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Abstract. Hop constraints are used to limit the number of links between two given
points in a network, this way improving the quality of service by increasing the
availability and reliability of the network. They have been applied to a limited num-
ber of problems, although their application can be of the greatest importance both
from the academical and practical points-of-view. In this work, we survey rele-
vant and recent works on hop-constrained problems focusing on problems with tree
shaped solutions.
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1. Introduction

Tree topology problems are well researched for many reasons. Firstly, they frequently
appear in practical situations, e.g., a spanning tree is the best topology for many telecom-
munication network designs, consisting of finding the best way to link telecommunica-
tion devices at different locations to a central host. Secondly, they have a large number
of applications within distribution networks, for example, oil, gas, water, electricity, and
in many other problems, such as community detection (for instance in social networks),
taxonomy, clustering, handwriting recognition, etc. Thirdly, trees are solutions for other
problems, such as the minimum concave cost network flow problem. Finally, trees can be
components of the solution to other problems: for approximating the travelling salesman
problem [1], the multi-terminal minimum cut problem [2], the minimum-cost weighted
perfect matching [3], just to mention but a few.

Constraints limiting the number of arcs (hops) in the unique path between a source
node and any other node in a network are called hop constraints. Whenever a network
optimization problem includes hop constraints, it is known as a Hop-constrained prob-
lem. Hop constraints have been applied to a small, though diversified, number of problem
classes. Examples of 2-hop constraints applied to problems in transportation, statistics,
and plant location are provided and discussed in [4].

A well-known hop-constrained problem for which the solution is a tree is the Min-
imum Spanning Tree (MST). In the MST problem, the objective is to find a tree span-
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ning all nodes in a network while minimizing the total costs incurred. This combinato-
rial problem is frequently used to model problems in the area of telecommunications,
consisting of a central device, for example a hub, that must be linked to a set of remote
terminals. It has been shown that by including hop constraints it is possible to generate
trees with a much better service and only with a moderate increase on the total cost [5].

In this work, we describe relevant and recent literature on hop-constrained optimiza-
tion problems, mainly for problems for solutions are tree-shaped.

The remainder of this work is organized as follows. Section 2 provides a discussion
on the main reasons for applying hop constraints. In Section 3, we introduce the Hop-
constrained Minimum Spanning Tree problem (HMST) along with a possible mathemat-
ical formulation for the problem and we review exact and heuristic solution methods that
have been used to solve it. A new generalization of the HMST problem that considers
flows other than the unit is presented and reviewed in Section 4. In Section 5, we give a
brief account of other problems in which hop constraints have been introduced. Finally,
Section 6 summarizes and concludes this work.

2. Hop constraints: what are they for?

In this work, we discuss problem with hop constraints in the context of tree shaped
networks. In these problems, hop constraints limit the number of arcs between the source
node and every other node in the tree. The addition of a maximum number of arcs in
each path is usually related to reliability and availability issues.

In a problem in which a central hub is sending packages of information to terminal
computers, availability is usually associated with the probability of perfect functioning
of all links between the central hub and each one of the terminals. Whereas reliability
is the probability that the transmission of the package will not be interrupted by any
external factor resulting in the fail of a link [5]. For instance, if a link failure is associated
with some probability p, and failures are independent, then, the probability that a path
with h arcs is operational is given by (1− p)h. Therefore, we can easily conclude that the
increase on the number of arcs between the central hub and the terminal computer will
result in a decrease on the reliability and on the availability of the network. Although
imposing a maximum limit on the number of hops on a network may increase the total
costs, the overall gain in terms of service quality may compensate.

Hop constraints can also be used to prevent the degradation of signal quality. For
example, many telecommunication networks impose a maximum of three hops for data
paths and two hops for voice paths [6]. In addition, hop constraints can also be associated
with lower time delays, for instance in a multi-drop lines network, in which packages of
information may have to queue before reaching their destination. The total delay time is
dependent on the number of arcs between the origin and destination nodes [7], therefore
delay times increase with the number of hops in the network.

Having introduced and discussed the importance of hop constraints, in the follow-
ing sections we review solution methods for some hop-constrained network problems.
The solution methods range from proposing alternative mathematical programming for-
mulations to metaheuristic methods such as Genetic Algorithms (GAs) and Ant Colony
Optimization (ACO) algorithms.



3. The Hop-Constrained Minimum Spanning Tree Problem

In the hop-constrained minimum spanning tree problem, besides finding a tree spanning
all nodes at minimum cost, the number of arcs in each path from the source node to every
other node must not exceed a given integer H value, which is called the hop parameter.

Dahl [4] studies the HMST problem for H = 2 and compares the polyhedra of the
models with directed and undirected arcs. Alfandari and Paschos [8] have shown that the
HMST with H = 2 cannot be approximated by polynomial time approximation schemes
unless P = NP. The HMST with H = 2 is equivalent to a version of the Simple Uncapac-
itated Facility Location (SUFL) problem where the potential facility sites coincide with
the locations of the clients to be served. It is well known that the SUFL problem is NP-
hard which implies that the HMST is also NP-Hard. Furthermore, Manyem and Stall-
mann [9] have shown that the HMST problem is not in the class of problems for which
it is possible to have polynomial time heuristics with a constant-factor approximation
bound.

