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Abstract

Aiming towards increased robustness to noise and
variability, this paper proposes a novel method for
electrocardiogram-based authentication, based on an end-
to-end convolutional neural network (CNN). This network
was trained either through the transfer of weights after
identification training or using triplet loss, both novel for
ECG biometrics. These methods were evaluated on three
large ECG collections of diverse signal quality, with vary-
ing number of training subjects and user enrollment dura-
tion, as well as on cross-database application, with or with-
out fine-tuning. The proposed model was able to surpass
the state-of-the-art performance results on off-the-person
databases, offering 7.86% and 15.37% Equal Error Rate
(EER) on UofTDB and CYBHi, respectively, and attained
9.06% EER on the PTB on-the-person database. The re-
sults show the proposed model is able to improve the per-
formance of ECG-based authentication, especially with off-
the-person signals, and offers state-of-the-art performance
in cross-database tests.

1. Introduction

Biometric recognition aims to dismiss the use of external
credentials for identification and authentication of individ-
uals in favor of their intrinsic characteristics [16, 18]. Bio-
metric systems avoid the possibility of credentials getting
lost or being stolen or discovered by attackers [2]. How-
ever, the variability of biometric traits grants these systems
a fuzzy nature (matching is not binary as in the compar-
ison of an input password with its stored version), which
enables attackers to try to unlawfully gain access by mim-
icking users’ traits [14, 32].

The electrocardiogram (ECG) has been gaining traction
as a biometric system, and recent studies show ECG-based
biometric systems are significantly more difficult to suc-
cessfully attack than those based on other traits [12, 17].

Besides carrying enough personal information for robust
recognition, the ECG’s hidden nature and inherent liveness
information make it more difficult to unlawfully capture and
inject into the system [23, 29].

Initially, research in ECG-based biometrics was mainly
focused on on-the-person signals (from medical acquisi-
tion settings, using several wet electrodes on the chest and
limbs) [4, 5, 21]. However, it has since evolved towards
higher acquisition comfort, using off-the-person signals (ac-
quired in less obtrusive ways, using dry electrodes on the
fingers, palms, or wrists) [10, 20, 26, 28, 31, 33].

However, ECG signals are greatly influenced by noise
and variability [22, 24], especially in off-the-person set-
tings, which require more robust recognition approaches.
Although researchers have recently started to use deep
learning techniques to achieve better performance and ro-
bustness [13, 27, 30, 38, 39], current deep approaches still
rely on separate predefined feature transforms and/or noise
removal techniques, which are not optimized for the task at
hand and therefore limit the achievable performance.

This work proposes a method for authentication using
short ECG segments that, consisting on an end-to-end con-
volutional neural network (CNN), dismisses all separate
processes of denoising or preparation. The main advantage
of using an end-to-end model is that the network is granted
complete control over the robustness to signal noise and
variability. Besides the use of triplet loss, this work intro-
duces the technique of weight transfer from a similar model
trained for identification. This aimed to assess whether pa-
rameters optimized for identification tasks would offer per-
formance benefits in authentication.

The proposed network and both training methodolo-
gies were extensively evaluated on three ECG collections,
that include on-the-person and off-the-person signals with
varying signal quality, multi-session recordings from sev-
eral subjects, and influence of emotions, posture, and exer-
cise. This evaluation included the assessment of the trained
model’s applicability to other signal collections, through
cross-database tests using transfer learning and fine-tuning.
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Figure 1. Schemes illustrating the proposed authentication model, including the weight transfer between networks for both proposed
training methodologies (the input shape 1× 1000 refers to the five-second length of the segments used in this work, 1000 samples at 200
Hz sampling frequency).

2. Proposed Methodologies

The proposed method for ECG biometric authentication
is based on a CNN (see Fig. 1, darker gray). All enrolled
users have one or more fixed-length ECG segments (tem-
plates) stored in the system, that have been blindly seg-
mented (without requiring any process of reference point
detection) from a recording obtained upon enrollment.

