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Abstract

This paper addresses the integration of the planning decisions concerning inbound logistics in an
industrial setting (from the suppliers to the mill) and outbound logistics (from the mill to customers).
The goal is to find the minimum cost routing plan, which includes the cost-effective outbound and
inbound daily routes (OIRs), consisting of a sequence of deliveries of customer orders, pickup of a full
truck-load at a supplier, and its delivery to the mill. This study distinguishes between three planning
strategies: opportunistic backhauling planning (OBP), integrated inbound and outbound planning
(IIOP) and decoupled planning (DIOP), the latter being the commonly used, particularly in the case
of the wood-based panel industry under study. From the point of view of process integration, OBP
can be considered as an intermediate stage from DIOP to IIOP. The problem is modelled as a Vehicle
Routing Problem with Backhauls, enriched with case-specific rules for visiting the backhaul, split
deliveries to customers and the use of a heterogeneous fleet. A new fix-and-optimise matheuristic is
proposed for this problem, seeking to obtain good quality solutions within a reasonable computational
time. The results from its application to the wood-based panel industry in Portugal show that IIOP
can help to reduce total costs in about 2.7%, when compared with DIOP, due to better use of the
delivery truck and a reduction of the number of dedicated inbound routes. Regarding OBP, fostering
the use of OIRs does not necessarily lead to better routing plans than DIOP, as it depends upon a
favourable geographical configuration of the set of customers to be visited in a day, specifically, the
relative distance between a linehaul that can be visited last in a route, a neighboring backhaul, and
a mill. The paper further provides valuable managerial insights on how the routing plan is impacted
by the values of business-related model parameters which are set by the planner with some degree
of uncertainty. Results suggest that increasing the maximum length of the route will likely have the
largest impact in reducing transportation costs. Moreover, increasing the value of a reward paid for
visiting a backhaul can foster the percentage of OIR in the optimal routing plan.

Keywords: logistics planning, vehicle routing with backhauls, rich vehicle routing, forest industry

Highlights:
• Studying different planning strategies of inbound and outbound logistics processes
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1 Introduction

The optimisation of the logistics processes has a whopping effect on improving the cost-efficiency of supply
chains. Specifically, in forest-based supply chains, the inbound logistics bringing the wood from the forest
to the mill can represent up to 30% of the total costs (Audy, Lehoux, D'Amours, & Rönnqvist, 2010),
while the outbound logistics bringing the wood-based products from the mill to the consumers can be
equally high.

Despite recent studies showing that integrated planning of supply chain operations can lead to better
results than decoupled planning (e.g., Amorim, Günther, & Almada-Lobo, 2012), inbound and outbound
logistics planning are still dealt separately in most forest industries, as well as in other sectors. The
complexity of the logistics operations, specificities of the transportation fleet and customer service levels
are frequent justifications for this fact. In the wood-panel based industry, outbound logistics planning
establishes the minimum-cost daily routes, henceforth called outbound routes (ORs), for delivering the
ordered amounts of finished products to customers. This process accrues from the mill’s production plan
and impacts on the customer order lead time. Inbound logistics establishes the inbound routes (IRs),
usually of a dedicated log-truck, consisting of a sequence of full truck-load trips between a wood sourcing
location and the mill. The process is affected by wood procurement planning, ultimately impacting on
the upstream forest harvest scheduling decisions. Similar transportation planning settings appear in the
retail industry. Namely, in cases in which the retailer has the option to pick-up products at suppliers
besides just simply distributing to stores (Yano et al., 1987).

This paper studies the integration of inbound and outbound logistics in the context of the wood-
based panel industry. The case study is driven from a real-life industrial application that operates on a
multi-mill setting. The production strategy of the wood-based panels at each mill is Make-to-Order. The
finished products are shipped to the customers in the day after its production. The stock of raw materials
should be at least one week to overcome fluctuations in wood supply. The outbound logistics are planned
locally, in the transportation department of each mill, while the inbound logistics are planned centrally,
considering the bulk demand for all the mills. The goal here is to find daily minimum-cost outbound
and inbound routes (OIRs) where the vehicle departing from each mill firstly performs a sequence of
deliveries of the amounts ordered by the customers, and secondly, whenever is cost-effective, picks up a
full truck-load of raw materials at a nearby supplier, and delivers it at the closest company’s mill. OIRs
allow better use of the delivery truck, when compared with ORs and further avoid dedicated IRs. This
is possible because the driver can easily adapt the same truck that transported the wood boards with
reinforcements in its structure so it can transport a full truck-load of wood chips. For wood-based supply
chains, it is common that the inbound transport is carried in full truck-loads (e.g., Carlsson & Rönnqvist,
2007; Derigs et al., 2012; Hirsch, 2011).

In this paper, the problem of finding OIRs is modelled as a Vehicle Routing Problem with Backhauls
(VRPB). The VRPB is a variant of the well-known Vehicle Routing Problem (VRP) where the route
visits several customers, in some performing deliveries (referred as linehauls) and in others pickups (the
backhauls), but all deliveries must be made before any pickups (Goetschalckx & Jacobs-Blecha, 1989).
In this study, we use the VRPB as a mean to tackle Integrated Vehicle Routing Problems, as outlined by
Bektaş, Laporte, and Vigo (2015), since the routing decisions related with the process of inbound logistics
and those of the outbound logistics are dealt jointly. Moreover, there are essential business-related rules
arising from our application to the wood-based panel industry that determine route feasibility, which are
not yet fully covered in the VRPB literature and justify the formulation of a new variant of a rich VRPB,
in line with the taxonomy proposed by Lahyani, Khemakhem, and Semet (2015).

The first set of business-related rules addressed in this study relate to the conditions determining the
visit to a backhaul: i) the backhaul can only be visited after all deliveries are performed, here called a
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precedence constraint, because the reinforcement of the truck for transporting the wood chips can only
occur after the last delivery of the wood-based panels; ii) there is at most one backhaul visited per route
because the amount picked up is always a full truck-load since there are no wood availability constraints
at suppliers; iii) if there is a pickup at a backhaul it is mandatory that the same route includes its delivery
at a mill. This is another type of precedence constraint ensuring that a mill is visited after a backhaul.
However, operational practice indicates that the unloading mill may or may not be the mill of origin,
because the company owns several mills geographically dispersed, and the truck can end the route in any
of these mills, as long as the compatibility requirements between the types of raw materials available at
the backhaul and accepted at the mill are accounted for; iv) a backhaul may or may not be visited, which
is known in the literature as selective backhauling; v) routes without a backhaul are also feasible, and
in this case, the route ends in the last linehaul visited, similarly to what occurs in an Open VRP (see
Figure 1). There are other studies on VRPB that work with precedence constraints and selectiveness.
However, the possibility to optimise the decisions about visiting or not a backhaul and further choosing
the delivering mill in order to minimise total logistics costs are new and important features of the problem
under study. Another important case-specific rule determines that each customer may be visited more
than once by different vehicles, known in the VRP literature as split deliveries. The bundle of panels to be
delivered at the linehaul customer is of variable size and weight. Therefore, several smaller bundles can be
transported by the same truck, but larger bundles may need multiple trucks serving the same customer.
Lastly, the available fleet is composed of trucks which are heterogeneous in terms of the transportation
capacity. The transport is entirely outsourced to third-party carriers and paid based on a fixed daily
use cost and a variable cost depending on the travelling distances of the ‘for-hire’ vehicles. We further
emphasize that these business rules are also applicable in other industries besides the wood-panel one,
such as in grocery retail.
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Figure 1: Problem representation

The complexity of this real-world problem motivates a study about the main strengths and shortcom-
ings of different inbound and outbound planning strategies, with greater or fewer degrees of integration.
Furthermore, given the considerable size that these problems can achieve, it becomes relevant to envisage
a scalable solution method, able to cope with the operational reality.

This research builds on a literature review on VRPB and other rich VRP variants with similarities to
our problem. The first contribution of this paper is to develop a mathematical formulation to address a
rich VRP that is primarily used to solve different planning strategies for obtaining OIRs. We apply it to a
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case study in the wood-based panel industry in Portugal and draw conclusions by comparing the routing
plans obtained with those alternative planning strategies. Another contribution is to provide valuable
managerial insights for planners about the impact of business-related model parameters over the optimal
routing plan. Another contribution is to adapt the fix-and-optimise matheuristic presented by Sahling,
Buschkühl, Tempelmeier, and Helber (2009) for obtaining good quality solutions for larger instances of
this problem within a reasonable computational time.

The remainder of this paper is organised as follows. Section 2 provides a critical review of the
literature regarding integrated transportation planning with a particular connection to the VRPB. This
review covers extensions of VRPBs and solution methods developed to solve both artificial and real
instances, and allows us to place our work in context. Section 3 presents the mathematical formulation of
the three logistics planning strategies investigated in this work, namely the opportunistic backhauling, the
integrated and the decoupled inbound-outbound transportation planning. Section 4 describes the solution
approach developed, which is based on a fix-and-optimise algorithm. Section 5 presents the computational
experiments performed with close-to-reality instances from a wood-based industry in Portugal. The
routing plans obtained for the three planning strategies are compared, and relevant managerial insights
are envisaged. The main conclusions are presented in Section 6.

2 Critical review of the state of the art

In the literature on logistics and transportation, the term integrated planning is broadly used to refer to
situations where the routing decisions are tackled jointly with other decisions (Speranza, 2018). In some
situations, the integration is between transportation decisions of different planning levels, for example,
strategic decisions concerning the design of the transportation network and the tactical decisions related
with the routes and assignment of the transport vehicles (e.g., Bouchard, D’Amours, Rönnqvist, Azouzi,
& Gunn, 2017). In other situations, the integration is between the routing decisions and the decisions
concerning other processes of the supply chain. The special issue by Bektaş et al. (2015) on the integrated
VRP shows examples of cases where vehicle routing is interlinked with decisions related to loading,
production (or inventory), location, and speed optimisation. As an example, production-routing problems
integrate production, products delivery (i.e., outbound logistics), and usually also inventory decisions
(e.g., Adulyasak, Cordeau, & Jans, 2015). There are several examples in the forest literature where
wood transportation to the mill (i.e., inbound logistics) and the upstream process of forest harvesting are
planned jointly (e.g., Marques, Audy, D’Amours, & Rönnqvist, 2014).

As indicated by Speranza (2018), a common feature of the studies on integrated transportation plan-
ning is that dealing with those decisions separately or hierarchically by solving the problems indepen-
dently, leads to a sub-optimal solution for the integrated problem. In fact, integrated planning potentiates
global efficiency gains, usually translated into cost savings. As an example, Archetti and Speranza (2015)
present significant savings of around 9.5% in terms of total cost and 9.0% in terms of the number of
vehicles used when using a heuristic solution for an inventory-routing problem, in comparison with the
solution obtained by sequentially and optimally solving the inventory management and the routing prob-
lems.

