∆I |RI(x) ⊆ CI}

A query over a KB base is usually an axiom for which we want to test the
entailment from the KB. The entailment test may be reduced to checking the
unsatisfiability of a concept in the KB, i.e., the emptiness of the concept.

DISPONTE applies the distribution semantics to probabilistic ontologies
[15]. In DISPONTE [2, 10–13] a probabilistic knowledge base K is a set of certain
and probabilistic axioms. Certain axioms take the form of regular DL axioms.
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Probabilistic axioms take the form p :: E, where p is a real number in [0, 1] and
E is a DL axiom. The idea of DISPONTE is to associate independent Boolean
random variables with the axioms. Thus, a single random variable is associated
with axiom E and p represents its probability of being true.

A DISPONTE KB defines a distribution over regular DL KB called worlds.
Each world is obtained by including every certain axiom. For each probabilistic
axiom, we decide whether or not to include it in the world. By multiplying the
probability of the choices made to obtain a world we can assign a probability to
it. The probability of a query is then the sum of the probabilities of the worlds
where the query holds true.

3 EDGE

EDGE [14] is based on the algorithm EMBLEM [4, 3] developed for learning the
parameters for probabilistic logic programs under the distribution semantics.
EDGE adapts EMBLEM to the case of probabilistic DLs under the DISPONTE
semantics. EDGE takes as input a DL KB and a number of positive and negative
examples that represent the queries in the form of concept assertions, i.e., of
the form a : C for an individual a and a class C. Positive examples represent
information that we regard as true and for which we would like to get high
probability while negative examples represent information that we regard as
false and for which we would like to get low probability.

EDGE first computes, for each example, the BDD encoding its explanations
using the reasoner BUNDLE [13]. For a positive example of the form a : C,
EDGE looks for the explanations of a : C and encodes them in a BDD. For a
negative example of the form a : C, EDGE looks for the explanations of a : C,
encodes them in a BDD and negates it with the NOT BDD operator. Then
EDGE enters the EM cycle, in which the steps of Expectation and Maximiza-
tion are repeated until the log-likelihood (LL) of the examples reaches a local
maximum or until the maximum number of iterations is reached. The EM al-
gorithm is guaranteed to find a local maximum, which however may not be the
global maximum. The LL of the examples is guaranteed to increase at each
iteration.

Function Expectation takes as input a BDD for each example Q, and com-
putes P (Xi = x|Q) for all the variables Xi in the BDD. Finally, it returns the
LL of the data that is used in the stopping criterion: EDGE stops when the
difference between the LL of the current iteration and that of the previous one
drops below a threshold ε or when this difference is below a fraction δ of the
previous LL. Function Maximization computes the parameters’ values for the
next EM iteration by relative frequency. For more details see [4].

The phase of explanations research for each example has high complexity
in the worst case, since the explanations may grow exponentially in number;
however, BUNDLE is able to handle domains of significant size. The EM phase
has a linear cost in the number of nodes since the E-step requires two traversals
of the diagram.
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4 Related Work

crALC [9] is an extension of ALC that adopts an interpretation-based semantics
for allowing statistical axioms of the form P (C|D) = α (for each element x in
D that belongs to D, the probability that belongs also to C is α) and of the
form P (R) = β (for each couple of elements x and y in D, the probability that
x is linked to y by the role R is β). On the other hand, crALC does not allow
to express a degree of belief in axioms. A crALC KB K can be represented as
a directed acyclic graph G(K) in which a node represents a concept or a role
and the edges represent the relations between them. The algorithm of [9] learns
parameters and structure of crALC knowledge bases. It starts from positive and
negative examples for a single concept and learns the best probabilistic definition
for the concept chosen using an EM algorithm. Differently for us, the expected
counts are computed by resorting to inference in the graph, while we exploit the
BDD structures.

GoldMiner [17, 8] is an algorithm that exploits ARs for building ontologies.
GoldMiner extracts information about individuals, named classes and roles using
SPARQL queries. From these data, it builds two transaction tables: one that
stores the classes to which each individual belongs and one that stores the roles
to which each couple of individuals belongs. Finally, the APRIORI algorithm [1]
is applied to each table in order to find ARs. Implications of the form A⇒ B can
be converted to subclass axioms of the form A v B. Moreover, the confidence
associated with ARs can be interpreted as the probability of the axiom p :: A v
B. So GoldMiner can be used to obtain a probabilistic knowledge base.