3.1. A formulation for the HMST problem

Several mathematical programming formulations have been proposed for the HMST
problem in an attempt to improve the performance of the solution methods, most of
which are relaxations that produce lower bounds. In one of the earliest formulations,
Gouveia [10] reported several formulations involving node variables. Starting from a ba-
sic model incorporating the Miller-Tucker-Zemlin subtour elimination constraints [11],
Gouveia proposes strengthened models by lifting these constraints. The lifting is per-
formed using the strong liftings introduced in [12] and also by proposing a new class.
Gouveia also proposes a different modeling approach. In [13] an alternative formulation
based on directed or undirected multicommodity flows is presented. A shaper model is
obtained by lifting the hop-constraints. Another modeling approach is taken in [14], since
in this work the problem is formulated in a directed graph. It is expected that the formu-
lation thus obtained is more compact, as is shown in several works (see e.g. [15]) that
deal with modeling aspects of related network design problems. In addition, and based
on a variable redefinition proposed in [16], an extended formulation is also proposed.
A hop indexed formulation is presented in [17] using four indexed decision variables.
Since an arc may be in the path from the root node to more than one other node, the
authors use the indices for the arc (i, j), the index for the path it is being used on, i.e. to
which node, and the number of hops (q) in the path. In [18] a modeling approach that
views the whole problem as defined in an appropriate layered directed graph has been
proposed and later Gouveia et al [19] have shown that the HMST problem is equivalent
to a Steiner tree problem [20, 21] in an adequate layered graph. Moreover, they provided
a number of results explaining why this extended HMST formulation is significantly
stronger than previous formulations. Akgun and Tansel [22] develop new formulations
for HMST. The formulations are based on Miller-Tucker-Zemlin (MTZ) subtour elimi-
nation constraints, MTZ-based liftings in the literature offered for HMST, and a new set
of topology-enforcing constraints. New sets of constraints to strengthen the MTZ sub-
tour elimination constraints, as well as hop-related topology-enforcing constraints. Ak-
gun [7] presents three new models that use the Asymmetric Travelling Salesman Prob-
lem (ATSP) model of Sherali and Driscoll [23] as the basis to formulate HMST. The



first is obtained by adapting the aforementioned ATSP; while the other two models are
obtained by incorporating the topology-enforcing and MTZ-related constraints offered
in [22] into the first model.

In this section, for the sake of simplicity, we give a formulation for the directed
HMST problem by Gouveia [13] which is based on a multicommodity network flow
formulation.

Consider a directed network G = (N,A), where N is a set of n+ 1 nodes and A is
a set of m arcs (i, j). Each arc (i, j) has associated a cost ci j. In the HMST one wishes
to find the least cost tree such that all vertices are connected. In addition, the maximum
number of arcs on the unique path from the source node to every other node cannot be
greater than a hop parameter, H.

Two decision variables are defined for this formulation:

xi j =
{

1, if arc (i, j) is in the solution tree,
0, otherwise,

yi jk =

1, if arc (i, j) is in the path from root node t to
node k, k 6= i,

0, otherwise.

Model 1 A multicommodity flow based formulation for the HMST problem.

min: ∑
(i, j)∈A

ci jxi j, (1)

s.t.: ∑
i∈N

xi j = 1, ∀ j∈N\{t}, (2)

∑
i∈N

yi jk− ∑
i∈N\{t}

y jik = 0,∀k, j∈N\{t}, j 6=k, (3)

∑
i∈N

yi j j = 1, ∀ j∈N\{t}, (4)

∑
(i, j)∈A

yi jk ≤ H, ∀k∈N\{t}, (5)

yi jk ≤ xi j, ∀(i, j)∈A,∀k∈N\{t}, (6)

xi j ∈ {0,1}, ∀(i, j)∈A, (7)

yi jk ∈ {0,1}, ∀(i, j)∈A,∀k∈N\{t}. (8)

Equation (1) represents the cost function to be minimized, whiled equation (2) guar-
antees that every node is in the solution and has only one arc entering it. Decision vari-
ables yi jk use a third index as in multicommodity network flow models and constraints (3)
refer to the usual flow conservation constraints. The feasibility of the solution regard-
ing the hop constraints is guaranteed by equations (4) and (5). The coupling constraints,
which are given by equations (6), state that an arc (i, j) can only be in the path between



root node t and node k if the arc is included in the solution. Constraints (7) and (8) state
the nature of the decision variables.

3.2. Solution Methods for the HMST

We start this section by reviewing solution methods providing lower bounds for the
HMST problem, since it has been the most popular method used to approach it. Lower
bounds are usually obtained based on the solution of different relaxation techniques ap-
plied to the mathematical programming models developed. The second part of the section
is devoted to heuristic methods, which are still scarce for this problem.

