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a b s t r a c t 

In this paper, we explore the use of reference values (predictors) for the optimal objective function value 

of hard combinatorial optimization problems, instead of bounds, obtained by data mining techniques, and 

that may be used to assess the quality of heuristic solutions for the problem. With this purpose, we re- 

sort to the rectangular two-dimensional strip-packing problem (2D-SPP), which can be found in many 

industrial contexts. Mostly this problem is solved by heuristic methods, which provide good solutions. 

However, heuristic approaches do not guarantee optimality, and lower bounds are generally used to give 

information on the solution quality, in particular, the area lower bound. But this bound has a severe 

accuracy problem. Therefore, we propose a data mining-based framework capable of assessing the qual- 

ity of heuristic solutions for the 2D-SPP. A regression model was fitted by comparing the strip height 

solutions obtained with the bottom-left-fill heuristic and 19 predictors provided by problem character- 

istics. Random forest was selected as the data mining technique with the best level of generalisation 

for the problem, and 30,0 0 0 problem instances were generated to represent different 2D-SPP variations 

found in real-world applications. Height predictions for new problem instances can be found in the re- 

gression model fitted. In the computational experimentation, we demonstrate that the data mining-based 

framework proposed is consistent, opening the doors for its application to finding predictions for other 

combinatorial optimisation problems, in particular, other cutting and packing problems. However, how to 

use a reference value instead of a bound, has still a large room for discussion and innovative ideas. Some 

directions for the use of reference values as a stopping criterion in search algorithms are also provided. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

The two-dimensional strip-packing problem (2D-SPP) consists

f packing a set of small rectangular rectangles into the strip of

xed width and virtually infinite height, minimising the required

eight. The small rectangles must be positioned without any over-

ap between them and completely inside the strip. According to

he typology of Wäscher, Haußner, and Schumann (2007) , this de-

cription fits in the definition of cutting and packing problems as

 2D rectangular Open Dimension Problem (ODP). In the 2D-SPP

ackled in this work, the rectangles should be orthogonally packed

nside the strip and are allowed to rotate 90 degrees. Typical 2D-

PP applications are found in manufacturing, including the cutting

f metals, textiles or paper rolls. 
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The 2D-SPP is a NP-hard problem and can be solved either by

xact methods or heuristic approaches ( Alvarez-Valdés, Parreño, &

amarit, 2008; Martello, Monaci, & Vigo, 2003 ). Exact methods are

ased on mathematical programming models and are able to ob-

ain optimal solutions or, at least, determine the solution quality.

owever, these methods are not able to tackle the complexity and

ize of real-world applications. Instead, heuristic approaches have

een used in these situations, given the low computational times

equired when compared to exact methods. However, heuristic ap-

roaches do not guarantee optimality and do not provide any in-

ormation about solution quality ( Hopper & Turton, 2001b; Ntene

 van Vuuren, 2009 ). 

Lower bounds have been used to overcome this limitation in

arious cutting and packing problems ( Fekete & Schepers, 2001;

odi, Martello, & Monaci, 2002; Martello et al., 2003 ). However, al-

ost none of the lower bounds available in the 2D-SPP literature

llows rectangles to rotate 90 degrees, meaning that they cannot

e used for solving the problem tackled in this work, as the lower

ound can be greater than the optimal solution. The only exception
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is the area lower bound proposed by Martello et al. (2003) , which

is based only on the area of all rectangles and the strip width.

The main problem is the lack of accuracy of the area lower bound,

mainly in problem instances where the optimal solution has waste

space between the rectangles. 

In this paper, we will tackle this decision-making problem from

an expert system perspective. Although there is no definite defini-

tion for expert systems, and the meaning has even evolved, from

the very beginning that expert systems are associated to the ca-

pacity of reasoning based on a body of knowledge, in opposition

to the procedural framework. With the more recent availability of

enormous amounts of data and the existence of a computational

power to treat it, a new family of expert systems that replace the

traditional “if-then rules” to represent knowledge but the knowl-

edge extraction from the data itself, has arisen, grown and estab-

lished itself. It is in this stream of expert systems that our work is

inserted. 

The main objective of this research is then to propose a

data mining-based framework capable of assessing the quality of

heuristic solutions for the 2D-SPP with 90 ° rotations, comparing

the strip height of a given solution with a prediction of the height

required to pack all rectangles into the strip. The prediction is

obtained by fitting a regression model with data mining tech-

niques. Besides providing a quality measure to heuristic solutions,

the framework can also be used to develop more precise stop-

ping criteria in local search algorithms with the goal of avoiding

long computational times. Traditional stopping criteria rely on a

high number of iterations to ensure solution quality. The proposed

data mining-based framework can be extended to other cutting

and packing problems, such as the bin packing problem (minimise

number of used bins), the knapsack problem (maximise the total

value in the knapsack), and the cutting stock problem (minimise

the amount of scrap). 

The framework was developed around a data mining approach,

in which the predictors (explanatory variables) were developed ac-

cording to relevant characteristics of the problem in order to pro-

vide an adequate way of measuring a known response variable for

predefined observations (or problem instances). In the 2D-SPP, this

known response variable is related to the strip height, which is cal-

culated using constructive heuristics and local search algorithms.

The data mining approach uses the predictors and the known re-

sponse variable to fit a regression model with the goal of predict-

ing the response variable for new problem instances. Different data

mining techniques were tested to fit the regression model and to

ensure an adequate generalisation level and the predictions’ accu-

racy for new problem instances. 

To illustrate the problem and the potential use of the predic-

tions obtained by regression models fitted with the data mining-

based framework proposed in this research, three examples com-

paring the predictions with optimal solutions and area lower

bound values are presented. 

Firstly, the problem instance gcut1 proposed by

Beasley (1985b) is presented ( Fig. 1 a). The wasted space found

in the strip for the optimal solution (6%) is one of the largest

for benchmark problem instances. The distance from the pre-

diction ( ̂  H 

re f = 710 ) to the optimal solution ( OS = 696 ) is lower

when compared with the distance between the area lower bound

( L 0 = 655 ) and the optimal solution. Although 

ˆ H 

re f is higher than

OS , ˆ H 

re f is more realistic and less optimistic when compared with

the L 0 , which cannot feasibly be reached by any local search. 

The second example is the problem instance pt10_23_25

( Fig. 1 b), generated using the 2DCPackGen ( Silva, Oliveira, &

Wäscher, 2014 ). The prediction ( ̂  H 

re f = 89 ) is near the optimal so-

lution ( OS = 88 ). The area lower bound ( L 0 = 74 ) is too optimistic,

16% below the optimal solution. The total wasted space available in

the optimal solution is 16%, which is higher than the optimal waste
f problem instance gcut1 . Finally, Fig. 1 c shows an extreme toy ex-

mple for a narrow strip where the total wasted space available in

he optimal solution is 33% of the total area. The area lower bound

 L 0 = 530 ) is very different when compared with the optimal solu-

ion ( OS = 700 ). When compared with the area lower bound, the

se of the prediction ( ̂  H 

re f = 620 ) as stopping criterion is recom-

ended. 

The paper is organised as follows. Section 2 presents the lit-

rature review about the 2D-SPP and similar data mining ap-

roaches for cutting and packing problems. Section 3 presents

he data mining-based framework. Section 4 focuses on the prob-

em knowledge. Section 5 presents the data mining approach.

ection 6 presents an assessment of the framework performance.

inally, Section 7 presents some final remarks and future research

deas. Additionally, in Appendix A we introduce basic notation used

n this research for quick reference. 

. Literature review 

The 2D-SPP is one of the most explored cutting and packing

roblems in real-word contexts. 

In Oliveira, Neuenfeldt Júnior, Silva, and Carravilla (2016) , an

verview on heuristics for the 2D-SPP was extensively explored.

he relevant literature was reviewed and links between the most

requently used heuristics and the 2D-SPP’s characteristics were in-

estigated. Most of the works published in recent years present

uccessful heuristic approaches to the 2D-SPP with 90 ° rotations,

hile some also present heuristic approaches developed to tackle

pecific real-world problems. Validation of these approaches is

sually done by comparison with several “standard” benchmark

roblem instances. This means that there are no types of absolute

easure regarding the quality of solutions achieved by the pro-

osed heuristic approaches. 

A typical measure to assess solution quality in NP-hard com-

inatorial optimisation problems is the usage of lower bounds

s a reference value. However, that it is not a viable option for

he 2D-SPP with 90 ° rotations due to the lack of strong lower

ounds. The only viable option is the area lower bound from

artello et al. (2003) . 

To access the quality of the solutions, two heuristics ( Neveu,

rombettoni, Araya, & Riff, 2008; Wei, Zhang, & Chen, 2009 )

dopted non-zero-waste benchmark problem instances from

atasets gcut ( Beasley, 1985b ), cgcut ( Christofides & Whit-

ock, 1977 ), ngcut ( Beasley, 1985a ) and bwmv ( Berkey &

ang, 1987 ). An interesting fact observed in both studies is

he peculiar usage of lower bounds. Wei et al. (2009) presents

 least wasted first heuristic, which uses the lower bounds

roposed by Martello et al. (2003) in the non-rotated 2D-SPP

s a reference value to measure the quality of the solutions.

eveu et al. (2008) proposed a method that adjusts the rectangles’

ositioning in the strip based on the location of the maximum

oles. As in Wei et al. (2009) , the solutions are evaluated using the

ower bounds in the non-rotated 2D-SPP of Martello et al. (2003) .

ower bounds that do not allow rectangles to rotate should not

e used as reference values in the rotated case, since the optimal

olution could be better. As examples of heuristics developed

or solve the 2D-SPP with 90 degrees rotation using the area

ower bound, He, Wu, and De Souza (2012) proposed an efficient

eterministic heuristic algorithm that contains a rapid constructive

hase and a partial tree search phase, working well mainly for

ero-waste problem instances. In Özcan, Kai, and Drake (2013) a

volution of the best-fit position-based constructive heuristic is

resented, improving the solutions for most of the benchmark

roblem instances. 