The main particularity of our study, not yet fully covered in the literature, is that the integration is
between two processes of the supply chain – inbound and outbound logistics – wherein both processes
the relevant decisions are related with the optimal vehicle routes. In fact, in our problem, it is the same
vehicle that may perform both processes. There are significant differences in respect to the modelling
approach because, in the other cases of integrated VRPs, such as production-routing, there are at least
two types of decision variables, one for each process, and the correspondent linking constraints. While
in ours, there are only the decision variables related to routing. The linkage between the two processes
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accrues from the way the routes are built.
The problem class that mostly resembles our problem is the VRPB, firstly introduced by Deif and

Bodin (1984). Since then, there are several VRPB variants being studied in the framework of practical
applications, as shown in the recent review of Koç and Laporte (2018). In general terms, the VRPB
consists in finding the minimum cost routes, which start and end at the depot and visit a set of customers
partitioned into linehauls (customers who require deliveries), and backhauls (customers who require
pickups), all must be visited contiguously (e.g., Wade & Salhi, 2002).

The VRPB is not usually considered as an example of integrated vehicle routing planning. In fact,
many of the industrial applications of the VRPB focus on the outbound logistics process, for example, in
retail companies (e.g., Eguia, Racero, Molina, & Guerrero, 2013; Goetschalckx & Jacobs-Blecha, 1989).
In these cases, the route prioritises first all the products deliveries, and only afterwards the pickups,
in order to attain a high vehicle utilisation. The customers are all of the same type (e.g., stores), but
with different requirements (i.e., pickup or delivery) and the picked up material can be of a different
type that cannot be mixed with the delivered products, such as empty boxes, damaged products or post-
consumption material in reverse logistics. In other applications, such as the distribution of equipment to
rentals (e.g., Dominguez, Guimarans, Juan, & de la Nuez, 2016), or package delivery over a distribution
network (e.g., Yu & Qi, 2014), the inbound and outbound material is the same, and it is all planned
together as a unique logistic distribution process.

Contrarily, we argue that our case study can be considered integrated transportation planning because
the inbound and outbound logistics are two separate processes that nowadays are planned independently,
involving different types of customers – i.e., suppliers of raw materials vs. consumers of finished products
– sharing in common the depot/mill. Yano et al. (1987) study a case resembling ours, in a retail chain
with one centralized distribution centre, 40 stores and nearby vendors, where the route includes the
delivery of goods to stores and the pickup of goods in nearby vendors. Planning includes dedicated
routes for the vendors whenever it is not cost-efficient to include them in the delivery routes. The results
of this work allowed savings in the order of a half-million dollars. With a similar strategy, Paraphantakul,
Miller-Hooks, and Opasanon (2012) report a case-study in a cement industry, where cement customers
are linehaul customers, and lignite mines are backhaul customers. The problem was solved using an ant
colony optimisation method, and the company was able to save about 12% in the average tour duration.

The literature review on VRPB reveals examples of mathematical models, exact and heuristic meth-
ods for solving distinct problem variants. A general integer linear programming formulation and set
partitioning formulation for the VRPB are presented in Koç and Laporte (2018). Among the most com-
mon extensions of VRPB found in the literature are the incorporation of time windows (Gutiérrez-Jarpa,
Desaulniers, Laporte, & Marianov, 2010; Küçükoğlu & Öztürk, 2013; Nguyen, Crainic, & Toulouse, 2016;
Ropke & Pisinger, 2006), multi-periods (Davis, Sengul, Ivy, Brock, & Miles, 2014; Nguyen et al., 2016),
multi-depots (Chávez, Escobar, Echeverri, & Meneses, 2015), heterogeneous fleet (Lai, Crainic, Francesco,
& Zuddas, 2013; Salhi, Wassan, & Hajarat, 2013) and split deliveries (Gutiérrez-Jarpa et al., 2010; Lai,
Battarra, Francesco, & Zuddas, 2015; Nguyen et al., 2016; Wassan, Wassan, Nagy, & Salhi, 2017). There
are also variants on the nature of the backhauling, such as the mixed VRPB that also allows deliveries
to linehauls after pickups in backhauls (e.g., Yazgitutuncu, Carreto, & Baker, 2009).

As the research on transportation planning advances more and more towards its practical application,
several extensions of VRPs that consider real-life aspects of the logistics problems have emerged in the
literature. The VRPs that cover such aspects, namely the integration of different logistics operations (e.g.,
inbound and outbound transport), the consideration of uncertainty or dynamism, or the inclusion of real
constraints (e.g., time windows and multi-periodicity), fall into the vast class of Rich VRPs (Caceres-
Cruz, Arias, Guimarans, Riera, & Juan, 2014; Lahyani et al., 2015). As our problem concerns a VRP
with selective backhauls, heterogeneous fleet, and split deliveries, we can classify it as a rich VRPB. Table
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1 presents a description of other VRPBs found in the literature that relate to our work, including the
real-life aspects addressed in the problem and the respective types of solution methods used to solve the
VRPB.

Table 1: Characteristics of the Rich VRPB under study and related works in the literature

Reference
VRPB features Solution method

TW HF SD MD MP SB MB Exact Metaheuristic Matheuristic

Yano et al. (1987) • •

Ropke and Pisinger (2006) • •

Gribkovskaia, Laporte, and Shyshou (2008) • •

Gutiérrez-Jarpa, Marianov, and Obreque (2009) • • • •

Paraphantakul et al. (2012) • • •

Küçükoğlu and Öztürk (2013) • • •

Salhi et al. (2013) • •

Lai et al. (2013) • • •

Davis et al. (2014) • •

Chávez et al. (2015) • •

Nguyen et al. (2016) • • • •

Oesterle and Bauernhansl (2016) • • • •

Wassan et al. (2017) • •

Our problem • • • •

Legend: TW (time-windows), HF (heterogeneous fleet), SD (split deliveries), MD (multi-depot), MP (multi-periodic), SB
(selective backhauls), MB (mixed backhauls)

From Table 1, it is possible to observe that metaheuristics are the most popular methods used to
solve VRPBs. This results from the fact that the VRPB is an NP-hard problem and, as such, very
few exact methods are known to be efficient for large scale problems. Yano et al. (1987) describe the
problem using a set-covering formulation and then solve it using a procedure based on a Branch-and-
Bound that starts from an initial solution obtained with simple heuristics. Gutiérrez-Jarpa et al. (2009)
introduce a Branch-and-Cut algorithm to solve a VRPB with split deliveries and test it in new problem
instances adapted from the VRP instances with up to 100 customers, but only those instances with 50
customers or less can be solved to optimality. Davis et al. (2014) use a commercial solver to find optimal
transportation schedules that allow food banks to collect food donations from local sources and to deliver
food to charitable agencies, through food delivery points. The problem is solved in two phases: first, the
problem is formulated as a set-covering model to assign charitable agencies to food delivery points, and
then, the problem is formulated as a VRPB enriched with constraints related to food safety, operator
workday and collection frequency, also using the optimal solution of the first phase as an input. Oesterle
and Bauernhansl (2016) also study a logistic problem of a food company but considering a mixed VRPB
with time windows, heterogeneous fleet, manufacturing capacity and driving time limits. The problem
is formulated as a mixed integer programming model and also solved with a commercial solver in two
phases. The first phase creates clusters of customers to visit, and at the second phase, the routes in each
cluster are optimised.

With respect to metaheuristics, both local search and population-based methods have proved to be
very efficient to deal with VRPB and its extensions. Examples of local search metaheuristics include
tabu search (Gribkovskaia et al., 2008; Nguyen et al., 2016), adaptive large neighborhood search (Ropke
& Pisinger, 2006), and variable neighborhood search (Wassan et al., 2017). Examples of population-
based metaheuristics developed for the VRPB include ant colony optimisation (Chávez et al., 2015;
Paraphantakul et al., 2012) and evolutionary algorithms (Küçükoğlu & Öztürk, 2013). Moreover, two-
phase heuristics are also investigated in the works of Salhi et al. (2013) and Lai et al. (2013).

Regarding matheuristic approaches, no references related to its adaptation to the VRPB were found.
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However, the literature accounts for several matheuristic approaches for various solving VRP variants.
For example, the fix-and-optimise approach was initially proposed by Sahling et al. (2009) for a lot-
sizing problem, but it has been gaining recent interest in the literature for solving several rich routing
problems with real-life aspects (e.g., Neves-Moreira, Almada-Lobo, Cordeau, Guimarães, & Jans, 2019).
This matheuristic consists in iteratively fixing different sets of binary variables from a mathematical
model, thus allowing a commercial solver to only solve smaller parts of the global problem. Depending
on the problem, the selection of the variables to be fixed or released needs to be carefully designed. Most
references frame this approach in a variable neighbourhood decomposition search (Hansen, Mladenović,
& Perez-Britos, 2001), where the number of variables to be released is progressively increased as a way
to increase the neighbourhood sizes being explored (e.g., Darvish, Archetti, Coelho, & Speranza, 2019;
Soares, Marques, Amorim, & Rasinmäki, 2019). Other research works use distinct heuristic concepts,
such as tabu search (e.g., Rieck, Ehrenberg, & Zimmermann, 2014) by using a tabu list for the variables
being fixed.

Our work is distinct from the ones revisited in this section. It contributes to the literature because it
not only describes a new formulation for a rich VRPB that can be used to address different transportation
planning strategies but also investigates a fix-and-optimise method to solve the problem, which was not
yet addressed in VRPB literature.

3 Problem formulation

This section outlines the main planning strategies for the integration of inbound and outbound logistics
processes, which will be addressed in this paper. For each one of these planning strategies, mathematical
formulations will be provided, which will be the basis for the sections that follow.

3.1 Logistics planning strategies

The integration of inbound and outbound logistics by finding the optimal OIRs can be staged in two
distinct planning strategies, in opposition to a simpler strategy of decoupled planning, similar to what is
used today by the company:

• Opportunistic backhauling planning (OBP): In this strategy, the primary process to be considered
is the outbound logistics. The outbound transportation plan encompasses ORs and cost-effective
OIRs, but another plan exists for IRs. There is an underlying idea that OIRs can provide only a
residual amount of the raw materials demanded and IRs assure the vast majority of the demand.

• Integrated Inbound and Outbound Planning (IIOP): In this strategy, both processes of inbound
and outbound logistics are planned jointly. The transportation plan encompasses all types of routes
– ORs, OIRs and IRs.

• Decoupled Inbound and Outbound Planning (DIOP): This strategy implies that both processes of
inbound and outbound logistics are planned independently. The outbound transportation plan (or
delivery plan) encompasses the ORs, while the inbound plan (or supply plan) encompasses IRs,
there are no OIRs. In the current situation of the case study, logistics planning occurs in separate
company departments. IRs are planned centrally and ORs are planned in a department at each
mill.

From the point of view of process integration, OBP can be considered an “intermediate” stage, from
DIOP towards IIOP, as well as from the point of view of the level of organisational changes needed for
its adoption. In fact, OBP impacts mostly on the planners of the outbound logistics in each mill and on
the truck drivers while IIOP implies a major restructuring from merging (and possibly centralising) the
inbound and outbound logistics planning departments. From a modelling point of view, the mathematical
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formulation for OBP and IIOP are similar. For the purpose of simplification, this section focuses on OBP,
making the necessary adjustments to IIOP afterwards. The section ends with the description of DIOP.

