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A B S T R A C T   

This paper considers the problem of scheduling jobs in a no-wait flow shop with the objective of minimizing total 
earliness and tardiness. An exact branch-and-bound algorithm is developed for the problem. Several dispatching 
heuristics used previously for other environments and two new heuristics were tested under a variety of con-
ditions. It was found that one of the new heuristics consistently performed well compared to the others. An 
insertion search improvement procedure with speed up methods based on the structure of the problem was 
proposed and was found to deliver much improved solutions in a reasonable amount of time.   

1. Introduction 

Scheduling problems with the objective of minimizing total earliness 
and tardiness have gained increased attention during the past four de-
cades. A key reason for this is the adaption of supply chain management 
in which customers and suppliers have tried to have better coordination 
in their operations. This causes the early and tardy delivery of products 
to be viewed as poor quality service. Early deliveries result in unnec-
essary inventory that requires space, cash and resources needed to 
maintain and manage the inventory. Lost sales and the loss of customer 
good will are penalties that are the result of tardy delivery of products. 
This paper addresses this trend by considering an objective that sums the 
penalties for earliness and tardiness for a set of jobs to be processed in a 
no-wait flow shop. 

A flow shop is a production shop that consists of two or more ma-
chines. In a flow shop each of the jobs to be processed uses the machines 
in the same order. In a no-wait flow shop once a job starts processing it 
must continue through the flow shop without any intermediate waiting. 
In some cases, the nature of the product is such that the no-wait re-
striction is a requirement. In many cases, organizations are adopting a 
lean production philosophy and want to minimize waste by not having 
any waiting between the machines. When jobs do not have to wait be-
tween the machines there is no in-process inventory and space is not 
wasted. 

The objective in this problem is non-regular, therefore the insertion 
of idle time into a schedule could help to reduce the earliness of some 
jobs and thus improve the objective. In a traditional flow shop, there 
could be idle time on any of the machines but if additional idle time 

(unforced idle time) was to be used in the no-wait flow shop environ-
ment it would have to occur on the first machine because the storage of 
jobs is not allowed in between the intermediate stages. There are pro-
duction environments, however, where the insertion of unforced idle 
time may not be productive. Korman (1994) and Landis (1993) provide 
specific examples of the undesirability of unforced idle time. If the ca-
pacity of the shop is limited relative to its production requirements, then 
unforced idle time should be avoided. If the machines are expensive to 
operate and starting the machines up again after the idle time is 
expensive then idle time should also be avoided. We do not consider the 
use of unforced idle time when developing sequences and schedules in 
this research. 

2. Literature review 

Research that is relevant to our problem is scheduling with earliness 
and tardiness penalties, scheduling flow shops with earliness and 
tardiness penalties and scheduling in a no-wait flow shop with these 
penalties. Many papers have been published that consider earliness and 
tardiness penalties. Baker and Scudder (1990) cover the early papers 
with these penalties. More recent research for early/tardy penalties was 
covered by Hoogeveen (2005). Most of the research for the early/tardy 
objective was for the single machine environment. Valente (2009) 
summarized more recent research for single machine environments with 
no idle time and an early/tardy objective. Kanet and Sridharan (2000) 
provide a review for the model that considers inserted idle time. One of 
the important considerations is timetabling algorithms to insert idle 
time to optimize a sequence for the single-machine problem. Papers that 
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address this topic include Fry et al. (1987), Davis and Kanet (1993) and 
Yano and Kim (1991). Davis and Kanet (1993), Szwarc (1993), Kim and 
Yano (1994), and Schaller (2007) consider the problem of finding an 
optimal sequence for the single-machine problem when considering 
inserted idle time. 

We found ten papers that consider earliness and tardiness costs for 
flow shop environments without the no-wait restriction. Two early pa-
pers that considered the objective were Zegordi et al. (1995) and 
Rajendran (1999). Moslehi et al. (2009) considered the objective of 
minimizing the sum of maximum earliness and tardiness in a 
two-machine flow shop. Chandra et al. (2009) consider the flow shop 
problem with earliness and tardiness penalties when there is a common 
due date. Madhushini et al. (2009) developed branch-and-bound algo-
rithms by for a variety of objectives including minimizing earliness and 
tardiness. Schaller and Valente (2013b) developed a genetic algorithm, 
M’Hallah (2014) developed a variable neighborhood search heuristic, 
and a constructive heuristic, as well as, local searches were developed by 
Fernandez-Viagas et al. (2016) for the problem. Family setups were 
incorporated into the problem by Schaller and Valente (2013a). Schaller 
and Valente (2019) consider the problem of scheduling a permutation 
flow shop to minimize total earliness and tardiness when unforced idle 
time is allowed and develop several heuristics for the problem. 

To the best of our knowledge there have been no papers that have 
addressed the problem of minimizing total earliness and tardiness in a 
no-wait flow shop. However, there has been a great deal of research on 
scheduling problems in the no-wait flow shop environment. A review of 
early work was provided by Hall and Sriskandarajah (1996). Much of the 
research dealt with objectives that were measures of efficiency such as 
minimizing makespan or flowtime. Recent research with an objective of 
minimizing makespan includes Pan et al. (2008) and Laha and Chak-
raborty (2009). For the flowtime objective, Framinan et al. (2010) and 
Gao et al. (2011) are recent examples. There has been increased research 
in recent years on objectives that measure the shop’s ability to meet due 
dates and include tardiness in the objective. Minimizing total tardiness is 
similar to our objective but does not penalize the early completion of 
jobs. Aldowaisan and Allahverdi (2012), Liu et al. (2013) and Ding et al. 
(2015) are recent examples of research for minimizing total tardiness in 
no-wait flow shops. 

The next section provides a formal statement of the problem. In 
section four, an exact branch-and-bound algorithm is developed. Pro-
posed dispatching heuristics are described in section five. In section six, 
computational experiments for the branch-and-bound algorithm and for 
the dispatching heuristics are described and the results are presented. In 
section seven, insertion search improvement procedures are presented, 
as well as a computational test of these procedures. Section eight con-
cludes the paper. 

3. Problem statement 

We consider the problem where n jobs are processed by m machines 
in a no-wait flow shop. We use dj to denote the distinct due date of job j 
(j ¼ 1, …, n). The processing time and completion time of job j (j ¼ 1, …, 
n) on machine i (i ¼ 1, …, m) are denoted by pji and Cji respectively. We 
use Ej to denote the earliness of job j (Ej ¼max {dj – Cjm, 0}, for j ¼ 1, …, 
n) and Tj to denote the tardiness of job j (Tj ¼max {Cjm –dj, 0}, for j ¼ 1, 
…, n). The objective is to minimize Z ¼

Pn
j¼1Ej þ Tj. 

In this paper we only consider no-wait flow shops. A permutation 
flow shop is a flow shop in which the order the jobs are processed re-
mains the same on each machine. Therefore no-wait flow shops are also 
permutation flow shops so a solution is defined by determining the order 
in which the jobs will be processed. Also, for each pair of jobs it can be 
determined how much idle time is needed on the first machine between 
the finish time of the job sequenced first and the start time of the job 
sequenced second. This time is the same regardless of where the pair of 
jobs appears in the sequence so it can be calculated before sequencing 

jobs. We refer to this time as the delay or offset time and use OSjk to 
denote the offset time needed on the first machine if job j is sequenced 
immediately after job k for job j not to wait at any of the machines. A 
dummy job 0 is used to take into consideration that a job may be first in a 
sequence and OSj0 ¼ 0 for j ¼ 1, …, n. Once a start time for a job is 
determined, its completion time on the final machine is easy to deter-
mine as we only need to add the sum of the job’s processing times to its 
start time. Let [j] represent the job that is in the jth position of a given 
sequence. The completion time of the job in position j of the sequence 

C[j]m ¼ C[j-1]1 þ OS[j][j-1] þ
Pm

i¼1
p½j�i, where C[0]1 ¼ 0. 

To calculate the offset time between a pair of jobs j and k when job j is 
to immediately follow job k (OSjk) we can use the following. 