Data mining approaches in cutting and packing problems are

elated with the process of converting problem information into
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Fig. 1. Examples of height prediction ( ̂ H re f ), area lower bound ( L 0 ), and optimal solution ( OS ). 
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easurable factors in order to reflect the main problem char-

cteristics and compare the algorithms performance with differ-

nt types of problem instances. However, the literature combin-

ng knowledge discovery with data mining techniques within the

ontext of cutting and packing problems is not extensive. A litera-

ure review about the main contributions in this research field is

resented in the next paragraphs. These contributions were fun-

amental to develop the data mining framework proposed in this

esearch to predict the strip height. 

The work by Smith-Miles and Lopes (2012) was one of the first

o provide a comprehensive understanding about the methodolo-

ies used to measure the difficulty of problem instances. An ex-

ensive study on the most relevant characteristics to measure algo-

ithm performance was conducted for six different combinatorial

ptimisation problems (assignment, travelling salesman, knapsack,

in-packing, graph colouring, and timetabling). 

A framework to compare the strengths and weaknesses of op-

imisation algorithms was described by Smith-Miles, Baatar, Wre-

ord, and Lewis (2014) , starting with the problem instance selec-

ion (or generation), feature selection, dimension reduction using

rincipal component analysis and, finally, the development of algo-

ithm performance metrics. A case study involving the graph col-

ring problem was presented. This framework is an improvement

f the methodology proposed by Rice (1976) for the algorithm se-

ection problem in order to predict the performance level based on

haracteristics found in the problem instances. 

To replace an intuitive process in order to select the most

mportant features of the irregular two-dimensional bin packing

roblem, López-Camacho, Terashima-Marín, and Ross (2010) de-

ned a problem-state representation to improve the performance

f a hyper-heuristic algorithm. In López-Camacho, Terashima-

arín, Ochoa, and Conant-Pablos (2013) , a principal component

nalysis was used as a knowledge discovery method to under-

tand the 1D and the 2D irregular bin packing problems’ structure

nd its relation with the heuristics’ performance. All data obtained

as used as input to develop a unified hyper-heuristic ( López-

amacho, Terashima-Marin, Ross, & Ochoa, 2014 ) capable of adapt-

ng its behaviour to each problem instance. 

Simplifying the problem structure using linear correlation anal-

sis was proposed in Santoyo, Ortega, Vargas, and Reyes (2015) in

rder to characterise the difficulty of the problem instances for the

in packing problem. A linear correlation analysis was conducted
 b  
n order to reduce a total of 27 features selected from the literature

o only five metrics and used to compare the quality of six algo-

ithm solutions. Perez, Frausto, Cruz, Fraire, and Santiago (2004) in-

orporated machine learning techniques in order to predict the

erformance of seven heuristic algorithms for new problem in-

tances in the bin packing problem. A set of critical characteris-

ics from solved problem instances was used as input data. A com-

arison between the augmented neural network and minimum bin

lack heuristic for the one-dimensional bin packing problem was

roposed in Almeida and Steiner (2016) , incorporating characteris-

ics from problem instances found in the literature. 

For the 0–1 knapsack problem, Hall and Posner (2007) used a

et of computed characteristics in order to develop a methodol-

gy for predicting the best procedure (branch-and-search or dy-

amic programming algorithm) that should be used for each par-

icular problem instance. A regression model was fitted to predict

he relative performance, considering six typical attributes found

n the knapsack problem (problem size, the characteristics of rect-

ngle value and size, the relationship between rectangle value and

ectangle size, knapsack capacity and characteristics of the linear

elaxation solution). These attributes were extracted to ten mea-

ures, incorporated into the regression model. 

A small summary of the strengths and weaknesses of each data

ining approach in cutting and packing problems is presented in

he Table 1 . 

. Data mining-based framework 

This section focuses on introducing and describing the proposed

ramework ( Fig. 2 ). The remainder of this section presents the con-

epts on each framework step. 

The data mining-based framework was developed around the

rocessing of two datasets used to fit and validate the regression

odel, which can be applied to predict the strip height in new

roblem instances. The Dataset (in blue) was used to develop the

egression analysis and to fit the regression model, which is ca-

able of predicting the strip height. The Validation dataset (in or-

nge) was generated to perform adjustment evaluation tests on

he regression model fitted with the Dataset, verifying the level

f generalisation and predictions’ accuracy in different problem in-

tances. Finally, new problem instances (in green) can be solved

y different local search algorithms, using as stopping criterion the
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Table 1 

Summary of the strengths and weaknesses of different data mining approaches. 

Reference Strength Weakness 

Smith-Miles and 

Lopes (2012) 

For different cutting and packing problems, characteristics in the 

problem instances were found to measure the performance of 

different optimization algorithms. 

The quantity and quality of the meta-data available must be 

sufficient to characterize a problem, which demands the generation 

of a relatively high diversity of problem instances. 

Smith- 

Miles et al. (2014) 

Provide a complex visual tool to verify the instance diversity and 

observe the strengths and weaknesses of different algorithms’ 

performance predictions and the relative algorithm power across 

the instances space. 

The instances space were performed in a two-dimensional plane, 

which may compromise the algorithm’s ability to recognize some 

characteristics of specific problem instances. 

López- 

Camacho et al. (2010) 

A non intuitive scheme to define a numerical vector representation 

for an instance of a given problem is presented, capable to be used 

to develop hyper-heuristics for combinatorial optimization 

problems. 

The proposed scheme does not consider the processing time 

consumed to verify the solutions’ quality obtained for a 

single-heuristic or a hyper-heuristic and use only one improvement 

heuristic to find better solutions. 

López- 

Camacho et al. (2013) 

A structured method using principal component analysis to reduce 

the problem complexity, to gain a deeper understanding of the bin 

packing problems and the performance of heuristic approaches. 

The main component analysis was applied in two steps, obtaining 

only two components to characterize the problem, where the 

variance explained combining the variance of these two 

components is 65%. It is necessary to consider feature 

combinations and their interactions to have a clearer insight of the 

prediction performance. 

( López-Camacho et al., 

2014 ) 

A deterministic evolutionary hyper-heuristic methodology capable 

of producing quick good-quality solutions for 1D/2D bin packing 

problems was developed, not using any additional parameter for 

tuning and without the cost of trying all heuristics’ portfolio. 

As mentioned in the paper, a topic to be explored would be to 

develop a machine learning algorithm to select the most 

appropriate heuristic, rather than choosing the closest point to a 

particular problem state and then applying labeled heuristics. 

Santoyo et al. (2015) Common features in complex bin packing problem instances that 

can be incorporated to develop more effective and efficient 

algorithms. 

The representation of the problem instances based on the 

characteristics referred as the most relevant to the problem is not 

clearly identified. 

Perez et al. (2004) The problem instances were clustered using k-means method, to 

create similar sets of instances groups to predict the algorithms’ 

performance. 

Only C4.5 method was used as machine learning technique to find 

the relation between problem characteristics and algorithms’ 

performance. Lack of cross-validation steps to fit more accurate 

classification models. 

Almeida and 

Steiner (2016) 

Indication that the performance of the minimum bin slack 

heuristic may be greater than the augmented artificial neural 

networks in both solution quality and computational time for the 

bin packing problem. 

The comparative considered the use of only two techniques, and 

some seminal characteristics of the problem were not described, as 

the dimensionality, items and object shape, and if 90 ° rotation was 

or not allowed. Small variability in the problem instances’ 

characteristics. 

Hall and Posner (2007) Faster and cheaper identification of effective solution procedures, 

as well as an improved understanding of the relationship between 

problem characteristics and the performance of various procedures, 

with a good algorithm selection accuracy value (74%). 

The proposed methodology needs to be tested in situations where 

a larger set of optimization algorithms are being selected. 

Fig. 2. Data mining-based methodological framework. Each steps is presented in the following sections: Dataset ( Section 4.1 ), Technical analysis ( Section 4.2 ), Characterization 

and dimension reduction ( Section 5.1 ), Technique selection ( Section 5.2 ), Regression analysis ( Section 5.3 ), and Validation dataset and additional validation ( Section 5.4 ). (For 

interpretation of the references to colour in the text, the reader is referred to the web version of this article.) 
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strip height predictions provided by the regression model deployed

after the additional validation step. Dashed arrows represent the

transfer of a fitted regression model from one stage of the frame-

work to another, and solid arrows are related with the transfer of

input data (variables and datasets) to fit into or to use in the re-

gression model. The knowledge discovery step is identified in light
rey, and the data mining approach steps are identified in dark

rey. 