3.2 Opportunistic backhauling planning (OBP)

OBP can be modelled as a rich, capacitated Vehicle Routing Problem with selective backhauls and split
deliveries. Considering a set of millsM , a set of linehaul customers L whose demand needs to be fulfilled,
and a set of suppliers backhauls B with raw materials available for the mills that may or may not be
visited. The problem consists in finding the optimal daily minimum-cost routes for a set of trucks K,
starting at the mill, encompassing one or many deliveries to linehauls, and including at the most one
pickup of a full truck-load of a given type of raw materials at a backhaul, which is selected based on the
best fit with one of the possible destination mills. The set of types of raw materials to be collected at a
backhaul is represented by set P . Hence, the problem components include:

• the fleet of |K| trucks, where each truck k ∈ K has a given capacity (Qk) and can perform both
deliveries and pickups. There is a fixed cost for the daily usage of a vehicle

(
fk
)
and a variable cost(

ckij
)
proportional to the travelled distances;

• the |M | mills owned by the company that are geographically dispersed. Each mill m ∈M receives
wood chips and produces wood-based panels on a make-to-order basis. The fleet is assigned to a
specific mill or origin (or depot), from where the routes start. According to operational practice,
in case of a route with a backhaul, the truck can unload the raw materials in any of the company’s
mills, which may or may not be the mill of origin. There is a minimum amount of raw materials to
be backhauled to all mills (β);

• the |L| linehaul customers that are characterized by a given demand of a finished product, which
must be fulfilled (ql) at each linehaul l ∈ L. Split deliveries can occur, meaning that each customer
may be visited more than once (each visit consisting in at least a ψ amount), but each truck may
visit a customer at most once;

• the |B| backhaul suppliers that are also geographically dispersed. Also, according to the operational
practice, it is assumed that all have unlimited availability, hence pickups correspond to full-truck
loads. The type of raw materials that are available may also vary amongst them;

• the |P | types of raw materials consisting of wood chips of variable size and moisture content, saw-
dust and recycled wood. Some types of raw materials are more desirable to the mills than others.
There are also compatibility issues with respect to the types of raw materials available and de-
manded at the different locations.

Contrarily to other VRPs found in the literature, the time window constraints related to the earliest
or latest time to arrive at each location are not of importance. However, the maximum distance travelled
in a route is limited by a parameter α. It is noteworthy that the route length can be constrained in
terms of travelling time, to account for driving time regulations stating maximum driving or working
times. However, in this case, the value of the maximum distance travelled was set with the planner
as an average of the actual routes length, already implicitly considering all the necessary stops, hence
simplifying problem modelling. In summary, the characteristics of the feasible routes are: i) start at a
home depot with the truck loaded up to its maximum capacity, with the products ordered by the linehaul
customers; ii) perform a sequence of deliveries to the linehauls; iii) if it is cost-effective and doable during
the maximum route length, the vehicle travels empty to a nearby backhaul supplier to pick up a full
truck-load of raw materials to be delivered at any of the company’s mill, where the route ends (specific
to OIRs); and iv) if a backhaul is not visited, the route is ended when the truck is empty after visiting
the last linehaul of the route (specific to ORs), as the company does not pay for trips where the truck
does not transport merchandise.
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3.2.1 Modelling approach

The rVRPB under study is modelled as a graph G = (V,A) where V is the set of all vertices, V =

{0} ∪ L ∪ B ∪M and A is the set of all possible arcs. We adopt a standard flow VRP formulation with
3-index decision variables xkij equal to 1 if vehicle k ∈ K travels from customer i ∈ V to j ∈ V and zero
otherwise. Like in the standard VRPB formulation proposed by Parragh, Doerner, and Hartl (2008), we
distinguish the vertices in linehauls and backhauls, in order to model the precedence constraints.

However, the typical VRPB constraints assuring that each vertex is visited exactly once do not apply,
due to the possibility of selective backhauls (i.e., backhauls may or may not be visited) and the split
deliveries at the linehauls (i.e., linehauls are visited more than once).

To avoid the complexity of a multi-depot and open VRP, we propose a 2-echelon backhauls network,
starting and ending at the same fictitious depot 0. In fact, when the route starts, the fictitious depot
corresponds to the mill of origin from where the customers’ orders will be delivered. Since there is a
fleet dedicated to each mill when the route starts, routing planning for each mill can be done separately
as a single depot. When the route ends, the fictitious depot corresponds to a fictitious location whose
distance from the last vertex visited in the route is equal to zero. Hence, the 2-echelon backhauls network
is composed by the first echelon of backhauls corresponding to the suppliers and the second echelon of
backhauls corresponding to the mills to be supplied by the backhauled amounts. Additional constraints
are needed to assure that a mill can only be visited after a backhaul (see Figure 2).
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Figure 2: Network representation of the problem

The decisions whether a backhaul is visited in a route or not, and if so, to which mill to go next,
are based on a new parameter related with the reward paid for visiting that backhaul and a mill next
(δbm). Like in previous studies of VRP with selective pickups (e.g., Gribkovskaia et al., 2008) and other
formulations of VRP with profits (e.g., Aras, Aksen, & Tekin, 2011), the reward is used to make an arc
linehaul to backhaul more or less attractive. The reward corresponds to a payment per each ton of raw
materials picked-up in a backhaul and delivered in a neighbouring mill. If the route ends after visiting the
last linehaul, then there is no positive reward associated with that route. Hence, the reward parameter
is used in the objective function, which trades-off between the sum of the travelling costs for visiting the
backhaul after the last linehaul and moving from there to a mill, and the reward gained for visiting that
backhaul. The reward parameter is also used to address compatibility issues related to the type of raw
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material p to be transported from a given backhaul b to a given mill m. In fact, if p is not available in b
or not accepted in m then δbm = 0. On the contrary, if there are several types of raw materials that can
be transported from b to m, the value of δbm corresponds to the value of the most profitable material
because there are no other aspects determining the choice between them. Consequently, the set P does
not need to be considered in this model. However, in other real-life applications where the availability at
the backhauls and or demand at the mills is limited and varies per type of product, the set P should be
properly incorporated in the model, leading to a four-index decision variable x.

A new decision variable is needed to assure that, despite the possibility of splitting the deliveries to
a linehaul, each delivery cannot exceed the truck capacity and that the total amount delivered in the
several routes that visit it meets the expected demand. Previous studies used continuous variables wk

i

representing the quantity transported by vehicle k ∈ K to/from customer i ∈ V for a similar purpose (e.g.,
Nikolakopoulos, 2014). However, in the rVRPB under study, without time windows, these variables are
insufficient for sub-tour elimination. In this context, a new set of continuous variables ukij represent the
load of vehicle k ∈ K when traversing arc (i, j) ∈ A. Variables ukij are a natural adaptation of variables
ui (Bektaş et al., 2015; Toth & Vigo, 2014) to a multi-route and split delivery situation. Additional
constraints are needed to account for the routes with backhauls. In this case, the truck-load is higher
before visiting the first linehaul, then progressively decreases until reaching zero after visiting the last
linehaul. If a backhaul is visited, the pickup corresponds to a full truck-load. As an example, for a
given route k, encompassing {0, i, i′, i′′, j, 0}, where i, i′, i′′ ∈ L and j ∈ B, then the following rules apply:
uk0i ≤ ukii′ ≤ uki′i′′ , uki′′j = 0, ukj′0 = Qk.

Figure 3 exemplifies a feasible solution for the OBP starting in the node 9, in a network composed
by 5 linehauls (numbered 1 to 5), 3 backhauls (numbered 6 to 8) and 3 mills (numbered 9 to 11). For
simplification purposes, only the arcs used in the solution are represented in Figure 3a. The demand
(in ton) at the linehauls is q1 = 30, q2 = 20, q3 = 20, q4 = 20, q5 = 70. The reward for visiting a
backhaul is 0.1e/ton in all cases. The available fleet is composed of 5 trucks, with capacity (in ton)
Q1 = 40, Q2 = 30, Q3 = 30, Q4 = 40, Q5 = 40. The linear distances between vertices (dij) are computed
in reference to the background grid with 1km by 1 km, for example, d13 = 2 km. The fixed cost for using
a vehicle is zero, and the variable cost is 1 e/km.
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(a) feasible solution for vehicles k1, k2, k3, k4, k5

9 1 2 6 10

40

20

0

Vehicle
load

Arrival
at vertex

Vehicle 𝑘ଵ

Vehicle capacity

(b) variation of the load of vehicle k1 along the route

Figure 3: Example of a feasible solution for a rVRPB

The routing plan foresees the use of all five vehicles: k1, k2, k4 and k5 are OIRs while k3 is an OR
ending after visiting linehaul 3. There are split deliveries in linehauls 1 and 5. Total costs are 29e and
total revenues are 15e. The values of ukij for truck 1 are shown in Figure 3b.
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This example is instrumental in showing the impact of the reward value over the final routing solution.
In fact, the route visiting linehaul 4 will always visit backhaul 6, and then mill 10, because the extra cost
for visiting this pair backhaul-mill is 1e

(
d4,6 = 1e, d6,10 = 0 =⇒ ck4,10 = 1

)
and the minimum revenue

is 3e (δbm = 0.1e/ton, min{Qk} = 30 ton =⇒ uk6,10 ≥ 30,∀k ∈ K, δ6,10 = 0.1. Applying a similar logic,
it is expected that the route visiting linehaul 3 will visit backhaul 7 if δ7,11 ≥ 0.4, since the extra cost for
visiting the backhaul and mill is 4e and uk7,11 ≥ 30,∀k ∈ K.

3.2.2 Mathematical formulation

For the sake of convenience, before presenting the mathematical formulation, we resume the necessary
decision variables, sets and parameters.

Decision variables:

xkij

1 if vehicle k travels from location i to j;

0 otherwise.

ukij load of vehicle k ∈ K when traversing arc (i, j) ∈ A

Sets:

L set of linehauls (customers where finished products are delivered)

B set of backhauls (suppliers where raw materials can be picked up)

M set of mills (where raw materials are delivered if a backhaul is visited)

V set of vertices; V = {0} ∪ L ∪B ∪M

K set of vehicles

Parameters:

qi quantity to be delivered to customer i ∈ L (ton)

ckij cost of transportation with vehicle k ∈ K from i ∈ V to j ∈ V (e)

fk fixed cost of using vehicle k ∈ K in a daily route (e)

Qk transportation capacity of vehicle k ∈ K (ton)

dij travelling distance from i ∈ V to j ∈ V (km)

α maximum distance travelled in a route (km)

β minimum amount of raw materials to be backhauled (ton)

δbm reward for picking up one unit of raw material at backhaul b ∈ B and delivering it to mill m ∈M (e)

ψ minimum amount of order delivered to a linehaul (ton)

Model [P0]

min
∑
k∈K

∑
j∈V \{0}

fkxk0j +
∑
k∈K

∑
i∈V

∑
j∈V

ckijx
k
ij −

∑
k∈K

∑
i∈B

∑
j∈M

δiju
k
ij (1)

subjected to:

∑
i∈V

xkij ≤ 1 ∀j ∈ L ∪B, ∀k ∈ K (2)
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∑
i∈B

∑
j∈B

∑
k∈K

xkij = 0 (3)

∑
i∈V \B

∑
j∈M

∑
k∈K

xkij = 0 (4)

∑
i∈M

∑
j∈V \{0}

∑
k∈K

xkij = 0 (5)

∑
i∈B

∑
j∈L∪{0}

∑
k∈K

xkij = 0 (6)

∑
j∈B

∑
k∈K

xk0j = 0 (7)