OSjk ¼ max
i¼1;:::;m� 1

nXi

l¼1
pklþ1 �

Xi

l¼1
pjl

o
:

The offset times between pairs of jobs can be thought of as a 
sequence-dependent setup time on the first machine. Using this concept, 
the problem can be transformed into a single-machine early/tardy 
problem with sequence-dependent setups. Let dj’ be a modified due date 

for job j by setting dj’ ¼ dj – 
Pm

i¼2
pji. This is the time job j must finish on the 

first machine in order to finish on time on the last machine since the no- 
wait constraint means that the job is processed on all machines without 
any idle time between machines. The earliness of job j, Ej, can be 
equivalently defined as: Ej ¼max {dj’ – Cj1, 0}, for j ¼ 1, …, n and the 
tardiness of job j, Tj, is defined as: Tj ¼max {Cj1 – dj’, 0}, for j ¼ 1, …, n. 
The problem then becomes: 

Min Z¼
Xn

j¼1
E½j� þ T½j� (1) 

Subject to:  

C[j]1 ¼C[j-1]1 þ OS[j][j-1] þ p[j]1. For j ¼ 1, …, n                                  (2) 

We use this formulation to help us develop an exact branch-and- 
bound algorithm in the next section. 

4. An exact branch-and-bound algorithm 

In this section we develop an exact branch-and-bound algorithm. 
This algorithm will allow us to obtain an optimal solution for the 
problem, at least for small problems, which will help us evaluate the 
quality of solutions generated by heuristic approaches. In this branch- 
and-bound algorithm, a node in the branch-and-bound tree represents 
an initial partial sequence of jobs. For each node in the branch-and- 
bound tree a lower bound on the optimal objective value is calculated 
and conditions are examined that could help fathom the node. An 
incumbent value, that represents the value of the total earliness and 
tardiness of the current best sequence, is compared to the lower bound 
found for a node and if the incumbent value is less than or equal to the 
lower bound the node is fathomed. If a complete sequence is found with 
an objective value that is less than the incumbent’s value, then the 
incumbent is updated and retained as the best sequence found. Initially 
the incumbent value is set equal to M, where M is a very large value. 

4.1. Lower bounds 

In this section we consider how to obtain a lower bound of the total 
earliness and tardiness for the completion of an initial partial sequence. 
For a given initial partial sequence we would not know the completion 
times on the first machine for the unscheduled jobs or what position of 
the completed sequence their modified due dates would be in. In order 
to develop a lower bound, we use modified due dates and completion 
times for the remaining positions in the sequence that will provide a 
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lower bound on the objective. We first show how modified due dates can 
be obtained that when substituted for the actual modified due dates 
results in a lower bound on the objective and then describe two ap-
proaches for obtaining lower and upper bounds on completion times on 
the first machine for the jobs in the positions of the sequence that have 
not yet been scheduled. By comparing these lower and upper bounds for 
completion times to the substituted modified due dates a lower bound on 
the objective is obtained. 

For the objective of minimizing total earliness and tardiness on a 
single machine Schaller (2007) proved that if the due dates in EDD order 
are substituted for the actual due dates and compared to the actual 
completion times a lower bound on the total earliness and tardiness is 
obtained. For our problem let d’EDD be the modified due dates sorted in 
non-descending order. We call these due dates EDD modified due dates. 
Then, 

Pn
j¼1(max {C[j]1 – d’EDD[j], 0}) þ max { d’EDD[j] – C[j]1, 0}) �

Pn
j¼1(max {C[j]1 – d’j, 0} þmax {d’j – C[j]1, 0}). This result can be used as 

a substitute for (1) to provide a lower bound. We also would not know 
the actual completion times (C[j]1 for j ¼ 1, …, n) of the jobs in a 
sequence but we can calculate lower and upper bounds on these 
completion times. Let LBC[j]1 be a lower bound on the completion time 
on the first machine of the job in position j of the sequence and let UBC[j] 

1 be an upper bound on the completion time on the first machine of the 
job in position j of the sequence. Let σ represent an initial partial 
sequence with p jobs. We can use the following mathematical program to 
obtain a lower bound for total earliness and tardiness on the completion 
of the partial sequence. 

Min ZLB¼
Xp

j¼1

�
max

�
C½j�1 � d’½j�; 0

�
þmax

�
d’½j� � C½j�1; 0

��

þ
Xn

j¼pþ1

�
max

�
C½j�1 � 0d’EDD½j�; 0

�
þmax

�
d’½j� � CEDD½j�1; 0

��
(3) 

Subject to:  

C[j]1 ¼C[j-1]1 þ OS[j][j-1] þ p[j]1. For j ¼ 1, …, p                                  (4)  

C[j]1 � LBC[j]1 For j ¼ pþ1, …, n                                                      (5)  

C[j]1 �UBC[j]1 For j ¼ pþ1, …, n                                                      (6) 

In order to implement the above mathematical program, we need a 
method to develop lower and upper bounds on the completion times on 
the first machine for the jobs in positions pþ1 through n for the 
completion of the partial sequence. We develop two approaches for 
obtaining these lower and upper bounds. For both approaches we let σ’ 
be the set of jobs not in the initial partial sequence. 

4.1.1. Approach 1 
Using this approach, we look at the minimum offset times for each 

job and the processing times on the first machine sorted in shortest 
processing time order (SPT) to obtain lower bounds on completion 
times. We use the maximum offset times for each job and the processing 
times on the first machine sorted in longest processing time order (LPT) 
to obtain upper bounds on the completion times. Let pSPT[j]1 be equal to 
the processing time on the first machine of the jth job in the set σ0 if the 
jobs are sorted in SPT order and pLPT[j]1 be equal to the processing time 
on the first machine of the jth job in the set σ0 if the jobs are sorted in LPT 
order. Let SOSσ’[p] be the shortest offset time among the jobs in σ0 if 
sequenced immediately after the last job sequenced in σ and LOSσ’[p] be 
the associated longest offset time among these jobs. Lower and upper 
bounds on the completion time on the first machine for the next job to be 
sequenced after σ are:  

LBC[pþ1]1 ¼C[p]1 þ SOSσ’[p] þ pSPT[1]1 and UBC[pþ1]1 ¼C[p]1 þ LOSσ’[p] þ

pLPT[1]1.                                                                                               

To obtain the lower and upper bounds for the completion times for 

positions pþ2 through n we let SOSjσ’ and LOSjσ’ be the minimum and 
maximum offset time for job j ε σ0 among the jobs in the set σ’. We then 
sort these times by shortest and longest time, respectively. Let OSSOS[j]σ’ 
be equal to the offset time for the job in the set σ0 if the jobs are sorted in 
shortest minimum offset time order and OSLOS[j]σ’ be equal to the offset 
time for the job in the set σ’ if the jobs are sorted in longest maximum 
offset time order. The lower and upper bounds on the completion times 
on the first machine for the jobs that will fill positions pþ2 through n are:  

LBC[j]1 ¼ LBC[j-1]1 þ OSSOS[j-1]σ’ þ pSPT[j]1 and UBC[j]1 ¼UBC[j-1]1 þ OSLOS 

[j-1]σ’ þ pLPT[j]1 for j ¼ pþ2, …, n.                                                           

In the two equations above n – p – 1 shortest and longest minimum 
and maximum offset times are used (for each j a j – 1 offset time is used). 
The reason for this is in the first position (p þ 1) the shortest and longest 
offset times among the jobs in the set σ’ if scheduled immediately after 
job [p] are used. 

4.1.2. Approach 2 
In this approach we also look at the minimum and maximum offset 

times for each job to develop lower and upper bounds on the completion 
times on the first machine but combine these values with each job’s 
processing time on the first machine. By doing this we hope to achieve 
better bounds than the first approach. Let POSj[p] be equal to the offset 
time of job j if it is sequenced immediately after the job in position p plus 
job j’s processing time on the first machine (POSj[p] ¼ pj1 þOSjp for j ε σ0). 
Let MINPOS ¼min {POSj[p]} for j ε σ0 and MAXPOS ¼max {POSj[p]} for j 
ε σ’. 

Lower and upper bounds on the completion time on the first machine 
for the next job to be sequenced after σ are:  

LBC[j]1 ¼C[p]1 þ MINPOS and UBC[j]1 ¼C[p]1 þ MAXPOS.                       

To obtain the lower and upper bounds for the completion times for 
positions pþ2 through n, let SOS[j]σ’ ¼OSSOS[j]σ’ þ pj1 and LOSjσ’ ¼OSSOS 

[j]σ’ þ pj1 for job j ε σ’. We then sort these times by shortest and longest 
time, respectively. Let SOSS[j] be the jth shortest SOS time and LOSL[j] be 
the jth longest LOS time. The lower and upper bounds, using this 
approach, on the completion times on the first machine for the jobs that 
will fill positions pþ2 through n are:  

LBC[j]1 ¼ LBC[j-1]1 þ SOSS[j-1] and UBC[j]1 ¼UBC[j-1]1 þ LOSL[j-1] for 
j ¼ pþ2, …, n.                                                                                      

Similar to the first approach, in the two equations above n – p – 1 
shortest and longest minimum and maximum offset plus first machine 
processing times are used (for each j a j – 1 time is used). The reason for 
this is in the first position (p þ 1) the shortest and longest offset plus first 
machine processing times among the jobs in the set σ’ if scheduled 
immediately after job [p] are used. 

