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Abstract In IEEE 802.11 based wireless networks inter-

ference increases as more access points are added. A metric

helping to quantize this interference seems to be of high

interest. In this paper we study the relationship between the

improved attacking case metric, which captures interfer-

ence, and throughput for IEEE 802.11 based network using

directional antenna. The y1=3 ¼ aþ b ðln xÞ3 model was

found to best represent the relationship between the inter-

ference metric and the network throughput. We use this

model to predict the performance of similar networks and

decide the best configuration a network operator could use

for planning his network.

Keywords Directional antenna � Prediction � Regression
analysis � IEEE 802.11 � Wireless networks

1 Introduction

In recent years there has been keen interest in the IEEE

802.11 based Wireless Local Area Network (WLAN)

technologies. Equipments that are inexpensive, easily

available and that could be operated without a license are

the key contributing factors for the technology to gain

fame, spurring rapid deployment. Due to the ever

increasing user and application demands, WLANs are

expected to provide good network performance character-

istics such as throughput. Unfortunately it is difficult to

meet this expectation because providing coverage for areas

such as shopping complexes, universities or metropolitan

cities require a high number of Access Points (APs).

Moreover, multiple overlapping WLANs arise due to dif-

ferent entities setting up networks unplanned in the same

geographical area. As a consequence, the networks saturate

due to sensing and interference, and the capacity of net-

work is reached fastly [1–4]. Adding more APs to the

network is a common solution to address this problem but

it may not increase the network’s capacity beyond a certain

limit. In fact, the performance of the network could

degrade even further if this is not done carefully due to the

inherent hidden and exposed nodes problems.

Omnidirectional antenna (OA) is the only antenna sup-

ported by the IEEE 802.11 standard [5] but there are many

directional antenna (DA) based IEEE 802.11 networks that

have been deployed [6–10]. The advantage of using DA

[11, 12] include the following: (1) a node could send sig-

nals to desired directions allowing the receiver node to

avoid interference that comes from unwanted directions;

this increases the signal to interference plus noise ratio

(SINR); (2) the higher spatial reuse factor of DA, when

compared to OA, could allow for more users to utilize a

network simultaneously; (3) a source node could
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potentially reach its destination node in a lesser hop count

in multihop scenario, due to the increased transmission

range obtained from the higher gain of antenna. As such,

DA may be more appealing than OA in some wireless

network scenarios.

This paper aims to study the relationship between the

improved attacking case metric which we proposed in [13]

and throughput for WLAN with nodes using DA. Through

regression analysis the relationship between the two vari-

ables is studied. This relationship is then used to predict the

throughput of a similar network utilizing the calculated

improved attacking case metric as its input parameter.

As in [13], the wireless video surveillance network

(refer Fig. 1) is considered the basic scenario of our study.

An IEEE 802.11 based station (STA) with an attached

video surveillance camera is randomly placed in a network.

The STA connects to its closest AP stationed at a fixed

location and transmits its video traffic towards the AP. The

APs have access to Internet via a wired connection. As we

aim to study various degrees of interference in WLAN, the

network is evaluated using various channels and power

control strategies employing the Basic Access scheme of

Distributed Coordinated Function also known as Carrier

Sense Multiple Access with Collision Avoidance (CSMA/

CA) of the IEEE 802.11 MAC protocol. Each STA always

has traffic to send as it is fitted with a video surveillance

camera and it continuously competes for accessing the

medium.

The major contribution of this paper is a model for

estimating the aggregated throughput of a IEEE 802.11

based wireless network using the improved attacking case

metric. This model could be used: (a) to predict similar

network’s aggregated throughput upon calculating its

improved attacking case which is obtained from the net-

work topology characteristics; (b) to decide the best con-

figuration for a network based on aggregated throughput

requirement among the options available such as node

positions, antenna type, number of channels, and

scheme used to control transmission power of nodes. These

contributions can be particularly useful for network plan-

ners to design their wireless network.

The rest of the paper is organized as follows. In Sect. 2

we present related work and discuss the research space our

work fills. In Sect. 3 we provide an overview of the

improved attacking case metric which characterizes the

interference in IEEE 802.11 networks. In Sect. 4 we

describe the simulation carried out and the performance

results obtained. In Sect. 5, the regression analysis of the

simulation results are presented and a regression model

chosen to predict throughput from the

improved attacking case. In Sect. 6, the applications of the

chosen regression model to a network planner are pre-

sented. Finally, in Sect. 7 we draw the conclusions and

indicate topics for future work.

2 Related work

In this section we present relevant related works and

review the literature from two perspectives: (a) quantizing

interference and (b) throughput prediction.

2.1 Quantizing interference

Interference is a major issue in WLANs where a node’s

radio frequency transmission disturbs the node(s) within its

radio range. Transmitting using high power increases the

number of nodes being interfered. Interference quantization

is useful to explain the intensity of the interference in a

network. It involves characterizing the interference and

represent a metric to explain the severity of it. Parameters

such as throughput and packet error ratio do not directly

explain the interference that exists in a network. Vlavianos

et. al [14] has studied SINR. It is perhaps the closest way to

quantize interference but it is not only a local metric,

measuring the exact SINR value is also hard.

To the best knowledge of the authors there is only one

work done to quantize the severity of interference for a

IEEE 802.11 based wireless network in aggregated form.

S.C.Liew [15] proposed the attacking case, a metric that

considers the interference caused by protocol dependent

and independent constraints which are captured in graphs

form. Information such as transmission power, nodes

position, signal to interference ratio and radio propagation

model are captured by the attacking case metric and used to
Fig. 1 The wireless videos surveillance network deployed as a basic

scenario
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identify the instances where simultaneous transmissions are

not allowed or, if allowed, one or both of the transmis-

sion(s) would fail. Although very good, the approach is not

suitable for nodes using DA.

We have extended the attacking case in [13] to cater for

nodes using DA. The improved attacking case metric

introduced may be used in nodes using OA or DA. A high

value of the improved attacking casemetric indicates severe

interference in the network. As such this metric is helpful to

understand the performance of a wireless network.