∑
j∈L

xk0j =
∑

i∈L∪M

xki0 ∀k ∈ K (8)

∑
i∈V

xkij =
∑
i∈V

xkji ∀j ∈ V,∀k ∈ K (9)

ukij ≤ Qkx
k
ij ∀(i, j) ∈ A,∀k ∈ K (10)∑

i∈V

ukij −
∑
i∈V

ukji ≥ ψ
∑
i∈V

xkij ∀j ∈ L,∀k ∈ K (11)∑
i∈L

∑
j∈B∪{0}

∑
k∈K

ukij = 0 (12)

∑
i∈V

∑
k∈K

(
ukij − ukji

)
= qj ∀j ∈ L (13)∑

i∈V

∑
j∈V

dijx
k
ji ≤ α ∀k ∈ K (14)

∑
i∈B

∑
j∈M

∑
k∈K

ukij ≥ β (15)

xkij ∈ {0, 1}, ukij ≥ 0 ∀(i, j) ∈ A,∀k ∈ K (16)

The objective function (1) minimizes the total costs, decomposed into fixed costs (proportional to the
number of vehicles used) and the variable costs (proportional to the total travelled distance), decreased
by the revenue obtained for visiting backhauls and mills in the course of the OIR. Constraints (2) assure
that any location can be visited at most once by each truck. Regardless, each linehaul and backhaul
can be visited by several routes. Constraints (3)–(7) deal with route precedence rules, resulting from the
specificities of this rVRPB for the wood-based panel industry. Specifically, constraints (3) state that the
transport from a backhaul to another backhaul is not possible. Constraints (4) assure that the mill can
only be visited after a backhaul. Constraints (5) assure that after visiting a mill, the only possibility
is to go to the ending depot. Constraints (6) state that after visiting a backhaul, the next visit cannot
be to a linehaul nor to the depot. Constraints (7) assure that the route cannot visit a backhaul after
the depot. Constraints (8) and (9) are the typical VRP flow conservation constraints, at the depot and
at each vertex, respectively. Constraints (10) are linking constraints, assuring that there is only a given
amount transported to/from the customer if the customer is visited. Constraints (11) to (13) assure
the elimination of sub-tours. Specifically, constraints (11) assure that the load of trucks progressively
decreases as it visits the linehauls, and the amount delivered should be higher than a minimum amount.
By considering the lower bound of the minimum amount, the model avoids undesirable solutions where
xkij = 1 and ukji − ukij = 0, which may occur for example if a linehaul (i′) is visited in the course of
a route from i to j, i.e., xkii′ = xki′j = 1 (instead of xkij = 1) but the amount delivered in i′ is zero(
uki′i − ukii′ = 0

)
due to the fact that the distance matrix does not obey to the triangular inequality (i.e.,

∃ dij : dij > dii′ + di′j). Constraints (12) state that the truck leaves empty after visiting the last linehaul
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and constraints (13) assure that the demand at the linehauls is completely fulfilled. Constraints (13)
together with constraints (2) account for the possibility of split deliveries at the linehauls. Constraints
(14) assure that the maximum allowable distance of the daily route cannot be exceeded. It is noteworthy
that if the maximum route length is constrained by the time travelled, then, this would require another
type of auxiliary variables to count the route duration and consequent changes in these constraints,
with similarities with other VRPs with time windows (e.g., Toth & Vigo, 2014). Constraints (15) set
a minimum amount of raw materials to be backhauled to mills. Finally, constraints (16) determine the
domain of the decision variables.

3.2.3 Special situation in which the rVRPB is simplified to a rich capacitated VRP

A problem variant of the rVRPB consists in removing constraints (14) and (15). In this situation, where
there is no limitation to the route length and there is no minimum backhauling amount, a backhaul
will be visited whenever it is cost-effective, according to the trade-off between the extra transportation
cost (from travelling from the last linehaul, to that backhaul and to its closest mill) and the revenue
(associated with delivering the load from the backhaul to the closest mill). From a modelling perspective,
this means that, knowing which is the last visited linehaul in a route, it is possible to compute beforehand
if and which backhaul and mill should be visited to minimize total costs. Consequently, the mathematical
model can be simplified to a Rich Capacitated VRP (rCVRP) with split deliveries. This problem will
only consist in sequencing the linehauls to be visited in each route, thus determining which linehaul will
be last in each route.

This adaptation relies on a data pre-processing procedure (described in Algorithm 1) which consists
in computing the minimum cost of having a given linehaul visited last in a vehicle route. If the cost of
visiting a backhaul at the end of the route is lower than finishing the route at the depot (line 5), the cost
associated with the arc heading to the depot is updated to the summed costs of pickup at the backhaul,
delivering to the mill and returning to the depot, subtracted by the corresponding reward for performing
the delivery to that mill (line 6). All combinations of vehicles, linehauls, backhauls, and mills are tested
in this pre-processing stage, therefore ensuring that the vehicle arcs heading to the depot account for the
minimum possible cost, which either corresponds to performing backhauling at the most advantageous
locations or finishing its route after visiting the last linehaul. Finally, the sets of backhauls and mills are
removed from the problem.

Algorithm 1: Data pre-processing for adapting the rVRPB to a rCVRP

1 foreach vehicle k in K do
2 foreach linehaul customer j in L do
3 foreach backhaul customer i in B do
4 foreach mill customer m in M do
5 if ckji + ckim + ckm0 − δim ·Qk < ckj0 then
6 ckj0 := ckji + ckim + ckm0 − δim ·Qk;

7 V := V \ (B ∪M); B := ∅; M := ∅;

Afterwards, the new model for the rCVRP can be built upon [P0] by changing the objective function
and removing constraints related with the sets of backhauls and mills, as shown in model [P1].

Model [P1]

min
∑
k∈K

∑
j∈V \{0}

fkxk0j +
∑
k∈K

∑
i∈V

∑
j∈V

ckijx
k
ij (1b)
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subjected to (2), (8)–(13) and (16) of model [P0]

3.3 Integrated Inbound and Outbound Planning (IIOP)

As stated before, the IIOP strategy consists in jointly planning all types of routes, including OIRs, ORs
only for delivery of finished products and IRs for pickup of raw materials. Model [P2] for IIOP can be
built upon adaptations of [P0], that account for the IRs, as follows. Constraints (7) are removed to allow
dedicated routes from the depot to a backhaul. A new parameter δDbm represents the reward for picking
up one unit of raw material at backhaul b ∈ B and delivering it to mill m ∈ M (e) in the course of the
dedicated route. A new set of auxiliary continuous variables ykij is needed to represent the amount picked
up in b ∈ B and delivered in mill m ∈M by vehicle k ∈ K in a direct route. The objective function (1c)
is adapted accordingly. A new set of constraints (17) defines variables ykij and constraints (18) set its
bounds. Considering an arc (i, j), i ∈ B, j ∈ M , with xkij = 1, if xk0i = 1, i ∈ B, then k is in a dedicated
route, and according to the conjugation of constraints (17) and (18), ykij = ukij . If xk0i = 0, i ∈ B, then k
is in an OIR, and ykij = 0.

Model [P2]

min
∑
k∈K

∑
j∈V \{0}

fkxk0j +
∑
k∈K

∑
i∈V

∑
j∈V

ckijx
k
ij −

∑
k∈K

∑
i∈B

∑
j∈M

δDij y
k
ij −

∑
k∈K

∑
i∈B

∑
j∈M

δij(u
k
ij − ykij) (1c)

subjected to (2)-(6), (8)–(16) of model [P0] and

ykij ≤ Qkx
k
ij ∀i ∈ B, ∀j ∈M,∀k ∈ K (17)

ykij ≤ ukij − (1− xk0i)Qk ∀i ∈ B, ∀j ∈M,∀k ∈ K (18)

ykij ≥ 0 ∀i ∈ B, ∀j ∈M,∀k ∈ K (19)

3.4 Decoupled Inbound and Outbound Planning (DIOP)

As stated before, DIOP corresponds to the planning strategy currently used, where the ORs and IRs are
planned independently and there are no OIRs. For the outbound logistics planning, the optimal ORs
can be obtained by solving model [P3] that is an adaptation of model [P0], considering the nonexistence
of backhauls and mills. For the inbound planning, the optimal IRs can be obtained by solving a model
[P4], also an adaptation of model [P0], acknowledging only the routes from the depot/mill of origin to
the backhauls.

Model [P3]

min
∑
k∈K

∑
j∈V \{0}

fkxk0j +
∑
k∈K

∑
i∈V

∑
j∈V

ckijx
k
ij (1d)

subjected to (2), (8)–(11), (13)–(14) and (16) of model [P0]

Model [P4]

min
∑
k∈K

∑
j∈V \{0}

fkxk0j +
∑
k∈K

∑
i∈V

∑
j∈V

ckijx
k
ij −

∑
k∈K

∑
i∈B

∑
j∈M

δDiju
k
ij (1e)

subjected to (2)–(6), (8)–(10) and (14)–(16) of model [P0]
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4 Solution approach

4.1 Fix-and-optimise approach

As stated in the literature review, the complexity of the VRP problems in real-life applications justifies
the use of matheuristics. In this study, all the different models presented before are solved with a fix-
and-optimise (F&O) approach in case of the large instances (i.e., more than 30 customers). This solution
method was firstly presented by Sahling et al. (2009) for lot-sizing problems, but has been successively
used for solving complex routing problems with promising results (e.g., Larrain, Coelho, & Cataldo, 2017;
Neves-Moreira, Amorim, Guimarães, & Almada-Lobo, 2016).

The F&O matheuristic approach consists in iteratively solving several smaller mixed integer program-
ming (MIP) sub-problems of the original model. The design of each sub-problem is problem-dependent
and the obtained results highly depend on its adequate design. In this approach, we define a sub-problem
as a set of decision variables to be either released or fixed in the original MIP model. Fixing a variable
consists in setting its lower and upper bounds to the current solution value, thus precluding it from being
changed in a solver iteration. On the other hand, releasing a variable consists in restoring a fixed variable
to its original lower and upper bound values. For the problem at hand, two distinct sub-problem types
were conceived, named RouteRelease and LocationRelease.

The RouteRelease sub-problem releases all decision variables associated with a given set of routes in
the incumbent solution, based on proximity criteria of these routes. Route proximity is defined by the
centroids of each route, which are computed as the non-weighted averages of the location coordinates
that are visited. The outline of the RouteRelease sub-problem construction procedure is illustrated in
Algorithm 2. The procedure starts by computing the centroid of each route in the incumbent solution
(lines 2–4). For unused vehicles, the route’s centroid is given by the depot’s coordinates. A pivot route
is selected at random from the incumbent solution (line 5), after which all other routes are ordered by
its centroid’s distance to the pivot route (line 6). The n routes with the lowest distance to centroid of
the pivot route are then released in the sub-problem (lines 7–12).