4.2. Dominance conditions 

In this section we present conditions for jobs that are adjacent in a 
partial sequence that can eliminate further consideration of the partial 
sequence. Let S be a partial sequence with p � 3 jobs. Let job k be the last 
job in the partial sequence, jobs h and j are adjacent jobs that immedi-
ately precede job k with job h before job j, and job g immediately pre-
cedes job h in the partial sequence S. If there are only three jobs in the 
partial sequence, then job g is a dummy job 0 and any job immediately 
following has an offset time of 0. We consider a partial sequence S0 that is 
the same as S except the positions of jobs h and j are exchanged so job h is 
after job j and immediately precedes job k and job j is the first job after 
job g. Let Ck1 (S) and Ck1 (S0) be the completion times of job k on the first 
machine in schedules S and S0 respectively. Let Th (S), Tj (S), Tk (S), Th 
(S0), Tj (S0), Tk (S0) be the tardiness of jobs h, j, and k in partial sequences 
S and S0 respectively and let Eh (S), Ej (S), Ek (S), Eh (S0), Ej (S0), Ek (S0) be 
the earliness of jobs h, j, and k in partial sequences S and S0 respectively. 
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Note that the completion times on the first machine, or the earliness or 
tardiness, will not change for the jobs before jobs h and j (job g and any 
jobs preceding g). Let Cdiff be the absolute value of the change in the 
completion time of job k on the first machine if the partial sequence S0 is 
used instead of S (Cdiff ¼ jCk1 (S0) – Ck1 (S)j ¼ j(OSjg þ OShj þ OSkh) – 
(OShg þ OSjh þ OSkj)j). Let OBJdiff be the difference in the objective 
values of the two partial sequences. OBJdiff ¼ (Th (S) þ Tj (S) þ Tk (S) þ
Eh (S) þ Ej (S) þ Ek (S)) – (Th (S0) þ Tj (S0) þ Tk (S0) þ Eh (S0) þ Ej (S0) þ
Ek (S’)). We have the following condition that can be used to eliminate 
partial sequences from further consideration. 

Condition 1. If OBJdiff > Cdiff * (n – p) then partial sequence S can be 
eliminated from further consideration. 

Proof: Let σ0 be the set of jobs that are not included in the partial 
sequences S and S’. There are (n – p) jobs in σ’. For any completion of the 
partial sequences the jobs in σ0 will have their completion times on the 
first machine change by Cdiff if the initial partial sequence S0 is used 
instead of S. Therefore the earliness or tardiness of each of these jobs 
would increase by at most (an upper bound on the increase) Cdiff and Cdiff 
* (n – p) is an upper bound on the total increase in earliness and tardiness 
for the jobs in the set σ0 if S0 is used instead of S. OBJdiff represents the 
savings in earliness and tardiness of the jobs in S0 if it is used instead of S 
and if it is larger than Cdiff * (n – p) the initial partial sequence S’ will 
result in a lower total earliness and tardiness when completed than the 
initial partial sequence S.// 

We could strengthen the above condition if we knew how many tardy 
or early jobs would be in the set σ0 under the two initial partial se-
quences. For example if Ck1 (S0) < Ck1 (S) and there are 3 jobs in the set 
σ0 with a modified due date dj’ (j ε σ0) � Ck1 (S0) then we know that using 
S0 will decrease the tardiness of each of these jobs by Cdiff so we can add 
these savings to OBJdiff and compare it to Cdiff * (n – p – 3) to determine 
whether or not to eliminate S. Let Cdec ¼max {Ck1 (S) – Ck1 (S0), 0} and 
Cinc ¼max {Ck1 (S0) – Ck1 (S), 0}. We also use the lower and upper 
bounds on the completion times on the first machine of the jobs in po-
sitions p þ 1 through n for the jobs in the set σ0 in the initial partial 
sequence S as well as the modified due dates d’ to find lower bounds on 
the number of tardy and early jobs. Let LBntdy and LBnely be the lower 
bounds on the number of tardy and early in the set σ0 respectively. If Cdec 
> 0 (Ck1 (S0) < Ck1 (S)) we can also find a lower bound on the decrease in 
tardiness that will result if S0 is used for jobs that will be tardy in S and an 
upper bound on any earliness these jobs would have if S0 is used instead 
of S. We do the same thing for the minimum number of early jobs in the 
set σ0 finding lower bounds on the decrease in earliness that will result if 
S0 is used for jobs that will be early in S and an upper bound on any 
tardiness these jobs would have if S’ is used instead of S. Based on this 
we update OBJdiff and check the following two conditions. 

Condition 2. If Cdec > 0 and OBJdiff > Cdec * (n – p – LBntdy) then partial 
sequence S can be eliminated from further consideration. 

Condition 3. If Cinc > 0 and OBJdiff > Cinc * (n – p – LBnely) then partial 
sequence S can be eliminated from further consideration. 

5. Dispatching heuristics tested 

Several heuristics were tested for the problem. Each of the heuristics 
tested are either variants of heuristics used in other environments or 
were motivated by heuristics used in other environments but were 
modified for the no-wait flow shop environment. 

We use the following notation in the heuristics. S is a current partial 
schedule. If job j (j 62 S) is the next job scheduled after S, Cjm (S) is job j’s 
completion time. We use sj (S) to represent the slack of job j if job j is the 
next job scheduled after S, where sj (S) ¼ dj – Cjm (S). Additionally, let t 
be the current availability time of machine 1 under schedule S. This is 
the time the last job in schedule S completes its processing on the first 
machine. Pj (S) (Pj (S) ¼ Cjm (S) – t) is used to represent the time the shop 
is allocated to job j if job j is the next job scheduled after S, which 

includes the total processing time of job j plus the initial idle time on the 
first machine. Therefore, since the problem deals with a no-wait flow 
shop environment, Pj(S) includes both the job’s cumulative processing 
time and its offset time. Suppose k jobs have been selected and we are 
now selecting the k þ 1st job. Let [k] represent the job in position k. Pj 

(S) ¼OSj[k] þ
Pm

i¼1
pji . 

5.1. Simple dispatching heuristics 

We considered four simple dispatching heuristics. We include these 
heuristics because they are widely used in other environments, easily 
adopted to the no-wait flow shop environment when earliness and 
tardiness is the objective, and very efficient. These dispatching heuris-
tics are listed in Table 1. For each heuristic, an abbreviation, as well as 
its name is given, references for its initial use, and the priority index used 
as well as its calculation. In each of the heuristics, at each iteration the 
job with the minimum priority index is selected to be appended to a 
partial sequence. 

5.2. Dispatching rules with more advanced indexes 

The dispatching rules in this section consider a variety of conditions 
to develop priority indexes that create the job sequence to be used. The 
indexes in several of these rules have multiple branches to allow for 
flexibility to respond to conditions. 

These rules are based on rules that have been used in other envi-
ronments (i.e. single-machine, permutation flow shop without the no- 
wait restriction, job shop) but are modified to consider characteristics 
that are specific to the no-wait flow shop. Using rules that are specif-
ically tailed to an environment and the considered objective can be very 
important. For example Vinod and Sridharan (2011) and Xiong et al. 
(2017) developed dispatching rules that are tailed to the job shop 
environment and were shown to outperform simple rules such as the 
ones in the previous section. 

5.2.1. LIN1 and LIN2 LIN-ET rules 
Ow and Morton (1989) developed two rules for minimizing total 

weighted earliness and tardiness for a single machine. We use two rules 
that are based on Ow and Morton (1989)’s rules but are modified to 
reflect the no-wait flow shop environment. The resulting procedures, 
based on these rules, are denoted by LIN1 and LIN2. These rules, at each 
iteration, select the job to append to an initial partial sequence. The job 
selected is the one with the largest value of the associated priority index: 

LIN1jðSÞ¼

8
>>>>>>>><

>>>>>>>>:

1
 PjðSÞ

if sjðSÞ � 0

1
PjðSÞ

�
sjðSÞ

slk thr
�

2
PjðSÞ

if 0 < sjðSÞ < slk thr

�
1
 PjðSÞ

if sjðSÞ � slk thr  

and 

Table 1 
Simple dispatching heuristics.  