2.2 Throughput prediction

Throughput prediction has an important role in network

planning, measurement and management processes. Papa-

dopouli et. al [16] have characterized the traffic load of an

IEEE 802.11 network and proposed traffic prediction

algorithms based on traffic models. Chen et. al [17] used

the ARIMA model to predict short-term traffic in IEEE

802.11 networks. Yu et. al [18] found that the more

accurate the traffic prediction is the higher efficiency and

utilization ratio of network bandwidth can be guaranteed.

They proposed a Minimax Probability Machine Regression

model to predict the wireless network traffic in IEEE

802.11 networks. The works by Papadopouli, Chen and Yu

are short term prediction models, where the validity of

prediction is rather short lived as it depends on the data

behavior that changes in time. We use the improved

attacking case metric which is cross sectional data rather

than time-series data to predict the network throughput. In

this way the model could be applied in any type of similar

network regardless the instantaneous behavior changes of

data.

Chen et. al [19] proposed throughput prediction model

using the signal to noise ratio (SNR) information from the

traffic statistics of a wireless network. They considered

piecewise and exponential model to do the curve fitting.

The correlation coefficient R is used as one of its perfor-

mance metric. Curve fitting with only two models is

inadequate to determine the best model to represent the

data. Further, R is not a good metric to sufficiently explain

non-linear models. In our work we consider 1936 models

when doing the curve fitting and used the coefficient of

determination R2 which is more stringent than R as one of

the metric to explain the prediction model.

Nghia and Robert [20] predicted throughput using the

contention window value. They found that a large con-

tention window size can lead to larger throughput. In [21]

Bruno estimated of the throughput obtained by persistent

TCP flows. Dely et. al [22] estimated the load of the

wireless channel using channel busy fraction as an indi-

cator of fraction of time in which the wireless channel is

sensed busy due to successful or unsuccessful transmis-

sions. They showed the channel busy fraction allows an

accurate prediction of the available bandwidth with small

error. Tang and Wang [23] introduced q nð Þ, a parameter

that describes the network load condition which is used as

an input parameter to predict the throughput. Although

these works [20–23] could be used to predict the

throughput of networks tested, the authors have not shown

how the proposed approaches could be utilized in planning

a similar network. In our work, we will not just predict the

throughput of a network but also show how to use the

model to improve the CSMA/CA based wireless network.

3 Improved attacking case

This section provides an overview of the

improved attacking case metric that is proposed in [13].

The metric is used to quantize the severity of interference

in IEEE 802.11 (CSMA/CA) based wireless network.

Interested readers are suggested to read [13] for further

details on this metric. This metric addresses the IEEE

802.11 based wireless networks with nodes using both OAs

and DAs.

3.1 Constraints

The improved attacking case is characterized by the Link-

Interference Graph, Transmitter-side Protocol Collision

Prevention Graph, and Receiver-side Protocol Collision

Prevention Graph which are built using the Physical Col-

lision Constraints and Protocol Collision Prevention

Constraints.

3.1.1 Physical collision constraints

The Physical Collision Constraints are modeled using the

pair-wise interference model. Consider two data links, Link

i and Link j, communicating using the Basic Access

Scheme of IEEE 802.11 MAC protocol (DATA and ACK).

Let Ti to represent the position of the transmitter and Ri of

the receiver of Link i. For simplicity Ti and Ri are also used

to refer to the nodes.

Ti transmits DATA and receives ACK while Ri receives

DATA and transmits ACK. Four different possible com-

bination of simultaneous transmissions by Link i and Link j

may occur: DATAi � DATAj, DATAi � ACKj,

ACKi � DATAj, and ACKi � ACKj. Four combinations of

the following Physical Collision Constraints can be

derived. The transmission of Link i will be interfering with

the transmission of Link j if,
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PðTj; hRj
;RjÞ\KPðTi; hRj

;RjÞ ðDATAi � DATAjÞ ð1Þ

PðRj; hTj ; TjÞ\KPðTi; hTj ; TjÞ ðDATAi � ACKjÞ ð2Þ

PðTj; hRj
;RjÞ\KPðRi; hRj

;RjÞ ðACKi � DATAjÞ ð3Þ

PðRj; hTj ; TjÞ\KPðRi; hTj ; TjÞ ðACKi � ACKjÞ ð4Þ

where P a; hb; bð Þ is the power received by node b from

angle hb of node a. K is the Signal to Interference Ratio

(SIR) threshold for a packet to be successfully decoded by

the IEEE 802.11 protocol (e.g 10 dB).

3.1.2 Protocol collision prevention constraints

The Protocol Collision Prevention Constraints of IEEE

802.11 consider the effect of carrier sensing with the goal

of preventing simultaneous transmissions within the same

radio region. The prevention of a transmission can be

induced at the transmitter’s side, at the receiver’s side, or at

both sides.

Transmitter side—A transmitter would refrain from

transmitting a DATA packet if it can sense the transmission

of another ongoing transmission. The transmission of Link

i will interfere with the transmission of Link j if,

jTj � Tij\CSRange P
hTj
Ti

� �
ðDATAi � DATAjÞ ð5Þ

jTj � Rij\CSRange P
hTj
Ri

� �
ðACKi � DATAjÞ ð6Þ

jTj � Tij\TXRange P
hTj
Ti

� �
ðDATAi � DATAjÞ ð7Þ

where CSRange is the carrier sensing range and TXRange

is the transmission range of a transmitting node.

Receiver side—In IEEE 802.11 commercial products,

when Ti is already transmitting, Tj can still transmit if

Eqs. 5, 6, and 7 is not true. However, Rj will ignore the

DATA packet and not return an ACK packet, causing Tj to

interpret that as a collision triggering for a backoff and a

retransmission [15, 24]. The transmission of Link i will

interfere with the transmission of Link j if,

jRj � Tij\CSRange P
hRj
Ti

� �
ðDATAi � ACKjÞ ð8Þ

jRj � Rij\CSRange P
hRj
Ri

� �
ðACKi � ACKjÞ ð9Þ

jRj � Tij\TXRange P
hRj
Ti

� �
ðDATAi � ACKjÞ ð10Þ

3.2 Graph models

Three weighted directed graphs are modeled using the

Physical Collision Constraints and the Protocol Collision

Prevention Constraints: the Link-Interference Graph; the

Transmitter-side Protocol Collision Prevention Graph; and

the Receiver-side Protocol Collision Prevention Graph.