3.2.1. Lower Bounds for the HMST

Gouveia [10] provides models for the HMST problem involving node variables, instead
of the usual arc variables, and using extensions of Miller-Tucker-Zemlin subtour elimi-
nation constraints. The latter ones are used in order to prevent the solution to incorporate
cycles. In order to derive stronger formulations, the author applies Linear Programming
(LP) relaxation to the binary variables and then incorporates MTZ constraints. The MTZ
subtour elimination constraints are lifted by using Desrocher and Laporte [12] liftings.
In addition, subtour elimination constraints earlier developed in [24] are also consid-
ered. These constraints are then relaxed in a Lagrangean Relaxation (LR) fashion and
the model is solved by a subgradient method. The lower bounds provided by LR mod-
els are spanning trees, that may not satisfy the hop constraints. Upper bounds for the
HMST problem are then obtained by converting the lower bounds into feasible solutions
as follows: all nodes which stand at a distance from the root node t greater than H are
disconnected from their parent node and are directly connected to the root node. This
is repeated while there are paths exceeding H. Problems with up to 40 nodes, in fully
connected graphs, are solved considering linear costs. However, since the results are not
as good as expected, stronger formulations are still in need.

Gouveia [13] gives a Multi-Commodity Flow (MCF) formulation for the HMST
problem and suggests lower bounding schemes based on LP relaxation and on La-
grangean Relaxation, improving upon his previous work. The author develops a formu-
lation for the undirected case of the HMST problem, from which a formulation for the
directed case is derived by replacing each undirected arc [i, j] with two directed arcs (i, j)
and ( j, i) and where ci j = c ji. The hop constraints are lifted deriving two new sharper
models. The first one is due to the observation that if an arc (k,v) is in the solution tree,
then the number of arcs in the path between the root node t and node k cannot be equal
to H. The second one, developed to decrease the number of variables in the model, uses
only the subset of the previous constraints involving the lowest cost arc (k,vk) outgoing
from node k. An arc elimination test is developed and it removes any arc (i, j) for which
ci j ≤ ct j. Lagrangean relaxations are applied to the models. The heuristic previously de-
fined in [10] is improved by allowing nodes violating the hop constraint to be linked to
another node j as long as the sum of the position of node j and the depth of node i is
not greater than H; otherwise, violating nodes are linked to the root node. Although the
results show that the LP bounds for these models are considerably better than those of
MTZ formulations, MCF formulations lead to very large integer programming models
whose LP relaxations require excessive solution times and core storage as the network
size and H get larger [25].



Based on the variable redefinition method in [16], Gouveia [14] develops a new
lower bounding method given by the LP relaxation of a multicommodity flow formula-
tion (MCFL). Another heuristic is constructed in several steps. Firstly, a lagrangean relax-
ation of the MCF formulation is obtained by associating nonnegative multipliers of the
form λi jk to the coupling constraints (6) which are then dualized in the usual lagrangean
way (MCFλ ). This new relaxed problem can be divided into two subproblems. The first
subproblem involves only the xi j variables and can be easily solved by inspection. The
second one involves the yi jk variables and can be further separated into |N−1| subprob-
lems, one for each k ∈ N \{t}. Each of these subproblems corresponds to a shortest path
problem between node t and node k with at most H hops. Following on the Dynamic
Programming (DP) approach proposed in [16], the shortest-path problems can be easily
solved by the DP. Furthermore, an extended hop-path formulation can be derived for the
original hop-constrained problem. The new formulation is given by considering the bi-
nary hop-indexed arc variables zi jh, which assume the value 1 if from state i, which is in
position h− 1, we move to state j in position h. The combination of the extended hop-
path formulation with the MCF formulation results in a new model (HDMCF) involving
the usual xi j variables and new variables zi jhk, the latter ones with an extra index when
compared with yi jk, indicating whether an arc (i, j) is in position h of the path from node
t to node k. Finally, the binary constraints of the model are relaxed and the new relaxed
model (HDMCFL) is solved. The results demonstrate that the bounds of the HDMCFL
model are close to the optimal value. Computational times for solving the MCFL are
larger than those of HDMCFL. This, in part, due to the fact that MTZ formulations are
more compact both in the numbers of variables and constraints.

The Lagrangean relaxation proposed in [14] produces very tight bounds for small
values of h, however it is very time consuming to obtain bounds that are close to the
theoretically possible best bounds. To overcome this problem Gouveia and Requejo [17]
develop a new LR to be applied to the hop-indexed MultiCommodity Flow formulation
(HDMCF) of the HMST problem (explained earlier in this section). To derive the new
LR of the model, (HDMCFλ ), the flow conservation constraints are dualized in the usual
lagrangean way. The problem is further simplified, for a given value of the lagrangean
multipliers by observing that the optimal values for the binary variables zi jhk can be
obtained by dropping the linking constraints ∑

H
h=1 zi jhk ≤ xi j and by relaxing the binary

variables zt j1k and zi jhk from HDMCFλ . This modified relaxation may be separated into
two simple inspection subproblems: one involving only the xi j binary variables, and the
other involving only the zi jhk binary variables. Once the optimal values for the xi j and
zi jhk are obtained, an approximation of the optimal multipliers is also obtained, using
a subgradient optimization method. The authors compare the results obtained for three
models: the HDMCFλ , the HDMCFL, and the MCFλ . The arc elimination procedure
proposed in [13] is applied before solving each problem instance using models HDMCFλ

and HDMCFL, which, in some cases, considerably reduces the number of arcs. Problem
instances with 20, 40, and 60 nodes, defined over complete graphs are solved. The new
lagrangean relaxation HDMCFλ has a better performance than the one developed in [14],
both in terms of the bounds found and in terms of the computational time required to find
them.