A framework’s cornerstone is to have a deep knowledge about

he problem. This can be achieved through a 2D-SPP literature

eview ( Neuenfeldt Júnior, Silva, Miguel Gomes, & Oliveira, 2017;

liveira et al., 2016 ). The Problem knowledge ( Section 4 ) was di-
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ided into two steps: the generation of problem instances to be

sed as Dataset, and the technical analysis to describe the heuris-

ics applied in order to obtain solutions for each problem instance.

hese solutions and the area lower bound were used as reference

o define the known response variable for the regression analysis. 

The problem instances of Dataset ( Section 4.1 ) must be able to

escribe the wide quantity of characteristics and attributes of the

trip-packing space, exploring the problem in different perspec-

ives ( Smith-Miles et al., 2014 ). The key is to avoid the problem

epresentation with imprecise or biased information, and at the

ame time to include different characteristics and perspectives of

he problem. 

The Technical analysis ( Section 4.2 ) requires the calculation of

easible solutions and a lower bound in each problem instance. As

entioned before, the heuristics have been used in real size prob-

ems, and are generally divided into constructive heuristics and im-

rovement procedures ( Oliveira et al., 2016 ). In constructive heuris-

ics, the rectangles are successively positioned inside the strip un-

il the last rectangle, and a complete solution is generated. In the

mprovement procedure (specifically for the local search), a solu-

ion, which can be obtained using some constructive heuristic, is

mproved by applying consecutive changes to the initial input se-

uence or to the arrangement of the rectangles in the strip. The

ocal search runs until a stopping criterion is reached ( Hopper &

urton, 2001a ). 

In the best-case scenario, the reference value should be the

alue of the optimal solution. However, with the exception of zero-

aste problem instances, the value of the optimal solution is not

nown. Lower bounds have been used to bridge this gap. 

Generally, the lower bounds are developed around mathemati-

al integer formulations or problem relaxations. In the 2D-SPP, the

ost common relaxation is the one-contiguous bin packing prob-

em ( Alvarez-Valdes, Parreno, & Tamarit, 2009 ). Another possibility

s to consider the relationship between the geometrical character-

stics of the rectangles and the strip, transforming the rectangle

imensions and the strip’s fixed dimension using the dual feasible

unction or calculating the total area that the rectangles can oc-

upy inside the strip ( Boschetti & Montaletti, 2010; Martello et al.,

003 ). 

After the problem knowledge, in the Data mining approach

 Section 5 ), the development of predictors that fully characterise

he problem can be achieved by using concepts found in different

utting and packing problems, not only in the 2D-SPP. In addition,

he study of how the problem instances were created and of its

eneration parameters is an important source of information. In

eneral, the characterization considered in the development pro-

ess is related to an exploratory context, considered in Smith-

iles and Lopes (2012) and Smith-Miles et al. (2014) as something

imilar to an art, combining multidisciplinary knowledge about the

roblem. Each selected feature must be relevant to the problem,

voiding spurious situations or measures that require long or non-

easible processing times to extract information from the problem

nstances ( Hall & Posner, 2007 ). 

The set of predictors selected is incorporated into a high-

imensional space, which can be reduced in order to facilitate the

haracterisation of the problem. Combinatorial optimisation ap-

roaches are useful in reducing the problem dimensions until a

easible and desirable subset of important predictors is reached,

rom a set of original descriptive variables in the problem dimen-

ions, given different approximation criterion ( Cadima, Cerdeira,

 Minhoto, 2004 ). Another possibility is the use of mathemati-

al dimension reduction techniques as principal component anal-

sis or factorial analysis to produce uncorrelated components, re-

aining most of the information available in the predictors ( López-

amacho et al., 2013 ). For example, the principal component anal-

sis is capable of reducing the problem’s predictors combina-
ions to only two components, allowing the projection in a two-

imensional visualisation of similarities and differences between a

et of observations, as well as the level of correlation between all

redictors. 

In this study, the Characterisation of the problem and Dimen-

ion reduction ( Section 5.1 ) was developed around the methodol-

gy proposed by Neuenfeldt Júnior et al. (2017) , maintaining all the

haracteristics observed in the original descriptive variables for the

nterpretation of how the problem characteristics affect the perfor-

ance of the prediction. 

Regression analysis based on data mining techniques provide an

seful process for extracting information about the problem from

 huge volume of data ( Bastos, Lopes, & Pires, 2014; Perez et al.,

004 ). Modelling techniques can be used to describe the relation-

hip between the characteristics and the predictions. The most

ommon approaches are related with linear, logistic and polyno-

ial regression models ( Kumar & Vijayalakshmi, 2011 ). Stepwise,

idge, least absolute shrinkage and selection operator are robust

echniques used mainly to solve situations with outliers, non-

arametric data, or multicollinearity between variables. In contrast,

hey require more time to process all information ( Brazdil, Soares,

 Da Costa, 2003 ). To conduct the data mining Technique selection

 Section 5.2 ), the comparison between the performance of differ-

nt techniques can be evaluated using a statistical test of hypothe-

is ( Demšar, 2006 ), comparing the coefficient of determination, R 2 ,

btained with the use of different problem instances. 

To develop the Regression analysis ( Section 5.3 ), the definition

f predictors and one known response variable are required. In

his research, components obtained during the dimension reduc-

ion process are used as predictors. The response variable is ob-

ained by the gap between the best random weight local search so-

ution (using the bottom-left-fill as constructive heuristic) and the

rea lower bound. Finally, the problem instances in Dataset gen-

rated by the 2DCPackGen problem generator ( Silva et al., 2014 )

s proposed to represent the problem. After the regression analy-

is, an Additional validation ( Section 5.4 ) test must be conducted

o validate the level of generalisation of the regression model and

n absolute predictions’ accuracy, using additional random prob-

em instances and benchmark problem instance datasets (Valida-

ion dataset) to predict the strip height in different conditions. 

To Assessing framework performance ( Section 6 ), the Frame-

ork usage ( Section 6.1 ) to predict the strip height for new prob-

em instances is explored. Firstly, the characteristics of a new prob-

em instance must be quantified according to the descriptive vari-

bles used to represent the 2D-SPP. Secondly, these quantified de-

criptive variables are converted into predictors during the dimen-

ion reduction process. Finally, the prediction’s performance as

topping criterion to avoid long computational times is evaluated. 

The Prediction performance analysis ( Section 6.2 ) was devel-

ped to verify if small perturbations in the strip height predictions

re capable of substantially changing the local search stopping pro-

ess behaviour, considering the relation between the quality of the

olutions, the number of iterations and variations in the predic-

ions. 

. Problem knowledge 

This section focuses on the introduction of what’s required in

rder to use the knowledge discovery about the problem as input

ata for the regression analysis. Firstly, Section 4.1 describes the

arameters and configurations to generate the problem instances

f Dataset. Section 4.2 describes the bottom-left-fill heuristic con-

epts and the area lower bound, used in this research as a refer-

nce value for the problem instances. Both heuristic and area lower

ound were used to define the response variable of the regression

odel. 
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4.1. Dataset 

The use of data mining techniques to predict the strip height

requires a large problem instance dataset, mainly to accurately rep-

resent the limits and behaviour of the problem, and also to con-

sider the influence of aspects and characteristics that affect the

quality measure of local search solution values ( Bortfeldt, 2006 ). 

Problem instances in the 2D-SPP are divided into two types:

zero-waste and non-zero-waste. The zero-waste problem instances

are generated by successively cutting a strip in smaller rectan-

gles, and consequently the optimal solution does not allow waste

space after positioning all the rectangles inside the strip. In non-

zero-waste problem instances, the optimal solution is generally not

known. The area lower bound value is almost equal to the optimal

value when the optimal solution allows less waste space. An opti-

mal solution with more wasted space has more uncertainty in the

optimal arrangement of the rectangles in the strip, resulting in a

less accurate area lower bound. 

The problem instance generation is directly related with the

problem generator’s ability to combining rectangles and strip geo-

metrical possibilities ( Wang & Valenzela, 2001 ). Based on a fixed

input information, a greater variation of the characteristics de-

mands the use of the problem generator’s capability to correctly

interpret the information available, returning as output a propor-

tional number of problem instances. 

In this study, the Dataset is composed by 30,0 0 0 prob-

lem instances created using the 2DCPackGen problem generator

( Silva et al., 2014 ). The 2DCPackGen allows the generation of a

large number of problem instances, using different parameters un-

der controllable aspects, and ensures the reproducibility of the

data. For the generation, information on a minimum and maximum

value for a set of parameters is required. 

Specifically in the 2D-SPP, the parameters that must be de-

fined are: the rectangle minimum and maximum size dimension

(1–100); the strip minimum and maximum width (10-1,0 0 0); the

minimum and maximum number of different rectangle types (5–

500); and the minimum and maximum number for the rectangle

type demand (1–10). The problem instance variation is fitted using

a beta probabilistic distribution ( Gupta & Nadarajah, 2004 ). Differ-

ent curve behaviours represent different geometric rectangles and

strip shapes. The minimum and maximum values of each parame-

ter were defined based on the most common values found in the

benchmark problem instances of the literature. 

To avoid the generation of similar problem instances, 10 differ-

ent classes were developed, based on different characteristics of

the size and shape of the rectangles. 

In each class, the strip width, the number of different rectangle

types and the rectangle type demand vary, respectively, according

to two, five and three distribution curves, representing 30 differ-

ent combinations, named as subtypes. For each subtype, 100 simi-

lar problem instances were generated, resulting in a total of 30 0 0

problem instances in each class. 