These three graphs are used to construct the

improved attacking case metric. A general graph G is

defined as a collection of vertices V and unidirectional

edges E that connect pairs of vertices with weights w.

G ¼ ðV ;E;wÞ ð11Þ

For any unidirectional edge eij 2 E where i; j 2 V , vertex i

represents Link i consisting of Ti and Ri nodes, while eij
represents a relationship between Link i and Link j. The

weight is a function of eij where wðeijÞ 2 N. The value of

wðeijÞ depends on the type graph being modeled.

3.2.1 Link-interference graph (i-graph)

The Physical Collision Constraints can be represented by a

Link-Interference Graph. The graph captures the SIR

effects among links and represented as follows:

GI ¼ ðVI ;EI ;wIÞ ð12Þ

If any of the constraints in Eqs. 1, 2, 3 or 4 is satisfied,

there is an edge from vertex i to vertex j to signify that Link

i is interfering with Link j with a weight wIðeijÞ charac-

terized as follows:

wIðeijÞ ¼ 1
P
hRj
Tj

jTi�Rjja\KP
hRj
Ti

jTj�Rjja
h i

þ 1
P
hTj
Rj

jTi�Tjja\KP
hTj
Ti

jTj�Rjja
h i

þ 1
P
hRj
Tj

jRi�Rjja\KP
hRj
Ri

jTj�Rjja
h i

þ 1
P
hTj
Rj

jRi�Tjja\KP
hTj
Ri

jTj�Rjja
h i

ð13Þ

where Eq. 13 is built using components of indicator func-

tion as defined in Eq. 14 and a is the path-loss exponent.

Since wIðeijÞ exists only when there is an eij, wIðeijÞ 2
1; 2; 3; 4f g for i-graph.

1½C� ¼
1; if C ¼ TRUE

0; if C ¼ FALSE

�
ð14Þ

3.2.2 Transmitter-side protocol collision prevention graph

(tc-graph)

The effect of carrier sensing by the transmitters is modeled

by tc-graph and it is represented as follows:

GTC ¼ ðVTC;ETC;wTCÞ ð15Þ

Formally, if any of the Eqs. 5, 6 or 7 holds true then there

is a tc-edge from vertex i to vertex j. The weight wTCðeijÞ of
tc-edge is characterized as follows:
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wTCðeijÞ ¼1
jTj�Tij\CSRange P

hTj
Ti

� �� �
_ jTj�Tij\TXRange P

hTj
Ti

� �� �h i

þ 1
jTj�Rij\CSRange P

hTj
Ri

� �h i

ð16Þ

Since wTCðeijÞ exists only when there is an eij, wTCðeijÞ 2
1; 2f g for tc-graph. As the tc-graph models the effect of

carrier sensing purely from the transmitter point of view, it

does not consider tc-edges created due to the DATA1 �
ACK2 and ACK1 � ACK2 pairs of transmission from

vertex 1 to vertex 2 and DATA2 � ACK1 and ACK2 �
ACK1 pairs of transmission from vertex 2 to vertex 1 due

to its effect solely at the receiver.

3.2.3 Receiver-side protocol collision prevention graph

(rc-graph)

The effect of carrier sensing by the receivers is modeled by

rc-graph and it is represented as follows:

GRC ¼ ðVRC;ERC;wRCÞ ð17Þ

If any of Eqs. 8, 9 or 10 is true, there is an rc-edge from

vertex i to vertex j with a weight wRCðeijÞ characterized as

follows:

wRCðeijÞ ¼1
jRj�Tij\CSRange P

hRj
Ti

� �� �
_ jRj�Tij\TXRange P

hRj
Ti

� �� �h i

þ 1
jRj�Rij\CSRange P

hRj
Ri

� �h i

ð18Þ

Since wRCðeijÞ exist only when there is an eij, wRCðeijÞ 2
1; 2f g for rc-graph. Since rc-graph models the effect of

carrier sensing purely from the receiver point of view, it

does not consider rc-edges created due to the ACK1 �
DATA2 and DATA1 � DATA2 pairs of transmission from

vertex 1 to vertex 2, and ACK2 � DATA1 and DATA2 �
DATA1 pairs of transmission from vertex 2 to vertex 1.

For i-graph, tc-graph and rc-graph all the vertices are the

same, where V ¼ VI ¼ VTC ¼ VRC .

3.3 Formulation of improved attacking case metric

The improved attacking case (ACImp) corresponds to the

number of cases where simultaneous transmissions are

either not allowed or if allowed will not be successful. It is

formulated as following: (1) if ei;j is an i-edge then twice

the i-edge’s weight is added to the improved attacking case

else; (2) if ei;j is a tc-edge then the tc-edge’s weight is

added to the improved attacking case, and (3) if ei;j is a rc-

edge then the rc-edge’s weight is added to the improved

attacking case for all i,j where i 6¼ j as shown in Eq. 19.

ACImp ¼
X

i; j 2 V

i 6¼ j

2� wIðei;jÞ � 1½ei;j2EI �

h

þ wTCðei;jÞ � 1½ei;j2ETC^ei;j 62EI �

þwRCðei;jÞ � 1½ei;j2ERC^ei;j 62EI �

i
ð19Þ

4 Evaluation setup and data acquisition

In this section, the improved attacking case metric is used

to quantize the severity of interference of WLAN with

nodes using DA and its throughput performance is assessed

by means of Network Simulator 2 (NS2) simulation. The

performance of network with nodes utilizing OA is also

evaluated for benchmarking purpose as the

improved attacking case is also able to cater for OA. The

improved attacking case metric and throughput data pairs

are used to study the relationship between them and a

throughput prediction model is built.

4.1 NS2 supporting directional antenna

NS2 was extended to support nodes with DA. Each node

supporting DA is assumed to have 4 interfaces where each

of its interface is associated with a 90� passive DA of gain

2. This allow a node to able to listen, transmit and receive

packets in 360� direction as OA. Each interface has

directional MAC, directional NAV, its own IFQ, and

maintains its own ARP table as shown by the stack in

Table 1. The DA in interfaces 0, 1, 2 and 3 are pointed to

angle 0�, 90�, 180�, 270� respectively. The work presented

in this paper consider this model for DA.