Algorithm 2: Route Release sub-problem construction
input: vars (MIP model routing decision variables),

sol (incumbent solution),
n (number of routes to be released in the subproblem)

1 released_routes = ∅; centroid_list = ∅;
2 foreach route in sol do
3 compute centroid of route;
4 append centroid of route to centroid_list ;

5 rt← random route; cnt← centroid of rt ;
6 order centroid_list by descending order of their distance to cnt ;
7 released_routes← n first routes in centroid_list ;
8 foreach var in vars do
9 if var is associated with a vehicle in released_routes then

10 release var;

11 else
12 fix var ;

The LocationRelease sub-problem consists in releasing a given set of linehaul locations based on its
geographical proximity. The procedure is described in Algorithm 3, and it starts by selecting a pivot
linehaul (line 1), after which we retrieve all routes in the incumbent solution where the pivot linehaul is
visited. Afterwards, we retrieve all the additional linehauls that are visited in these routes (lines 4–5).
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Finally, the n closest linehauls to the pivot linehaul that were previously selected are released (lines 8–14).

Algorithm 3: Location Release sub problem construction
input: vars (MIP model routing decision variables),

sol (incumbent solution),
n (number of locations to be released in the subproblem)

1 released_locations = ∅; candidates = ∅; loc← random linehaul ;
2 foreach route in sol do
3 if route traverses loc then
4 foreach linehaul in route do
5 append linehaul to candidates ;

6 order candidates by descending order of their distance to loc;
7 released_locations← n first locations in candidates;
8 foreach var in vars do
9 if var is associated with a linehaul in released_locations then

10 release var;

11 else if var is associated with a mill then
12 release var;

13 else
14 fix var ;

The overall structure of the matheuristic is shown in Algorithm 4.
The solution method requires an initial solution s0 with objective function f0, which is obtained

through a greedy nearest neighbour heuristic (line 1): we select a random vehicle and construct its route
by visiting the nearest unsatisfied linehaul until vehicle capacity is exhausted. The process is repeated
until all linehaul demand is satisfied. No routes to backhauls are considered in the constructive phase.

After obtaining an initial solution, the matheuristic is then started. To that effect, sub-problem con-
struction is initiated, whose size is controlled through the general principles of a Variable Neighbourhood
Decomposition Search (VNDS), similar to what is presented in Hansen et al. (2001). Sub-problems are
constructed in line 7, after which the MIP model is fed the incumbent solution scur and the sub-problem
is solved by a MIP solver (lines 8–9).

After each solver iteration, the obtained solution ssolve is evaluated against the incumbent solution
(lines 10–15). If the obtained solution did not yield an improvement of at least imp (line 10), we consider
this a non-improvement iteration and increment the non-improvement counter. Nevertheless, we will
accept the obtained solution even if it is not significantly better than the previous one (line 15). After
a given number of consecutive non-improvements, the VNDS framework takes place either by increasing
sub-problem size or switching the sub-problem type, if the current sub-problem size has been maxed
out (lines 16–24). In the occurrence of a significant improvement of the problem’s objective function,
sub-problem type is re-set to RouteRelease and its initial size (line 11).

The matheuristic approach always initializes with the RouteRelease sub-problem type and the
LocationRelease sub-problem is used after a significant number of non-improvements of the RouteRelease
sub-problem. This algorithmic structure was conceived by bearing in mind that RouteRelease would be
used as a more disruptive sub-problem, which would explore more disperse sections of the solution space,
while the LocationRelease sub-problem focuses more on intensification.

4.2 Data pre-processing

Pre-processing the instance data related to the network generation is a common procedure in VRPs (e.g.,
Parragh et al., 2008; Soares et al., 2019) to simplify the mathematical formulation and achieve better
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Algorithm 4: Matheuristic outline
input: MIPmodel (mixed integer programming model),

P (list of possible sub-problems to be used),
np (initial neighbourhood size for sub-problem p),
Np (maximum neighbourhood size for sub-problem p),
Ip,n (limit of consecutive non-improvement iterations for sub-problem p of size n),
TLp,n (time limit for solver iterations of sub-problem p of size n),
imp (minimum solution improvement to reset the no-improvement counter i)

1 s0, f0 = nearest_neighbour();
2 scur = s0; fcur = f0; i = 0;
3 p = “RouteRelease”;
4 while termination criteria not met do
5 n = np;
6 while n ≤ Np do
7 construct sub-problem of type p with size n ;
8 feed MIPmodel with initial solution scur;
9 ssolve, fsolve = MIPsolve(MIPmodel, TLp,n);

10 if fsolve < fcur − imp then
11 scur = ssolve; fcur = fsolve; i = 0; p = “RouteRelease”;
12 break

13 else
14 if fsolve < fcur then
15 scur = ssolve; fcur = fsolve;

16 i = i + 1;
17 if i > Ip,n then
18 i = 0;
19 if n = Np then
20 if p = “LocationRelease” then
21 p = “RouteRelease”;

22 else p = “LocationRelease”;
23 break

24 else increase n;

25 output scur, fcur

performance in the optimisation solver. The pre-processing procedure used prior to solving the models
is threefold. The sub-set of arcs to be considered is presented in Table 2.

First, we remove all the arcs that lead to an unfeasible route, i.e., arcs that violate the precedence
constraints (3) to (7). Second, we eliminate all arcs from linehauls to backhauls where its visit is not
economically worthwhile, according to the given reward for visiting a backhaul. These arcs are only
generated if they respect the condition exhibited in line 5 of Algorithm 1.

Third, arcs from backhauls are only generated to its closest mill, as delivering merchandise to more
distant mills will only induce an increase of the problem’s objective function.

It should be noted that this data pre-processing procedure does not cut off optimal solutions only if we
do not impose a minimum inbound quantity to be collected from backhauls via constraints (15). If this is
not the case, this procedure may induce sub-optimality or even turn the model infeasible because there
are no cost-effective backhauls to visit. Therefore, in these situations, a trade-off between optimality and
simplicity must be taken into account.
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Table 2: Pre-processing the problem network

Destination

Origin

de
po

t
or

 m
ill

 o
f o

ri
gi

n

Li
ne

ha
ul

 

Li
ne

ha
ul

B
ac

kh
au

l 

M
ill

 

fic
ti

ti
ou

s 
de

po
t 

0 depot 
or mill of origin

● ● (*)

Linehaul 𝑙 ● (**) ●

Linehaul 𝑙ᇱ ≠ 𝑙 ● (**) ●

Backhaul 𝑏 (+)

Mill 𝑚 ●

{0} fictitious depot 

Legend:
(*) is generated in IIOP but not in OBP;
(**) for each linehaul, generate the arcs to all the backhauls that lead to a cost-
effective solution (i.e. satisfy line 5 of Algorithm 1);
(+) for each backhaul, only generate the arc to the minimum cost mill.

5 Computational experiments

The proposed approach was applied in a case study in a wood-based panel company in Portugal. The
mathematical model was implemented in Gurobi 7.5 commercial solver. The solution method was de-
veloped in Python 3.6. The mathematical models were subject to the data pre-processing procedure
described earlier and used to compare the gains of the IIOP strategy with the DIOP one, which is cur-
rently done by the company. A set of experiments were also done to provide valuable managerial insights
for planners. Lastly, the performance of the proposed solution method was compared with a commercial
MIP solver for problem instances of increasing size, which were based on real routing plans executed by
the company.

5.1 Case study

This study was motivated by a real-life application in the wood-based panel company, firstly presented in
Amorim, Marques, and Oliveira (2014). The focal company owns several mills, each producing a specific
portfolio of wood-based panels mainly for furniture, construction and decoration. The case study is at
one of the mills in Portugal that produces around 1.2 thousand tons of wood-based panels per day, in
a make-to-order basis, and assures its delivery to an average of 30 customers distributed over the entire
Iberian Peninsula. The average daily consumption of raw materials is 1,750 m3. The study uses real
data regarding the customers’ orders in two of the most representative operational days. There are 30
customers to be visited, whose ordered amounts are in average 35.5 ton/customer, varying between 0.05
and 399 ton. The values of the model parameters are an approximation of those provided by the planners.
The distances between locations were computed by resorting to the Google Maps routing engine.

Nowadays, the outbound routes are planned to start in the morning of the next day at the opening
hour of the mill of origin. It is assumed that all routes can start at the same time, and there are no time
windows conditioning the time of arrival to customers, suppliers or mills. The responsible for outbound
logistics determines the exact number of trucks needed for the next day and groups the customers to
be visited in each route according to empirical rules that rely on the customers’ geographical location.
Then, the routes are assigned to the third-party logistics operators (3PL) with whom there are valid
outsourced contracts. The generic contractual conditions are a fixed cost of 70e per truck used and a
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variable cost of 1.7e per km travelled. The fleet available at the mill of origin in each day encompassed
100 trucks, of which 20 trucks have capacity up to 10 tons, 40 trucks have a capacity of 20 tons, and 40
trucks have a capacity of 40 tons, summing up a total transportation capacity of 2,600 ton. Each vehicle
must deliver at least 0.5 ton to each customer visited (i.e., ψ = 0.5), except when its demand is lower
than this parameter. All trucks are prepared to do IRs, if needed.

Overall, the current logistics process results in a low rate of inbound-outbound flow integration, and
the logistics planner has very little visibility about the arrival time to the customers and the time and
characteristics of the inbound loads.

The 3PL assigns a truck driver to each route. Then, the driver is responsible for establishing the
sequence for visiting all outbound customers, the path and schedules, which may or may not be optimal.
The decision of either to visit a supplier (backhaul) or not is often taken by the driver, based on the extra
cost for visiting a known supplier in the vicinity of the last costumer (linehaul) visited in the route, in
case it is doable within the route maximum duration length set by the 3PL business rules and conditioned
by transportation legislation. There are 75 possible suppliers of wood-chips for IRs. The raw materials
may be delivered back to the mill of origin or alternatively to any of the other three mills owned by
the company in the Iberian Peninsula. Currently, there is no minimum amount of backhauling required.
According to the experience of the planners, the reward for each backhauling can go up to 10 e/ton.

The computational results were obtained with two major groups of instances (A and B) built upon
the previous case study description, each one of them corresponding to a representative operational day.
Instances A differ from instances B with respect to the average distance between the linehauls. The
linehauls in instances A are more geographically dispersed, with an average distance between linehauls
and depot of 461 km, while in instances B it is 197 km. Baseline instances A30 and B30 correspond to
the situation described, with 30 linehauls, a total demand of 1,853 ton, 75 backhauls, 4 mills and 100
available trucks. Instances among the same instance group differ in the number of linehauls to visit (10,
30 or 50 linehauls) and the number of possible backhauls (0, 25, 50, 75 or 100 backhauls). The instances
were generated in a cumulative manner, i.e., the largest instances contain all locations considered in
smaller instances. The selection of the locations to be included/removed in the instances was performed
randomly from the dataset of the case study.

5.2 Comparison among distinct planning strategies

Instances A10 and B10 were used in these experiments to compare and quantify the benefits of adopting
an OBP or IIOP strategy versus DIOP because it is possible to solve the model quickly to optimality
while larger instances require the proposed matheuristic whose gaps to optimality could bias the results.
Furthermore, the resulting routing plan can be easily visualized.

To perform this comparison, two different reward values were considered (1e/ton and 7e/ton). In
order to avoid results biased by different reward values for IRs and OIRs, the backhauling reward was
set regardless of the type of route (whether it was a dedicated backhaul route or an opportunistic one)
and is generically called reward instead of backhauling reward. The inbound quantity to be satisfied was
set to 160 ton of raw materials, which corresponds to approximately twice the outbound quantities of
finished products in these instances, taking into account the mills’ productive efficiency. The remaining
parameters remained unchanged throughout the instances, with α = 1, 200 km and ψ = 0.5 ton.