For example, the pt7_28_9 is a class 7 problem instance ( Fig. 3 ),

where the probability of the rectangles being narrow ( w 1 ) or long

( w 2 ) and tall ( h 1 ) is higher. In this research, we deal with the ro-

tation condition, so the rectangle dimension is not fixed, which

also allows obtaining in class 7 long ( w 3 ) and short ( h 4 ) or tall

( h 3 ) rectangles. The subtype of this problem instance is 28, where

the probability of the strip width being of an intermediate size is

higher, different rectangle types are defined by an uniform distri-

bution, and a large number of rectangles in each type is highly

probable. 

Most of the benchmark problem instances of the literature are

very similar, which does not provide sufficient diversity to cover

some important aspects of the strip-packing characteristics. Fig. 4

illustrates the behaviour of the 1270 most used benchmark prob-
em instances from the literature and the 30,0 0 0 generated prob-

em instances for Dataset, based on two basic metrics: for all rect-

ngles, r ∈ R , the mean aspect ratio shape 1 between the maximum,

 1 r , and minimum, d 2 r , rectangle dimensions and the strip aspect

atio 2 between the area lower bound, L 0 , and the strip width W . 

A considerable number of practical applications of the 2D-SPP

nvolve the cutting of strip and rectangle geometry closest to the

quare shape. This trend is reflected in the way the benchmark

roblem instances were generated over the years, a fact verified by

he density of points in the lowest part of Fig. 4 a, where strips and

ectangles are geometrically square, rather than narrow. Most of

he generated problem instances also have this type of geometry.

owever, the objective of the regression analysis is to represent

ost of the possible behaviours of the problem through the gener-

tion of different problem instances. For example, a series of prob-

em instances are formed by narrow strip and square rectangles

points at the top of Fig. 4 b), by square strip and narrow rectan-

les (points at the right), or by narrow strip and rectangles (points

t the upper right corner). 

.2. Technical analysis 

In this study, the Bottom-Left-Fill (BLF) heuristic

 Chazelle, 1983 ) was selected as constructive heuristic. The

LF is a positioning-based constructive heuristic that fits individ-

al rectangles into the lowest left position free space identified in

he strip. A complete solution is obtained when the last rectangle

s packed into the strip. 

The BLF is one of the most used constructive heuristics in the

D-SPP literature, being efficient to solve both small and large

roblem instances. The BLF considers the free spaces between al-

eady packed rectangles as feasible positions, which is impossible

n the Bottom-Left (BL) heuristic proposed by Baker, Coffman, and

ivest (1980) . Thus, the BLF is much more complex ( O(n3) , where n

s the number of rectangles) when compared with the BL ( O(n2) ). 

Originally, the rectangles in the BLF were sorted by non-

ncreasing area ( Riff, Bonnaire, & Neveu, 2009 ). With the aim of in-

reasing the search solution space, Hopper and Turton (2001a) pro-

osed the use of four different sequences (by rectangle height,

idth, perimeter, and area), and the solution with the smaller

eight is selected. Based on this idea, we developed a BLF heuris-

ic with a local search containing 100 independent sequences, us-

ng different types of input sequences, named as random weight

ocal search. In the first four sequences, the rectangles are ordered

y decreasing area, perimeter, width, and height. The following 76

equences relate to a random weighted order procedure, divided

nto four parts containing 19 sequences, based on area, perimeter,

idth, and height. Finally, the last 20 sequences are fully randomly

enerated. 

In the random weight procedure, each rectangle has a proba-

ility of being chosen to occupy the first position of the sequence.

hus, the rectangles’ ordering is not completely random. This prob-

bility relates to the rectangles’ geometric characteristics (area,

erimeter, width or height dimensions). At each time, a rectangle

s added to the sequence, and the probabilities of the remaining

ectangle to be positioned in the sequence are updated. 

The value used as a reference to define which rectangle will be

ositioned is defined randomly, from 0 to 0.999. The rectangles’

robability is summed until a random value is reached. When this

um is greater than the reference value, the rectangle chosen to be

ositioned is the last but one. 

The objective of the 100 sequences is to have a wide search

pace and boost the quality of the solution, avoiding local optima



A. Neuenfeldt Júnior et al. / Expert Systems With Applications 118 (2019) 365–380 371 

Fig. 3. Distribution curves used to generate the problem instance pt7 _ 28 _ 9 . 

Fig. 4. Distribution of the problem instances ratio between strip aspect ratio shape 

( L 0 / W ) and all rectangles mean aspect ratio shape ( �r ∈ R d 1 r / d 2 r ). 
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3 L c = ( 
∑ 

r∈ R d 1 r · d 2 r ) /W . 
4 gap re f (L 0 ) = (H re f − L 0 ) /L 0 . 
olutions. Finally, the best solution of the random weight local

earch is the one with the smallest height from all 100 solutions,

nd is defined as the reference strip height for the regression anal-

sis, represented by H 

ref . The best solution is used in the calcula-

ion of the response variable for the regression model. 

The relaxation of the original problem in simple formats allows

he calculation of the lower bounds. As an example, the 2D-SPP
an be relaxed in a one-dimensional contiguous bin-packing prob-

em, successively cutting the rectangles’ height (or width) for one

nit, while maintaining the second dimension in the original for-

at. In this case, the sum of the height of all bins is the solu-

ion for the new problem. While it is not feasible for the orig-

nal 2D problem, it can be considered as a valid lower bound

 Martello et al., 2003 ). Other concepts explored in the literature

etermine the geometrical differences between the rectangles and

he strip width through linear combinations, using dual feasible

unctions, rectangle area or rectangle height ( Bekrar & Kacem,

009; Boschetti & Montaletti, 2010 ). 

The continuous lower bound 

3 L c is calculated using the total

rea of all rectangles R ( r ∈ R ) and the strip width, computing in

 linear time. Considering d 1 r and d 2 r , respectively, as the tallest

nd smallest dimensions of the rectangle, the maximum dimen-

ion d 2 r between all rectangles R is defined as lower bound L h .

he area lower bound, L 0 , is the maximum value found between L c 
nd L h ( Boschetti & Montaletti, 2010; Martello et al., 2003 ). Despite

eing a limited area lower bound, the continuous lower bound

s the only one in the rectangular 2D-SPP that considers rectan-

le rotation. Therefore, this lower bound will be used as a ref-

rence value to calculate the response variable of the regression

odel. 

With the values of the best solution found using the random

eight local search, H 

ref , and the area lower bound, the response

ariable can be described in a relative normalised format. The use

f a single absolute variable, i.e. H 

ref , is not recommended to an-

wer the characteristics described by the predictors, because of its

igh variability even when problem instances have similar charac-

eristics. 

Thus, the use of area lower bound as a reference value ( L 0 )

ust be proposed to evaluate the quality of the solutions H 

ref 

ound. In our research, the gap 

4 gap ref ( L 0 ) is the normalised

alue to be used as a known response variable in the regression

nalysis. 
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Table 2 

Variance explained by each component for all groups. 

Group Component Eigenvalue Variance (%) Cumulative (%) 

Area areacomp 7.05 78.31 

areastats 1.18 13.14 91.45 

Perimeter perimcomp 5.80 64.39 

perimstats 2.25 24.94 89.33 

Dimensions dimcomp 6.60 66.03 

dimstats 2.52 25.24 91.27 

Width dimensions widthdimcomp 6.24 69.33 

widthdimstats 1.66 18.45 87.78 

Proportions propcomp 5.45 54.52 

propstats 3.73 37.25 91.77 
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5. Data mining approach 

This section aims to incorporate the information about the

problem in order to develop the regression analysis and predict the

strip height. Firstly, the process of extracting characteristics of the

problem and the dimension reduction using the principal compo-

nent analysis are described in Section 5.1 . A total of 19 predictors

were selected to be used as explanatory variables in the regression

analysis. The response variable is calculated by taking into con-

sideration the gap ref ( L 0 ) between the best solution of the random

weight local search, H 

ref , and the area lower bound L 0 . 

A data mining selection step was conducted in Section 5.2 with

the aim of selecting the technique that best fits the Dataset prob-

lem instances. In Section 5.3 , the regression model was fitted. Fi-

nally, in Section 5.4 , the level of generalisation (given by the coeffi-

cient of determination R 2 ) of the regression model and an absolute

predictions’ accuracy (given by the root-mean-square-error RMSE )

were validated using a new set of 60 0 0 problem instances gener-

ated using the 2DCPackGen ( Silva et al., 2014 ) problem generator

and the set of the most used non-zero-waste benchmark problem

instances from the literature. 

5.1. Problem characteristics and dimension reduction 

The study of the most important 2D-SPP characteristics aims to

find combinations between the rectangles and the strip size and

shape characteristics ( Hall & Posner, 2007; Smith-Miles & Lopes,

2012 ). The main idea was to transform all the characteristics into

a limited number of quantitative measures, named as descriptive

variables. 

Since the number of descriptive variables can be very high, a

Principal Component Analysis (PCA) was proposed in order to re-

duce the problem complexity and to facilitate a regression analysis

interpretation. In addition, the reduction of descriptive variables in

components helps to better understand the relation between the

predictions for each problem instance and the problem character-

istics. 

PCA finds patterns in high dimension data, retaining most of

the original information of each descriptive variable. The aim is to

maximise the variance explained by each uncorrelated component

extracted, boosting a wide representation of the different problem

characteristics ( López-Camacho & Terashima-Marín, 2013 ). 

