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Abstract. Adverse Drug Events (ADEs) are a major health problem,
and developing accurate prediction methods may have a significant
impact in public health. Ideally, we would like to have predictive meth-
ods, that could pinpoint possible ADRs during the drug development
process. Unfortunately, most relevant information on possible ADRs is
only available after the drug is commercially available. As a first step,
we propose using prior information on existing interactions through rec-
ommendation systems algorithms. We have evaluated our proposal using
data from the ADReCS database with promising results.
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1 Introduction

Adverse Drug Events (ADEs)! are events that indicate a relationship between
the treatment and a negative outcome. It is estimated that, in the United States
alone, ADEs account for up to 28 % of all emergency department visits [8], and
5% of hospital deaths [3]. As a consequence, between 30 and 150 billion dollars
are spent annually in hospitals treating those adverse events [4]. There is thus,
not only a moral obligation on pursuing safer medicines, but also strong economic
impact.

Randomized Controlled Trials (RCTs) are the main tool used to ensure drug
quality. They are conducted in standardized conditions, nonetheless, authors
have noticed under-representation of women and elderly patients in those tri-
als [6]. Alongside RCTs being conducted regardless of the specific features of the
drug or the patient, they often use small samples and with very little statistical
significance. Due to these limitations, only ADEs that are common and that
develop over short periods of time can be detected with high-confidence.

In this work, we aim at taking advantage of the ability of Machine Learning
to process large amounts of data in order to find hidden connections. Our method
is as follows. First, we collect data that would be publicly available before the

1 Also referred to as Adverse Drug Reactions (ADR).
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drug enters the market. Second, we feed that information to a recommendation
system. The output is the set of side-effects with higher estimated probability.
We experimented our method, using two methods: Singular Value Decomposition
(SVD) and Restricted Boltzmann Machines (RBM), and then combining them
as an ensemble classifier.

The main contribution of the present work is the adaptation and evaluation
of recommender systems to the problem of predicting ADEs. As the empiri-
cal evaluation shows, the technology is scalable and flexible, and enables ADE
prediction at any stage of the drug’s development (with special focus on the
pre-marketing stage).

2 Related Work

Most ADR research is done on the post-marketing stage, where not only there is
more information available, but also when large amounts of money were already
invested and the cost of discovering a new ADE is considerably higher. Such
research has relied on a variety of data sources. One major source has been elec-
tronic health records (EHRs), even though they pose challenges of their own [7].

Our approach is inspired on the excellent performance of recommender sys-
tems in sparse domains [5]. A significant boost to research in recommender sys-
tems was due to the NetFlix challenge. The winning entry of the competition
was an ensemble of several algorithms, including various Singular Value mod-
els blended with RBM [2]. Our work applies and adapts these methods to the
challenging task of ADE prediction.

3 Methods and Algorithms

3.1 Singular Value Decomposition

Formalization. The drug-ADE relationship is represented as a matrix M €
R™*™ where m is the number of drugs and n the number of ADEs. Whenever
a drug d is known to cause ADE a, My, = 1 This representation causes M to
be sparse.

Matrix factorization allows not only the mapping of drugs and ADEs in
factor-spaces but also the reduction of the matrix dimensionality. Consider that
each drug is associated with a vector p; and each ADE with a vector ¢; such
that:

M=PQT (1)

The Singular Value Decomposition (SVD) is a factorization of a real (in
our case) or complex matrix. Let’s consider the factorization of a real valued
matrix. Formally, the singular value decomposition of an m x n matrix M is
a factorization of the form M = UXVT, where U is an m x r orthonormal
matrix, X' is an r X r diagonal matrix with positive, non-zero, singular values in
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decreasing order, and VT is an r x n orthonormal matrix, where r is the rank
of matrix M. Then, it is possible to obtain matrices P and @ from Eq. 1 by:

P=UVE (2)
Q=vzv’ (3)

We are interested in matrix @ of size r X n, whose entries represent the
“meta” relations between r pseudo-drugs and the n ADEs.