Heuristic Reference (s) Priority index 
calculation 

EDD (earliest due date 
rule) 

Jackson (1955) dj 

MDD (modified due date 
rule) 

Baker and Bertrand (1982), 
Vepsalainen and Morton (1987) 

MDDj (S) ¼max 
{dj, Cjm (S)} 

SLK (minimum slack 
rule) 

Panwalkar and Iskander (1977), 
Vepsalainen and Morton (1987) 

sj (S) ¼ dj – Cjm 

(S) 
SLK/P (minimum slack 

per required time rule) 
Panwalkar and Iskander (1977), 
Vepsalainen and Morton (1987) 

SLK/Pj (S) ¼ sj 

(S)/Pj (S)  
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In the above indexes slk_thr is a parameter that is used to identify 
slack that is greater than a threshold value selected by the scheduler. 

The above priority indexes represent three branches for both heu-
ristics. When jobs are late or on time, the first branch is used and is 
similar to the shortest processing time rule used to minimize tardiness on 
a single-machine. Here the shortest time refers to a job’s cumulative 
processing time plus the idle time on the first machine to ensure the job 
does not have to wait between machines. 

In the third branch, the job is quite early because its slack is greater 
than the threshold. A job that satisfies the criteria for this branch would 
only be selected if all the unselected jobs satisfy the criteria. In this 
branch, LIN1 is using a longest time approach to select a job and LIN2 is 
using a minimum slack per required time approach to select a job. A 
linear interpolation between sj (S) ¼ 0 and sj (S) ¼ slk_thr is applied for 
the middle branch consistent with the LIN–ET procedure of Ow and 
Morton (1989). 

The slk_thr parameter is calculated as follows. At each iteration, 
representing a partial schedule S with k jobs, the slack threshold is set 
equal to slk_thr ¼w * (CLB

maxðSÞ– t), where CLB
maxðSÞ is a lower bound on the 

completion time of the last job on the final machine (makespan), given 
the current schedule S, and 0 �w � 1 is a user-defined parameter. To 
calculate this lower bound we first obtain a lower bound on the 
completion of processing on the first machine of the unscheduled jobs 
and then add to this time the minimum cumulative processing time on 
machines two through m. To find the lower bound for completion on the 
first machine we sum the processing times on the first machine of the 
unscheduled jobs and add this to t (t þ

P

j62S
p½j�1). This lower bound is weak 

because the offset times of the unscheduled jobs is not included. To 
strengthen this lower bound we find the lowest offset time for each 
unscheduled job if it is not scheduled next (min{OSj62S;l62S} and sum the n 
– k – 1 of these times and add to this the minimum offset time among the 
unscheduled jobs if scheduled next. The lower bound on the offset times 
is then added to the lower bound above to obtain a lower bound on the 
completion time on the first machine. We then add the minimum among 
the unscheduled jobs of the cumulative processing time for machines 
two through m to obtain a lower bound on the makespan. 

5.2.2. A heuristic based on Fernandez-Viagas et al. (2016)’s constructive 
heuristic 

A constructive heuristic for permutation flow shops when waiting is 
allowed between machines was developed by Fernandez-Viagas et al. 
(2016). The heuristic adds one job at a time to a partial sequence based 
on an index. During each iteration of the procedure the problem is 
classified based on the due dates of the unselected jobs in order to 
determine the index to use to select the next job in the sequence. The 
index used is based on whether the due dates are relative tight, relatively 
loose or are neither relatively tight or loose. For details about the pro-
cedure see Fernandez-Viagas et al. (2016). 

In the original Fernandez-Viagas et al. (2016) heuristic a variable is 
used to calculate the weighted idle time of the candidate jobs. The 
weighted idle variable in the Fernandez-Viagas et al. (2016) heuristic is 

based on the idle time that occurs on all the machines if a job is to be 
scheduled next. Since in our problem the shop is a no-wait flow shop and 
idle time only occurs on the first machine, we modify this heuristic by 
using the idle time on the first machine for each unscheduled job if 
scheduled next. Let ITjk be the idle time on the first machine of the 
candidate jobs if scheduled next (in the k þ 1st position): ITjk ¼OSj[k]. 
This redefined variable is then used in the Fernandez-Viagas et al. 
(2016) indexes to select a job during each iteration. 

This procedure is referred to as FV in this paper. 

5.2.3. Job shop dispatching heuristics modified for the No-Wait flow shop 
It is very challenging to meet due dates in a job shop environment. 

Various dispatching heuristics have been tested and evaluated using due 
date based measures. Vinod and Sridharan (2011) found that two were 
effective for a variety of conditions, combination of critical ratio and 
shortest processing time (CRSPT) (Anderson and Nyirenda, 1990; Raghu 
and Rajendran, 1993), and combination of slack per remaining pro-
cessing time and shortest processing time (SLRPT) (Anderson and 
Nyirenda, 1990; Raghu and Rajendran, 1993). 

In a job shop environment, each operation must be sequenced. In our 
problem, since it is a no-wait flow shop, we only need to develop a single 
sequence for the jobs to be processed in the shop. In section 3 it was 
shown that the problem can be modeled as a single-machine problem 
with sequence-dependent setups. Therefore, we only use the rules to 
sequence the first machine (operation) in our implementation. 

For the CRSPT rule, we first define the critical ratio (CRj) for a job j. If 
k jobs have already been sequenced and we are selecting the job for the k 

þ 1st position then CRj ¼ (dj – t)/(
Pm

i¼1
pji þ OSj[k]). For each job j that has 

not been sequenced we define the index Zj ¼max {CRj*pj1, pj1} and at 
each iteration select the job with the minimum Zj value. We refer to this 
rule as CRSA in this paper. We created a second version of this rule, 
referred to as CRSB in this paper, which includes the offset time (OSj[k]) 
in the SPT part of the rule. The index for this rule is Zj ¼max {CRj*(pj1 þ

OSj[k]), pj1 þ OSj[k]}. 
For the SLRPT rule, we define the slack per remaining time (S/RPTj) 

for each job j as: S/RPTj ¼ (dj – t – 
Pm

i¼1
pji – OSj[k])/(

Pm

i¼1
pji þ OSj[k]). The 

index for this rule is Zj ¼max {S/RPTj*pj1, pj1} and at each iteration we 
select the job with the minimum Zj value. We refer to this rule as SLRA in 
this paper. We also created a second version of this rule, referred to as 
SLRB in this paper, which includes the offset time (OSj[k]) in the SPT part 
of the rule. The index for this rule is Zj ¼max {S/RPTj*(pj1 þ OSj[k]), pj1 
þ OSj[k]}. 

5.2.4. Modified LIN-ET rules 
Two new rules are developed that are very similar to the LIN1 and 

LIN2 rules. These new rules are referred to as H1 and H2. The H1 rule 
uses the LIN1 index to select a job for each position of the sequence. The 
H2 rule uses the LIN2 index to select a job for each position of the 
sequence. The difference between these new rules and the associated 
LIN rules is in how we calculate Pj (S) for each unscheduled job. For both 
rules there are two changes in how Pj (S) is calculated. The first is that 
we use the job’s processing time on the first machine pj1 instead of the 

LIN2jðSÞ ¼

8
>>>>>>>><

>>>>>>>>:

1
 PjðSÞ

if sjðSÞ � 0

1
PjðSÞ

� sjðSÞ �
�

1
slk thr � PjðSÞ

þ
1

PjðSÞ

�

if 0 < sjðSÞ < slk thr

�
sjðSÞ
 PjðSÞ

if sjðSÞ � slk thr

;
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cumulative processing time. The second change is an adjustment based 
on a job’s current offset time compared to its average offset time if it is 
not selected in the current iteration. Assume q jobs have been selected, 
job [q] was the last job selected and σ0 is the set of n – q unselected jobs. 
Let OSjσ’ ¼

P

k2σ’&k6¼j
OSjk=ðn � q � 1Þ. Let ADj ¼OSj½k� � OSjσ’. We set Pj 

(S) ¼OSj[q] þ pj1 þ ADj. Since ADj can be negative, if Pj (S) < 1 we set Pj 
(S) ¼ 1. This allows us to not only consider a job’s current offset time but 
also the difference between the current offset time and the offset time 
that could occur if the job is sequenced later. 

6. Computational results of tests for the branch and bound 
procedure and dispatching heuristics 

This section describes tests that were conducted to assess the effi-
ciency of the branch-and-bound procedure and the accuracy of the 
dispatching procedures. First the tests and results for the branch-and- 
bound procedure are described and presented, and then the tests and 
results for the dispatching procedures are described and presented. 