A recent work using PCA for the 2D-SPP considering the 1270

benchmark problem instances most used in the literature was pro-

posed in Neuenfeldt Júnior et al. (2017) . A total of 56 descriptive

variables were defined and divided into six groups ( Area, Perimeter,

Dimensions, Widthdimensions, Proportions , and Other ) according to

the similarity of each descriptive variable within the group. 

The descriptive variables were defined based on the param-

eters and concepts found in the problem generators that have

been proposed over the years in the literature, not only for the

2D-SPP, but also for other cutting and packing problems ( Beasley,

1985b; Berkey & Wang, 1987; Bortfeldt & Gehring, 2001; Ferreira

& Oliveira, 2005; Hall & Posner, 2001; Leung, Zhang, & Sim, 2011;

Silva et al., 2014; Wang & Valenzela, 2001 ). 

In this work, the methodology proposed in

Neuenfeldt Júnior et al. (2017) will be used. The same 56 vari-

ables will be used to characterise the 30,0 0 0 problem instances

generated for Dataset. 

As suggested in Neuenfeldt Júnior et al. (2017) , the PCA was in-

dividually applied to the Area, Perimeter, Dimensions, Widthdimen-

sions , and Proportions groups, and two components with eigenval-

ues greater than or equal to one were extracted for each group,

resulting in a total of 10 components. The division into five groups

maintains the main characteristics of the descriptive variables and

ensures a high mean variance explained for all groups. Table 2
hows the components extracted by each group. Components ar-

astats, perimstats, dimstats, widthdimstats , and propstats are based

n variables characterized by classical statistical measures (mean,

edian and, standard deviation). In constrast, components area-

omp, perimcomp, dimcomp, widthdimcomp , and propcomp are in-

uenced by ratio (between percentiles or quartiles measures) and

omposition (between the sum of larger and smaller measures)

ariables. 

Specifically, the group Area has the higher difference between

he components’ eigenvalues, while in group Proportions , the com-

onents have the most similar eigenvalues, being completely influ-

nced by different descriptive variables. The group Other is atypi-

al and does not present significant similarity between descriptive

ariables (small correlation coefficients). The PCA does not effec-

ively reduce the group Other to a small number of components.

esides, descriptive variables with low correlations originate the

xtraction of components that are not intuitive and of difficult in-

erpretation. The cumulative variance for the four components is

nly moderate (81.55%), and it is not comparable with the remain-

ng groups. Other is composed by nine descriptive variables, based

n the total number of items in the test problem instance ( n ),

verage items dimensions values ( coefficient ), proportion of differ-

nt items ( heterog ), proportion of different items with more than

ne item ( heterognt ), the total number of different items dimen-

ions ( difcoefficient ), the number of times that the object lower-

ound is bigger than the object width ( objdimratio ), the number

f times that the items the maximum items dimension is bigger

han the minimum items dimensions ( itdimratio ), 10% larger items

imensions values ( maxcoefficient ), and 10% smaller items dimen-

ions values ( mincoefficient ). 

For factor loading projections, all groups present a similar be-

aviour. Composition and ratio descriptive variables have a more

ignificant influence on the first components ( areacomp, perim-

omp, dimcomp, widthdimcomp and propcomp ). Instead, most clas-

ical statistical descriptive variables (e.g. mean, median) have more

nfluence on the second components ( areastats, perimstats, dim-

tats, widthdimstats and propstats ). The behaviour observed in the

CA extraction is not only dependent on the groups, but also on

he nature of the descriptive variables. This fact is more visible in

roup Proportions , in which none of the descriptive variables have

 high influence for both components at the same time. The stan-

ard deviation descriptive variable (e.g. areastdev ) is a special case

here the impact on groups Area, Dimensions and Widthdimensions

s higher for the first components, and on groups Perimeter and

idthdimensions , the factor loading affects the second components.

Five descriptive variables ( areamean, areastdev, perimstdev, dim-

ean and widthdimmean ) have a complex structure, influenc-

ng both components in groups Area, Perimeter, Dimensions and

idthdimensions . As an example, the perimstdev factor loading is

qual to 0.6 for perimcomp and 0.7 for perimstats . By means of

ariance, the perimstdev descriptive variable can accurately explain

oth components, even without a high factor loading. Furthermore,
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erimstdev can influence a third component with an eigenvalue

ower than one, which will not be extracted by the PCA. Finally,

one of the groups has a non-influential descriptive variable for

he extracted components. In at least one of the components, the

actor loadings of the descriptive variables are always higher than

r equal to 0.4. 

For group Other , the descriptive variables’ dispersion is high,

nd the components are explained by a small number of descrip-

ive variables with high factor loading. This dispersion also shows

he need for more components to provide a better representation

f the group characteristics. 

Four components were extracted with an eigenvalue higher

han or equal to 1. If new components were added, the cumula-

ive variance explained would increase. However, PCA would not

ignificantly reduce the dimensions of the group Other . 

Regarding the last analysis, the components proposed by the

CA to the group Other are not considered in our study. For the

egression analysis, the 19 predictors are composed of ten com-

onents provided by the PCA applied in the groups of descriptive

ariables Area, Perimeter, Dimensions, Widthdimensions and Propor-

ions , and directly the nine descriptive variables that defines the

roup Other . 

.2. Technique selection 

The data mining technique that better adjusts the Dataset was

elected taking into consideration three phases. Firstly, Friedman

on-parametric tests were conducted based on Demšar (2006) pro-

edures. Secondly, if the null-hypothesis was rejected, a post-test

sing the critical difference, CD , verified which technique could

e distinguished from one another. Finally, in the group of non-

ignificant distinguished techniques, the higher coefficient of de-

ermination, R 2 , was used to select the data mining technique. 

In R 2 , the results for the gap ref ( L 0 ) were compared with the

redicted ˆ gap 
re f 

(L 0 ) , obtained using different data mining tech-

iques. If the predictions have a good fit with the calculated

ap ref ( L 0 ), then the R 2 is high. In contrast, lower R 2 indicates that

he gap ref ( L 0 ) variation is not well explained by the predictors. This

ow level of adjustment can be explained by the lack of predic-

ors capable of accurately explaining the phenomena, resulting in

n incomplete representation of the main problem characteristics.

nother reason is the intrinsic data mining technique incapacity

f fitting a regression model capable of precisely predicting the

ˆ ap 
re f 

(L 0 ) . 

A total of 13 parametric and non-parametric techniques were

reviously selected for testing: two Random forest ( rf ∗ and rborist );

he Stochastic and Extreme gradient boosting ( gbm and xgbTree );

he Extreme learning machine ( elm ), the Back-propagation and

ayesian regularised neural networks ( nnet and brnn ); the Ridge

egression ( ridge ); the Least absolute shrinkage and selection oper-

tor ( lasso ); the Linear and Multivariate adaptive regression mod-

ls ( lm and mars ); the k-nearest neighbours ( kknn ); and the Cu-

ist ( cub ). All techniques are capable of predicting the strip height

ased on supervised regression analysis concepts, tested using

he software RStudio , specifically the function “train” in package

caret” ( Kuhn, 2008 ). To avoid interfering in the results, all tech-

iques were tested without the definition of any specific input

arameter. 

From the 30,0 0 0 Dataset problem instances, a small sample of

0 0 0 problem instances was selected (100 of each class). To pro-

eed with Friedman’s hypothesis tests, this sample of 10 0 0 prob-

em instances was randomly divided into five subsamples, each

ith two different types of problem instances: training (800) and

est (200). Regression models were fitted for each technique using

he five training subsamples described, and Fig. 5 a shows the mean
 

2 values from the difference between gap ref ( L 0 ) and ˆ gap 
re f 

(L 0 ) of

est subsamples. 

When the calculation of the performance of the techniques in

ach subsample shows a significance level equal to 0.05, the null-

ypothesis is rejected, and there is a significant difference in the

 

2 performance between the data mining techniques. 

The Nemenyi ( Demšar, 2006 ) post hoc test uses the critical dif-

erence, CD , to verify which techniques are significantly similar.

ig. 5 b shows in the Nemenyi scale the mean positioning perfor-

ance of all techniques compared with the calculated CD . Using

s a reference value the technique with the best positioning per-

ormance ( cubist ), techniques are significantly equal if the position

erformance is located between 0 and 6.8. 

The first six techniques with the highest R 2 ( rf ∗, gbm, xgbTree,

ub, kknn , and rborist ) do not have significant differences. Using

he five subsamples adopted, none of these techniques stood out

s having superior performance. As an alternative, the mean coeffi-

ient of determination was defined as an alternative selection mea-

ure. Therefore, with R 2 equal to 0.62, the Random Forest (RF) was

elected to perform the height prediction, as it is the data mining

echnique with the best mean R 2 from all available options. 

.3. Regression analysis 

The RF is a supervised and non-parametric ensemble data min-

ng technique to fit classification or regression models, using series

f individual random decision tree structures. Each decision tree

as nodes and arcs. The nodes are labelled by input features (pre-

ictors), organised in levels. The arcs coming from the nodes are

abelled by possible values obtained for the response variable, the

ap gap ref ( L 0 ). 