Dimensionality Reduction. The model generated by the method described
above might suffer from over-fitting, since it would fit the noise present in M.
One solution to generalize the model and reduce the effects of the noise is to
find a matrix M which is the best rank k approximation of M, with k < r.
The problem to be solved is, then, to find the optimal value for k. The energy
of the factorization of a matrix is defined by Rajaraman and Ullman [9] as the
sum of the squares of all its singular values. The new reduced matrix is obtained
by discarding a certain amount of that energy. k is the value that minimizes e:

k r

2 2
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where a € [0, 1] is the amount of energy we wish to keep. Tests showed that the
optimal value of alpha for this problem is 0.9, as greater values reduce the Recall
and smaller values reduce the Precision.

=6 (4)

Gradient Descent. After the dimensionality reduction step, it is possible to
optimize P and @ by using gradient descent.

S el + > llaal?
xr xT

The real goal is to find P and Q based on known drug-ADE relations so
that we predict well the unseen values. This enables us to approximate missing
drug-ADE relations as zeros.

min Y (mai = pig;)? + A

training

()

3.2 Restricted Boltzmann Machines

Formalization. Restricted Boltzmann Machines (RBMs) [10] can be used to
perform a binary factor analysis. An RBM is a stochastic neural network con-
sisting on a layer of visible units, a layer of hidden units and a bias unit. The
visible units represent, in this context, the drug’s ADEs that we know. The hid-
den units are the latent factors that we want the model to learn. The visible
units and the hidden units form a bipartite graph.

It is possible to reduce the dimensionality of a feature vector, in the case that
the hidden layer has fewer units than the visible layer. By providing a drug d with
size 1 X n it is possible to obtain a vector f with its latent factors of size 1 x [ with
[ being the number of hidden units. On the other hand, vector [ can also be used
to obtain a vector d. d; represents the probability of drug d causing ADE i.
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3.3 Ensembles

SVD and RBM are able to predict the probability of a drug causing a set of
ADEs. More formally, given a drug d of size 1 x n, each method predicts a drug
d of the same size: A

d = [p1 P2 Pn] (6)
where p; represents the probability of drug d causing ADE 1.

One can look at the problem of making an element-wise combination of dsvp
and d rBM as a classification problem where, given two probabilities the model
classifies the final probability as positive (i.e. causing the ADE) or negative (i.e.
not causing the ADE); or as a regression problem where, given two probabilities
the model computes a new probability.

We have used a Support Vector Machine (SVM) with a Radial Basis Function
(RBF) kernel for the classification problem. On the other hand, to solve the
regression problem, a Support Vector Regression (SVR) algorithm was used,
also with a RBF kernel. The SVR model was trained the same way as the SVM
model, nonetheless, a threshold was required in order to be able to classify a
drug as causing ADE ¢ or not.

The Receiver Operating Characteristic (ROC) curve was computed and
the threshold is obtained by using the Youden index [12], which maximizes
Sensitivity + Speci ficity — 1. Graphically, the index is represented by the max-
imum height above the chance line.

4 Empirical Evaluation

4.1 Data

In these experiments we use the ADReCS? data-base as ground truth. This drug-
ADE database is maintained by researchers at Xiamen University, and includes
adverse drugs’ reactions ontologies, that enable the standardization and hier-
archization of ADE terms. The drug-ADE information of ADReCS was mainly
sourced from the drug labels in the DailyMed, maintained by the U.S. National
Library of Medicine (NLM) [1].

4.2 Methodology

The samples were randomly split into two different sets: 70 % into a training
set and the remaining into a test set. In the case of the SVD and the regres-
sion ensemble, the elements of the resulting prediction vary between 0 and 1.
A threshold is needed to distinguish between a positive and a negative example.
To do that, the ROC curve is computed by using a validation set, and the Youden
index [12] is used as the threshold, as described in Subsect. 3.3. The validation
set is computed differently for each method and, therefore, it is explained in the
corresponding Subsection. To test the model, the testing set is used. For each

2 http://bioinf.xmu.edu.cn/ ADReCS.


http://bioinf.xmu.edu.cn/ADReCS

Predicting Drugs Adverse Side-Effects Using a Recommender-System 205

element of the testing set, 30 % of the ADEs are randomly removed and used as
input to the model. The Precision, Recall and, whenever possible, the ROC area
are computed.

SVD Experiments. To build the model, k-fold cross validation was applied to
the training set, with k = 10. At each iteration, 9 folds are chosen as matrix M
and matrix @ is computed, as described in Subsect. 3.1, leaving the remaining
fold as the validation set.