6.1. Computational results for the branch-and-bound procedure 

The branch-and-bound procedure, described in section four, was 
tested on instances generated by Schaller and Valente (2019). The in-
stances used in this test consist of four levels of the number of jobs, n ¼ 8, 
10, 12, and 15, three levels of numbers of machines, m ¼ 5, 10, and 20 
and nine combinations of due date range and tightness distributions. For 
each combination of the above levels, 10 instances were generated. To 
generate the processing times of each job on each machine a uniform 
distribution was used. These times were generated over the integers 1 
and 100. Due dates were randomly generated for the jobs using a uni-
form distribution over the integers MS (1 – r – R/2) and MS (1 – r þ R/2), 
where MS is an estimate for the makespan for the instance. The estimate 
is based on the Taillard (1993)’s lower bound. R and r, referred to as the 
due date range and tardiness factors, are parameters. The levels of due 
date range (R) tested are R ¼ 0.2, 0.6 and 1.0 and the levels of due date 
tightness (r) tested are r ¼ 0.0, 0.2 and 0.4. 

Turbo Pascal was used to code the branch-and-bound procedure and 
the procedure was tested on a Dell Inspiron 1525 GHz Lap Top com-
puter. In order to see the effect of the dominance conditions, two ver-
sions of the branch-and-bound procedure were created. One version of 
the procedure includes the dominance conditions, BBD and the other 
version does not include the dominance conditions, BBD’. The branch- 
and-bound procedures were performed for a maximum of 600 s for an 
instance. If a procedure was unable to prove an optimal solution for an 
instance within the time limit it was terminated. For each procedure and 
for each combination of n, m, R and r we recorded the average seconds 
used per instance and the number of instances solved within 600 s. 

Table 2 shows the results for each level of number of jobs and 
number of machines. For each level of number of machines and jobs the 

average number of seconds used and the number of problems solved to 
optimality within 600 s are shown for each procedure. 

The results show that as the number of jobs increases the time 
required to solve instances increases rapidly and when n ¼ 15 less than 
half the instances were solved within 600 s (the procedures were able to 
solve all the instances with n � 12 within 600 s). There appears to be 
some increase in the time used by the procedures as the number of 
machines increases, particularly for n ¼ 15. These results indicate that 
the branch-and-bound procedure can only solve small problems, in 
terms of numbers of jobs, in a reasonable amount of time. The results 
also show that including the dominance conditions generally helps the 
performance of the procedure. The version of the procedure with the 
dominance conditions used less time when n � 12 and was able to solve 
more problems within the 600 s time limit for each level of number of 
machines when n ¼ 15. 

We also looked at how the due date range and tardiness factors 
affected the results. The due date range factor had a larger effect than 
the due date tightness factor on both the time used and the number of 
instances solved. As the range of due dates increases the procedure uses 
less time and solves more problems, also as the due dates become tighter 
the procedure uses less time and solves more problems. As example, for 
n ¼ 15 the BBD version of the procedure was able to solve 34.4% of the 
instances when r ¼ 0.0, 42.2% when r ¼ 0.2, and 47.9% when r ¼ 0.4; 
for the due date range factors the BBD procedure was able to solve 8.9% 
of the instances when R ¼ 0.2, 35.6% when R ¼ 0.6, and 80.0% when 
R ¼ 1.0. 

6.2. Computational test of the dispatching heuristics 

The proposed dispatching heuristics are tested on randomly gener-
ated problems of various sizes in terms of the number of jobs and 
number of machines and under various conditions of due date range and 
tightness. 

6.2.1. Data and performance measures 
The dispatching heuristic procedures described in this section were 

tested using the data described in section 6.1 as well as additional data 
generated using the same methodology (Schaller and Valente, 2019) as 
was used to generate the data described in section 6.1. Since we wanted 
to see how the dispatching heuristics performed for larger sized prob-
lems, we added additional levels of number of jobs. In addition to the 
four levels tested in section 4.3 (n ¼ 8, 10, 12 and 15) we added an 
additional 7 levels: n ¼ 20, 25, 30, 40, 50, 75 and 100 for the 3 levels of 
m (5, 10 and 20). The same nine sets of distributions of due date range 
and tightness tested in section 6.1 are tested. Each problem set consists 
of 10 instances. 

A second set of 10 problems for each of the sets of parameters 
described above were created to use in preliminary tests to determine 
the parameter w for the LIN1, LIN2, H1, and H2 procedures. This 
parameter is multiplied by the estimated makespan to create the slack 
threshold (slk_thr). Based on these experiments a value of w ¼ 0.6 was 
selected for LIN1, w ¼ 0.5 for LIN2, w ¼ 0.9 for H1, and w ¼ 0.5 for h2. 
Three values need to be selected for parameters used in the FV pro-
cedure. The values of the parameters in the FV procedure that were 
selected are a ¼ 0.90, b ¼ 0.75, and c ¼ 300. 

Turbo Pascal was used to implement the procedures and a Dell 
Inspiron 1525 GHz Lap Top computer was used to conduct the test. We 
used two measures of performance to evaluate the procedures. For the 
three levels of numbers of jobs we were able to obtain optimal solutions, 
n ¼ 8, 10 and 12, we compared the objective values obtained using 
dispatching procedures to the optimal objective value. The measure of 
performance for the small sized instances is percentage deviation (% 
Dev) of the objective value of the solution generated by each procedure 
from the optimal objective value. % Dev ¼ [(Zh - ZO)/ZO] * 100, where 
ZO ¼ the optimal objective value, and Zh ¼ the objective value of the 
solution generated by the dispatching heuristic procedure (EDD, MDD, 

Table 2 
Average seconds used and number solved.  

Number of jobs (n) Procedure 

BBD BBD0

Number of Machines (m) Number of Machines (m) 

5 10 20 5 10 20 

8 Seconds 0.081 0.119 0.167 0.107 0.096 0.109 
# Solved 90 90 90 90 90 90 

10 Seconds 1.540 1.228 1.558 1.344 1.351 1.806 
# Solved 90 90 90 90 90 90 

12 Seconds 22.67 27.90 26.85 24.80 31.46 33.88 
# Solved 90 90 90 90 90 90 

15 Seconds 378.90 458.34 518.60 386.72 476.29 535.58 
# Solved 47 39 26 45 34 24  
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LIN1, LIN2, SLK, SLKP, FV, H1, H2). The measure of performance used 
to evaluate the dispatching procedures for the larger sized instances 
(n � 15) is percentage deviation (% Dev) of the objective value of the 
solution generated by each procedure from the objective value of the 
solution generated by the EDD procedure. % Dev ¼ [(Zh - ZEDD)/ZEDD] * 
100, where ZEDD ¼ the objective value of the solution generated by the 
EDD procedure, and Zh ¼ the objective value of the solution generated 
by the dispatching heuristic procedure (MDD, LIN1, LIN2, SLK, SLKP, 
FV, CRSA, CRSB, SLRA, SLRB, H1, H2). The EDD procedure would al-
ways have a % Dev equal to 0.00 so it is omitted. The results of these tests 
are presented in the next sections. 

6.2.2. Results of the test versus the optimal objective value 
Table 3 shows the average % Dev for each procedure for each level of 

number machines and jobs. 
The results show that the H1 and MDD procedures were the two best 

performing procedures. The H1 procedure was best on six of the nine 
combinations of n and m and was second on the other three. The MDD 
procedure was best for three of the nine combinations, was second for 
three combinations, and was third for three combinations. The LIN1 
procedure was generally the third best performing procedure having the 
third best performance for six of the nine combinations and was second 
for three of the combinations. The LIN2 and H2 procedures performance 
followed the above three procedures with LIN2 better than H2 for seven 
of the nine combinations. The SLRA and SLK procedures performed the 

Table 3 
Average % Dev versus the optimal objective value.  

Procedure Number of Machines (m) 

5 10 20 

Number of Jobs (n) Number of Jobs (n) Number of Jobs (n) 

8 10 12 8 10 12 8 10 12 

EDD 45.83 58.04 62.03 55.17 61.46 67.66 52.13 63.64 68.78 
MDD 30.63 36.44 36.88 23.23 26.13 34.05 18.93 23.98 28.61 
SLK 69.37 76.55 80.89 79.49 88.56 96.95 73.07 86.49 97.00 
SLKP 59.10 63.49 65.06 73.96 77.63 83.89 67.54 80.80 84.84 
LIN1 28.14 32.96 36.15 32.19 34.73 38.32 25.06 28.34 32.89 
LIN2 34.46 40.83 39.25 37.93 42.88 45.16 29.76 32.73 38.32 
CRSA 87.77 110.14 127.25 82.08 92.20 99.95 67.48 82.13 88.89 
CRSB 55.12 55.17 54.47 50.02 50.91 50.00 43.49 49.49 46.44 
SLRA 104.63 132.45 153.66 90.42 104.35 108.59 71.42 82.18 94.22 
SLRB 80.55 91.69 94.98 60.39 67.66 69.61 51.27 55.49 52.25 
FV 45.55 53.33 52.72 46.84 47.17 52.21 40.02 42.17 46.11 
H1 19.53 22.72 23.14 23.61 26.10 27.80 24.50 26.68 26.55 
H2 38.74 42.80 40.83 43.58 40.47 41.61 32.69 35.58 36.75  

Table 4 
% deviation from the EDD solution for m ¼ 5.  