When a user claims to be an enrolled individual, the
model receives and processes, simultaneously, the K stored
templates of the claimed identity and 1 current segment
of the user. The comparison between the processed cur-
rent segment and each of the K stored templates allows the
model to output a dissimilarity score, which can be used to
accept or reject the identity claim.

After sample-wise normalization to zero mean and unit
variance, the processing of each input segment or template
starts with a succession of convolutional and pooling layers.
As visible in Fig. 1, four unidimensional convolutional lay-
ers are alternated with three max-pooling layers. All have
1 × 5 filters, and the convolution is performed with unit
stride and no padding. The first two convolutional layers
hold 24 feature maps, while the last two hold 36.

The second part of the network is composed by a fully-
connected layer. The outputs of this fully-connected layer

for each stored template (a) and for the current segment (b)
are compared using normalized Euclidean distance [37] (see
Eq. (1)), using their variance (Var ) so the output lies in
[0, 1]. Among the K distances computed, the minimum is
output as the final dissimilarity score for authentication.

d(a,b) =
Var(a − b)

2 (Var(a) +Var(b))
. (1)

2.1. Model Training

The weights for the authentication model layers are
transferred either from a model trained for identification or
from a model trained using triplet loss (see Fig. 1). The
training methodology of transferring weights from an iden-
tification model aimed to take advantage of the training pro-
cess of identification deep neural networks and assess how
it could benefit a neural network for authentication. On
the other hand, triplet loss has been recently and success-
fully used in biometrics, for authentication, and other simi-
lar tasks [7, 8, 11].

The training process requires specific structural changes
to the model, which are illustrated in Fig. 1 and described
below. In all cases, during training, the optimizer used was
Adam [19] with an initial learning rate of 0.001, β1 = 0.9,
β2 = 0.999, and no decay. Dropout [35] and data augmen-



tation (random permutations, as in [30]) were used to pre-
vent overfitting. After training, the weights are transferred
to the respective layers on the authentication model.

2.1.1 Transfer from Identification Network (IT-CNN)

In the case of identification training (IT-CNN), the model is
structured to receive 1 input segment and contain one ad-
ditional fully-connected layer (FC2), using softmax activa-
tion, that will outputN scores. It is trained for identification
with data from N identities (following the work of Pinto et
al. [30]).

After receiving a training segment, considering its true
label and the network’s output, the sparse categorical cross-
entropy loss [1, 9] is computed and used during training to
ultimately prepare the model to adequately discriminate the
subjects.

2.1.2 Triplet Loss Training (TL-CNN)

To be trained using triplet loss (TL-CNN), the authentica-
tion model, which hasK+1 inputs and 1 output, is restruc-
tured to receive 3 inputs and offer 2 outputs. The three in-
puts are the reference template, a positive template (whose
identity is the same as the reference), and a negative tem-
plate (of a different identity). The network processes each
input and computes the dissimilarities between the refer-
ence and the positive template (p) and between the reference
and the negative template (n).

Using adequate triplets of signal segments, the goal is
to minimize p and maximize n. Hence, the model is trained
using triplet loss [7], which can be computed for each triplet
of inputs through the function:

l(p, n) = max(0, α+ p− n), (2)

where α controls the margin to be enforced between the
scores of positive and negative pairs (in this work, α = 0.5).
This margin eases the choice of an effective threshold for
the purpose of authentication.

3. Evaluation Details

In this work, one of the main concerns was ensuring the
performance results were as realistic as possible. To achieve
this, all databases were split between training subjects and
testing subjects, to ensure the model can be trained and ap-
plied on data from two entirely different set of subjects.
Furthermore, cross-database tests were performed to ensure
the model can generalize to other population samples and
acquisition settings. Subject enrollment was limited to real-
istic durations (5, 10, 15, or, at most, 30 seconds of the first
data from each subject).