For the IIOP strategy, model [P2] was solved to optimality and a given backhauling amount was set.
The DIOP models [P3] and [P4] were also solved to optimality with this same backhauling amount to
allow a fair comparison. In respect to the OBP strategy, the rationale to allow its comparison with the
remaining strategies consisted in: (i) solving the OBP model [P0] to optimality, replacing constraints
(15) by a similar set of constraints where a maximum (instead of minimum) backhauling amount of 160



20

ton is set; (ii) solving model [P4] to obtain the IRs for the differential amount between 160 ton and the
already backhauled amount via OBP; (iii) computing the total costs for these two models.

The obtained results are presented in Table 3. In these instances, the matheuristic was not required,
since the computational time for proving optimality in the solver was very short (less than 5 min on
average). In these experiments, the number of binary decision variables ranged from 10,000 to 17,000.

Table 3: Comparison between alternative Inbound and Outbound Planning strategies

Reward
(e/ton) Instance Planning

strategy
Objective
Function

Costs (e) No. routes Backhauled
amount (ton)

No. trucks
used

Runtime
(s)Total Fixed Transport Total OIR OR IR

7.00

A10

Integrated 2,536 3,656 350 3,306 7 0 3 4 160 5 821

Opportunistic 2,714 3,834 420 3,414 7 1 3 3 160 6 45

Decoupled 2,536 3,656 350 3,306 7 0 3 4 160 5 37

B10

Integrated 768 1,888 280 1,608 4 3 0 1 160 4 36

Opportunistic 771 1,891 280 1,611 4 4 0 0 160 4 32

Decoupled 896 2,016 350 1,666 7 0 3 4 160 5 517

1.00

A10

Integrated 3,496 3,656 350 3,306 7 0 3 4 160 5 60

Opportunistic 3,496 3,656 350 3,306 7 0 3 4 160 5 47

Decoupled 3,496 3,656 350 3,306 7 0 3 4 160 5 34

B10

Integrated 1,802 1,962 350 1,612 5 4 1 0 160 5 21

Opportunistic 1,811 1,971 350 1,621 6 1 2 3 160 5 332

Decoupled 1,856 2,016 350 1,666 7 0 3 4 160 5 243

The analysis of these results shows that the logistics planning strategy leading to the lowest cost is
IIOP in all the experiments. In some cases, the strategy OBP performs better than DIOP, as intuitively
expected, but in others, it does not. This is because the OBP model is myopic in the sense that it includes
all OIRs that are cost-effective for a given backhauling reward value, but does not trade-off between OIRs
and IRs as it happens with the IIOP model.

Instance B10 with a reward value of 7e/ton exemplifies a case where the IIOP strategy is better than
OBP and better than DIOP strategies. The total costs of the resulting logistics plans are 1,888e, 1,891e,
and 2,016e respectively. The optimal IIOP routing plan consists of three OIRs (for trucks k1, k2 and
k5) and one IR (for truck k4) (Figure 4a). While, the optimal plan for OBP encompasses three OIRs
identical to the later plan, and one extra OIR (k3) (Figure 4b). The OIR k3 is still cost-effective for that
reward value, but it is costlier than doing the alternative IR k4 as in the IIOP plan. No IRs are foreseen
in the OBP strategy because the routing plan obtained by solving model [P0] already fulfils the whole
demanded backhauled amount; therefore there is no stimulus for finding IRs with model [P4] afterwards.

The decoupled planning strategy for instance B10 leads to a 6.8% increase of the total costs when
compared with the previous, due to the increase of the transportation costs and also the use of five
vehicles instead of four (Figure 4c). The overall routing plan encompasses four IRs (obtained with model
[P4]), plus three ORs (obtained with model [P3]). The IRs are similar to the ones of vehicle k4 in the
IIOP strategy but the ORs are not. This is because the linehauls are re-distributed in the routes in a
different way when the visit to backhauls is not considered in the same model. For example, linehaul
7 was split deliveries according to the IIOP and OBP plans due to its geographical proximity to the
backhaul 13. This no longer happens in the decoupled planning, and this linehaul is visited only once in
the course of a longer route that extends up to linehaul 10.

Conversely, instance A10 with a reward value of 7e/ton, exemplifies a case where the performance
of the IIOP strategy is the same as the DIOP strategy (3,656e), and the OBP performs worse than the
other planning strategies (3,834e, 4.9% worse). The optimal IIOP routing solution consists of three ORs
and four IRs (Figure 4e). In this setting, with the linehauls more geographically dispersed and farther
from the suppliers and neighbouring mills, it is cheaper to visit several times supplier 16 in dedicated IRs
than considering OIRs. However, the solution of the OBP model, which is myopic with respect to this
possibility, encompasses one OIR that visits the cost-effective backhaul 22 (Figure 4f).



21

The analysis of these results also shows that the backhauling reward value has a significant impact
on the routing plans and can lead to different conclusions with respect to the comparison between the
alternative planning strategies. For example, when the reward value is lowered to 1e/ton, the results for
instance B10 show that the visit to backhauls 15 and 16 are no longer cost-effective in the IIOP strategy.
Hence, the routing plan consists of four OIRs, all visiting backhaul 13 (Figure 4d) and 1 OR. The total
costs are 3.8% higher than in the experiment with a reward of 7e/ton, due to an increase in the total
transportation distance and in the use of five vehicles instead of four.

It is noteworthy that lowering the value of the reward for visiting the backhauls has a negative effect on
revenue and consequently, increasing the value of the objective function (134% higher than with previous
experiment with 7e). For this case, the IIOP strategy still performs better than the OBP and DIOP.
However, the total cost savings are reduced to 2.7% and 2.2%, respectively. This is due to the fact that
with a lower reward value, the use of OIRs is less attractive, and the inbound demand must, therefore,
be satisfied with dedicated backhaul routes.

In instance A10, when the reward value is lowered to 1e per ton, there is no visit to a backhaul that is
cost-effective. Hence the optimal plan for the OBP strategy does not consider any OIR, and it is identical
to the IIOP and DIOP strategies described before.

These findings suggest that IIOP is the strategy that allows the optimisation of the combination
between backhauling and inbound routing, but under specific circumstances that favour the supply of
raw materials through cost-effective OIRs instead of direct IRs, OBP can perform better than DIOP. As
shown in these experiments, these circumstances depend on the backhauling reward value for visiting a
backhaul in an OIR and on the geographical configuration of the logistics network of the planning day,
especially the relative distance between a linehaul that can be visited last in a route, and a neighbouring
backhaul and mill.

As stated before, the opportunistic planning strategy can be considered an “intermediate” stage from
DIOP towards IIOP. The transition from DIOP to opportunistic planning is smoother since it is restricted
to organisational changes within the local outbound logistics offices in each mill, while the IIOP also
impacts in the central office currently responsible for inbound logistics planning. During this intermediate
stage using the OBP strategy, the planners need to compare the optimal routing plan with the outcome
of the DIOP strategy in order to establish if backhauling is favourable for the set of customers visited in
each day.

5.3 Managerial insights

Focusing on OBP, which is the strategy likelier to be adopted by the planners in this case study, additional
experiments were designed for instances with 10 linehauls (A10, B10), to provide managerial insights on
how the values of key parameters of model [P0] set by the planners with some degree of uncertainty, may
actually impact on the routing plan. The parameters under study are:

• backhauling reward (δ), i.e., incentive for picking up one unit of raw material in a backhaul b ∈ B
and delivering it to a mill m ∈M . For simplification purposes, it is assumed that the reward is the
same for all backhauls and mills that accept compatible types of raw materials. Based on experts
opinions, the reward can vary in a range from 1 to 10 euros per ton;

• minimum backhauled amount (β), i.e., amount of raw materials to be backhauled in OIR. If pa-
rameter β = 0 then no visits to backhauls are required; if β ≥ 1 ton, then, at least, one backhaul
must be included; and if β ≥ 41 ton, then, at least, two backhauls must be included), since the
maximum truck capacity is 40 ton;

• maximum length of the route (α), i.e., maximum distance travelled in a route. The values tested
are 1, 200 km (corresponding to the longest distance from the mill to a linehaul in instance A10)
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Figure 4: Graphical representation of the planning strategies for instances A10 and B10
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and 1, 500 km;
• minimum delivery (ψ), i.e., the minimum allowable amount of order delivered to a linehaul, con-

ditioning the possibility of splitting the order of a linehaul into more than one deliveries done by
different trucks. The values tested were ψ = 0.5 ton, meaning that many split deliveries are allowed,
ψ = 5 ton and ψ = 10 ton (corresponding to the capacity of the smallest truck), meaning that split
deliveries are more restricted.

Let us state the baseline conditions for this analysis δ = 6 e/ton for instance A10 and δ = 1 e/ton
for instance B10, α = 1200 km for A10 and α = 400 km for B10, β = 0 and ψ = 0.5 ton. The results of
the experiments presented in Table 4 and in the Appendix are the basis for managerial insights that can
be valuable for route planning.

Impact of the variation of the value of reward for visiting a backhaul (δ)

Results generically confirm a positive effect in the objective function of increasing the value of δ, because
more OIRs are performed, often with the same number of trucks. The total transportation costs increase,
due to the increase in the total distances travelled, but these are compensated with a higher total reward
collected. The first managerial insight that can be formulated is that planners wishing to foster an
increase of OIRs should set the reward value at least equal to the extra travelling costs for visiting the
most cost-effective backhaul (i.e. the costs for travelling from the last linehaul to the backhaul and from
there to the closest mill).

For instance A10 the minimum δ should be 7e/ton. Below that value, there is no backhaul that is
cost-effective, hence, no OIRs are included in the optimal routing plan. The number of trucks needed
increases for four to five. Increasing δ to 8 e/ton improve the value of the objective function but do
not change the costs, because the number of trucks and the routing plan remains the same. However,
very high values of δ are not beneficial as it leads to the use of a large truck fleet. Hence, the percentual
increase of total costs is much higher than the gains in the value of the objective function, and the
resulting routing plan is hardly adopted in practice. For example, a δ equal to 10e/ton in instance A10
leads to costs 243% higher than in the baseline, corresponding to the highest number of 34 OIRs out of
the 36 routes that compose the optimal routing plan.

Regarding instance B10, the linehauls are less geographically dispersed than in A10; thus, a slight
increase in the δ leads to significant changes in the number of OIRs and the improvement in the objective
function value. In fact, the baseline experiment with a δ equal to 1e/ton already leads to 3 OIRs and
one for each of the trucks used. For δ equal or higher than 5e/ton the routing plan changes drastically
to 39 OIRs requiring 39 extra trucks.

Impact of the variation of the required backhauled amount (β)

Experiments suggest that increasing β has a negative impact on the value of the objective function because
it increases the transportation costs for the mandatory visit to backhaul. However, in some instances,
such as A10, it leads to an increase in OIRs, while in others, such as B10, it leads to an increase of
the number of IRs. A second managerial insight for planners relates to the fact that the geographical
dispersion between the linehauls, backhauls and mills is the determining factor for finding the optimal
routing plan, as discussed in Section 5.2. It is also noteworthy that, under some circumstances (e.g. for
δ ≤ 2 and β > 0 for A10), the solution turns infeasible because the pre-processing algorithm guarantees
that only cost-efficient integrated routes can be created.
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Impact of the variation of the delivery amount at a linehaul (ψ)

Experiments indicate that increasing ψ has a slightly negative effect on the value of the objective function.
Although this may imply the use of fewer vehicles, this also decreases the possibility of creating integrated
routes and, as such, the possibility of collecting a higher total reward.