5 Experiments

EDGE has been compared with ARs over two real world datasets from the Linked
Open Data cloud: educational.data.gov.uk and an extract of DBPedia. In our
experiment, we wanted to simulate the situation in which an expert provides the
structure of the ontology together with information on a set of individuals. The
ontologies were obtained with GoldMiner: we extracted 10,000 individuals for
educational.data.gov.uk and 7,200 for DBPedia and we learned ARs from
the resulting transaction tables. The ARs were then converted into subclass
axioms.

In order to generate a set of examples for EDGE, for each extracted individual
a we sampled three named classes: A and B were sampled from the named classes
to which a explicitly belonged, while C was sampled from the named classes to
which a did not explicitly belong but that exhibited at least one explanation for
the query a : C. Then, we randomly split individuals into two equally sized sets:
the membership assertions regarding the individuals from the first set constituted
the training set while the ones in the second set constituted the testing set.
The axiom a : A is added to the KB, while a : B is considered as a positive
example and a : C as a negative example. The training set contained only the
membership assertions for the first set of individuals, while for the testing phase
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we removed the membership assertions of the training set from the KB and
added the assertions of the second set.

We compared the parameters learned by EDGE with ARs’ confidence. For
each AR corresponding to the subclass axiom A v B, we computed the confi-
dence by running two SPARQL queries over the training KBs, one for finding all
the individuals that belong to AuB and one for those that belong to A. The con-
fidence is then given by the ratio of the number of individuals in AuB over those
in A. We created 330 different SPARQL queries for educational.data.gov.uk
and 2,243 for DBPedia.

Next we ran EDGE over the KBs where all the subclass axioms were assigned
an initial random probability. We then computed the probability of the examples
in the testing set according to the theory learned by EDGE and to the theory
composed of the ARs with the confidence as probability. We drew the Precision-
Recall and the Receiver Operating Characteristics curves and computed the Area
Under the Curve (AUCPR and AUCROC) following the methods of [5, 7]. Table
1 shows the AUCPR, the AUCROC and the execution times (in seconds). Note
that the elapsed time for EDGE depends on the number of executed queries and
the number of different explanations involved in each query, while the elapsed
time for ARs depends on the number of classes in the KB. EDGE achieves much
higher areas in a time that is of the same or lower order of magnitude with
respect to ARs.

Areas Under Curves EDGE ARs

educational.data.gov.uk
AUCPR 0.9702 0.8804
AUCROC 0.9796 0.9158
Time (s) 65,170 10,490

DBPedia
AUCPR 0.9784 0.5916
AUCROC 0.9902 0.4346
Time (s) 50,800 578,420

Table 1. Resulting AUCPR, AUCROC and execution times.

6 Conclusions

EDGE applies an EM algorithm for learning the parameters of probabilistic
knowledge bases under the DISPONTE semantics. It exploits the BDDs that
are built during inference to efficiently compute the expectations for hidden vari-
ables. EDGE is available for download from http://sites.unife.it/ml/edge.
The experiments over two real world datasets show that EDGE achieves larger
areas both under the PR and the ROC curve with respect to an algorithm based
on ARs in a comparable or smaller time, thus demonstrating that EDGE is a
viable alternative to ARs.
We plan to extend EDGE for learning the structure together with the parame-
ters.
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Abstract. We introduce a novel method for predicting trending key-
words on Twitter. This new method exploits topology of the studied
parts of the social network. It is based on a combination of graphlet
spectra and so-called time features. We show experimentally that using
graphlets and time features is beneficial for the accuracy of prediction.

1 Introduction

In this paper, we present a method which exploits information about graph struc-
ture of sub-networks of the social network Twitter for making better predictions
about which topics will get among the top k. We show experimentally that with
information about the graph structure we are able to obtain better predictive
accuracies than with a model trained on the same data which does not use infor-
mation about the graph structure. Importantly, the presented method does not
need access to the entire graph structure as it works only with certain sets of
derived attributes, which makes it potentially possible to combine the method
with sampling strategies and also to make it able to work in differentially private
settings.

As the network structure has been proved to play an important role in spread-
ing social trends [1], we want to exploit the effect of social network topology be-
yond the scope of previous works (e.g. beyond merely measuring nodes’ degrees,
centrality etc.). Inspired by creating network signatures from graphlet degree
distributions [2] in biological networks, we use similar representation to reflect a
trend presence within our network. For that we create graphlet features - small
connected subgraphs, representing various local relative topology options, and
measure their presence in the network by means of subgraph matching. The
network trend signatures, calculated from the frequencies of respective features
occurrences, are then used as feature vectors for standard machine learning al-
gorithms.