3.1. Data and Reference Methods

The three selected databases were UofTDB [36],
CYBHi [34], and PTB [6, 15]. UofTDB (off-the-person,
1019 subjects) was used for most experiments due to its in-
termediate but realistic signal quality. The PTB (on-the-
person, 290 subjects) and CYBHi (off-the-person, 128 sub-
jects) databases were used to assess performance in better
and worse signal quality settings, respectively. To match
UofTDB, CYBHi and PTB signals were resampled to 200
Hz. For PTB, only Lead I signals were used.

Three literature methods were used as reference: the
AC/LDA method, proposed by Agrafioti et al. [3]; the Au-
toencoder method, proposed by Eduardo et al. [13]; and the
DCT method, proposed by Pinto et al. [30, 31] (adapted for
authentication, using cosine distance normalized to [0, 1] for
matching).

3.2. Evaluation Procedures

The proposed and implemented methods were evaluated
across four procedures, as detailed below, using as metric
the Equal Error Rate (EER, see [29] for more details). Here,
each signal segment used as input for the proposed model
was five seconds long (1000 samples at 200 Hz sampling
frequency).

On single-database procedure P1, the proposed model
was evaluated on UofTDB data, and compared with the
aforementioned reference state-of-the-art methods. The last
100 subjects were reserved for training, while the data from
the remaining 919 subjects were used for testing. The num-
ber of enrollment templates was varied between 1, 2, 3, or
6 five-second segments.

Procedure P2 aimed to study how the performance is af-
fected by the number of subjects used to train the model.
Instead of the original 100 subjects, training was performed
using the 20, 50, or 150 last subjects of UofTDB, and the re-
maining 999, 969, or 869 subjects, respectively, were used
for testing.

Cross-database procedure P3 was designed to assess
the proposed model’s applicability to signals from other
databases. The proposed model, previously trained on 100
subjects from UofTDB, was directly tested on data from
CYBHi and PTB, without fine-tuning.

At last, on procedure P4, the goal was to assess the per-
formance benefits brought by fine-tuning. As in P3, the pro-
posed model trained on UofTDB data (from 100 subjects),
was fine-tuned to CYBHi/PTB data (from 20 subjects). This
was compared to the model directly trained, from scratch,
on data from CYBHi or PTB (from 20 subjects, following
P1). With 20 subjects reserved for training, the tests on P4
were performed for 108 (CYBHi) or 270 (PTB) subjects.



Table 1. Procedure P1: EER results (%) when trained with data
from 100 UofTDB subjects and tested with 919 UofTDB subjects
(in italics: proposed methods; in bold: best results).

Enrollment duration
Method 5 s 10 s 15 s 30 s
IT-CNN 13.70 10.92 9.52 7.86
TL-CNN 13.93 11.89 10.90 9.94
AC/LDA [3] 30.27 17.90 16.55 15.82
Autoencoder [13] 21.82 19.68 18.84 17.09
DCT [30, 31] 23.05 20.41 18.55 17.38

4. Results and Discussion
4.1. Evaluation Procedure P1

The results obtained on the single-database procedure P1
are presented in Table 1. In all cases, the IT-CNN model,
which used weights trained for identification, attained bet-
ter results than TL-CNN, which was trained using triplet
loss. With 30 seconds of user enrollment, IT-CNN achieved
7.86% EER, while TL-CNN offered 9.94% EER in the
same circumstances.

When considering shorter enrollment recordings (5 s, 10
s, and 15 s), the performance of both proposed methods
worsens, but always remained below 14% EER. It is note-
worthy that IT-CNN presented a wider advantage over TL-
CNN with more enrollment data, which may denote it takes
better advantage of the availability of data.

Among the reference methods, AC/LDA presented the
best results in most settings. When compared with these
results, both proposed methods offered consistently lower
EER. Considering the best reference method for each
enrollment duration, IT-CNN attained an EER reduction
around 7 − 8%, which can be regarded as a significant im-
provement over the state-of-the-art.

Among other state-of-the-art works, Luz et al. [27], un-
der similar settings, reported a performance of 14.27% EER
with UofTDB data. All IT-CNN and TL-CNN performance
results are better, even when considering only 5 seconds of
enrollment (much less than what was used by Luz et al.).

