Prototyping with the IVY workbench: Bridging
Formal Methods and User-Centred Design*

Rafael Braga da Costa and José Creissac Campos[0000—0001-9163—580X]
University of Minho & INESC TEC, Braga, Portugal

rafael.b.costa@inesctec.pt, jose.campos@di.uminho.pt

Abstract. The IVY workbench is a model-based tool for the formal
modelling and verification of interactive systems. The tool uses model
checking to carry out the verification step. The goal is not to replace,
but to complement more exploratory and iterative user-centred design
approaches. However, the need for formal and rigorous modelling and
reasoning raises challenges for the integration of both approaches. This
paper presents a new plugin that aims to provide support for the inte-
gration of the formal methods based analysis supported by the tool, with
user-centred design. The plugin is described, and an initial validation of
its functionalities presented.

Keywords: Formal methods, user-centred design, prototyping

1 Introduction

The design of safety critical interactive systems needs to provide assurance re-
garding the quality and safety of the interaction. The exploratory nature of tra-
ditional User-Centred Design (UCD) approaches (cf. [2,9]) does not necessarily
guarantee a depth of analysis that provides this assurance. Formal (mathemat-
ically rigorous) modelling and verification are able to provide a thorough and
repeatable analysis, but interactive systems pose particular challenges for their
application (see [13,11] for discussions about these challenges).

A number of tools has been proposed that aim to address this from different
angles (see [6, 3], for reviews). Of particular interest here is the IVY workbench
tool [7]. The focus of the tool’s development has been to ease the application of
formal modelling and verification to interactive systems design. Experience with
using the tool (cf. [14, 5]) has highlighted the need to find solutions to commu-
nicate the model (for validation) and the verification results (for interpretation)
to domain and human factors experts. Prototyping seems a promising approach
to bridge this gap.

The contribution of this paper is thus an approach for the integration of
prototyping support into the IVY workbench. The goal is to enable the creation

* Author’s version of the paper published in Human-Computer Interaction, vol. 14143
of Lecture Notes in Computer Science, pages 504-513. Springer. 2023. The final ver-
ston is available at Springer via: hitp://dz.doi.org/10.1007/978-3-031-42283-6_27.

of prototypes by linking early mock-ups of the user interface with their models
developed in IVY. The mock-ups provide a concrete illustration of the visual
appearance of the interface, while the model provides its behaviour. Together
they enable the simulation of the system behaviour.

2 Background

Mock-up editors focus on the physical design of the system, allowing users and
designers to identify potential problems with the interface or generating ideas
for new functionalities [1]. Adobe XD and Figma provide a set of built-in compo-
nents, representing different user interface (UI) controls, which designers can use
to build mock-ups. More advanced features such as components with multiple
states, which support a more economical modelling of how the appearance of
the mock-up changes with user interactions, can also be found in some of these
tools. In general, however, mock-up editors have limited support for prototyp-
ing UI behaviour, as this implies some notion of the underlying system’s state.
Traditionally, these tools allow designers to define navigation rules, but without
any associated control logic. These rules capture the navigation from mock-up to
mock-up in response to user events, such as mouse clicks, but the lack of control
logic means they are static and unable to express complex behaviours.

Model-based user interface analysis tools support early detection of UI de-
sign problems [6, 3]. However, formal modelling does not integrate well with the
exploratory nature of UCD approaches. Formal modelling is also outside the
typical toolbox of a UCD practitioner. This creates barriers to adoption, even in
situations where these tools might be valuable. The IVY Workbench supports the
application of formal methods to interactive systems’ design, from writing the
models to interpreting the results of verification (performed using the NuSMV
model checker [10]). IVY is designed for simplicity, aiming to provide modelling
and analysis tools that are easily usable by non-experts and to communicate
results effectively within an interdisciplinary team. Models are expressed in the
MAL interactors language [8]. A detailed description of the language is outside
this paper’s scope. In the present context, what is relevant is that interactors
have a state (a collection of typed attributes) and actions that act on that state.
Attributes capture the contents of the user interface, and any relevant internal
state of the device. Actions capture user-triggered events, as well as relevant
internal events, which cause changes to the state.

Using the IVY tool typically involves a number of steps: model development,
model validation, property development and verification, and analysis and in-
terpretation of verification results. The validation and interpretation of results
require input from domain and human factors experts. While the model captures
the structure and behaviour of the user interface, a prototype representation of
the interface would make it much easier to communicate the intended design
and the verification results.