4.2 Scenario setup

A 3 x 3 grid topology is defined as the basic scenario with

nodes separated by 250 m which act as APs. STAs are

represented by the additional nodes placed randomly in the

network. These STAs connect to the closest AP. Traffic is

sent from the STAs towards the APs following the video

surveillance network scenario as in Fig. 1. Being a single

hop wireless network, routing was not considered. In this

paper, we have investigated IEEE 802.11b with 11 Mbps

data rate as a representative release of IEEE 802.11 pro-

tocol. The number of random STAs in the network was

gradually varied from 9 to 18, 27, and 36, aiming to

increase the amount of interference in the network. The

number of channels utilized by the network varied from

single channel (SC), to two channels (TC) where neighbour

APs use different channels, and nine channels (NC) where
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each AP uses a unique channel, to study the channel’s

effect on the network’s interference.

Other than the default transmission power, the network

is also evaluated using the minimal transmission power

algorithm presented in Algorithm 1. The transmission

power is enough for a transmitter node to get its transmitted

packets decoded by its receiving (closest in physical dis-

tance) node defined by RXth. RXth is the received signal

strength threshold required to decode a packet. The equa-

tions in Line 2 and Line 3 of Algorithm 1 ensure that the

reduced powers satisfy the minimum received power

threshold required to maintain an arbitrary Link i’s

connectivity.

The minimum transmit power algorithm is implemented

in 3 strategies:

(a) the minimum power per network (MP-NT) – in this

approach the interfaces in nodes are allowed to

reduce its transmit power, but all the interfaces in the

network must use the same transmit power (Line 12

of Algorithm 1). OA and DA use this.

(b) the minimum power per node (MP-ND) – in this

approach, as the above, the interfaces are allowed to

reduce its transmit power. Each node is allowed to

have its own transmit power but all the interfaces of

a node must use the same transmit power (Line 10 of

Algorithm 1). OA and DA use this.

(c) the minimum power per interface (MP-IN) – in this

approach, each interface is allowed to reduce and use

its own transmit power (Line 8 of Algorithm 1).

Only DA use this.

The minimum transmit power strategies defined above

create different severity of interference in the wireless

network. For each ratio of STA and AP, 40 random

topologies were generated. Some examples of the random

topologies used in the simulation are presented in Fig. 2

when the nodes use NS2’s default transmission power. The

solid lines represent data links, the dashed lines represent

nodes within receiving threshold, and the dotted lines

represent nodes within carrier sensing threshold.

4.3 Dataset

A total of 160 random topologies were generated for all the

STA:AP ratio. The throughput performance of the topolo-

gies is evaluated using OA/DA, SC/TC/NC channel con-

figuration, MP-NT/MP-ND/MP-IN transmit power

strategies and the default transmission power. The rest of

the simulation parameters used in NS2 are shown in

Table 2.

Throughput is measured as the total number of packets

successfully received at the destinations times the packet

Table 1 Stack of directional

antenna for a node in NS2
RTR

LL 0þ ARP 0 LL 1þ ARP 1 LL 2þ ARP 2 LL 3þ ARP 3

IFQ 0 IFQ 1 IFQ 2 IFQ 3

MAC 0 MAC 1 MAC 2 MAC 3

NetIF 0 NetIF 1 NetIF 2 NetIF 3

(a) (b)

Fig. 2 Example of random topologies for OA; 9 APs and 9 STAs

deployed. a Random topology 1. b Random topology 2
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size over the duration of the flows. Formally, the

throughput is calculated using Eq. 20.

Tput Mbpsð Þ ¼
Pn

i¼1 RcvdPkti
� �

� Packetsize

TD
ð20Þ

where n is the number of flows, i is the flow number and TD
is the simulation time. The improved attacking case is

calculated using Eq. 19 for the 160 random topologies.

There are a total of 3360 data generated in the dataset

contributed by various combination of topologies, antenna,

channel, power strategies and default transmission power,

each consisting a pair of the improved attacking case and

throughput information.

5 Regression analysis and discussion

In this section we present and discuss the relationship

between the improved attacking case and the aggregated

throughput observed in NS2 simulations based on the

results obtained in Sect. 4.3. A model that best fits the

dataset is proposed by using simple linear regression (SLR)

which is defined by a relationship between one dependent

variable and one independent variable [25] in the following

general form:

y ¼ aþ bxþ � ð21Þ

where y is the dependent variable that is being predicted, x

is the independent variable that is used to predict, � is the

error term while a and b are the coefficients in the

regression equation. In our case, the

improved attacking case and throughput are the indepen-

dent (x) and dependent (y) variables respectively. This

model will be used to predict the throughput of a similar

WLAN. R language [26] which is a statistical computing

software is used in investigating the SLR.

5.1 Exploratory analysis

Scatter plots are most useful for studying the relationship

between the independent and dependent variables through

visual method. Often unusual observations are detected

Table 2 Parameters setting
Parameter Setting

Access mode Basic (DATA, ACK)

Data rate; basic rate 11; 1 Mbps

MAC IEEE 802.11b

Traffic generation model UDP, Poisson process, 1818.181ls mean arrival

Offered load per STA 55 pkt/s

Packet size 1500 bytes

Interface queue (IFQ) length 50 packets

SIR 10 dB

Propagation model 2-ray ground reflection

NS2’s default transmission power 281.8 mW

RXThresh; CSThresh 36.5 nW; 156 nW

Simulation time 120 s

Directional antenna angles 0�, 90�, 180�, 270�

Number of DAs/node 4, 90� beamwidth each

Antenna gain OA:1, DA: 2 (in ref. to isotropic antenna)

Number of simulations/scenario 40

Number of APs 9

Number of STAs 9, 18, 27, 36

0 1000 2000 3000 4000 5000

20
40

60
80

10
0

Improved Attacking Case

Th
ro

ug
hp

ut
 (M

bp
s)

Fig. 3 Scatter plot of the throughput versus the

improved attacking case
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through this plot [27]. Fig. 3 shows the scatter plot of the

improved attacking case versus throughput. In the figure it

can be observed that 1) multiple curves exist; and 2)

throughput has a non-linear relationship with the

improved attacking case.