The main objective is to select in each node the predictor that

roduces the prediction ˆ gap 
re f 

(L 0 ) most similar to the calculated

ap ref ( L 0 ). For the regression model, the difference between the

ean-square-error before and after the addition of a specific pre-

ictor in the node is the measure used to select the best predic-

or. The decision tree grows until a stopping condition is reached

e.g. maximum number of levels, or root-mean-square-error lower

han or equal to a specific value). Each decision tree has the same

eight, and the final RF regression model are defined by the mean

redictions ˆ gap 
re f 

(L 0 ) obtained by the construction of all individ-

al random decision trees developed. 

In this research, the RF regression analysis was fitted us-

ng a concept called “bagging”, to improve the regression model

evel of generalisation. The 30,0 0 0 Dataset problem instances were

andomly divided into two parts: training (24,0 0 0) and testing

6,0 0 0). A total of 150 trees were considered, with all predictors

valuated at each split. The holdout method was applied to cre-

te trees with 66% of training problem instances (“bag” observa-

ions), defined in a random process. The remaining 33% of training

roblem instances excluded from this tree, “out-of-bag” (OOB) ob-

ervations, were used to predict the mean-square-error between

ap ref ( L 0 ) and ˆ gap 
re f 

(L 0 ) in each tree. The sampling with replace-

ent option allows any problem instance to appear multiple times

ithin the “bag” or “out-of-bag” groups. 

To improve the quality of regression models, the 5-fold cross-

alidation process was conducted, folding the training sample into

ve different parts. The problem instances were randomly inserted

nto only one fold. A total of ten regression models were gener-

ted, two for each fold, and the regression model with the lowest

esidual-sum-of-squares-error between gap ref ( L 0 ) and ˆ gap 
re f 

(L 0 )

as selected as the RF regression model. 

To verify the predictors’ performance, we adopt the propor-

ional IncNodePurity relevance index. The IncNodePurity measures

he difference between the mean-square-error (for “out-of-bag
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Fig. 5. For each data mining technique. 

Fig. 6. The proportional IncNodePurity predictors’ importance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Calculated gap ref ( L 0 ) and predicted ˆ gap 
re f 

(L 0 ) for the 60 0 0 Dataset test prob- 

lem instances. 
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problem instances) between ˆ gap 
re f 

(L 0 ) and gap ref ( L 0 ) before and

after the tree split (node). The most relevant predictors are more

efficient in reducing the mean-square-error and have higher pro-

portional IncNodePurity relevance values. The average value ob-

tained for all RF trees is calculated for each predictor. 

The results of the proportional IncNodePurity relevance index

can vary from one RF regression model to another. Three main pa-

rameters affect the performance: (1) the number of trees; (2) the

total number of predictors tested in each node; and (3) the ran-

dom process of developing the decision trees. In this research, we

fixed the first two parameters, the number of trees (150) and the

total number of predictors tested in each node (19). For the third

parameter, the random processes of developing the decision trees,

the RF was run ten times, developing random and different trees

for each RF. Fig. 6 shows the mean proportional value IncNodePu-

rity for the 19 predictors after running the RF ten times. 

The propstats and objdimratio generated the largest mean-

square-error reductions before and after split the tree, which is

sufficient to consider that these predictors explain more accurately

most of the problem characteristics. In addition, the selection of
ropstats and objdimratio as the most important predictors is di-

ectly related to the manner in which the RF processes all input

ata to fit the regression model. In general, none of the six groups

f predictors is predominant, with one predictor of each group in-

luded in the five highest proportional IncNodePurity values. 

The regression model generated using the RF for the 24,0 0 0

ataset training problem instances was applied to obtain the pre-

ictions. Fig. 7 shows the dispersion graph obtained for the calcu-

ated gap ref ( L 0 ) and predicted ˆ gap 
re f 

(L 0 ) response variable for the

0 0 0 Dataset test problem instances. The coefficient of determina-

ion, R 2 = 0 . 68 , and the predictions’ accuracy RMSE = 0 . 04 are on

 good level. 

For almost all problem instances (5,865 out of 60 0 0), the cal-

ulated gap ref ( L ) is in the range between 0.02 and 0.3. The regres-
0 
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Fig. 8. Calculated gap ref ( L 0 ) and predicted ˆ gap 
re f 

(L 0 ) for the Validation dataset, 

composed by 60 0 0 new problem instances generated and 986 non-zero-waste 

benchmark problem instances. 
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ion model performs more accurate predictions ( RMSE = 0 . 03 ) for

roblem instances located within this range. Conversely, for prob-

em instances with calculated gap ref ( L 0 ) higher than 0.3 (97 out of

0 0 0) or lower than 0.02 (38 out of 60 0 0), the predictions are not

ccurate ( RMSE = 0 . 16 ). 

An important characteristic of the problem with impact on the

esults obtained for the predictions’ accuracy is the shape of the

trip. Among the different formats, two are described in detail: the

arrow strip and the square strip. The narrow strip problem in-

tances have a strip width W that is much smaller than the cal-

ulated height H 

ref , where the strip aspect ratio 5 is equal to or

igher than 100. This specific case was observed in 304 test prob-

em instances, and the predictions’ accuracy ( RMSE = 0 . 10 ) are not

ell fitted for almost all problem instances. For the square strip

nstances in which the strip width dimension W is almost equal to

he calculated height H 

ref , the strip aspect ratio is between 0.8 and

.2. Considering all 233 square strip problem instances, the pre-

ictions have a good fit quality ( RMSE = 0 . 02 ). For example, the

roblem instance pt11 _ 21 _ 39 has a narrow strip and has the worst

rediction accuracy of all test problem instances ( RMSE = 0 . 54 ).

n the other hand, the problem instance pt7 _ 38 _ 1 has a square

trip and the prediction accuracy is almost equal to zero ( RMSE =
 . 004 ). 

In the case of the ten problem instance classes, the predic-

ions’ behaviours are very similar, because most of the calculated

ap ref ( L 0 ) are located in a very dense space between gap re f (L 0 ) =
 . 02 and gap re f (L 0 ) = 0 . 3 . This fact is directly related with the

roblem instance generation, which was based on the combination

f four parameters (the rectangle size, the strip width, the num-

er of different rectangle types, and the rectangle type demand),

roducing similar problem instances in each class. 

.4. Additional validation 

A completely different problem instance dataset (named as

alidation dataset) was used in the regression model fitted in

ection 5.3 with the goal of verifying the level of generalisation

 

2 between ˆ gap 
re f 

(L 0 ) and gap ref ( L 0 ) and the predictions’ accuracy

MSE . 

A total of 6986 Validation dataset problem instances from two

ifferent datasets were used, in which 60 0 0 problem instances

ere additionally generated using the 2DCPackGen problem gen-

rator ( Silva et al., 2014 ). The uniform distribution was adopted

or all problem generator parameters, allowing the generation of

roblem instances different from the 30,0 0 0 Dataset problem in-

tances used to generate the regression model. This prevents a spe-

ific non-uniform distribution from interfering in the generation of

ifferent problem instances. The remaining 986 problem instances

ere obtained from non-zero-waste benchmark problem instances

f the 2D-SPP, considering: 500 bwmv ( Berkey & Wang, 1987 ),

60 AH ( Bortfeldt, 2006 ), 72 nice and path ( Wang & Valen-

ela, 2001 ), 16 zdf ( Leung & Zhang, 2011 ), 13 gcut ( Beasley, 1985b ),

2 ngcut ( Beasley, 1985a ), 10 beng ( Bengtsson, 1982 ), and 3 cg-

ut ( Christofides & Whitlock, 1977 ). In 254 benchmark problem in-

tances, the rectangles and the strip dimensions exceed the max-

mum dimension parameters defined in the 30,0 0 0 Dataset prob-

em instances generated to develop the regression model. To main-

ain the minimum and maximum parameter standards, the rectan-

le and strip values were divided by 10 or by 100. 

The next step was found predictions for these new 6986 Vali-

ation dataset problem instances, to verify the level of adjustment

f the regression model fitted using the Dataset. As expected, Fig. 8

hows that the level of generalisation ( R 2 = 0 . 55 ) and the predic-
5 H ref / W . 

F  

i  

n  
ions’ accuracy ( RMSE = 0 . 08 ) are lower than the results verified in

he 60 0 0 Dataset test problem instances, and the dispersion of re-

ults is higher when compared with the results obtained in Fig. 7 . 

These differences are due to the high degree of similarity be-

ween the test and training problem instances of the regression

odel, both generated simultaneously using same non-uniform

istributions. Instead, benchmark problem instances were gener-

ted using different problem generators, each one with specific pa-

ameters and characteristics. For the 60 0 0 problem instances addi-

ionally generated, the use of uniform distributions was proposed,

hus differentiating their behaviour from Dataset. 

As verified for the 60 0 0 Dataset test problem instances, in the

alidation dataset problem instances (6474 out of 6986) where

he gap ref ( L 0 ) is less than 0.3, the predictions are very accurate

 RMSE = 0 . 06 ). This happens because of the high density of prob-

ems instances with similar gap ref ( L 0 ) used to fit the regression

odel. For the Validation dataset problem instances (512 out of

986) with calculated gap ref ( L 0 ) higher than 0.3, the predictions’

ccuracy is not well adjusted ( RMSE = 0 . 19 ). 

. Assessing framework performance 

The main objective of this research is to propose a data mining-

ased framework to assess the quality of heuristic solutions for the

D-SPP with 90 ° rotations. Predictions were obtained by a regres-

ion model fitted with the Random forest data mining technique,

roviding a quality measure to heuristic solutions and a stopping

riterion to be used in local search algorithms in order to avoid

ong computational times. 