2 Problem Setting

Twitter is an online social networking service that enables its users to send and
read text-based messages of up to 140 characters known as tweets. At the same
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time it enables users to connect to others through the follows relationship. The
users that a particular user is following through this relation are referred as
his friends. Users on the other side who are following the particular user are
referred simply as his followers. Tweets posted by a particular user are stored
and displayed as a chronological sequence in user’s timeline. Each such a tweet
being posted is also broadcasted to the users followers. Tweets are, by default,
public, which means that anyone can list them out through Twitter’s search
engine or other Twitter API facilities and join the related conversation. Moreover
Twitter users can engage in a direct conversation between each other. As for the
information content, users can group posts together by type with the use of
hashtags - words or phrases prefixed with a “#” sign, referring a tweet to the
specified topic. Hashtag signed tweets have special treatment in Twitter’s engine
and can be easily searched out.

Now, we define the prediction problem that we will be dealing with in this
paper, namely the problem of predicting the top-k trends. Unlike original Twit-
ter engine, we consider trending topics clearly by measuring the frequency of
occurrence of corresponding hashtag in the network. If the relative frequency
of hashtag in a particular timeframe is among the top-k, we declare it a trend.
One can imagine a web page which gives its users a list of k hashtags which are
predicted to get among the hottest topics in his subnetwork in the near future.

Learning is performed on data as a time series, where each hashtag occurrence
information goes into a prepared time-fold according to its time of creation. The
task is to predict which hashtags will be trending in the future target time-folds
(determined to day intervals). Unlike in the case of the basic supervised learning
task, there is an additional constraint on the output of the classifier. On every
single day, the classifier must mark as trending exactly k hashtags. To satisfy
this constraint, the classifier takes the probability distribution of classification
given by the learned Random Forest [3] model and creates respective ranking
on the instances that are subject to the current prediction. That means that
only the top k instances classified with highest confidence as trending will be
considered positive. This k-set will then be compared with the true top-k list for
the target day. The natural measure of quality of such a prediction, denoted as
top-k% metric here, is the percentage of correctly predicted topics in the target
list.

3 Simple and Baseline Models

In order to assess the contribution of graphlets and time features to accuracy
of prediction, we created two models which we call simple model and baseline
model and which serve as a baseline in this paper. In these approaches we wit-
tingly ignore the social graph structure and take the problem as a time series
prediction, which is the case of most methods found in literature. The simple
model method represents the common sense approach to the statistics measured.
It builds on basic average occurrence of the hashtags, calculated over all time-
folds in the training part of the time-window, and treats them as if they were to
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Fig. 1. Selected examples of features of size = 3, with some of the highest information
gains with respect to the trends spread.

continue constantly with that occurrence in the target part. The baseline learner
represents a classical time-series prediction method, with the use of a model to
predict future values based on previously observed values in data with natural
temporal ordering. To make a clear comparison of the models used, we turn the
time series forecasting task into a standard classification problem, using a sliding
window technique [4]. Since our main focus lies with the features extracted, it
always uses the same machine learning algorithm as the graph learner.

4 A Model Based on Graphlets and Time Features

The term graphlet, as used in this paper, refers to a small directed graph (with
up to 3 nodes) which contains at least one node labelled by “#”. Examples of
graphlets are shown in Figure 1. For every day D and every hashtag H, the
snapshot of the sub-network is a directed labelled graph constructed as follows.
There is one node for every user. There is a directed edge between two users Ui

and Uj if and only if the user Ui follows the user Uj . A node is labelled by “#”
if and only if the user corresponding to this node used the hashtag H on the
day D in at least one tweet. Given a list of graphlets Lg and a snapshot S of
the sub-network we can construct a so-called frequency-feature vector as follows.
For every graphlet gi ∈ Lg, we count the number of homomorphisms of gi to the
snapshot graph S (respecting the labels “#”) and store the number in the i-th
element of the frequency-feature vector. Clearly, frequency-feature vectors are
not very suitable for prediction of top-k trends because their values are sensitive
to the overall activity of the users on the given day. Therefore we need so-
called rank-feature vectors which can be constructed from the frequency-feature
vectors. Given a set of frequency-feature vectors for all hashtags of interest on
a given day, the i-th element of a rank-feature vector Vrank for a hashtag H
is the rank (i.e. order) of the respective i-th element of the frequency-feature
vector Vfreq corresponding to the same H among all i-th elements of the other
frequency-feature vectors corresponding to the same hashtag H. Given a time
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window consisting of several days, one can easily create a graphlet representation
by concatenating the rank-feature vectors corresponding to these days.