Dahl et al [26] introduce a new formulation for the HMST problem using only natu-
ral design variables and an exponential number of constraints composed of the so-called
jump inequalities that are shown to be facet-defining. Their proposed formulation uses



fewer variables but has weaker LP bounds than MCF formulations. Due to the exponen-
tial number of constraints, the authors propose a Lagrangean-based bounding scheme.
Computational results indicate that the LP bounds are better as h increases than those
reported in previous studies.

More recently, approaches modeling the HMST problem as a Steiner tree in a lay-
ered directed graph have been proposed in [18, 27]. A layer is established for each hop
value h, where h = 1,2, . . . ,H. Nodes respecting each h value are copied into the cor-
responding h layer. Therefore, layer 0 only has the source node assigned to it, layer 1
contains all nodes reachable from the source node within one arc, an so on. Each node
in layers 1 and H − 1 is linked to their corresponding node in layer H and have a 0
cost associated. The other arcs of the problem are represented by links between nodes
in sequential layers until layer H is reached, creating a graph where a spanning tree in
the original graph now corresponds to a Steiner tree. Lower and upper bounds are com-
puted by using a dual ascent heuristic, closely related to the one provided in [28], and a
primal heuristic SPH-Prim given in [29], respectively. Then the cutting plane algorithm
developed by Hao and Orlin [30] is applied. The overall approach is proved to be very
efficient, solving problems with up to 160 nodes in reasonable times.

Akgun and Tansel [22] revisit the node based formulation in [10] and provide new
MTZ based formulations, by proposing a new set of MTZ constraints and a new set of
topology enforcing constraints that improve the former LP relaxation bounds and solu-
tion times. The topology enforcing constraints and the MTZ constraints are based on
the distinction between leaf-nodes and central-nodes (nodes with more than one inci-
dent arc). The results obtained show that the new constraints are competitive with earlier
proposed liftings to MillerTuckerZemlin constraints in [10], some of which are based
on the well-known strong liftings introduced in [12]. Also recently, other MTZ based
formulations have been proposed by Akgun [7]. The first model HMST/SD incorpo-
rates an adaptation of Sherali and Driscoll [23] constraints, developed for the asym-
metric TSP, where a linearization of the nonlinear product terms is performed and a
more dedicated coupling constraints are added to the model. The second and third mod-
els, HMST/SD1 and HMST/SD2, are obtained by incorporating, respectively, the new
MTZ constraints and topology enforcing constraints, previously developed in [22], into
the first model. Models HMST/SD1 and HMST/SD2 dominate the MTZ-based models
with the best LP bounds in the literature. Nonetheless, solution times are not improved
for optimally solved problems. On the other hand, the results imply that HMST/SD2 is
likely to produce better solution times for the harder, large-size instances. Comparison of
HMST/SD2 with flow-based and hop-indexed formulations indicates that HMST/SD2
is inferior with respect to LP bounds. However, it can produce good feasible solutions in
a very short time.

The interested reader is referred to the comprehensive survey by Dahl et al [25],
and to the references therein for a discussion on formulations, including alternative for-
mulations for the HMST problem based on natural design variables and on an expo-
nential sized set of constraints. Solution methods comprising lower bounds for the hop-
constrained MST problem, including techniques such as lagrangean relaxation or column
generation, are also discussed.



3.2.2. Heuristic Methods for the HMST

It has been argued by Dahl et al [25] that in order to solve realistic sized HMST problems
heuristic methods are much more adequate. Nevertheless, although heuristic methods are
very often used to solve many optimization problems, there has not been much work on
heuristics to solve the HMST problem. As far as the authors are aware of, regarding the
development of good heuristic methods to solve the HMST problem, the only existing
works are the ones reviewed bellow.