Procedure Number of Jobs (n) 

15 20 25 30 40 50 75 100 Ave. 

MDD � 13.72 � 16.17 � 18.21 � 18.30 � 19.93 � 22.08 � 23.03 � 23.28 � 19.34 
SLK 14.08 14.48 15.55 15.19 13.33 14.00 13.33 13.70 14.21 
SLKP 6.17 1.16 0.76 � 2.28 � 6.35 � 7.25 � 10.84 � 11.74 � 3.80 
LIN1 � 13.96 � 16.94 � 19.38 � 19.66 � 22.91 � 24.32 � 27.18 � 27.61 � 21.50 
LIN2 � 8.61 � 13.48 � 15.74 � 16.41 � 19.93 � 20.32 � 22.25 � 22.32 � 17.38 
FV � 1.42 � 4.44 � 4.86 � 4.38 � 9.12 � 9.06 � 10.82 � 11.27 � 6.92 
CRSA 33.65 36.99 38.16 30.74 27.34 26.45 23.31 19.61 29.53 
CRSB � 2.64 � 7.61 � 9.21 � 10.41 � 15.97 � 18.40 � 20.93 � 21.09 � 13.28 
SLRA 49.43 49.72 49.34 42.78 37.73 35.54 30.32 25.94 40.10 
SLRB 18.11 13.62 6.91 3.00 � 6.45 � 10.16 � 15.33 � 17.35 � 0.96 
H1 � 20.03 � 20.20 � 23.70 � 22.58 � 26.79 � 27.12 � 29.70 � 29.95 � 25.01 
H2 � 6.64 � 10.61 � 10.51 � 13.21 � 16.80 � 16.63 � 19.24 � 20.34 � 14.25  

Table 5 
% deviation from the EDD solution for m ¼ 10.  

Procedure Number of Jobs (n) 

15 20 25 30 40 50 75 100 Ave. 

MDD � 21.67 � 20.83 � 24.37 � 25.63 � 26.83 � 27.67 � 29.77 � 30.95 � 25.97 
SLK 18.25 18.23 18.55 19.64 17.91 19.53 18.39 17.93 18.55 
SLKP 8.35 5.26 2.51 0.00 � 3.09 � 4.96 � 10.96 � 13.36 � 2.03 
LIN1 � 20.12 � 19.00 � 22.62 � 22.90 � 25.17 � 26.66 � 30.05 � 31.79 � 24.79 
LIN2 � 15.83 � 16.34 � 19.84 � 19.93 � 21.93 � 22.76 � 26.36 27.33 � 21.29 
FV � 7.34 � 10.33 � 12.23 � 14.03 � 17.07 � 17.53 � 20.15 � 22.24 � 15.12 
CRSA 26.24 23.34 19.87 20.43 20.28 22.03 18.16 16.85 20.90 
CRSB � 7.96 � 13.92 � 19.13 � 20.72 � 24.78 � 26.56 � 31.85 � 34.63 � 22.44 
SLRA 32.32 29.63 25.26 26.17 26.87 27.27 23.18 21.01 26.46 
SLRB 2.63 � 1.37 � 8.85 � 11.16 � 15.91 � 18.64 � 25.75 � 29.92 � 13.62 
H1 � 24.09 � 25.14 � 26.71 � 27.35 � 31.35 � 32.10 � 34.32 � 36.54 � 29.70 
H2 � 13.13 � 13.84 � 17.37 � 17.48 � 20.38 � 20.69 � 22.98 � 24.72 � 18.82  
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worst for all of the combinations. The SLKP, CRSA, CRSB and SLRB 
procedures also performed poorly for all the combinations. For the CRS 
and SLR rules the versions that included the offset time (CRSB and SLRB) 
performed better than their counter parts (CRSA and SLRA). 

The results also show that there is a considerable gap between the 
objective values for the solutions generated by the dispatching heuristics 
and the optimal objective value. The H1 procedure was the only pro-
cedure with an average % Dev under 30% for each combination and even 
this procedure had an average % Dev greater than 19% for each com-
bination. The MDD procedure had an average % Dev that was less than 
40% for each combination but none of the other procedures was able to 
average less than 40% for each combination. The SLK, SLKP, CRSA, 
SRLA and SLRB procedures had an average % Dev that were greater than 
50% for every combination and the EDD and FV procedures had an 
average % Dev that was greater than 40% for every combination. 

6.2.3. Results of the test for the larger sized problems versus the EDD 
objective value 

Tables 4–6 show the % Dev for larger sized problems (n � 15) for 
each procedure for each level of number of jobs to be sequenced (n) as 
well as the averages across all the levels of jobs. Table 3 shows the results 
for m ¼ 5, Table 4, for m ¼ 10 and Table 5, for m ¼ 20. The results in 
these tables are compared with the objective value that was generated 
by the EDD procedure, therefore the EDD procedure will always have a 
% Dev equal to 0.00 and has been omitted. 

The results show that the H1 procedure had the lowest average % Dev 
for each of the three levels of m (5, 10 and 20). This procedure was also 
very consistent and ranked first for each level of numbers of jobs when 
m ¼ 5 and 10 and ranked first for each level of numbers of jobs when 
m ¼ 20 and n � 25. Therefore, the H1 procedure ranked first in terms of 
% Dev for 22 of the 24 combinations of n and m. For the two 

combinations the H1 procedure was not the best, m ¼ 20 and n ¼ 15 and 
20, it was the second best procedure (MDD was the best performing 
procedure for these two combinations). The H1 procedure was also the 
only procedure that had an average % Dev that less than � 20% for each 
combination of n and m. 

For m ¼ 5 and 10 the next two best performing procedures were the 
MDD and LIN1 procedures. These procedures were ranked either second 
or third on all the combinations of n when m ¼ 5. When m ¼ 10, MDD 
was the second best and LIN1, third best for n < 50, as n increased the 
performance of CRSB improved and this procedure was third best for 
n ¼ 50, and second best for n ¼ 75 and 100. When m ¼ 20, MDD was 
second best for n < 50 and CRSB was second best for n � 50. 

As with the small sized problems, the SLK, SLKP, CRSA, SLRA pro-
cedures performed the poorest. For each combination of n and m the 
SLK, CRSA and SLRA procedures had a positive % Dev and SLKP pro-
cedure had a positive % Dev for n < 30 for all three levels of m. Also, as in 
the small sized problems, for the CRS and SLR rules the versions that 
included the offset time (CRSB and SLRB) performed better than their 
counter parts (CRSA and SLRA). 

In order to show the effect of the due date range (R) and tardiness 
factor (r) on the results Tables 7 and 8 are presented. Table 7 shows the 
% Dev by due date tardiness factor (r) for n ¼ 50 and m ¼ 10. 

The results by due date tardiness factor (r) show that the H1 pro-
cedure performed the best for each level of r for this setting of n and m. 
For each level of r, The MDD procedure ranked second. Each of the 
procedures with the exception of the SLK procedure performed better 
relative to the EDD procedure as r increased. 

Table 8 shows the % Dev by due date range factor (R) for n ¼ 50 and 
m ¼ 10. 

As in the results by r, the results by due date range factor (R) show 
that the H1 procedure was consistent across the levels of R for this 

Table 6 
% deviation from the EDD solution for m ¼ 20.  

Procedure Number of Jobs (n) 

15 20 25 30 40 50 75 100 Ave. 