SLR is not suitable to be applied to this dataset due to

the heterogeneity of the data. In effort to rectify this

problem, the dataset is segregated by the antenna type (i.e.

OA, DA) and STA (i.e. 09, 18, 27, 36) to form eight

smaller groups of data (setups). The scatter plots for these

setups are shown in Fig. 4. It is observed that the dataset in

each of the setup is now more homogenous. A SLR can be

carried out on each of these groups of data to find one

model that fits all the eight datasets.

We also observe in Fig. 4 that as the number of STAs

increase, the minimum and the maximum values of the

improved attacking case for both OA and DA setups

increase. This affirms that higher number of STAs create

more interference in the network as captured by the

improved attacking case metric. The maximum value of

throughput is similar for OA at approximately 60 Mbps

when STAs were increased from 9 to 18, 27 and 36. This

means that the WLAN is operating in a saturated region.

Having more STAs does not help to increase the

throughput but only increases the severity of interference in

the network. DA has higher throughput and lower

improved attacking case than OA as it is able to reduce

interference on unwanted directions.

In Fig. 4, the data form clusters as the number of STAs

increases. The clustering is more evident in the OA setups.

Three clusters are evident, each representing the SC, TC

and NC channel configuration used in the evaluation. The

cluster of SC has the highest improved attacking case and

the lowest throughput while the cluster of NC has the

lowest improved attacking case and the highest throughput.

We may conclude that the usage of more channels reduces

the improved attacking case and increases the throughput.

In summary, as the improved attacking case increases

the throughput decreases and the scatter plots in Fig. 4

suggest that there is relationship between them. This rela-

tionship implies that a model for throughput must include

the improved attacking case as a predictor variable in the

SLR equation.

5.2 Transformation to achieve linearity

As the relationship of the improved attacking case and the

throughput in Fig. 4 is non-linear, it need to be linearized

in order for SLR techniques can be applied. Table 3 pre-

sents the common methods for transforming variables to

achieve linearity by applying natural logarithm (ln) to the

independent variable x and/or the dependent variable

y when a curve is observed in the scatter plot of y against

x [28]. For benchmarking purpose the untransformed form

(lin) of the x and y variables are maintained in this study

and also shown in Table 3 as linear model.
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Fig. 4 Scatter plots of the throughput versus the improved attacking case for OA (upper panel) and DA (lower panel) with 9, 18, 27, 36 STAs

(left to right).
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The first column in Table 3 shows the four methods of

regression model used in our analysis, i.e., linear, loga-

rithmic, exponential and power models. The second and

third columns represent the original regression function

and the specific transformation that is applied to the x and/

or y variables respectively. The fourth column represents

the transformed form of the regression function to achieve

linearity which will be used in our regression analysis. The

final column presents the model representation which is

utilized in our paper to denote these linearized regression

functions. To investigate the adequacy of these regression

functions to our dataset, we decided to fit all the linearized

models in Table 3 to the eight datasets in Fig. 4 where the

transformations enable us to use SLR techniques to decide

which model fits our dataset the best.

Fig. 5 shows the scatter plots of improved attacking case

versus throughput and the fitted linear models in the

transformed scales from Table 3. The fitted regression lines

were estimated by using Ordinary Least Squares (OLS)

method of SLR. The goal of OLS is to closely fit a model

with the dataset by minimizing the sum of squared errors

from the data. It can be noted that the non-linear data now

appears to be linear in few of the transformed model in

Fig. 5 when the wireless network use OA and DA. Some of

the fitted lines in the transformed model also appear to

represent the data better compared with other fitted lines.

5.3 Evaluation of linear regression model’s residual

errors

Two of the assumptions of linear regression are that the

residual errors must be: 1) homoscedastic, i.e., the variance

of the errors is the same across all values of the indepen-

dent variable; 2) normally distributed. Violation of these

Table 3 Variables transformation to achieve linearity

Method Regression function Transformation Linearized form Model representation

Linear model y ¼ aþ bx none y ¼ aþ bx lin� lin

Logarithmic model y ¼ aþ b ln x x0 ¼ ln x y ¼ aþ bx0 lin� ln

Exponential model y ¼ abx y0 ¼ ln y y0 ¼ ln aþ ðln bÞx ln� lin

Power model y ¼ axb x0 ¼ ln x, y0 ¼ ln y y0 ¼ ln aþ bx0 ln� ln
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Fig. 5 Scatter plots of the throughput versus the improved attacking case and fitted linear models in the transformed scales. a Omnidirectional

antenna, b directional antenna
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assumptions compromise the estimation of coefficients,

accuracy of prediction and would give a false sense of

trustworthiness. In our work, these two assumptions are

validated [29, 30] and model(s) that fulfill these assump-

tions is short listed as the candidate model(s) to represent

the data.

Breusch–Pagan (BP) and Jarque–Bera (JB) tests are

used respectively to check for homoscedasticity and nor-

mality of the residual errors of the models presented in

Fig. 5 [29, 30] with a significance level of 5%. If the

probability values (p-values) associated with the computed

BP and JB tests using R Language are above 0.05 the tests

are passed and the residual errors are considered

homoscedastic and normally distributed.

Unfortunately, the presence of influential points such as

outliers could fail the BP and JB tests especially if it has

large effect on a regression model. An outlier is defined as

the data which is far detached from the general population

of data set. Outliers may exist in our case since the

improved attacking case value is a non-controlled outcome

of a network depending on parameters such as the nodes

position, transmission power and type of antenna used. If a

BP or JB test fails when evaluating the residual errors,

Cook’s distance D is used as a statistical filter to identify

the influential points as shown in Eq. 22.

Di ¼
Pn

j¼1 ðŷj � ŷjðiÞÞ2

k �MSE
ð22Þ

where Di is the Cook’s distance for observation i, ŷj is the

j-th response value of y of the fitted line, ŷjðiÞ is the j-th

response value of y of the fitted line where the fit did not

include observation i and MSE is the mean squared error.

Cook’s distance is an index measure where all the points i

in the dataset are evaluated and compared to a critical value

defined by 4=ðn� k � 1Þ, where n is the number of sam-

ples in the dataset and k is the number of independent

variables [31].