Tools such as Circus [12] or PVSio-web [15] place a greater emphasis on
prototyping than IVY has done so far. The former on high-fidelity prototyping,

Prototyping plugin

Framework (’)

m Script :
Engi Engi ;
ngine il Engine VY plugins |

=) A
L Nsemices j

IVY framework

Fig. 1. Prototyping plugin’s architecture

the latter focusing more on the earlier stages of design. Other authors have
explored the problem of integrating formal methods and UCD in ways that are
complementary to what is proposed herein. In [4] the goal is to bring informal
design artefacts into a formal setting by finding ways to formally describing
them, while herein the goal is to make formal artefacts accessible to designers.

3 Prototyping Plugin

To build a prototype from a MAL model, one must bring together the model,
which defines the contents and behaviour of the interface, and a mock-up pro-
viding a graphical representation of that interface. Mock-ups are assumed to
be vector graphics drawings in SVG [16]. This is achieved by configuring two
types of bindings. Event bindings specify how the prototype responds to user
interactions. They are established between user generated events in the mock-up
(e.g. clicking an SVG element) and actions of the formal model. State bindings
specify how the mock-up represents the state of the model. They are established
between attributes in the model and the components in the mock-up. User in-
teraction with the prototype triggers events, which cause the bound actions in
the model to be ezxecuted. The resulting update of the model’s attributes then
generates changes in the prototype according to the configured state bindings.

3.1 Architecture

The prototyping plugin’s architecture (see Figure 1) follows the Model-View-
Controller design pattern. The Model holds the prototype’s configuration, such
as the events and states and their mapping to the MAL model. The View defines
the UI of the plugin (using Java Swing). The Controller acts as a mediator
between View and Model. Additionally, the Framework component offers utility
methods. It includes two essential components: SVGEngine and ScriptEngine.
The SVGEngine contains methods for prototype initialization, particularly
the generic SVG parser. SVG files are read using the Apache Batik library, and

the parser leverages the DOM (Document Object Model) structure thus gener-
ated to identify all SVG elements that support user interaction. These elements
are assigned a UUID on their id property to ensure their uniqueness, allowing
fast document queries. The engine has been shown to work with Inkscape, Evolus
Pencil, Adobe Illustrator, and Adobe XD-generated SVG files.

The ScriptEngine provides support for externally loaded widgets and scripts
execution support. The inclusion of support for widgets in SVG mock-ups pro-
vides additional expressive power and simplifies the creation of mock-ups. Wid-
gets consist of a set of SVG shapes and Javascript code that specifies the widget’s
behaviour (e.g. which shape should be presented based on conditions). A library
of such widgets is being created that, at the time of writing, includes from simple
widgets such as a switch, a toggle button, a checkbox, a led light or a progress
bar, to complex widgets such as a dual mode clock face (hours/alarm) or the
display of the B. Braun Perfusor medical device (see Section 4).

The scripting environment is responsible for the initialisation of imported
widgets. Using the Rhino Javascript engine, it extracts the widgets’ properties
and methods needed for the prototype’s configuration. Furthermore, the environ-
ment performs the management of all widget element identifiers to ensure their
uniqueness. This task prevents problems from scenarios where a user builds a
prototype containing multiple instances of the same widget. The scripting envi-
ronment is also responsible for binding the SVG mock-up and the MAL model.
This feature is essential for combining the formal model capabilities of IVY with
the mock-up. During prototype animation, the environment invokes the widgets’
methods with relevant values obtained from the model. These methods use DOM
queries to select SVG elements. Then, they modify the CSS properties of those
elements according to the parameters received.

3.2 The Plugin’s Ul

The prototyping plugin’s UT (see Figure 2) features the SVG renderer, the SVG
sidebar and the Configuration sidebar. An animation mode is also provided. The
renderer uses the Apache Batik library to render the SVG mock-up, and supports
SVG elements selection by clicking. The SVG tree sidebar displays the SVG’s
hierarchical structure. It provides basic SVG editing functionalities, including
visibility toggling, and element deletion and insertion.