MDD � 26.17 � 26.18 � 28.44 � 28.79 � 29.20 � 30.81 � 32.51 � 33.47 � 29.45 
SLK 17.17 15.88 16.05 19.31 18.70 19.48 19.33 19.79 18.21 
SLKP 7.91 4.55 2.49 2.22 � 2.38 � 5.59 � 10.31 � 12.83 � 1.74 
LIN1 � 23.48 � 22.83 � 26.47 � 26.22 � 27.37 � 28.80 � 31.19 � 32.69 � 27.38 
LIN2 � 20.33 � 20.82 � 23.12 � 23.81 � 25.65 � 27.26 � 28.78 � 30.28 � 25.01 
FV � 15.90 � 16.29 � 21.29 � 20.77 � 23.02 � 27.26 � 26.53 � 28.57 � 22.45 
CRSA 6.99 14.48 7.50 11.30 13.02 10.83 12.47 11.97 11.07 
CRSB � 15.69 � 18.90 � 25.88 � 26.84 � 28.32 � 33.00 � 35.62 � 37.79 � 27.76 
SLRA 8.61 15.70 8.96 13.85 15.58 12.46 14.01 13.95 12.89 
SLRB � 12.41 � 15.32 � 22.10 � 21.79 � 23.37 � 29.06 � 31.30 � 34.38 � 23.72 
H1 � 25.91 � 25.96 � 30.62 � 31.85 � 33.06 � 35.23 � 37.02 � 38.93 � 32.32 
H2 � 20.64 � 20.50 � 24.09 � 24.40 � 25.53 � 26.26 � 27.93 � 29.72 � 24.88  

Table 7 
% deviation from the EDD solution by r for n ¼ 50 and m ¼ 10.  

r Procedure 

MDD LIN1 LIN2 SLK SLKP FV CRSA CRSB SLRA SLRB H1 H2 

0.0 � 22 � 21 � 17 20 � 0.2 � 14 31 � 21 39 � 11 � 26 � 14 
0.2 � 29 � 27 � 23 21 � 4.8 � 17 24 � 28 30 � 19 � 34 � 20 
0.4 � 32 � 32 � 26 17 � 9.9 � 22 11 � 31 13 � 26 � 36 � 28  

Table 8 
% deviation from the EDD solution by R for n ¼ 50 and m ¼ 10.  

R Procedure 

MDD LIN1 LIN2 SLK SLKP FV CRSA CRSB SLRA SLRB H1 H2 

0.2 � 24 � 22 � 20 24 � 9.0 � 14 7 � 29 8.0 � 28 � 28 � 14 
0.6 � 29 � 27 � 23 15 � 4.1 � 19 20 � 27 26 � 20 � 33 � 22 
1.0 � 31 � 31 � 26 19 � 1.7 � 20 39 � 24 48 � 8.4 � 36 � 26  
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setting of n and m, and was best or second best for each level. The CRSB 
procedure was best when R ¼ 0.2. The MDD, LIN1, LIN2, FV, H1 and H2 
procedures all performed better relative to the EDD procedure as R 
increased. The SLKP, CRSA, CRSB, SLRA and SLRB procedures all per-
formed worse relative to the EDD procedure as R increased. 

The procedures are efficient and able to solve the instances quickly. 
Computational times do increase as problem sizes become large, but the 
procedures averaged less than 0.5 s per instance for all problem sizes. 

Since the H1 procedure generally generated the best solutions and 
was very consistent it is the recommended dispatching procedure. 

7. Improvement procedure 

In section 6.2.2 the objective values of the solutions generated by the 
dispatching procedures were compared to optimal objective values for 
small sized problems. The results of this test showed that there was a 
large gap between the objective values generated by the dispatching 
heuristics and the optimal values. Therefore, we propose an improve-
ment procedure in this section to develop better solutions. 

7.1. Insertion neighborhood search procedure 

Our proposed procedure searches a neighborhood by removing a job 
and inserting it into a different position in the sequence. In this pro-
cedure we start with a sequence σ and convert it to a different sequence 
σ’ by changing the position of one of the jobs. To search the neighbor-
hood, we remove each job from the sequence σ and create n – 1 trial 
sequences by inserting the removed job into each possible position while 
the order of the other jobs is maintained. If a solution that is better than 
the incumbent sequence is obtained, then the incumbent is updated. The 
insertion search is repeated until it fails to find an improvement and is 
terminated. 

The procedure needs an initial solution to start. In our imple-
mentation we use the H1 procedure to generate the initial solution. This 
procedure was chosen because it was the best dispatching procedure 
among the procedures tested. This procedure is referred to as the H1INS 
procedure in this paper. 

To evaluate a neighborhood using the insertion procedure O (n2) 
insertions are needed. Since each sequence created by an insertion can 
be evaluated in O (n) time the complexity of the procedure is O (n3) each 
time a neighborhood is evaluated. As the number of jobs increases this 
procedure can be time consuming but speed up methods have been 
developed for using this search in the no-wait flow shop environment for 
other objectives. In the next section we present a speed up method for 
this objective. 

7.2. Speed up procedure 

Approaches to improve the efficiency of insert operations for 
improvement procedures have been used for the no-wait flow shop 
environment. Li et al. (2008) developed a property that reduced the 
evaluation of the makespan from O (n) to O (1) for a partial sequence 
when a new job is inserted. This property was used by Li et al. (2008) 
and Pan et al. (2008) to develop heuristics with greater efficiency. 

Our objective is different than the makespan objective because a 
job’s earliness or tardiness is a nonlinear function of the job’s comple-
tion time. Ding et al. (2015) developed a speed up procedure for inser-
tion operations for a no-wait flow shop with minimizing total tardiness 
as the objective, which is similar to our objective because a job’s 
tardiness is a nonlinear function of its completion time. Ding et al. 
(2015) use the lateness of the jobs, which is a linear function of 
completion time to develop properties that allow for greater efficiency in 
evaluating insertion operations. They break the set of jobs into sensitive 
jobs and non-sensitive jobs. For example, if there are tardy or on time 
jobs in a partial sequence and a new job is inserted before these jobs then 
these jobs will all increase in tardiness by the amount of displacement 

caused by the insertion of the new job, so these jobs are non-sensitive 
jobs. Therefore, the increase in tardiness for the set of tardy or on 
time jobs can be calculated in O (1) time. Jobs that are sufficiently early 
so they will not become tardy if a new job is inserted before them can 
also be identified and these jobs will be non-sensitive because they will 
have no increase in tardiness. The set of jobs that are early before an 
insertion and become tardy after the insertion are sensitive jobs and 
need to have the change in the objective calculated individually. Ding 
et al. (2015) developed heuristics with insertion operations and in 
computational tests found that the set of sensitive jobs was usually small 
relative to the set of non-sensitive jobs, so the speed procedure resulted 
in the heuristics having greater efficiency. With our objective we also 
have to consider the effect of an insertion on early jobs, but this does not 
seem to be too difficult and the basic elements of Ding et al. (2015)’s 
speed up procedure can be used with some modification for the ear-
ly/tardy no-wait flow shop problem. 

To search a neighborhood, we remove each job from its current 
position in a current sequence and insert it into each position of the 
sequence maintaining the order of the other jobs. Let jc be the job that is 
removed from the current sequence. When job jc is removed we have a 
sequence of n – 1 jobs. Let σ0 represent this sequence. Let Z (σ0) equal the 
total earliness and tardiness of the jobs in the sequence σ0. We create n 
sequences (σ1, σ2, …, σn) by inserting job jc before each position k (k ¼ 1, 
…, n – 1) in σ0 and at the end of σ0. 

Initially, before the insertions, we perform three steps. In the first 
step we calculate the total earliness and tardiness of the jobs in σ0, as 
well as the earliness or tardiness of each job. As we insert job jc into 
position k of the sequence the jobs that were in positions k through n – 1 
are all shifted later by a certain amount of time. Let RSk equal the 
amount of time that the jobs in positions k through n – 1 will have their 
completion time increase when job jc is inserted into position k. Let j[k-1] 
be the job before the job in position k (j[k-1] ¼ 0 if k ¼ 1) in σ0 and j[k] be 
the job in position k in σ0. Then RSk ¼OSjc,j[k-1] þ pjc,1 þ OSj[k],jc – OS[k], 

[k-1]. Let MaxRS ¼max{RSk} for k ¼ 1, …, n – 1. This is the second step. 
In the third step we divide the jobs in σ0 into three sets and create in-
dexes for the jobs that fall into each of the sets. The three sets are the set 
of jobs which are on-time or tardy τT, the set of jobs with earliness 
greater than or equal to MaxRS (Ek �MaxRS) τE, and the set of sensitive 
jobs τS (0 � Ek <MaxRS). As we insert job jc into each position to create a 
new sequence with n jobs we start with position 1 and work to position n. 
Each time we create a new sequence we update the three sets by taking 
the job in the prior position out of its appropriate set. Let ntdy be the 
number of jobs in the set τT, and nely be the number of jobs in the set τE. 
Let ΔZ (τT) be the change in the total tardiness of the jobs in the set τT 
caused by the insertion of job jc, ΔZ (τE) be the change in the total 
earliness of the jobs in the set τE caused by the insertion of job jc, and ΔZ 
(τS) be the change in the total earliness and tardiness of the jobs in the 
set of sensitive jobs caused by the insertion job job jc. Let Z (σk) equal the 
total earliness and tardiness of the sequence σk formed by inserting job jc 
before position k of the sequence σ0. Z (σk) ¼ Z (σ0) þ ΔZ (τT) þ ΔZ (τE) 
þ ΔZ (τS). ΔZ (τT) ¼ ntdy*RSk and ΔZ (τE) ¼ - nely*RSk. Therefore, the 
change in the objective for the jobs in the two sets τT and τE caused by the 
insertion of job jc into position k can be calculated in O (1) time. We need 
to calculate the change in total earliness and tardiness for each of the 

Table 9 
Average % Dev from the optimal solution for the H1INS procedure.  