Once identified, the influential point with the maximum

Cook’s distance value is removed from the dataset. The BP

and JB tests are redone to this reduced dataset. If either of

these tests fails again, the elimination process is repeated.

Usually up to 5% of the total data count are removed [31].

If the BP or JB tests continue to fail, the model should be

removed and not considered as a candidate.

Table 4 shows the p values for BP and JB tests for all

the antenna type and STA. It can be concluded as none of

the lin � lin, lin � ln, ln � lin and ln � ln models

passed the BP and JB tests simultaneously for all the

antenna type and STA.

5.4 Transformation for model respecification

As the residual errors in Table 4 are not homoscedastic and

normally distributed for all the 8 datasets, the models

warrants for respecification using a suitable transformation.

This transformation is aimed to stabilize the error variance

by making it constant for all the observations. Tukey’s

ladder of transformation [32] is used to redefine the vari-

ables in orderly manner using a power transformation. The

following relationship is explored when transforming the

variables:

Yk1 ¼ aþ bXk1 ð23Þ

where

k1; k2 2 f� 6;� 5;� 4;� 3;� 2;� 1;� 3=4;� 2=3;� 1=2;

� 1=3;� 1=4; 1=4; 1=3; 1=2; 2=3; 3=4; 1; 2; 3; 4; 5; 6g

are the exponent parameters. Y and X are variables either

in original form or in the natural logarithm transformed

form depending on lin � lin, lin � ln, ln � lin and ln �
ln models. A total of 1936 models are evaluated as a

product of the transformations to achieve linearity and the

transformations for model respecification to determine

which model(s) is(are) good to represent the 8 datasets.

Table 4 P value results from the Breusch–Pagan and Jarque–Bera test using R language evaluating the assumption of homoscedasticity and

normality for the residual errors

Antenna STA lin� lin lin� ln ln� lin ln� ln

OA 09 1.06E-08/2.95E-04 7.28E202/5.22E201 5.14E202/3.00E-10 5.69E201/8.27E-11

18 6.33E-04/1.57E-08 5.96E201/1.56E-05 6.18E202/2.44E-12 5.55E201/7.06E-12

27 5.91E-03/2.60E-10 2.19E201/2.85E-07 5.94E202/4.31E-13 8.85E201/1.46E-12

36 9.93E-03/1.67E-11 4.86E-02/2.04E-08 2.47E-02/2.08E-13 8.85E201/5.07E-13

DA 09 2.07E201/5.71E-03 9.37E201/5.16E202 8.69E201/3.87E-04 7.29E202/2.50E-04

18 6.16E-06/2.43E-02 5.33E-05/1.01E-02 2.52E201/5.40E-08 9.64E201/2.39E-08

27 2.40E-04/2.48E-02 1.23E-02/6.12E202 5.26E201/8.86E-09 1.06E201/1.22E-09

36 1.70E-03/1.07E-02 1.13E-02/1.43E201 6.41E201/1.43E-10 1.57E201/3.50E-11

Presented in\p value Breusch–Pagan/p value Jarque–Bera[ format. The bold values represents the presence of homoscedasticity or normality
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The evaluation of the residual errors as described in

Sect. 5.3 is explored again for all these 1936 models. Four

candidate models, one from lin � lin and three from lin �
ln, as shown in Eq. 24, have passed both the BP and JB

tests simultaneously for all the antenna type and STAs.

During the evaluation of the residual errors of these four

model only around 1% of the data were discarded due to

being influential points.

y1=3 ¼ aþ b x1=3

y1=4 ¼ aþ b ðln xÞ4

y1=3 ¼ aþ b ðln xÞ3

y1=2 ¼ aþ b ðln xÞ2

ð24Þ

5.5 Model selection from the candidate models

In this subsection the best model that represents the eight

datasets is selected from the four candidate models pre-

sented in Eq. 24. The mean absolute percentage error

(MAPE) is used as the selection criteria using the leave one

out cross validation (LOOCV) method [33, 34]. Cross

validation is a statistical method for evaluating and com-

paring models by dividing data into two segments: one

used to train a model and the other used to validate the

model. In LOOCV, the training and validation data are

crossed over in successive rounds such that each data point

has a chance of being validated against the remaining data

that are used for training. At each iteration i, the data point

which consists of a pair of independent value xi and

measured value yi is removed from the dataset. The

remaining data which acts as a training set is used to create

a linear model ŷ ¼ aþ bx via SLR. Using xi from the

validation data point, a predicted value ŷi is obtained. This

predicted value ŷi is compared against the measured value

yi and the error of prediction ei is calculated using Eq. 25.

ei ¼ yi � ŷi 8 i ¼ 1; 2; . . .; n ð25Þ

The model’s MAPE can be calculated using Eq. 26. Since

it is a scale-independent matric MAPE can be more easily

used to compare the performance of various models that

are not in the same scale, as is the case here. The MAPE for

the candidate models are presented in Table 5.

MAPE ¼ mean
100� ei

yi

����
����

� 	
8 i ¼ 1; 2; . . .; n ð26Þ

As the objective is to find one common model that best

fits the dataset for both OA and DA irrespective of STAs,

the model with the smallest average MAPE value is

selected as shown by the bold row in Table 5. It is found

that y1=3 ¼ aþ b ðln xÞ3 model is the most attractive as it

has the smallest average MAPE value at 11.50%. The

scatter plot for the selected model is shown in Fig. 6 with

fitting for both OA and DA and all the STAs.

5.6 Inference test for the selected model

In this subsection the y1=3 ¼ aþ b ðln xÞ3 model which

has been selected to represent the network irrespective on

the number of STAs and antenna type is evaluated.

5.6.1 Coefficient of determination, R2

R2, the coefficient of determination, is a goodness of fit mea-

sure indicating how much of the data conform to the hypoth-

esized model. It indicates if the selected model is an

acceptable description of the data and the data are not com-

pletely random. The R2 has values in [0,1]. In general, the

higher the R2, the better the model fits the data. The average

value ofR2 for the selectedmodel is 0.8883 calculated using R

Language. This means that 88.8% of the variability of the

throughput around its mean is explained by the variability of

the improved attacking case. Thuswecanconclude that y1=3 ¼
aþ b ðln xÞ3 is a good model to represent our network.