There is a complementary relation between the key parameters ψ and δ in fostering the number of
OIRs in the optimal routing plan. In practice, if ψ is low, means that more visits to the linehauls are
allowed, and so, there is more flexibility in the routing plan to include OIR, especially if the reward for
visiting a backhaul is high. In fact, the number of OIRs is maximized (34 out of 35 routes) if ψ is very
low (e.g., 0.5 ton) and δ is very high (e.g., 10e). However, these high number of integrated routes (e.g.
34 out of 36 routes) can hardly represent the common practice (Figure 5). Hence, another managerial
insight for planners relates to the importance of properly addressing the trade-off between the offered
reward and the maximum number of visits allowed to a linehaul, which is specific for each case.

Impact of the variation of the maximum length of the route (α)

Experiments show that increasing α tends to improve the objective function, due to the decrease in the
number of required vehicles and the possibility to visit a larger number of linehauls is the same route.
However, without a direct impact on the number of OIR. As an example for instance A10, increasing α
from 1, 200 km to 1, 500 km, all other parameters remaining the same as in the baseline scenario, lead
to a decrease of 32% in the value of the objective function, related with the use of 3 vehicles instead of
4. In instance B10, the increase from 400 km to 800 km, leads to a decrease of 22% in the value of the
objective function due to longer routes, using the same fleet of 3 trucks.

In summary, results show that there are several trade-offs that need to be analysed by planners to
balance the increase of OIRs and the increase in transportation costs. In particular, results suggest that
α is the parameter that impacts the most in improving the value of the objective function and costs
(improvements of 32% in instance A10 e 22% in B10, because it enables to use fewer vehicles, and fewer
distances travelled, however, do not necessarily foster OIRs.

Moreover, the main parameter to be taken into account for planners willing to improve OIRs is δ. As
discussed before, OIRs tend to be included in the routing plan when the reward value is above a threshold,
corresponding to visiting the first cost-effective backhaul. The value of this threshold depends on the
geographical dispersion of nodes in the transportation network and particularly the distance between the
last visited linehaul, the closest backhaul and its neighbouring mill.

5.4 Performance of the solution approach

Despite the fact that the solver is able to obtain optimal solutions within a few minutes for problem in-
stances of 10 linehauls, this is not the case for larger instances. In these cases, the use of the matheuristic
is justified in order to obtain good quality solutions in a shorter computational time. A set of computa-
tional experiments was envisaged to validate the proposed solution approach. Instances of group A and
B were solved using the standalone MIP solver approach and the fix-and-optimise matheuristic. These
experiments were performed in an Intel Xeon E5-2450 @ 2.10GHz CPU with capacity for 16 simultaneous
processing threads.

Both approaches were run for 3,600s, with α = 1, 200, β = 0 and ψ = 0.5. The MIP solver was
executed once for each instance using Gurobi’s default parameters and the fix-and-optimise approach was
run 10 times for each instance, using the parameters described in Table 5.
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Table 4: Summary of the experiments on the impact of the values of model parameters

Inst.
Parameter Objective

Function

Costs (e) Routes Runtime
(s)

MIP
Gapα β ψ δ Total Fixed Transport Total OIR OR

A10

1,200 0 0.5 6 4,703 4,703 280 4,423 4 0 4 19 1.8%

– – – 7 -1% +5% +25% +4% +1 +1 0 105 0.6%

– – – 8 -2% +5% +25% +4% +1 +1 0 112 0.3%

– – – 10 -46% +243% +800% +208% +32 +34 -2 272 1.9%

– 1 – – 0% +5% +25% +4% +1 +1 0 19 1.0%

– 41 – – +2% +12% +50% +10% +2 +2 0 190 0.0%

1,500 – – – -32% -32% -25% -32% -1 0 -1 26 1.6%

– – 5 – +1% +6% +25% +4% +1 +1 0 28 2.0%

– – 5 10 -7% +35% +75% +33% +3 +5 -2 304 0.4%

– – 10 – +1% +6% +25% +4% +1 +1 0 130 1.9%

– – 10 10 -5% +21% +25% +21% +1 +3 -2 308 0.7%

B10

400 0 0.5 1 2,002 2,002 210 1,792 3 3 0 16 0.0%

– – – 2 0% +4% +33% +1% +1 -2 +3 28 0.0%

– – – 5 -105% +284% +1,300% +165% +39 +36 +3 32 0.0%

– 1 – – +2% +4% +33% +1% +1 -2 +3 39 0.0%

– 41 – – +7% +11% +67% +4% +2 -1 +3 41 0.0%

800 – – – -22% -20% 0% -22% 0 -2 +2 72 0.0%

– – 5 – 0% 0% 0% 0% 0 -3 +3 25 0.0%

– – 5 5 -23% +57% +267% +32% +8 +5 +3 20 0.0%

– – 10 – 0% 0% 0% 0% 0 -3 +3 29 0.0%

– – 10 5 -15% +25% +133% +13% +4 +1 +3 18 0.0%

Legend: α: maximum length of the route (km); β: minimum backhauled amount (ton); ψ: minimum delivery
amount (ton); δ: backhauling reward (e/ton); Runtime: computational time after which no better solution was
obtained (seconds); MIP Gap: percentual difference obtained by Gurobi between the upper and lower bound of
the branch-and-bound method. All models were run with a maximum time limit of 3,600s. The first row of results
for each instance (highlighted in bold) contains the baseline values, and the rows that follow exhibit either the
absolute or the percentual variation compared with the baseline values (except for Runtime and MIP Gap values).
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Table 5: Used parameters for the matheuristic approach

Parameters Value

Termination criteria Time limit 3,600s

No-improvement criterion Improvement between
consecutive iterations lower than

100

RouteRelease sub-problem Subproblem sizes 4, 6, 8, 16 routes

No-improvement limit to
change subproblem size

2 iterations

MIP solver iteration time limit Multiples of 15s
(according to sub-problem size)

LocationRelease sub-problem Subproblem sizes 2, 4, 6, 8 linehauls

No-improvement limit to
change subproblem size

2 iterations

MIP solver iteration time limit Multiples of 15s
(according to sub-problem size)

Table 6 summarizes the computational results of the MIP solver and matheuristic approaches for the
30 problem instances.

The results demonstrate that both the MIP solver and the matheuristic are adequate for solving
instances up to 10 linehauls (groups A10 and B10), as the solver is able to prove optimality for most
instances and the matheuristic easily reaches the same solution as the MIP solver. For larger instances, the
MIP solver yields optimality gaps up to 32% for instances of groups A30, A50, B30 and B50. Specifically
to instances of group A, it is possible to observe the increase in the number of routes that perform
backhauling as the number of backhaul locations progressively increases. In instances of group B30,
a single OIR is used when backhauling is allowed, and in group B50 no opportunistic backhauling is
performed. However, the obtained solutions by the MIP solver when the number of backhauls increases
do not necessarily improve, contrarily to what would be expected. Furthermore, for instances of group
B50, the solver is unable to find a single feasible solution within the 1-hour limit for 4 out of the 5
instances. This fact is probably due to the increase in model size and complexity when more backhaul
locations are being considered, thus requiring more time for Gurobi to reach identical solutions when
exploring the branch-and-bound tree.

The matheuristic approach exhibits small standard deviation values for the 10 repetitions performed
for each instance, thus suggesting that the obtained results are robust. The negative percentual differ-
ence values between the solver and the matheuristic suggest that the matheuristic is able to converge
correctly to better solutions, as opposed to the solver, which exhibits very high optimality gaps. This
negative percentual difference tends to be increasingly more expressive with the increase in instance size.
Furthermore, results also suggest that the matheuristic also takes better advantage of the increase in the
number of backhaul locations, as the objective function values generally decrease when the number of
backhaul locations increases.

From these results, we can say that the proposed matheuristic approach is adequate for solving the
problem at hand. For instances of considerable size, the MIP solver starts to struggle in finding feasible
solutions in an acceptable time limit, and apparently also has greater difficulties taking advantage of
backhauling, while the matheuristic is able to decrease the overall logistics costs with an increase in the
number of backhaul locations, therefore yielding more consistent results.
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Table 6: Computational results of the MIP and matheuristic approaches for 30 problem instances

Problem instance MIP Solver Fix-and-optimise

% diff.
Group |L| |B| |K|

∑
qi

∑
Qk OF MIP

Gap Runtime No.
routes

No.
OIRs

Objective
Function Runtime No.

routes
No.
OIRs

Average Standard
Deviation

A10

10 0 100 82 2,600 3,215 0.0% 50 3 0 3,215 0 31 3 0 0.0%

10 25 100 82 2,600 3,215 0.0% 205 3 0 3,215 0 37 3 0 0.0%

10 50 100 82 2,600 3,215 0.0% 60 3 0 3,215 0 28 3 0 0.0%

10 75 100 82 2,600 3,215 0.0% 55 3 0 3,215 0 30 3 0 0.0%

10 100 100 82 2,600 3,215 0.0% 31 3 0 3,215 0 33 3 0 0.0%

A30

30 0 100 1,853 2,600 13,745 18.4% 3,110 53 0 13,627 19 2,957 53 0 -0.9%

30 25 100 1,853 2,600 13,696 19.6% 3,444 54 26 13,404 20 2,885 53 25 -2.1%

30 50 100 1,853 2,600 13,701 20.1% 2,758 54 32 13,374 21 2,879 53 31 -2.4%

30 75 100 1,853 2,600 13,833 20.9% 3,187 55 33 13,366 19 2,576 53 31 -3.4%

30 100 100 1,853 2,600 13,702 20.1% 1,877 56 34 13,369 20 2,731 53 31 -2.4%

A50

50 0 100 2,061 2,600 20,986 29.9% 2,968 65 0 19,465 363 3,463 64 0 -7.2%

50 25 100 2,061 2,600 19,717 26.5% 1,902 64 30 19,019 194 3,527 63 26 -3.5%

50 50 100 2,061 2,600 19,907 27.3% 3,469 65 37 19,079 313 3,397 64 31 -4.2%

50 75 100 2,061 2,600 20,829 30.5% 3,019 65 36 19,167 423 3,464 64 32 -8.0%

50 100 100 2,061 2,600 21,365 32.3% 2,653 66 33 19,116 327 3,513 65 36 -10.5%

B10

10 0 100 82 2,600 1,575 1.9% 129 3 0 1,575 0 39 3 0 0.0%

10 25 100 82 2,600 1,575 2.7% 117 3 0 1,575 0 39 3 0 0.0%

10 50 100 82 2,600 1,575 0.0% 53 3 0 1,575 0 39 3 0 0.0%

10 75 100 82 2,600 1,575 0.0% 51 3 0 1,575 0 44 3 0 0.0%

10 100 100 82 2,600 1,575 0.0% 51 3 0 1,575 0 61 3 0 0.0%

B30

30 0 100 818 2,600 8,695 20.1% 3,032 23 0 8,210 9 2,267 22 0 -5.6%

30 25 100 818 2,600 8,626 19.4% 3,354 23 1 8,212 15 2,730 21 1 -4.8%

30 50 100 818 2,600 9,162 30.5% 2,473 23 0 8,206 12 2,292 22 1 -10.4%

30 75 100 818 2,600 8,350 16.8% 3,262 21 1 8,206 10 2,876 21 1 -1.7%

30 100 100 818 2,600 9,003 32.1% 441 23 1 8,198 2 2,474 22 1 -8.9%

B50

50 0 100 2,054 2,600 – – – – – 45,393 956 3,419 68 0 –

50 25 100 2,054 2,600 – – – – – 45,325 793 3,420 69 0 –

50 50 100 2,054 2,600 – – – – – 45,759 526 3,388 64 0 –

50 75 100 2,054 2,600 46,991 13.8% 2,830 69 0 45,592 655 3,359 65 0 -3.0%

50 100 100 2,054 2,600 – – – – – 45,768 646 3,412 67 0 –

Average -3.0%

Legend: |L|: number of linehauls to be visited; |B|: number of possible backhauls; |K| total number of vehicles available;
∑
qi: total quantity to be delivered