Number of Jobs (n) Procedure 

H1INS H1 

Number of Machines (m) Number of Machines (m) 

5 10 20 5 10 20 

8 2.22 2.68 2.18 19.53 23.61 24.50 
10 3.49 3.86 2.60 22.72 26.10 26.68 
12 2.84 4.58 3.76 23.14 27.80 26.55  
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jobs in the set τS by going through the index of these jobs each time we 
are checking a sequence. If nsens is the number of sensitive jobs (set τS) 
then it will take O (nsens) time to calculate the change in the objective 
for these jobs. If nsens is much smaller than n then there will be a sig-
nificant time saving by using this approach as opposed to checking all 
the jobs one by one. This procedure is referred to as the H1INB 
procedure. 

7.3. Computational results 

We tested the insertion neighborhood search procedure using the 
data described in subsections 6.1 and 6.2.1. The first comparison uses 
the objective values of the optimal solutions for the small sized 
instances. 

7.3.1. Comparison with optimal objective values 
Table 9 compares the solutions generated by the H1INS procedure 

with the optimal solutions that were generated for the small sized 
problems. The measure of performance is the percentage deviation (% 
Dev) which is calculated as: %Dev ¼ [(Zh - ZO)/ZO] * 100, where ZO ¼ the 
optimal total earliness and tardiness, and Zh ¼ the total earliness and 
tardiness of the solutions generated by the H1INS procedure. The H1 
procedure’s results were also included in the table to help see the 
improvement achieved by using the insertion search. 

The results show that using the insertion search significantly 
improved the solutions for the small sized problems. The average %Dev 
was less than 5% for each of the combinations of n and m for the small 
sized problems. 

7.3.2. Comparison with EDD objective values for larger sized instances 
Table 10 compares the solutions generated by the H1INS procedure 

with the solutions generated by the EDD for the large sized problems. 

The measure of performance is the percentage deviation (%Dev) which is 
calculated as: %Dev ¼ [(Zh - ZEDD)/ZEDD] * 100, where ZEDD ¼ the 
objective value of the solution generated by the EDD procedure, and 
Zh ¼ the objective value of the solution generated by the H1INS pro-
cedure. The H1 procedure’s results were also included in the table to 
help see the improvement achieved by using the insertion search. 

The results show that using the insertion search significantly 
improved the solutions for the large sized problems. This can be seen 
most easily by looking at the last row of the table that has the overall 
average % Dev for each level of number of machines. The averages with 
the insertion search included show the improvement versus the EDD 
solution was over 40% for each level of number of machines. Also, the 
improvement was quite large for each combination of n and m compared 
to just using the H1 procedure. 

7.3.3. Comparison between the H1INS and H1INB (speedup) procedures 
When the H1INS and H1INB procedures were run we recorded the 

amount of time in seconds that was needed to generate the solution for 
each instance. Both procedures were coded in Turbo Pascal and were 
tested on a Dell Inspiron 1525 GHz Lap Top computer. The two pro-
cedures both use an insertion search to improve upon the initial solution 
generated by the H1 procedure but the H1INB procedure incorporates 
methods to speed up the process. Table 11 shows the average time in 
seconds, by n and m, per instance required by each of the procedures. 
Also, there is a column that shows the percent reduction in seconds 
needed when using the H1INB procedure instead of the H1INS 
procedure. 

The results show that as the number of jobs increases the time 
required by both procedures increases. The results also show that using 
the speed up methods results in a significant reduction in the time 
needed to generate solutions. In addition, it appears that as the number 
of jobs increases the amount of benefit obtained by using the speed up 
methods increases. For example, when n ¼ 100 the greatest percentage 
reduction occurred for all three levels of m and averaged 90%. These 
results show that using the insertion search improvement procedure 
with the speed up methods allows relatively good solutions to be ob-
tained in a reasonable amount of time for larger size problems. 

8. Conclusion 

This paper considers the problem of minimizing total earliness and 
tardiness in a no-wait flow shop. An exact branch-and-bound algorithm 
is proposed for the problem. This branch-and-bound algorithm was test 
on small sized problems and was found to be able to solve very small 
sized problems but the increase in computational time quickly becomes 
prohibitive as the number of jobs increases. Therefore, heuristic pro-
cedures were investigated. Twelve dispatching heuristics were tested for 
the problem. Ten of these heuristics were based on heuristics used in 
other environments with some minor modifications. The two heuristics, 

Table 10 
Average % Dev from the EDD solution for the H1INS procedure.  

Number of Jobs 
(n) 

Procedure 

H1INS H1 

Number of Machines (m) Number of Machines (m) 

5 10 20 5 10 20 

15 � 33.91 � 40.37 � 41.37 � 20.03 � 24.09 � 25.91 
20 � 36.27 � 41.62 � 41.67 � 20.20 � 25.14 � 25.96 
25 � 39.05 � 44.09 � 46.46 � 23.70 � 26.71 � 30.62 
30 � 38.69 � 44.58 � 46.88 � 22.58 � 27.35 � 31.85 
40 � 43.30 � 47.18 � 48.91 � 26.79 � 31.35 � 33.06 
50 � 43.84 � 48.28 � 50.15 � 27.12 � 32.10 � 35.23 
75 � 46.33 � 50.48 � 51.64 � 29.70 � 34.32 � 37.02 
100 � 46.90 � 52.00 � 52.86 � 29.95 � 36.54 � 38.93 
AVE. � 41.04 � 47.20 � 47.49 � 25.01 � 29.70 � 32.32  

Table 11 
CPU seconds by n and m for the insertion search procedures.  

n Number of Machines (m) 

5 10 20 

H1INS H1INB % Red H1INS H1INB % Red H1INS H1INB % Red 

8 0.010 0.008 20 0.031 0.009 71 0.053 0.020 62 
10 0.049 0.023 53 0.053 0.026 51 0.054 0.029 46 
12 0.034 0.013 62 0.030 0.009 70 0.057 0.032 44 
15 0.051 0.034 33 0.050 0.027 46 0.057 0.036 37 
20 0.086 0.041 52 0.097 0.044 55 0.099 0.046 54 
25 0.176 0.077 56 0.191 0.079 59 0.190 0.073 62 
30 0.320 0.114 64 0.352 0.107 70 0.334 0.107 68 
40 1.009 0.257 75 0.988 0.228 77 1.009 0.226 78 
50 2.413 0.496 79 2.53 0.480 81 2.354 0.416 82 
75 12.13 1.817 85 13.33 1.736 87 12.52 1.502 88 
100 40.68 4.58 89 42.13 4.26 90 40.04 3.62 91  
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that were newly proposed, utilize some of the characteristics specific to 
the no-wait flow shop in order to sequence the jobs. One of these heu-
ristics, referred to as the H1 procedure, was generally found to be the 
best performing heuristic. 

When the dispatching heuristics were tested on small sized problems 
and the solutions were compared with the optimal solutions generated 
by the branch-and-bound procedure it was found a significant gap 
existed in the quality of the solutions for even the best performing dis-
patching heuristics (H1 and MDD). Therefore, an insertion search 
improvement procedure was proposed for the problem. Two insertion 
search improvement procedures were developed. One included speed up 
procedures that use the structure of the problem. It was found that 
including the insertion search improvement procedure resulted in much 
improved solutions. Also using the speed up methods, enable the pro-
cedure to generate solutions for larger sized problems in a reasonable 
amount of time. 

A future area of additional research would be the development of 
metaheuristics that generate better solutions for the problem. Incorpo-
rating the dispatching heuristics and the insertion search with the speed 
up methods could be a foundation for some of the metaheuristic ap-
proaches such as genetic algorithm or tabu search. 
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