In [31] five heuristic procedures are developed to solve the HMST problem based
on ideas proposed for the capacitated minimum spanning tree, taking advantage of the
problem similarities. Firstly, a savings heuristic, which belongs to the class of construc-
tive heuristics, is given. In this heuristic the initial solution tree is such that all nodes
are linked to the source node. Then, arcs in the solution tree are swapped with arcs not
present in the solution tree that represent the best savings. Secondly, a second order al-
gorithm is developed. This algorithm uses different starting solutions generated by the
savings heuristic. To generate different initial solutions, the savings heuristic is given a
set of allowed arcs S1, as well as a set of prohibited arcs S2. Each time a new solution is
attempted, different sets S1 and S2 are given. Then, in each iteration the savings heuristic
is used to find a solution, based on S1 and on S2. An improvement is also proposed by
transforming S1 and S2 into permanent included and excluded arcs, whenever a solution
improves the incumbent solution. The other four heuristics proposed are also based on
the use of sets S1 and S2 and differ only on the rules used to create these sets. The first
couple of heuristics do not use set S2. Heuristic I1 considers simple inhibitions, that is,
it defines S2 as the set of arcs present in the previous solution, provided that they are not
linked to the source node. Then, the savings heuristic is run considering the exclusion of
one arc (in S2) at a time. Heuristic I2 is similar to I1 but instead it considers prohibiting
two arcs at a time. The second couple of heuristics do not consider S2. Heuristic J incor-
porates into S2, for each node, the cheapest arcs incident to the node and the arcs with the
minimum cost which are closer to the source node. The savings heuristic is run forcing
one arc at a time to enter the solution. Heuristic J4 uses as candidate arcs to be included
in the next solution, that is S1, the set consisting of the four cheapest arcs incident to
each node, provided that they are not linked to the source node and they are not yet in
the solution. The fifth and last heuristic is called ILA and is a modified version of I2,
where at each iteration a new solution is calculated for each arc to be prohibited. Then,
all arcs of that solution are possible candidates for prohibition. Problems with 40 and 80
nodes, defined on complete graphs, have been generated both with the root node at the
center (TC) and at the corner of a grid (TE). The use of the elimination test given in [13]
substantially reduces the size of the problem instances in TC problems and also of some
in TE. The comparison of the results obtained for the described heuristics demonstrates
that ILA provides the best solutions, although with higher time requirements. The results
previously reported in the literature have been improved.

Correia [32] develops a Genetic Algorithm (GA) to solve HMST problems and tests
combinations of different population generation methods, chromosome encodings, and
crossover and mutation operators. Two methods have been considered to generate solu-
tions: random and heuristic. The random method does not guarantee that solutions are
feasible. Since unfeasible solutions are discarded and many such solutions are generated,
computational times for this method are too large (in some cases, no population was
generated within the 24 hours allowed). Solutions generated by the heuristic method are



feasible and obtained as follows. A solution tree has H levels. At level 0 the tree consists
of the root node only, while the remaining levels have a random number of nodes which
is at least one. All nodes not in previous levels are associated with the last level. Arcs
exist only between nodes in adjacent levels. Two different chromosome codifications are
tested: one uses the well-known Prüfer number encoding [33], while the other one uses
arcs-set encoding [34]. The Prüfer encoding is associated with the one point crossover
and with the single point mutation operators. The arcs-set encoding uses three crossover
operators named PrimRST, KruskalRST, and RandomWalkRST. The first two operators
are based on Prim’s and Kruskal’s algorithms for MSTs and the third one is based on a
random walk to generate random spanning trees. Regarding the mutation operators, the
first operator starts by adding an arc to the solution thus forming a cycle and then removes
one other arc from the cycle. The second operator eliminates an arc from the solution and
then adds another arc such that the graph remains connected. Child chromosomes result-
ing from the crossover and mutation operators that do not respect the hop constraint are
discarded. The results obtained allowed to conclude that the Prüfer sequence had a bet-
ter performance for large sized problems although it never found an optimum solution.
The arcs-set encoding allowed smaller running times and better solutions for small sized
problems (up to 21 nodes). In comparison with literature results, the results obtained pro-
vide much worst solutions. In [31] the optimality gap, i.e. (UB−Opt)/OPT , is always
within 1.5% and 2.7%, for problem instances in TC-1 with 40 and 80 nodes, while in
[32] the optimality gaps for the same problems are within 30% and 60%, respectively.
Nevertheless, in [32] the computational times, for the larger problems, are much smaller
(less that 100 seconds against over 30 minutes).

In [19] a Dynamic Programming (DP) model is developed, based on a node level
representation similar to the one proposed in [35]. The size of the state space of the DP
grows exponentially with problem size. However, when polynomially restricted, it allows
for searching neighborhood structures based on node-level exchanges [35]. The level of
a node is defined as the maximum number of arcs a node can have between itself and
the source node. Given a positive integer value d, where d can take any value up to the
number of nodes n, the state-space restriction rule allows the move of at most d nodes
between any consecutive levels. The objective of this rule is to eliminate some states
of the original formulation to make the DP more tractable. A restriction on the state-
transition rule is also included in order to reduce the computational effort of computing
the cost of an optimal tree associated with the states with a depth of at most k. Paral-
lel shift moves starting and ending at different pairs of overlapping levels are prohib-
ited, as well as path moves. Three neighbourhood constructions are defined based on the
restricted DP formulation: shift, swap, and shift/swap neighbourhoods, where the latter
one is the set of all neighbour solutions obtained either with a swap or a shift move. A
standard arc-exchange neighbourhood is also developed, as well as a method combining
arc-exchange and swap and shift moves. These neighbourhoods are used to construct five
distinct heuristics and the one combining arc-exchange, swap and shift moves has been
found to be the best one. The computational experiments have been performed on a set
of benchmark instances with 40 and with 80 nodes. The authors have compared their
results with the best currently known ones [31], which have been outperformed, both in
solution quality and in computational time requirements. In addition, the best performing
heuristic produces heuristic solutions that are within 1.2% of optimality always in less
that 1 minute.