To conduct the data mining approach presented in Section 5 ,

 deeper knowledge about the problem was acquired through a

D-SPP literature review ( Neuenfeldt Júnior et al., 2017; Oliveira

t al., 2016 ). After characterising the problem, a total of 19 predic-

ors were defined, and one known response variable was calculated

sing the gap gap ref ( L 0 ) between the lowest solution H 

ref found us-

ng the random weight local search and the area lower bound L 0 . 

Random forest was selected as best data mining technique op-

ion, based on the coefficient of determination, R 2 , measure and

riedman’s hypothesis tests. The regression analysis was developed

n order to find predictions ˆ gap 
re f 

(L 0 ) of the response variable. Fi-

ally, the level of generalisation of the fitted regression model and
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Fig. 9. Calculated H ref and predicted ˆ H re f . 
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the predictions’ accuracy were verified by calculating the predic-

tions ˆ gap 
re f 

(L 0 ) for 60 0 0 Dataset test problem instances and 60 0 0

Validation dataset problem instances. 

To assess the framework performance, in this section the aim

is to test the efficiency of the regression model fitted in order to

predict the strip height in the 2D-SPP. Section 6.1 shows the con-

version of ˆ gap 
re f 

(L 0 ) in the strip height predictions 6 ˆ H 

re f , and the

use of ˆ H 

re f as a stopping criterion in the exchange procedure for

three different local search algorithms (random weight, completely

random, and dynamic random). In Section 6.2 , a prediction per-

formance analysis was conducted by varying the prediction value,
ˆ H 

re f , in accordance with a multiplier γ in order to evaluate the ro-

bustness of the predictions according to the behaviour of the qual-

ity of the solutions of the dynamic random local search. 

6.1. Framework usage 

In this section, the use of the proposed data mining-based

framework was proposed in two steps. Firstly, the regression model

fitted in Section 5 is used to predict the strip height for the

60 0 0 Dataset test problem instances used to predict the gap in

Section 5.3 and 6986 Validation dataset problem instances are

used to predict the gap in Section 5.4 . Finally, the height pre-

dictions performance as stopping criterion was evaluated in three

naive local search algorithms. 

To test the efficiency of the regression model fitted in order

to predict the strip height, Fig. 9 shows the results of the com-

parison between calculated H 

ref and predicted 

ˆ H 

re f . For the 60 0 0

Dataset test problem instances ( Fig. 9 a), almost all predictions ˆ H 

re f 

are very similar to the values H 

ref obtained by the random weight

local search. The level of generalisation is very high ( R 2 = 0 . 99 ) and

the measured predictions’ accuracy is low ( RMSE = 955 ). This high

level of generalisation is closely related with L 0 , which is a fixed

reference value used in both H 

ref and 

ˆ H 

re f . In addition, for almost

all 60 0 0 Dataset test problem instances, ˆ gap 
re f 

(L 0 ) and gap ref ( L 0 )

have small RMSE values, resulting in small differences between the

predicted strip height and the solution found using the random

weight local search. 

For the 6986 Validation dataset problem instances predictions

( Fig. 9 b), the level of generalisation ( R 2 = 0 . 98 ) is also very high,
6 ˆ H re f = L 0 (1 + gap re f (L 0 )) . 

 

p  

p  
nd the accuracy of the predictions can be considered of good

uality ( RMSE = 2345 ), mainly for the 2727 problem instances

 RMSE = 116 ) with lower strip heights, where the calculated H 

ref 

s less than 50 0 0. The results of the regression model’s lack of

apability in accurately predicting the strip height for Validation

ataset in comparison with Dataset can be seen mainly in prob-

em instances with narrow strip, strips with high heights and strips

ith small widths. However, the adjustment obtained using the

alidation dataset is acceptable and, as expected in this context,

t does not significantly affect the good adjustment obtained for

he predicted strip height ˆ H 

re f . 

The regression model can be used to predict reference values

or the local search algorithms exchange procedure, which can be

sed as the stopping criterion to avoid long computational times.

ig. 10 describes an evaluation of the predictions’ performance as a

topping criterion for 10 0 0 problem instances randomly provided

y the Validation dataset ( Section 5.4 ). The x -axis represents the

00 test iterations, and in the y -axis, the cumulative frequency

ontaining the total number of problem instances that reached the

redicted 

ˆ H 

re f is presented. 

Three naive local search algorithms were adopted to improve

he initial solution found with the BLF constructive heuristic with

xed sequences (by area, perimeter, width or height dimensions).

irstly, in the complete random local search, the sequence of rect-

ngles is defined completely randomly and independently. Sec-

ndly, the random weight local search was used with the same

haracteristics defined to calculate the strip height of each prob-

em instance for the gap ref ( L 0 ) (response variable) of the regression

odel, as described in Section 4.2 . 

Finally, the dynamic random local search concepts were pro-

osed, randomly changing the current rectangles’ sequence posi-

ion at each iteration by 5%. The initial solution is the best so-

ution found that considers four fixed sequences, sorted by non-

ecreasing area, perimeter, maximum rectangle dimension, d 1 r ,

nd minimum rectangle dimension d 2 r . The dynamic random lo-

al search explores the solution space applying local and small

hanges. The main advantage is maintaining significant informa-

ion about the current best solution, which does not occur for the

ompletely random and random weight local search algorithms,

here the solution space is explored in a more general manner. 

The adoption of more than one local search strategy was pro-

osed in order to verify the behaviour of the predictions as stop-

ing criterion for different situations. As expected, in all local
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Fig. 10. Cumulative frequency of stopping process for the 10 0 0 problem instances selected from Validation dataset. 

Fig. 11. Trade-off between the number of iterations and the quality of the solutions for the 10 0 0 problem instances selected from Validation dataset, using different variations 

of the predictors and the area lower bound as stopping criterion. When the prediction ˆ H re f is adopted as a reference value for the local search, the gap is given by 

gap drls ( ̂ H re f ) . When the area lower bound is adopted as reference value, the gap is given by gap drls ( L 0 ). 
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7 gap drls ( ̂ H re f ) = (H drls ( ̂ H re f ) − ˆ H re f ) / ̂ H re f . 
earch algorithms, most of the problem instances reached the pre-

icted 

ˆ H 

re f . The most effective criterion to stop the local search

as to sort the rectangles by decreasing maximum and minimum

imensions. The dynamic random local search reached a higher

umber of heights, equal to or less than the predicted 

ˆ H 

re f , stop-

ing a total of 630 problem instances out of 1,0 0 0, while the com-

letely random and random weight local search algorithms have

lmost the same number of stops after 100 iterations. 

The use of non-accurate predictions can have two different ef-

ects on the behaviour of the stopping criterion. Overly conserva-

ive predictions stop the local search early and the optimal so-

ution is never reached. Conversely, overly optimistic predictions

ave smaller values than the calculated heuristic solutions, which

ay even be lower than the optimal solution. When using this cri-

erion, the iterations will never stop. 

.2. Prediction performance analysis 

The main objective of this section is to verify if small pertur-

ations in the strip height predictions are capable of substantially

hanging the stopping process behaviour of the local search, con-

idering the relation between the quality of the solutions obtained

ith the dynamic random local search, the number of iterations

nd variations in the predictions. 

The predictions were not calculated by parametric models,

hich do not allow the use of metrics as the mean-square-error

f the standard deviation as a means of verifying the predictions’

obustness. The solutions obtained by the dynamic random lo-
al search, using the ˆ H 

re f as stopping criterion, are represented

y H 

drls ( ̂  H 

re f ) . The quality of these solutions is measured by the

ap gap drls ( ̂  H 

re f ) between the predictions ˆ H 

re f and the solutions

 

drls ( ̂  H 

re f ) . To evaluate the robustness of the predictions, small

hanges in the predictions were defined. For each problem in-

tance, a γ value is multiplied by the prediction 

ˆ H 

re f and is used

s the reference value to calculate the quality of the solution,

ap drls ( ̂  H 

re f ) , provided by the dynamic random local search. 

Fig. 11 shows the relation between the increase in the number

f iterations ( x -axis) and the reduction of the mean gap ( y -axis)

uring the dynamic random local search algorithm, for the 10 0 0

roblem instances considered in Section 6.1 , with the four different

values adopted ( γ = 0 . 90 , γ = 0 . 98 , γ = 1 . 02 , and γ = 1 . 10 ).

he study of the quality of the solutions H 

drls ( ̂  H 

re f ) found using

he dynamic random local search and the area lower bound as

topping criterion is also proposed in Fig. 11 . It is measured using

he gap 

7 gap drls ( ̂  H 

re f ) . 

All curves present a similar behaviour, independently of the γ
alue considered. For γ = 0 . 90 and γ = 1 . 10 , a variation of 10% in

he original prediction 

ˆ H 

re f is considered, and, as expected, this

as a high impact on the mean gap drls ( ̂  H 

re f ) , because with a high

the local search reached the stopping criterion too early and a

ow γ presents optimistic predictions. Therefore, in the robustness

nalysis, γ = 0 . 90 and γ = 1 . 10 are not considered. 