to linehauls (ton);
∑
Qk: total vehicle transportation capacity (ton); OF: Final value of the objective function (e); Runtime: average computational time

after which no better solution was obtained (seconds); MIP Gap: Percentual difference obtained by Gurobi between the upper and lower bounds of the
branch-and-bound method; No. routes: total number of routes; No. OIR: number of routes that include visit to a backhaul; % diff.: percentual difference of
the fix-and-optimise average objective function towards Gurobi’s objective function (a negative difference favours the matheuristic). For the fix-and-optimise
approach, the route indicators correspond to the repetition whose objective function value was closest to the obtained average.
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6 Conclusions and future work

Integrating planning processes requires a thorough assessment of both quantitative benefits pertaining to
the expected decrease in the related costs and qualitative impacts related to the usual need of breaking
functional silos. This work explored, mainly, the quantitative aspect of integrating outbound and inbound
logistics routes. We used as a background a case-study from the wood-based panel industry, but the results
and approaches developed are generalisable for other settings in which this integration can be modelled as
an rVRPB (e.g., grocery retail, cement distribution). Besides modelling three possible planning strategies
(i.e., OBP, IIOP, and DIOP), we have also developed a matheuristic to tackle real-world instances of this
problem.

Three key conclusions emerge from our computational study. Firstly, the intuitive idea that inter-
mediate levels of integration would always result in better planning outcomes was not verified. DIOP
outperforms OBP in certain geographical contexts where the distribution network is more dispersed. In
our studies, this happened in instance A10 when the average distance between linehaul customers and
the depot of origin is 197 km. In this case, it was actually cheaper to assure the supply of raw material
through dedicated inbound routes (i.e. going to and from the nearest supplier) than including a visit to
a supplier at the end of the outbound route (i.e. after visiting all customers). The IIOP model does this
trade-off, but the OBP model is myopic to the possibility of doing direct inbound routes, hence, leading
to worse results than DIOP.

Secondly, we confirm that there are important parameters dealt by the planners with some degree of
uncertainty that actually can have a great influence on the total costs of the routing plan. This study
analysed four of these parameters - backhauling reward, minimum backhauled amount, maximum length
of the route and minimum delivery amount allowed. Results suggest that increasing the maximum length
of the route leads to the largest impact in the performance of the routing plan but including a quantitative
reward for each supplier visited will likelier increase the proportion of integrated inbound and outbound
routes in the overall routing plan. In fact, the total reward (e/ton) should be equal or higher than the
extra transportation costs for the most cost-effective supplier. Meaning that the extra distance travelled
empty from the last customer to the nearest supplier and then full from there to the neighbouring mill is
minimized.

Finally, the developed matheuristic proved to be a suitable approach to tackle this problem and this
fact reiterated the interest of fix-and-optimise to solve routing problems.

Future work could be devoted to merging the qualitative and quantitative assessments related to the
integration of planning processes. In particular, the study of integrated inbound and outbound routes is
of interest due to its potential in improving the ever-relevant sustainability dimension.
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Supplementary material

Table 7: Experiments on the impact of the values of model parameters

Inst.
Parameter Objective

Function

Costs (e) Routes Runtime
(s)

MIP
Gapα β ψ δ Total Fixed Transport Total OIR OR

A10 1200 0 0.5 6 4703 4703 280 4423 4 0 4 19 1.8%

A10 1200 0 0.5 7 4665 4945 350 4595 5 1 4 105 0.6%

A10 1200 0 0.5 8 4625 4945 350 4595 5 1 4 112 0.3%

A10 1200 0 0.5 10 2523 16123 2520 13603 36 34 2 272 1.9%

A10 1200 0 5 6 4732 4972 350 4622 5 1 4 28 2.0%

A10 1200 0 5 7 4692 4972 350 4622 5 1 4 219 0.6%

A10 1200 0 5 8 4652 4972 350 4622 5 1 4 123 0.3%

A10 1200 0 5 10 4356 6356 490 5866 7 5 2 304 0.4%

A10 1200 0 10 6 4732 4972 350 4622 5 1 4 130 1.9%

A10 1200 0 10 7 4692 4972 350 4622 5 1 4 175 1.1%

A10 1200 0 10 8 4652 4972 350 4622 5 1 4 237 0.5%

A10 1200 0 10 10 4482 5682 350 5332 5 3 2 308 0.7%

A10 1200 1 0.5 6 4705 4945 350 4595 5 1 4 19 1.0%

A10 1200 1 0.5 7 4665 4945 350 4595 5 1 4 109 0.8%

A10 1200 1 0.5 8 4625 4945 350 4595 5 1 4 153 0.2%

A10 1200 1 0.5 10 2523 16123 2520 13603 36 34 2 2523 0.7%

A10 1200 1 5 6 4732 4972 350 4622 5 1 4 137 0.5%

A10 1200 1 5 7 4692 4972 350 4622 5 1 4 357 0.7%

A10 1200 1 5 8 4652 4972 350 4622 5 1 4 241 0.6%

A10 1200 1 5 10 4356 6356 490 5866 7 5 2 165 0.2%

A10 1200 1 10 6 4732 4972 350 4622 5 1 4 96 0.2%

A10 1200 1 10 7 4692 4972 350 4622 5 1 4 57 0.4%

A10 1200 1 10 8 4652 4972 350 4622 5 1 4 200 0.1%

A10 1200 1 10 10 4482 5682 350 5332 5 3 2 94 0.5%

A10 1200 41 0.5 6 4802 5282 420 4862 6 2 4 190 0.0%

A10 1200 41 0.5 7 4722 5282 420 4862 6 2 4 226 0.1%

A10 1200 41 0.5 8 4642 5282 420 4862 6 2 4 126 0.2%

A10 1200 41 0.5 10 2523 16123 2520 13603 36 34 2 185 0.8%

A10 1200 41 5 6 4828 5308 420 4888 6 2 4 234 0.5%

A10 1200 41 5 7 4748 5308 420 4888 6 2 4 155 0.5%

A10 1200 41 5 8 4668 5308 420 4888 6 2 4 180 0.6%

A10 1200 41 5 10 4356 6356 490 5866 7 5 2 107 0.6%

A10 1200 41 10 6 4830 5310 350 4960 5 2 3 166 0.3%

A10 1200 41 10 7 4750 5310 350 4960 5 2 3 57 0.4%

A10 1200 41 10 8 4670 5310 350 4960 5 2 3 89 0.7%

A10 1200 41 10 10 4482 5682 350 5332 5 3 2 67 0.1%

Continued on next page
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Inst.
Parameter Objective

Function

Costs (e) Routes Runtime
(s)

MIP
Gapα β ψ δ Total Fixed Transport Total OIR OR

A10 1500 0 0.5 6 3215 3215 210 3005 3 0 3 26 1.6%

A10 1500 0 0.5 7 3177 3457 280 3177 4 1 3 357 1.0%

A10 1500 0 0.5 8 3137 3457 280 3177 4 1 3 123 2.3%

A10 1500 0 0.5 10 1034 14634 2450 12184 35 34 1 504 0.3%

B10 400 0 0.5 1 2002 2002 210 1792 3 0 3 16 0.0%

B10 400 0 5 1 2002 2002 210 1792 3 0 3 25 0.0%

B10 400 0 10 1 2002 2002 210 1792 3 0 3 29 0.0%

B10 400 0 0.5 2 2001 2081 280 1801 4 1 3 28 0.0%

B10 400 0 5 2 2001 2081 280 1801 4 1 3 21 0.0%

B10 400 0 10 2 2002 2002 210 1792 3 0 3 18 0.0%

B10 400 0 0.5 5 -108 7692 2940 4752 42 39 3 32 0.0%

B10 400 0 5 5 1534 3134 770 2364 11 8 3 20 0.0%

B10 400 0 10 5 1710 2510 490 2020 7 4 3 18 0.0%

B10 400 1 0.5 1 2041 2081 280 1801 4 1 3 39 0.0%

B10 400 1 5 1 2041 2081 280 1801 4 1 3 37 0.0%

B10 400 1 10 1 2059 2099 280 1819 4 1 3 21 0.0%

B10 400 1 0.5 2 2001 2081 280 1801 4 1 3 33 0.0%

B10 400 1 5 2 2001 2081 280 1801 4 1 3 36 0.0%

B10 400 1 10 2 2019 2099 280 1819 4 1 3 30 0.0%

B10 400 1 0.5 5 -108 7692 2940 4752 42 39 3 27 0.0%

B10 400 1 5 5 1534 3134 770 2364 11 8 3 19 0.0%

B10 400 1 10 5 1710 2510 490 2020 7 4 3 16 0.0%

B10 400 41 0.5 1 2133 2213 350 1863 5 2 3 41 0.0%

B10 400 41 5 1 2133 2213 350 1863 5 2 3 32 0.0%

B10 400 41 10 1 2133 2213 350 1863 5 2 3 20 0.0%

B10 400 41 0.5 2 2053 2213 350 1863 5 2 3 27 0.0%

B10 400 41 5 2 2053 2213 350 1863 5 2 3 20 0.0%

B10 400 41 10 2 2053 2213 350 1863 5 2 3 10 0.0%

B10 400 41 0.5 5 -108 7692 2940 4752 42 39 3 38 0.0%

B10 400 41 5 5 1534 3134 770 2364 11 8 3 40 0.0%

B10 400 41 10 5 1710 2510 490 2020 7 4 3 14 0.0%

B10 800 0 0.5 1 1566 1606 210 1396 3 1 2 72 0.0%

B10 800 0 0.5 2 1503 1743 210 1533 3 3 0 23 0.0%

B10 800 0 0.5 5 -778 7222 2800 4422 40 40 0 54 0.0%

Legend: α: maximum length of the route (km); β: minimum backhauled amount (ton); ψ: minimum delivery amount
(ton); δ: backhauling reward (e/ton); Runtime: computational time after which no better solution was obtained (seconds);
MIP Gap: percentual difference obtained by Gurobi between the upper and lower bound of the branch-and-bound method.
All models were run with a maximum time limit of 3,600s.
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