5.6.2 t-test

The values of the a and b coefficients for the selected

model are presented in Table 6. T-test is used to evaluate

the b coefficient with a significant level of 5% using R

Language. If the p value is below 0.05 it indicates that the

independent variable is useful to predict the dependent

Table 5 Criteria for choosing a

model: mean absolute

percentage error (MAPE)

Model OA DA Average

09 18 27 36 09 18 27 36

y1=3 ¼ aþ b x1=3 10.87 13.98 15.69 16.22 8.37 10.30 9.32 8.12 11.61

y1=4 ¼ aþ b ðln xÞ4 15.39 15.78 15.95 15.61 7.85 10.57 9.49 8.26 12.36

y1=3 ¼ aþ bðlnxÞ3 12.92 13.90 14.68 14.61 8.24 10.33 9.31 8.04 11.50

y1=2 ¼ aþ b ðln xÞ2 11.31 13.94 15.48 15.91 8.40 10.11 9.18 7.90 11.53

The bold row represents the model selected based on the lowest average MAPE
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variable. In our case the average p-values are below 0.001

for all the antenna type and STAs.

5.6.3 Root mean square error

The Root Mean Square Error (RMSE) for the selected

model is calculated using Eq. 27 and the results are pre-

sented in Table 7. The average RMSE for the selected

model is 4.64 Mbps.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meanðe2i Þ

q
ð27Þ

We have shown in this section that our selected model

y1=3 ¼ aþ b ðln xÞ3, is a good fit and a statistically strong

relationship present between the dependent and indepen-

dent variables.

6 Predicting using y1/3 5 a 1 b (ln x)3

and discussion

In this section the y1=3 ¼ aþ b ðln xÞ3 model is used: (a) to

predict the throughput of a similar random network; (b) in

deciding the best configuration to use for a specific topol-

ogy to achieve the maximum throughput.
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Fig. 6 Scatter plot for the selected model y1=3 ¼ aþ b ðln xÞ3 with fitting for OA and DA, STA:[09, 18, 27, 36]

Table 6 Coefficient values for the selected model, y1=3 ¼ aþ b ðln xÞ3

Coefficient OA DA

09 18 27 36 09 18 27 36

a 3.7040 4.4872 4.9262 5.1761 3.7679 4.6302 5.2126 5.4215

b - 0.0099 - 0.0073 - 0.0061 - 0.0054 - 0.0068 - 0.0059 - 0.0054 - 0.0046
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6.1 Case: predicting a random network

A network operator planning to setup a similar network can

use the selected y1=3 ¼ aþ b ðln xÞ3 model to predict the

throughput of his network knowing the

improved attacking case value. To validate this, 20 random

topologies are used with the random configuration from the

various number of STAs, type of antenna, channel con-

figuration, and transmit power strategies options presented

in Sects. 4.2 and 4.3. These replicate the scenario where 20

different network operators using the selected model to

predict the throughput of their planned network that comes

with various configuration. For each of the topology the

improved attacking case, its predicted throughput using the

selected model, and measured throughput is shown in

Table 8.

The predicted and measured throughputs are shown on

the scatter plot in Fig. 7 for all the 20 random topologies.

The predicted throughput is labeled using a diamond

symbol which lie on the predicted line of the selected

model. It’s 95% confidence interval is presented in vertical

bar and the measured throughput value is shown using a

square symbol. Out of the 20 random topologies, 19 of

them are within the 95% confidence (i.e. 95% of the cases).

The error of prediction square, ei
2 verses the predicted

throughput chart as shown in Fig. 8 is plotted for the ran-

dom network not within the 95% confidence interval. It is

found that the ei
2 for the measured throughput out of the

95% confidence interval, shown using square symbol, is far

away from the cloud of points showing to be an outlier.

The MAPE for all the 20 random topologies, calculated

using Eq. 26, is 12.56%, but when the one random network

lying outside the 95% confidence interval is removed, the

MAPE is improved to 11.80%, being both on the same

scale of the model’s MAPE which was at 11.5%. The

RMSE for the 20 random topologies is 5.24 Mbps, and 4.14

Mbps when the random network is removed, both within

the same scale of the prediction model’s RMSE.

Table 7 RMSE values for the

selected model,

y1=3 ¼ aþ b ðln xÞ3
OA DA Average

09 18 27 36 09 18 27 36

2.9458 3.3897 3.6559 3.6190 3.7181 6.4623 7.0482 6.2728 4.64

Table 8 Prediction results for 20 random topology with random configuration using y1=3 ¼ aþ b ðln xÞ3 Model

Random topology Antenna STA Transmit power Channel Improved Measured Predicted

Attacking case Throughput (Mbps) Throughput (Mbps)

1 OA 9 Default SC 308 7.21 6.19

2 OA 9 Default TC 126 14.01 17.19

3 OA 9 MP-NT SC 302 7.13 6.38

4 OA 18 Default SC 1296 7.43 5.94

5 OA 18 MP-ND NC 112 60.72 51.64

6 OA 27 Default TC 1362 14.00 18.09

7 OA 27 MP-NT SC 2810 7.67 6.43

8 OA 27 MP-ND TC 1106 19.58 22.39

9 OA 36 MP-NT NC 503 62.10 58.68

10 DA 9 Default SC 104 31.73 29.48

11 DA 9 MP-ND TC 41 36.47 40.04

12 DA 18 MP-ND NC 82 55.22 70.15

13 DA 18 MP-IN SC 353 44.99 40.55

14 DA 18 MP-ND NC 74 78.01 71.93

15 DA 27 Default TC 564 57.47 56.58

16 DA 27 MP-IN SC 818 50.22 45.98

17 DA 36 MP-ND TC 931 57.19 61.49

18 DA 36 Default SC 1853 47.37 41.24

19 DA 36 MP-IN SC 1488 45.38 47.52

20 DA 36 MP-NT NC 454 89.29 83.16
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6.2 Case: best configuration to use for a specific

topology

A network operator may have difficulty in deciding the

type of antenna to use, whether or not to employ a power

control algorithm and if yes if he should be configuring the

transmission power per network, per node or per interface

in order to get the best performance in terms of throughput

for his network. The need to get the highest throughput is

limited by other external parameters such as financial

constraints, or the availability of the number of interference

free channel. The problem now became complex and

multi-pronged. In this section, the selected model is used to

assist a network operator to decide which configuration is

best to be used for his network.