After obtaining the model, the method was tested using the testing set. The
computed metrics are presented on Table 1.

Table 1. Results of the SVD by removing 30 % of each drug’s known ADEs present in
the test set

ROC area | Precision | Recall
Average 0.954 0.373 0.843
Standard deviation | 0.054 0.120 0.136
Minimum 0.410 0.000 0.000
Maximum 1.000 1.000 1.000

The system performs well on the majority of the elements from the test
set, as can be seen by the large ROC area and small standard deviation. With
this approach, on average, the system is able to find 84 % of the ADEs of each
drug. Nonetheless, about 37 % of the elements classified as positive are, indeed,
positive, as concluded from the Precision.

A sensitivity analysis was performed, by varying the number of removed
ADEs from the test set, in order to evaluate the system’s performance under
different conditions. As show in Fig. 1, the system’s performance deteriorates as
the level of information is reduced.
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Fig. 1. Sensitivity Analysis of the different metrics by varying the number of removed
ADEs from the test set
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Table 2. Results of the RBM by removing 30 % of each drug’s known ADEs present
in the test set

ROC area | Precision | Recall
Average 0.950 0.572 0.758
Standard deviation | 0.051 0.276 0.196
Minimum 0.417 0.000 0.000
Maximum 1.000 1.000 1.000

RBM Experiments. The RBM model was built using 1000 hidden nodes,
and was trained for 300 epochs. The results are presented on Table2. Also, a
sensitivity analysis was performed, the same way as for the SVD, and is presented
on Fig. 2.

It is possible to conclude that the RBM provides better Precision but with
lower Recall than the SVD. Also, this method deals better with the absence of
information than the SVD.

Ensemble. In order to combine the two methods, 10% of the training set
is used as validation set. The results of combining SVD and RBM using the
classification approach and the regression approach are compared on Table 3.
Again, a sensitivity analysis was performed on the two approaches and presented
on Fig. 3.
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Fig. 2. Sensitivity Analysis of the different metrics by varying the number of removed
ADEs from the test set

Table 3. Results of combining SVD and RBM, using SVM and SVR, by removing
30 % of each drug’s known ADEs present in the test set

Precision(SVM) | Recall(SVM) |[ROC(SVR) | Precision(SVR) | Recall(SVR)

Average [0.974 0.718 0.990 0.687 0.909
SD 0.112 0.198 0.036 0.128 0.140
Minimum |0.000 0.000 0.509 0.000 0.000

Maximum | 1.000 1.000 1.000 1.000 1.000
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Combined Classification Combined Regression

1 1 Ps
‘—0‘0—\’ Ly ———
09 09
08 08
07 07
L os 206
305 205 ——ROC Area
g0, —o—precision & o4 orecision
——Recall 03
03 Recall
02
02
01
01
0 0
o 01 03 05 07 0 01 03 05 07
% Removed ADEs % Removed ADEs
(a) (b)

Fig. 3. Performance of all methods by varying the number of missing ADEs. (a) Pre-
cision. (b) Recall.

4.3 Discussion

By analyzing Fig. 4 it is possible to conclude that the combined approach is able
to maximize one of the two metrics, but not both. The classification one is able
to achieve high precision but has low recall, on the other hand, the regression
approach achieves high recall but low precision.
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Fig. 4. Results of using the classification and regression approaches to combine the
SVD and RBM models. (a) Classification. (b) Regression.

5 Conclusions and Future Work

The method presented here serves as a basis for further expansion. It is capable of
taking other data to strengthen its results e.g., molecular descriptors, molecular
substructures, literature statistical analysis or even patients information.
Another connection particularly interesting is the comparison of the results
with drug—side-effect reports that can be mined from a database such as the
FDA Adverse Event Reporting System (FAERS), based on the approach of Rong
Xu and QuanQiu Wang [11]. On the other hand, the comparison against other
methods, such as different variations of SVM and Random Forests, could give
more insight and even boost the precision and recall of the ensemble method.
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In sum, there is still much work to be done based on this method, and most
important, as a reminder to the research community of the importance on focusing
on pre-marketing prediction (and consequent prevention) strategies for ADEs.
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