The Configuration sidebar supports the definition of the binding between
mock-up and model. The states tab allows users to bind SVG elements to the
model’s attributes. Each element has a default state representing its initial ap-
pearance. Users can modify the properties of that state, or add more states
that are triggered when a specific condition is met. SVG tags, such as g, have
a predefined set of properties that can be configured (e.g. their visibility), while
externally loaded widgets allow users to configure any properties presented in
their props object. The Ul guides users in selecting valid values for the prop-
erties, listing attributes according to the type required by each property. This
helps prevent binding errors. At animation time, the environment checks whether
any of the defined conditions of an element matches its criteria. If this happens,

(&) clocki [compiled] - o X

File Editor Services
Editor Properties Debugger Traces Analyzer Prototyper Smv Animator
Export

svg States Events

Switch
g Switch

circle
circle Default State
rect

image
circle K X visible
Switch1
g
circle
e = O o —
rect
image

circle

Fig. 2. User interface of the plugin — (1) SVG renderer; (2) SVG sidebar; (3) Configu-
ration sidebar; (4) Access to animation mode; (5) Prototype configuration

then the matched state will be rendered. Otherwise, the simulation renders the
default state of the element.

The events tab allows users to bind events at the SVG level (triggers) with
formal model’s actions. A trigger can be a user interaction or a periodic timer
event. A trigger can be defined to directly execute a widget function. This offers
the possibility to change the prototype’s appearance without the formal model’s
assistance. This feature supports the creation of advanced prototypes without
the need for creating complex formal models, by isolating cosmetic changes at
the SVG level.

The animation window displays the prototype (in a SVG renderer), and the
list of available actions (see Figure 3). The environment uses IVY’s internal
messaging system to communicate with the NuSMV model checker and obtain
the current state of the prototype. Users can interact with the prototype through
the mock-up, triggering the defined events, or with the actions in the list.

4 An example — the B. Braun Perfusor® Space

The B. Braun Perfusor® Space is a programmable infusion pump that automates
the administration of drugs to patients. Although the device offers multiple con-
figuration modes, herein we will focus on the programming of the value to be
infused (VTBI). We will briefly describe the formal model, the UI mock-up, and
the prototype’s configuration and running.

The goal of the formal model is to capture the behaviour of the device.
The VTBI is presented on the display (see Figure 3). Digits can be increased
and decreased by pressing the up and down keys. A cursor (identified by a black
square) highlights the currently selected digit. The left and right arrow keys move

position run{ing Ieit u|p ri/ght Actions
down
tm infuse
9 left
i Stop/

| right

digits down startStop

startStop

Fig. 3. Mock-up of the B. Braun Perfusor® Space Ul

the cursor between digits. The start/stop button, controls drug administration.
When the device is administering the drug, the running indicator lights up. In
this mode, users cannot interact with the cursor, and the value represented in
the display decreases over time.

The infusion pump model consists of a MAL interactor capturing the contents
and behaviour of its user interface. A detailed description of the model is not fea-
sible herein. Enough will be described to make the example clear. This amounts
to explaining which attributes and actions are needed in the model. Looking at
Figure 3, the following attributes are relevant: digits (an array holding the value
of each digit in the display), position (an integer indicating the cursor position
in the display), running (a boolean indicating whether the device is in infusion
mode). As for actions, the model defines the following: up/down (increase/de-
crease the value in the selected digit), left/right (increase/decrease the position
attribute — i.e. move the cursor), startStop (start/stop the infusion process), in-
fuse (internal action that represents the progression of the infusion process by
decreasing the volume to be infused until it reaches 0 or the device is stopped).
This is expressed in MAL as (axioms ommited for brevity):

interactor main

attributes
[vis] digits: array 0..MAXDIG of int
[vis] position: 0..MAXDIG
[vis] running: boolean

actions
[vis] up down left right startStop
infuse

Figure 3 presents the device’s Ul mock-up. Besides basic SVG shapes rep-
resenting buttons and static information, it features two widgets: led and cursor.
The led widget is used to indicate if the device is in infusion mode. It has a prop-
erty (On) to control whether the led is light-up. The cursor widget was explicitly
developed to represent the digits screen of this pump. Its main properties are
Digits (each of the digits displayed) and Cursor Position (the position of the
cursor in the display).

To have a running prototype, bindings between model and mock-up need
to be defined. Configuration of the cursor widget is done by binding the attributes
digits and position from the model to the properties Digits and Cursor Position,
respectively. Configuration of the led widget is done by binding the running
attribute from the model to the On property of this widget. The click events
of the arrow buttons and the start/stop button are bound to the appropriate
actions (up, down, left, right, startStop). Finally, the infuse action was bound to
a timer event, which executes every one second. Once all the steps just described
were performed, users were able to interact with the prototype in the simulation
window. Figure 3 is in fact a screen capture of the contents of that window,
annotated for readability.