4. The Hop-Constrained Minimum cost Spanning Tree Problem with Flows

Recently, in [36] a new problem has been defined: the Hop-constrained Minimum cost
Spanning Tree problem with Flows (HMFST), which is an extension of the HMST prob-
lem. The extension i the fact that, in addition to find the arcs to be used, we also must
find the flows to be routed through each arc. Therefore, the main difference between the
HMST and the HMFST problem is that the latter problem allows nodes to have different
flow demands. Furthermore, in this new problem, the costs to be minimized are nonlin-
ear and made of two components: arc setup costs, as usual, and flow dependent routing
costs.

The need for such a problem arises when we think of a transportation network that
can be highly compromised if one or several of its links are interrupted. For example,
if a section of a railway track blocks the passage of the train transporting some highly
degradable commodity, high costs may be incurred by the owning company as time goes
by. Therefore, the reliability and availability of the network is of a major importance,
and limiting the number of arcs in the network is a way of assuring minimal damage.
Another example is the benefit that a water supply network can have from hop constraints
by decreasing the number of affected sectors in case of a disruption.

4.1. A formulation for the HMFST problem

Formally, the HMFST problem can be defined as follows. Consider a directed network
G = (N,A), where N is the set of n+ 1 nodes, with n demand nodes and one single
source node t, and A(⊆ N×N \ {t}) is the set of m available arcs (i, j). In the HMFST
one wishes to minimize the total costs fi j incurred with the network while satisfying the
nodes demand d j. The total demand of the network, D, is given by the summation of
all node demands. The commodity flows from the source node t to the n demand nodes
i ∈ N \{t}. In addition, the maximum number of arcs on a path from the source node to
each demand node is constrained by a hop parameter, H. The position of an arc in the
solution tree, counting from the source node t, is represented by an extra index h. The
mathematical programming model that is given next for the HMFST problem is an adap-
tation of the model provided in [37]. Considering the two following decision variables,
the model can be written as given in Model 2:

xi jh - flow on arc (i, j) which is in position h,

yi jh =
{

1, if xi jh > 0,
0, if xi jh = 0.

The objective is to minimize the total costs incurred, i.e. costs associated with setting
up the arcs and the costs associated with routing the flow through the used arcs, as given
in equation (9). Equations (10) guarantee that every node is in the solution in exactly
one position. Equations (11) are the balance equations, which in this case also state that
if the flow enters a node through an arc in position h, then the flow leaving this node
must do it through an arc in position h+ 1. Equations (12) are the coupling constraints
and constraints (13) and (14) state the nonnegative and binary nature of the decision
variables. It is assumed that the commodity available at the source node t matches the
total demand.



Model 2 A mathematical formulation for the HMFST problem.

min: ∑
i∈N

∑
j∈N\{t}

H

∑
h=1

fi j(xi jh,yi jh), (9)

s.t.: ∑
i∈N

H

∑
h=1

yi jh = 1, ∀ j∈N\{t}, (10)

∑
i∈N

xi jh− ∑
i∈N\{t}

x ji,h+1 = d j ∑
i∈N

yi jh, ∀ j∈N\{t}, ∀h∈{1,...,H−1}, (11)

yi jh ≤ xi jh ≤ D× yi jh, ∀i∈N , ∀ j∈N\{t}, ∀h∈{1,...,H}, (12)

xi jh ≥ 0, ∀i∈N , ∀ j∈N\{t}, ∀h∈{1,...,H}, (13)

yi jh ∈ {0,1}, ∀i∈N , ∀ j∈N\{t}, ∀h∈{1,...,H}. (14)

4.2. Solution Methods for the HMFST

The HMFST problem is very recent and, to the moment, there are only three works
approaching it: one is focused on an exact method, dynamic programming, and the other
two are based on metaheuristic methods.

Fontes [36] uses dynamic programming to solve the HMFST problem. States are
defined by three state variables, the set of demand nodes S to be considered, the node
x acting as a source node to demand nodes in S, and the hop parameter value h, thus a
state is represented as (S,x,h). Stages are defined by the number of demand nodes under
consideration in set S. The problem instances solved have 10, 12, 15, 17 and 19 nodes,
hop parameter ranging from 3 up to 10, and three distinct nonlinear cost functions with
discontinuities, depending on a percentage of the total demand, other than at the origin.
The cost functions considered involve two components: a setup or fixed cost incurred by
using the arc and a routing cost both linearly and nonlinearly dependent on the flow being
routed through the arc. In total, the author solves 4050 problem instances to optimality
being able to demonstrate that the computational performance is independent of cost
function type.