For γ = 0 . 98 and γ = 1 . 02 , the mean gap drls ( ̂  H 

re f ) is very sim-

lar for almost all problem instances during the local search. This
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means that the quality of the solutions obtained is not greatly af-

fected by small variations of the predicted 

ˆ H 

re f , stressing that the

predictions were robust. 

The graphic in Fig. 11 is also relevant to analyse how the reduc-

tion in the number of iterations affects the quality of the solution.

Specifically, the mean gap gap drls ( ̂  H 

re f ) considering prediction 

ˆ H 

re f 

is 12% after 100 iterations. If the number of iterations is limited to

40, the mean gap gap drls ( ̂  H 

re f ) would be 15%, which means that

saving 60 iterations would have an impact of only 3% in the qual-

ity of the solution. Also, the graphic shows the inefficiency of L 0 
when used as a stopping criterion, demonstrated by the high val-

ues found for the gap 

8 gap drls ( L 0 ) in comparison with the results

obtained for all variations of ˆ H 

re f predictions. The L 0 is too con-

servative for almost all problem instances explored, thus requiring

high computational processing times to provide the quality of the

solutions H 

drls ( L 0 ) found by the local search. 

7. Conclusions 

This research proposes a data mining-based framework capa-

ble of predicting a reference value to be used as stopping criterion

in local search algorithms for the 2D-SPP, taking into considera-

tion the main problem characteristics. The total height necessary to

pack a set of small rectangular rectangles into a rectangular strip is

the reference value used in the 2D-SPP. In addition, the predictions

can provide a measure to verify the quality of solutions found by

heuristics. 

Data mining techniques were tested and the Random forest

was statistically inferred as the best choice for developing the re-

gression analysis, based on its ability to generalise the predictors

for the normalized gap gap ref ( L 0 ). Other data mining techniques,

such as the Extreme gradient boosting, Cubist and k-nearest neigh-

bours, also have significant generalisation ability. The input data

was composed of three parts: the predictors to provide a nu-

meric measure of the problem characteristics, the gap calculated

using the area lower bound and the random weight local search,

and 30,0 0 0 Dataset problem instances generated with 2DCPackGen

( Silva et al., 2014 ) to represent different 2D-SPP variations found in

real-world applications. 

The 5-fold cross-validation in Section 5.3 was adopted to verify

if the regression model has a good level of generalisation and if it

accurately predicts the strip height for new problem instances. An

additional validation proposed in Section 5.4 with the use of 60 0 0

problem instances was generated together with 986 non-zero-

waste benchmark problem instances. Both 5-fold cross-validation

and additional validation confirmed the good level of generaliza-

tion of the regression model and the predictions’ accuracy. The

quality of the level of adjustment obtained was fundamental to

conclude that the extraction of problem characteristics was well

performed. 

In the assessing performance section, it was verified that the

strip height predictions are highly influenced by the solution ob-

tained by the constructive heuristic, by local search algorithms and

by the reference values (area lower bound or the predictions found

with the regression model fitted) used to calculate the gap. There-

fore, the behaviour of the quality of the solutions was proved to

be robust even when small changes in the predictions are ap-

plied. In addition, it was confirmed that the area lower bound is

an overly conservative stopping criterion for almost all 10 0 0 prob-

lem instances from Validation dataset used to test the predictions’

robustness. 

Widely used in literature over the years, the BLF was selected

as the constructive heuristic due to the good cost-benefit ratio be-
8 gap drls (L 0 ) = (H drls (L 0 ) − L 0 ) /L 0 . 

t  

s  

i  
ween its simplicity of implementation and the quality of the so-

utions found. Other constructive heuristics could have been used

nstead of BLF. 

This research contributes to the identification of the charac-

eristics that most affect constructive heuristics in solving the

D-SPP. A better understanding of these characteristics brings

ew elements capable of shedding light on the design of new

euristics for the 2D-SPP, mainly when the optimal solution is

nknown, reducing the computational time required to verify

he quality of the solution. Furthermore, this research was used

o validate the dimension reduction methodology proposed in

euenfeldt Júnior et al. (2017) . 

In this study, we demonstrate that the data mining-based

ramework proposed is consistent and can be applied to predict

esponse variable values in other problems. 

Nevertheless, the work has natural limitations and weaknesses.

he very first limitation, when using H 

ref as a stopping criterion in

earch algorithms, is that it is not a bound but a reference value.

his means that the value of the (unknown) optimal solution may

e above or below H ref . Being below the optimum may cause a

orthless long number of iterations trying to improve what can-

ot be improved, and being above the optimum may cause a pre-

ature halting of the search. In fact, how to use a reference value

nstead of a bound, has still a large room for discussion and in-

ovative ideas. Some directions for this innovative use of H ref are

rovided in Section 6.2 when H ref is multiplied by a factor γ ,

hich takes values around 1. Being H ref just a reference value, (fast)

euristics may be run several times with different stopping crite-

ia, based on a percentage of H ref . Additional, H ref can be used in

onjunction with true bounds already available in the literature.

his strategy would mitigate (not eliminate) many of the draw-

acks previously presented. 

In the best theoretical case in which the regression model

orked perfectly, the proposed methodology would give a good

eference value for the solution obtained by a particular heuris-

ic algorithm. However, the relationship between the value of the

olution provided by this algorithm and the optimal solution of a

iven instance is not known, as the 2D-SPP is an NP-hard com-

inatorial optimization problem and guaranteed optimal solutions

an only be achieved for toy problems. Our goal was to provide a

eference value for the solution (and we can not call it a bound be-

ause we cannot be sure if the optimal solution is below or above

his value) better than the existing trivial bound based on the rect-

ngles’ area. We really do not know whether the distance from

he solution of this algorithm to the (unknown) optimal solution

s similar for all types of instances or not, so to be near to the

redicted value does not mean to be near to the optimum. Even

ore, while the optimal solution is only dependent on the data

ssociated with each problem instance, our study has exclusively

ocused on a particular constructive heuristic (bottom-left-fill), and

e just claim result validity for this particular heuristic. But, to the

est of our knowledge, this is the first trial to predict the solution

alue in a cutting or packing problem by means of regression anal-

sis, and we believe that this work may originate relevant future

esearch. 

For future research, it is needed to verify the level of adjust-

ent of the predictions obtained by the regression analysis in

ther contexts. Specifically, in the 2D-SPP it is important to ap-

ly the predictions using the regression model as a stopping crite-

ion in different local search algorithms. For each problem instance

sed to fit the regression model, a replacement process, similar

o the backforward step of networks to adjust the response vari-

ble value, replacing the area lower bound by the predictions ob-

ained after fit the regression model. In what concerns the use of

upervised machine learning techniques, emerged as particularly

nteresting the exploration, in more detail, of neural network tech-
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iques, increasing the number of observations in training dataset

o improve the neurons’ learning capacity to find patterns. Finally,

he data mining based framework developed for the 2D-SPP can

e extended to fit regression models for other types of cutting and

acking problems, as the bin packing problem, knapsack problem

utting, and cutting stock problems. 
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ppendix A. Notation 

• r : rectangles’ index; 
• n : number of rectangles in the problem instance; 
• d 1 r : maximum rectangle dimension (for 2D-SPP with 90 ° rota-

tions); 
• d 2 r : minimum rectangle dimension (for 2D-SPP with 90 ° rota-

tions); 
• w 1 , w 2 , or w 3 : rectangle width dimension (for 2D-SPP without

90 ° rotations); 
• h 1 , h 3 , or h 4 : rectangle height dimension (for 2D-SPP without

90 ° rotations); 
• W : strip width; 
• OS : optimal solution; 
• L h : height lower bound, measured by the maximum dimension

d 2 r between all rectangles for the problem instance; 
• L c : continuous lower bound 

9 ; 
• L 0 : area lower bound; 
• H 

ref : random weight local search strip height lowest solution; 
• ˆ H 

re f : predicted strip height related with the area lower bound

L 0 ; 
• H 

drls ( ̂  H 

re f ) : dynamic random local search strip height solutions

based on the predicted 

ˆ H 

re f ; 
• H 

drls ( L 0 ): dynamic random local search strip height solutions

based on the area lower bound L 0 ; 
• gap ref ( L 0 ): gap 

10 between the solution H 

ref and the area lower

bound L 0 ; 

• ˆ gap 
re f 

(L 0 ) : predicted gap ref ( L 0 ) related with the area lower

bound L 0 ; 
• gap drls ( ̂  H 

re f ) : gap 

11 between the solution H 

drls ( ̂  H 

re f ) and the

predicted 

ˆ H 

re f ; 
• gap drls ( L 0 ): gap 

12 between the solution H 

drls ( ̂  H 

re f ) and the area

lower bound L 0 ; 
• γ : multiplier to vary the predictions ˆ H 

re f (for the robustness

verification); 
• CD : critical difference to distinguish the data mining techniques

(for technique selection); 
9 L c = ( 
∑ 

r∈ R d 1 r · d 2 r ) /W . 
10 gap re f (L 0 ) = (H re f − L 0 ) /L 0 . 
11 gap drls ( ̂ H re f ) = (H drls ( ̂ H re f ) − ˆ H re f ) / ̂ H re f . 
12 gap drls (L 0 ) = (H drls (L 0 ) − L 0 ) /L 0 . 

L  

 

L  

 

• R 2 : level of generalisation given by the coefficient of determi-

nation (for data mining approach); 
• RMSE : predictions’ accuracy given by the root-mean-square-

error (for data mining approach). 
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