To validate this, a network operator is assumed to be

intending to deploy a video surveillance network with 36

STAs as shown in Fig. 9. The position of the AP and STAs

depends very much on the region the network operator

aims to cover, obstacles that exist in the region (not shown

on the figure), and availability of infrastructures such as

buildings, lamp post, sign post to install the camera. For

simplicity only the position of the AP, STAs and the flow

of data are shown in Fig. 9. The network operator has

several options to consider and now it has to decide which

configuration would be optimal among a set of alternatives,

considering the following options: (a) OA, SC and Default

Power; (b) DA, SC, and Default Power; (c) OA, TC, and

Default Power and (d) DA, SC and MP-IN.

Setup a) is the default setup for a typical WLAN.

Having many STAs in the network, as shown in Fig. 9,

induces high interference. The network operator may have

doubt if the network can indeed support video surveillance.

Using DA as in Setup b) would be a solution, but additional

investment would be needed considering there are 45 nodes

(36 STA ? 9 AP) in total in the network with each nodes

using 4 DA antennas. The capital expenditure is higher

than in Setup a). Another option is to keep the OA but

explore using 2 channels as in Setup c). While this could be

a cheaper solution, scarcity of additional interference free

channel might be a problem in some locations. If the net-

work operator had indeed decided to invest in DA, he

might as well take into advantage to use minimum transmit

power algorithm to increase the throughput. It would be

good for future planning in case there are needs to add
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Fig. 7 Predicting throughput for 20 random topologies using the selected model
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more cameras to the network. These are possible dilemma

of a network operator.

For each setup the improved attacking case, its predicted

throughput using the proposed model, and the throughput

measured by simulation is shown in Table 9.

Referring to Table 9, Setup a) has the highest interfer-

ence in the network with a value of 5319 for the

improved attacking case metric followed by Setup c) and b)

at 2413 and 1816 respectively. Setup d) has the least

amount of interference as the improved attacking case is

only 1413. Using the selected model, Setup d) is predicted

to have the best throughput, i.e., approximately 49 Mbps.

This is later confirmed by the measured result where the

setup was having around 53 Mbps of throughput. The

network operator could choose Setup d) that proposes to

use DA with MP-IN in case he has interference free

channel constraints. This setup was predicted to offer 8.5

times more throughput than Setup a). The next best option

is Setup b) where no power control is implemented with

around 42 Mbps of throughout predicted. In case con-

straints due to finance is much higher than the availability

of interference free channel then the network operator

could opt for Setup c) as no additional investment needed

for DA. Though the predicted throughout for this setup is

around 18 Mbps, it is predicted to be 3.2 times much higher

than Setup a). This might be sufficient to support a video

surveillance network with 36 STAs.

7 Conclusion

In this paper we have studied the relationship between the

improved attacking case metric and throughput for IEEE

802.11 based network using DA. After considering 1936

models, it is found that the y1=3 ¼ aþ b ðln xÞ3 model best

fits our dataset. The model also fulfills the homoscedas-

ticity and normality assumptions of the linear regression’s

residual errors. We used this relationship: (a) to predict the

performance of similar network and found the MAPE is

12.56% for the prediction of 20 random topologies; (b) to

decide the best configuration a network operator could use

to plan their network.

As the improved attacking case is proven to have a

strong relationship with throughput, that is when the

improved attacking case reduces the throughput increases,

our future work would involve to find algorithms aimed to

reduce transmit power or the interference in network to

maximize the throughput. In this work, the number of STA

is rather finite, i.e., limited to 9, 18, 27, 36. The a and

b coefficients presented in Table 6 shows increasing in

value for OA and DA when the number of STA’s increases.
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Fig. 9 The topology to decide the best configuration for maximum

throughput

Table 9 Prediction results for setups a–d using y1=3 ¼ aþ b ðln xÞ3 Model

Setup Antenna Transmit power Channel Improved Measured Predicted

Attacking case Throughput (Mbps) Throughput (Mbps)

a OA Default SC 5319 7.58 5.74

b DA Default SC 1816 46.87 41.81

c OA Default TC 2413 14.56 18.46

d DA MP-IN SC 1413 52.99 49.03
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This relation could be studied and used to predict the

throughput for STAs not covered in this work.

We have considered wireless network with homoge-

nous: (a) nodes, where all of them using either OA or DA;

(b) technology, where IEEE 802.11 is assumed to be the

only technology operating in the 2.4GHz ISM band; (c)

IEEE 802.11 release, where IEEE 802.11b with 11 Mbps

data rate is used as a representative release of the IEEE

802.11 protocol. There could be networks that are hetero-

geneous where it consists of a combination of nodes that

use OA and DA, different technology other than IEE

802.11 protocol co-existing in the same 2.4 GHz ISM band

and accommodate different releases of IEEE 802.11 pro-

tocol as APs/STAs are usually backwards compatible.

Additionally, our work can be further extended to consider

the effect of co-channel interference and also routing which

is useful for Wireless Mesh Network scenarios. Consider-

ing these setups, the relationship between

improved attacking case, which may be improved further,

and throughput can be studied. We have considered a line-

of-sight scenario to ease the graph modeling aspect. Our

work can be extended to non line-of-sight scenario by

building the graphs using the received power information

at the nodes. The information may be shared among the

nodes either by taking advantage of the information in the

packets exchanged in the network or by creating additional

control packets specific to carry this information. However,

these remains as our future work.

We aim to build a network planning software which can

aid to predict the throughput of a similar IEEE 802.11

based wireless network. A user is expected to input the

network topology into the software, then choose the con-

figuration from the pool of antenna type, power control

strategy, and number of channels. The software can auto-

matically calculate the improved attacking case and predict

its throughput. The software can also assist a network

operator to choose the optimal configuration for his plan-

ned network based on constraints such as finance, the

availability of interference free channels and physical

obstructions.
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