5 Validation

The medical device above served as validation of the functional capabilities of
the new plugin. The next phase of the project will be to validate the role of
the plugin as a bridge between formal methods and human factors and domain
experts. This will entail exploring its use to validate formal models by allowing
domain experts to interact with the model via the prototype, thus validating the
captured behaviour, as well as using the prototype to replay behaviours resulting
from the verification process, to support the identification of errors.

As a first step, however, we were interested in evaluating whether the process
of creating prototypes is itself accessible to non-experts. We have carried out the
pilot of a user test designed to evaluate this. The test consists of setting up the
prototype for the B. Braun device, given the formal model and the mock-up. The
trial sessions were performed on a laptop with the IVY Workbench installed, and
the required model and mock-up available. A consent form, a test script contain-
ing a brief introduction to IVY, a step-by-step guide to prototype configuration,
and a final questionnaire were also made available. The step-by-step guide ex-
plained the configuration of a toggle button. The questionnaire served to collect
demographic data (name, age, sex and background experience) and collect feed-
back on the tool. The full test procedure was the following: (1) welcome and
consent form signing; (2) test script presentation and brief explanation of the
tool and the activities to perform; (3) execution of the step-by-step example and
clarification of any questions related to the tool; (4) execution of the actual test
(recorded via screen capturing); (5) answering the questionnaire.

The pilot involved 5 participants (one male and four female) with average
age 23.6 years (o = 2.1). Participants were selected to cover a wide range of
backgrounds. One participant had a software engineering background. Two par-
ticipants had design backgrounds. And the last two participants did not have
a background in either of the areas. Two participants indicated that they had
previous experience with mock-up editors, none had experience with IVY.

All participants were able to complete the configuration of the prototype. The
average time required to fulfil the task was 8 minutes 55 seconds (¢ = 2ml7s).
Overall the pilot validated the testing protocol and a number of observations was

already possible. Users were able to quickly select the appropriated attributes of
the formal model to configure the required states of the elements in the mock-
up. However, they had difficulties selecting SVG elements composed from other
SVG elements. Users rarely selected elements by interacting with the renderer.
Instead, they prefered the SVG tree sidebar. Initially, users had some difficulties
in distinguishing the differences between states and events. These were overcome
as they interacted more with the tool.

As mentioned, at the end of the test a number of questions were asked about
the tool. Regarding their overall impression of the system, all participants made
a positive overall evaluation. As most positive aspects of the system, participants
mentioned the simplicity of the UI. Three participants approved the possibility
of selecting SVG elements both with the SVG tree sidebar and the renderer.
One participant mentioned the attribute selection guidance in the states con-
figuration process. As most negative aspects, participants mentioned difficulties
in selecting groups of SVG elements. As most surprising aspects of the system,
three participants mentioned the use of widgets in the mock-ups, two partic-
ipants pointed out periodic time events, and one participants mentioned the
tool’s capabilities to create running prototypes with ease. As for missing func-
tionalities, two participants pointed out drag and drop and SVG group selection
in the renderer. Only two participants (those with prior experience with mock-
up editors) were able to compare the functionalities of the plugin with other
UI prototyping tools. Both participants appreciated the capabilities of adding
behaviour to prototypes afforded by the tool.

6 Conclusion

We have presented a new plugin for the IVY workbench. The plugin aims to
provide support for the integration of the formal methods based analysis, with
user centred design. It proposes to achieve this through supporting the process of
creating user interface prototypes by binding together the formal models used for
analysis, and the mock-ups used for user centred design. These prototypes will
be instrumental in, first, validating the behaviour captured by the model with
domain experts and human factors experts, and, second, communicate the results
of the analysis to the same stakeholders. The goal is not to replace tools like
Figma, rather integrate the workflows of such tools with the formal verification
workflow. In any case, in doing this we achieve prototypes that are able to exhibit
a level of behaviour that is not easily achieved with mock-up editors.

Besides describing the plugin, the paper describes the initial steps taken
to validate the tool. Although preliminary, the tests already emphasised the
strengths and weaknesses of the new prototyping features. Users recognised the
widgets’ capabilities and generally found the developed UI intuitive. However,
users had difficulties selecting SVG elements in the renderer, suggesting some
improvements are needed to support group selection as default instead of single
element selection.