The rationale behind the graphlet model is that graphlets can capture how
natural user to user connections in Twitters network affect the topics discussed.
They consist of nodes and edges representing occurrence of hashtag on users
time-line in context of his neighbors, e.g. his followers and friends. A somewhat
similar representation was used in the work of Nataša Pržulj for computing
a network structure similarity measure using so called graphlet degree distribu-
tion [2], where graphlets were small connected non-isomorphic induced subgraphs
of a large network. Our relational approach differs in that, with our features, we
generate the subgraphs separately, in advance of further matching in the whole
network, while we do not restrict them to be induced. Even more importantly,
as far as we know, our approach is the first to use graphlets to model dynamical
processes in complex networks.

relation

causality

# #

Time(A) Time(B)
Time(A) < Time(B)

Positive correlation

relation

causality

# #

Time(A) Time(B)
Time(A) > Time(B)

Negative correlation

Fig. 2. The two cases of correspondence between the relation and causality in hashtag
spreading.

Besides graphlets we use also so-called time features. The main purpose of
time features is to add a measure of some time properties of the underlying
networks relations. The motivation for this comes from a natural intuition of
trends spread in social networks. In a directed network like Twitter, if the in-
formation is being spread through the network, the fashion of the spreading
should correspond to the network structure. By that we mean that the directed
relations between the users should actually represent the causality links in the
trend spread dynamics. If it is not the case, the information is probably not
coming from the network and is being spread by other channels. Now how to
measure this networks causality correspondence? For a snapshot corresponding
to a hashtag H, we label all the directed edges e = (Ui, Uj) which connect two
nodes Ui and Uj both of which are labelled by “#”, by the time between the
instant when Ui posted the tweet with the hashtag H and the instant when Uj

posted a tweet with the same hashtag. Since the difference is measured against
the direction of the underlying relation, it can in general be negative as depicted
in Figure 2. The time features can then be computed as averages and standard
deviations of these time differences by which the edges are labelled.
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Fig. 3. Final comparison of core learners on the top-k% measure.

5 Experimental Evaluation

For the testing of our graph-based approach we needed to download a suitable
dataset of tweets from Twitter. We implemented a simple crawler using the
Twitter API. The sampling strategy, i.e. the choice of the set of users that
should be downloaded was driven by a simple heuristic. Starting from a random
seed, the heuristic orders the nodes (corresponding to users) whose neighbours
should be added to the database in a greedy way so that the crawled sub-
network would be as compact as possible – it picks preferentially those nodes
which share most edges with nodes already stored in the database. The network
subsets that were eventually crawled consist of approx. 8 thousand users with 3
million internal connections, and millions of public tweet (hashtag containing)
records from December 2012, March and April 2013.

We measured the performance of our novel method and the simple and base-
line methods on the largest dataset from March 2013, with windows consisting
of 4 days of training and 1 day for prediction. We set k to 20 and performed
multiple runs of the classifier with varying seed. We tested our features with two
classifiers, namely SVM and Random Forest, both giving similar results, yet the
later proved more suitable for tuning and time complexity reasons. The choice
of parameters was tuned as to avoid overfitting of the classifier, i.e. by extend-
ing the training timescope to at least 4 days, and to have a clear threshold to
cut between trending and non-trending hashtags, i.e. higher k such as 20 helped
to avoid the situation of constant classification confidence for all the trending
hashtags.
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The improvement on the top-k% metric achieved by our method, as dis-
played in Figure 3, might in reality correspond to early detection of a couple
more upcoming trends that wouldn’t be otherwise discovered without taking
the structure of the network into account.

We also performed other experiments with the novel method which we do
not report in detail here due to lack of space but which can be found in [5]. For
example we evaluated the approach on different metrics, trend definitions and
parameters. We examined the influence of various timescope settings, e.g. the
size of train and test parts of the sliding window and various time-fold gran-
ularities. We tested the resilience of the approaches to change of data content
and network structure by an interchange of training sets from multiple datasets,
proving reasonable sensitivity of the graphlet approach both to the change of
the content (negligible) and to the change of the structure (slightly bigger sen-
sitivity). We also tested whether we could not obtain better results with other
relations, but the results came in the favour of the original follows relation over
the retweets and replies. We also assessed the usefulness of time features. It
turned out that time features contribute to the performance in the order of
several percent. Nevertheless, time features on their own performed worse than
graphlets.

6 Conclusions

In this paper, we presented an approach for prediction of trends spread within
a local Twitter subnetwork, utilizing topology structure information, based on
representation, inspired by methods from the area of biological networks. The
results prove the value of knowledge on the network structure and the contri-
bution of the approach itself. One of the appealing properties of the method is
that it exploits information about structure of the network but at the same time
it does not need the entire structure nor it does need to construct models of
individual users.
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