Moreover, Louis et al. [25] reported 7.89% EER, but
only using single session data from 1012 UofTDB sub-
jects. Using only data from subjects with more than one
session (82 subjects), Louis et al. reported 10.10% EER,
while Komeili et al. [20] reported 6.9% EER. Although the
evaluation settings are different, the proposed method’s re-
sults are aligned with these (7.86% for IT-CNN with 30 s
enrollment).

The statistical significance of the results was assessed,
repeating the evaluation on one-hundred random subject
data divisions between enrollment and testing (Table 2).
Overall, the results were better, as this test is arguably less
realistic than the remaining tests performed in this study (a
real biometric system will always use the very first data of

Table 2. Procedure P1: Mean and standard deviation of the EER
results (%) obtained on 100 random data divisions (in italics: pro-
posed methods; in bold: best results).

Enrollment duration
Method 5 s 10 s 15 s 30 s
IT-CNN 11.3 ± 0.14 9.4 ± 0.12 8.4 ± 0.14 7.0 ± 0.14
TL-CNN 11.6 ± 0.16 10.3 ± 0.11 9.7 ± 0.14 8.7 ± 0.11
AC/LDA 17.7 ± 0.18 15.6 ± 0.17 14.6 ± 0.17 13.3 ± 0.31
Autoenc. 18.4 ± 0.17 16.3 ± 0.14 15.9 ± 0.16 13.8 ± 0.12
DCT 21.2 ± 0.16 18.6 ± 0.15 16.4 ± 0.14 15.5 ± 0.21

a subject for enrollment). Applying a paired two-sided t-
test to the EER estimates, the results of the proposed meth-
ods IT-CNN and TL-CNN were significantly different in all
cases (the differences are statistically significant at the 1%
level), not only from each of the implemented state-of-the-
art methods, but also between themselves.

Additionally, the outputs of the network for five-second
training segments from different subjects were visualized
(see Fig. 2). These are, effectively, the feature vectors used
for the authentication decision. It is possible to observe that,
despite the blind segmentation and the noise and variability
carried by each five-second segment, the trained network
was able to represent each input segment in a way that max-
imizes similarity with other segments from the same sub-
ject. Although some variability is still present, it is reduced
to a manageable level for the biometric authentication task,
and the differences between the subjects output patterns are
noticeable even through a simple visualization of the plots.
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Figure 2. The network outputs for all training samples of five ex-
ample subjects of UofTDB (each row). The average output feature
vector is presented as a black line, and the standard deviation as a
grey area.
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Figure 3. Procedure P2: EER evolution with number of subjects
reserved for training, for diverse enrollment durations, for the pro-
posed methods IT-CNN and TL-CNN.

4.2. Evaluation Procedure P2

On the single-database procedure P2, the number of
UofTDB subjects reserved for training was varied (Fig. 3).
In all cases, an increase in the number of training subjects
resulted in performance improvements. The best results
were obtained with 150 training subjects and 30 seconds en-
rollment, with 6.46% EER and 8.71% for IT-CNN and TL-
CNN, respectively. Nevertheless, even with just 20 train-
ing subjects, IT-CNN offered performance under 10% EER
(9.92%, with 30 s enrollment).

As on P1, it was noticeable that the performance advan-
tage of IT-CNN over TL-CNN was greater when more data
was available, either for model training or user enrollment.
For example, the EER difference between IT-CNN and TL-
CNN grew from 0.5% to 2.25% when increasing the num-
ber of training subjects from 20 to 150 and the enrollment
duration from 5 to 30 s.

Despite this, one could expect the IT-CNN method to
perform better than the state-of-the-art, even under scarce
data conditions. Based on the results, when pre-trained with
only 20 subjects with 10 s enrollments, IT-CNN should of-
fer an EER lower than 13% on a population of nearly one
thousand individuals.