Future work will include further developing the widgets library and proceed-
ing with the evaluation of the tool. First by completing the evaluation mentioned
above. Then, by exploring the role that the tool might have as a bridge between
formal methods and user-centred design.

Acknowledgements This work is financed by National Funds through the
Portuguese funding agency, FCT - Fundacao para a Ciéncia e a Tecnologia,
within project UIDB/50014/2020.

References

1. Beaudouin-Lafon, M., Mackay, W.: Prototyping tools and techniques. In: Jacko,
J.A., Sears, A. (eds.) The human-computer interaction handbook: fundamentals,
evolving technologies and emerging applications, chap. 52, pp. 1006-1031. L. Erl-
baum Associates Inc., 365 Broadway Hillsdale, NJUnited States (2002)

2. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centred Systems.
Morgan Kaufmann (1998)

3. Bolton, M.L., Bass, E., Siminiceanu, R.: Using formal verification to evaluate
human-automation interaction: A review. IEEE Transactions on Systems, Man,
and Cybernetics, Part A: Systems and Humans 43(3), 488-503 (May 2013)

4. Bowen, J., Reeves, S.: Formal models for informal gui designs. Electronic Notes in
Theoretical Computer Science 183, 57-72 (2007), proceedings of the First Inter-
national Workshop on Formal Methods for Interactive Systems (FMIS 2006)

5. Campos, J.C., Sousa, M., Alves, M.C.B., Harrison, M.D.: Formal ver-
ification of a space system’s user interface with the IVY workbench.
IEEE Transactions on Human-Machine Systems 46(2), 303-316 (April 2016).
https://doi.org/10.1109/THMS.2015.2421511

6. Campos, J., Fayollas, C., Harrison, M., Martinie, C., Masci, P., Palanque, P.: Sup-
porting the analysis of safety critical user interfaces: an exploration of three formal
tools. ACM Transactions on Computer-Human Interaction (2020), accepted

7. Campos, J., Harrison, M.D.: Interaction engineering using the IVY tool. In: ACM
Symposium on Engineering Interactive Computing Systems (EICS 2009). pp. 35—
44. ACM, New York, NY, USA (2009)

8. Campos, J.C., Harrison, M.D.: Model checking interactor specifications. Auto-
mated Software Engineering 8(3/4), 275-310 (August 2001)

9. Carroll, J. (ed.): Scenario Based Design: Envisioning Work and Technology in
System Development. Wiley (1995)

10. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) Computer Aided Verification. pp.
359-364. Springer Berlin Heidelberg, Berlin, Heidelberg (2002)

11. Dix, A., Weyers, B., Bowen, J., Palanque, P.: Trends and gaps. In: Dix, A., Weyers,
B., Bowen, J., Palanque, P. (eds.) The Handbook of Formal Methods in Human-
Computer Interaction, chap. 3, pp. 65-88. Springer (2017)

12. Fayollas, C., Martinie, C., Palanque, P., Deleris, Y., Fabre, J.C., Navarre,
D.: An approach for assessing the impact of dependability on usabil-
ity: Application to interactive cockpits. Proceedings - 2014 10th European
Dependable Computing Conference, EDCC 2014 pp. 198-209 (05 2014).
https://doi.org/10.1109/EDCC.2014.17

13.

14.

15.

16.

Harrison, M.D., Campos, J.C., Loer, K.: Formal analysis of interactive systems:
opportunities and weaknesses. In: Cairns, P., Cox, A. (eds.) Research Methods in
Human Computer Interaction, chap. 5, pp. 88—111. Cambridge University Press
(2008)

Harrison, M., Freitas, L., Drinnan, M., Campos, J., Masci, P., di Maria, C.,
Whitaker, M.: Formal techniques in the safety analysis of software components
of a new dialysis machine. Science of Computer Programming 175, 17-34 (April
2019). https://doi.org/10.1016/j.scico.2019.02.003

Masci, P., Oladimeji, P., Zhang, Y., Jones, P., Curzon, P., Thimbleby, H.: PVSio-
web 2.0: Joining PVS to HCI. In: Kroening, D., Pasireanu, C.S. (eds.) Computer
Aided Verification: 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part I, pp. 470-478. Springer International
Publishing (2015). https://doi.org/10.1007/978-3-319-21690-4_30

W3C: Scalable Vector Graphics (SVG) 2. Candidate Recommendation CR-
SVG2-20181004, W3C (October 2018), https://www.w3.org/TR/2018/CR-SVG2-
20181004/