Fontes and Gonçalves [38] use a Multi-Population hybrid biased random key Ge-
netic Algorithm (MPGA), with three populations evolving separately, in order to solve
the HMFST problem. These populations, which are randomly generated, are let to evolve
independently and then, after every 15 generations the two best chromosomes are in-
cluded in all the other populations. The encoding of the solution tree is made recurring
to random keys. Therefore, a chromosome is made of 3n genes, where n represents the
number of nodes in the tree. The first 2n genes of the chromosome are used by a decoder
procedure called Tree-Constructor to construct a solution tree. (The decoder uses the first
n genes to provide an order in which the nodes are considered to enter the tree, and the
other n nodes are used to select an antecessor for the corresponding node). The remain-
ing n genes are used later by a local search procedure. To construct the solution tree,



the algorithm starts with the highest priority node not yet supplied and searches within
the set of the remaining nodes, by priority order, for a feasible supplier, i.e., a node not
creating a cycle. The hop-constraint is handled a posteriori, by penalizing infeasible so-
lutions with more than h arcs in the path from the source node. The penalty of a solution
is proportional to the number of extra hops in each violated path. Local search is per-
formed by replacing a node in the tree with another node not in the tree, as long as no
cycle is formed. The order in which the nodes are considered for the improvement of the
solution is given by the last n genes of the chromosome. In order to evolve from a gen-
eration to another, a set consisting of the 25% best (top) solutions is directly copied onto
the next generation. Then, a biased uniform crossover is performed, between a parent
chosen from the top solutions and a parent chosen from the set of all solutions, creating
a new chromosome where each gene has a higher (biased) probability to be taken from
the best parent. Finally, the mutation operator used, which is called the immigration op-
erator, randomly generates new solutions, as in the first population. The newly generated
chromosomes substitute the bottom (worst) 15% chromosomes of the next generation.
The results were obtained for 2880 problem instances, and were compared with the exact
solutions obtained by the aforementioned DP procedure and with CPLEX, proving that
the heuristic is very efficient and effective.

Monteiro et al [39] improve upon the above results by using a hybrid between an
Ant Colony Optimization algorithm and a Local Search (LS) procedure, which is named
HACO. The HACO algorithm is based on the min-max ant system [40] in the sense
that it uses pheromone bounds to avoid the fast convergence of the pheromone trail. The
algorithm identifies the five best solutions found by the ants at the current iteration and
the LS procedure is applied to them. The LS is based on swaps between arcs already in
the solution tree and arcs not in the solution tree, provided that the hop constraint is not
violated and that cycles are not created. The algorithm incorporates an extra mechanism
for dealing with stagnation and cycling of solutions. Whenever the best solution has not
been improved for 200 iterations the pheromone matrix values are reinitialized. Problem
instances with up to 80 nodes were solved. One of the advantages of HACO is that the
algorithm is always able to find a feasible solution, when there is one, whereas CPLEX
and the MPGA are not. The optimality gaps obtained by the HACO algorithm are always
as good or better than the ones reported in the literature [38], except for 13 problem
instances out of 2798 solved. The computational time requirements of the ACO algorithm
were much lower, even when compared with the ones obtained with CPLEX for the
larger problem instances.

5. Other problems with hop constraints

In the previous sections, we have reviewed two types of problems with similar charac-
teristics, namely: the solution has the form of a directed tree, there are hop constraints
limiting the number of arcs (or nodes) in the path between a source (root) node and every
other node in the tree. However, we can find in the literature other problems incorporat-
ing hop constraints but that do not have necessarily a tree shaped solution. In this section,
we give an account of a few of them.

Voss [41] extends the mathematical formulation of the HMST given in [10] for the
Steiner Tree Problem (STP) with hop constraints, and develops a tabu search heuristic



based on an edge exchange neighbourhood. Later on, Santos et al [42] propose a heuristic
joining together the Dual Ascent algorithm defined in [43] with the graph transformation
given in [44].

More recently, hop-constrained STPs with multiple root nodes have been introduced
[45, 46]. In this problem, the number of hops between each relevant node and an arbitrary
root does not exceed a given hop limit h, where the set of relevant nodes may be equal to
the set of terminals or to the union of terminals and root nodes. While in [45] the authors
compare flow-based and path-based mixed integer programming models and implement
branch-and-price algorithms to solve it, in [46] the problem is solved by using branch-
and-cut algorithms for layered graph formulations of the problem, where each root node
is associated with one layered graph.