4.3. Evaluation Procedure P3

On P3, the proposed methodologies were directly ap-
plied to CYBHi and PTB, after training on data from 100
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Figure 4. Procedure P3: EER for the proposed methods IT-CNN
and TL-CNN when trained with UofTDB data and directly applied
to CYBHi or PTB, and comparison with state-of-the-art methods.

UofTDB subjects (Fig. 4).
On CYBHi, IT-CNN offered better performance than

TL-CNN when using 30 s enrollment (16.30% against
17.56% EER). However, with reduced enrollment duration
(5 s), TL-CNN performed better (24.66% against 26.89%
EER). This reinforces the idea that TL-CNN is better in
scarce data situations, while IT-CNN takes better advantage
of a greater availability of data. On PTB, IT-CNN was, in all
cases, the most successful proposed method (13.83% EER
with 5 s enrollment).

Among the state-of-the-art methods, AC/LDA behaved
as on P1 (see Table 1), offering the worst results when using
5 s enrollment, but sharply improving with more enrollment
data, offering the best result on PTB (9.03% EER). DCT
presented the best result in CYBHi (15.40% EER), while
IT-CNN offered the second-best result (16.30% EER). Both
proposed methods were, in general, worse than the state-of-
the-art on the PTB database.

4.4. Evaluation Procedure P4

On procedure P4, the model was trained with
CYBHi/PTB data and compared with the state-of-the-art
(Fig. 5) and when trained with UofTDB data and fine-tuned
to CYBHi/PTB (Fig. 6).

Directly trained on CYBHi data, TL-CNN attained
20.04% EER, but it offered 17.56% EER if trained with
UofTDB data, and further improving to 15.37% EER if
fine-tuning is performed. TL-CNN was able to attain better
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Figure 5. Procedure P4: EER for the proposed methods IT-CNN
and TL-CNN when directly trained with CYBHi or PTB data from
20 subjects, and comparison with state-of-the-art methods.

performance than IT-CNN in more difficult settings, once
again indicating that this method may be better fitted for
scarcer data or noisier signals.

On PTB, TL-CNN did not offer competitive results. For
IT-CNN, fine-tuning (9.06% EER with 30 s enrollment) im-
proved the results over direct application, but it was not
enough to significantly improve over the results of direct
training. Apparently, training with UofTDB data over-
prepared the network for a degree of noise and variability
that is not verified on PTB signals, which ultimately harmed
its performance. An hybrid method where, before regular
training, the neural network would be encouraged to mimic
the behaviour of traditional methods, could be beneficial in
cross-database settings.

Overall, the proposed methodologies presented more
competitive results on CYBHi than on PTB, likely due to
PTB signals’ lesser noise and variability. Thus, while the
proposed model has shown robustness to noise and variabil-
ity on off-the-person settings, the state-of-the-art methods
are more fitted to cleaner on-the-person signals.

5. Conclusion
In this work, an end-to-end model, based on a CNN, was

proposed for biometric authentication using ECG signals. It
was designed to use a set of stored templates of a claimed
identity and an ECG segment of the current user, and out-
put a dissimilarity score used to accept or reject the identity
claim. The model was trained using triplet loss or by trans-
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Figure 6. Procedure P4: EER for the proposed methods when (DT)
trained, from scratch, with data from CYBHi or PTB, or when
(FT) trained with UofTDB data and fine-tuned to CYBHi/PTB.

ferring weights from a similar model trained for identifica-
tion.

The proposed model was successful in improving over
the performance of state-of-the-art methods, especially in
off-the-person signals, increasingly used on ECG-based
biometrics. Using identification training has offered bet-
ter performance than triplet loss when more training and
enrollment data is available, and could bring benefits for
other tasks or biometric traits. Both methods have shown
the ability to overcome increased noise and variability of
off-the-person signals, focusing on subject-specific signal
patterns for accurate authentication. Nevertheless, further
efforts should be devoted to improve performance and turn
the ECG into a reliable alternative to common biometric
traits.
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