The Hop-Constrained Network Design (HCND) problem, and its variants, are very
well studied problems. In it, the objective is to minimize the total costs incurred with
the establishment of a network for distributing a given set of commodities, provided that
each commodity does no use more than h arcs between its source node and its destina-
tion node [47]. In Balakrishnan and Altinkemer [48] the k-arc-disjoint HCND problem
was studied when k = 1 within the framework of a more general model for backbone
networks. The authors gave a mixed-integer programming formulation and developed a
Lagrangean-based algorithm to obtain upper and lower bounds, respectively. Other ver-
sions have also been studied, see e.g. the case of the 1 arc-disjoint HCND problem with
h = 2 [49] and the 2 arc-disjoint HCND problem with h = 3 [50]. Other very closely
related problems have been addressed: the k edge-disjoint 2-hop-constrained paths prob-
lem, has been addressed by Dahl et al [51], where an integer programming formulation
is proposed and the associated polytope is characterized; the two-edge connected HCND
version is considered in [52]. The authors give an integer programming formulation of
the problem in the space of the design variables when H = 2,3, study the associated
polytope, and develop a branch-and-cut.

The Two Level Network Design (TLND) problem has already been addressed in
[53, 54, 55], although with other names. This problem is concerned with reliability re-
quirements in a centralized network design problem where two different cable technolo-
gies are available. In [53], the problem is shown to be NP-hard and lower and upper
bounds are obtained. For the former a Lagrangean relaxation, of the multicommodity
flow LP model, together with subgradient optimization is used; while for the latter a La-
grangean heuristic is developed. The problem studied in [55] is an extension of the TLND
in which additional transition costs need to be paid for intermediate facilities placed at
the transition nodes, i.e., nodes where the change of technology takes place. The authors
show how to model the problem in an extended graph based on node splitting and pro-
vide a new family of inequalities that implies, and even strictly dominates, all previously
described cuts. In addition, a polynomial time separation algorithm is provided.

More recently, in [56] Secondary Hop constraints (SH) have been introduced for
the first time. The problem is usually associated with fibre optics lines (primary) versus
copper cables (secondary) technology. Since secondary links are less reliable there is the
need to impose a maximum number of arcs between the root and each of the secondary
nodes. The authors give three MIP formulations: a first formulation considers a directed
graph and includes a generalization of the jump constraints given in [57], which are called
cut-jump inequalities; the other two formulations model the TLNDSH as a Steiner Ar-
borescence problem with facility and node-degree constraints in a layered graph model,



one with and another without node splitting. The model with node splitting provides a
stronger formulation.

The hop-constrained path problem consists of finding a minimum cost path with no
more than h links between two distinct nodes. Dahl [57] studies the dominant of the con-
vex hull and provides a linear description for h ≤ 3 and facet defining inequalities for
h≥ 4. Later, Ben-Ameur [58] defined some classes of 2-connected graphs satisfying path
(and cycle)-length constraints. Bley [59] addresses approximation and computational is-
sues for the node-disjoint and edge-disjoint hop-constrained path problems. In particular,
he showed that the problem of computing the maximum number of edge-disjoint paths
between two given nodes of length equal to 3 is polynomial. This result answered an
open question in [60]. In [61] valid inequalities for the directed hop-constrained shortest
path problem are discussed. The authors give complete linear characterizations of the
hop-constrained path polytope when the maximum number of hops is of 2 or 3. Integer
programming formulations are given in [62] for the two 4-hop-constrained paths prob-
lem in both the edge and node cases. Coullard et al [63] investigated the structure of
the polyhedron associated with the directed st-walks having exactly h arcs of a directed
graph, where a directed walk is a directed path that may go through the same node more
than once. They presented an extended formulation of the problem and gave a linear
description of the associated polyhedron. In [26] it has been considered the case of the
directed st-walks with at most h arcs. They present a linear description of that polytope
and describe generalized valid inequalities that define facets for the dominant of that
polytope, which, quite surprisingly, shows that obtaining a complete description for the
dominant of the st-walk polytope when h = 4.

6. Conclusion

In this article, we have addressed hop-constrained optimization problems, mainly prob-
lems for which the solution is tree-shaped. Hop-constrained trees have much applicability
in practical problems specially in the telecommunication area, where the hop constraint
is usually associated to the availability and reliability of the network.

We surveyed optimization techniques for the h-constrained minimum spanning tree
(HMST). Several relaxations have been proposed over the years for the HMST, mainly
based on Lagragean relaxation, with which lower bounds have been obtained. Some
upper bound techniques have also been proposed, typically using as a starting point the
lower bound solutions. More recently, heuristic solution methods have been developed.
The current best results for the existing benchmark problems are due to Gouveia at al
[19].

We have also reviewed other network problems involving hop constraints. Amongst
these, we focused on the Hop-constrained Minimum cost Spanning Tree problem with
Flows (HMFST), which is an extension of the HMST problem. For this problem, up
until now only three works addressing it have been reported. One proposing an exact
method (dynamic programming) and the other two proposing metaheuristics (a genetic
algorithm and an ant colony optimization algorithm). Although the DP approach provides
optimal solutions, it can only be used to solve small size problem instances due to the
exponential computational requirements. Regarding the metaheuristics, the ant colony
optimization algorithm provides better results, both regarding the solution quality and
the computational time required to find it.



Regarding future work, we believe that much can still be done in the development of
solution approaches, in particular using meta-heuristics, given the usual NP-hard nature
of the hop-constrained problems. In addition, there is still room and interest in consider-
ing more complex and realistic cost functions.
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