Science of Computer Programming 110 (2015) 78-103

-
cience of Computer

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Reasoning about software reconfigurations: The behavioural @CmssMark
and structural perspectives

Nuno Oliveira, Luis S. Barbosa

HASLab, INESC TEC, Universidade do Minho, Braga, Portugal

ARTICLE INFO ABSTRACT

Affif{e history: Software connectors encapsulate interaction patterns between services in complex, distrib-
Received 8 July 2013 uted service-oriented applications. Such patterns encode the interconnection between the
Received in revised form 24 May 2015 architectural elements in a system, which is not necessarily fixed, but often evolves

Accepted 29 May 2015

Available online 26 June 2015 dynamically. This may happen in response to faults, degrading levels of QoS, new enforced

requirements or the re-assessment of contextual conditions. To be able to characterise and
reason about such changes became a major issue in the project of trustworthy software.

Is(?f/tv\\,/:aris 'reconﬁguration This paper discusses what reconfiguration means within coordination-based models
Software architecture of software design. In these models computation and interaction are kept separate:
Coordination components and services interact anonymously through specific connectors encoding the
Reo coordination protocols. In such a setting, of which Reo is a paradigmatic illustration, the

paper introduces a model for connector reconfigurations, from both a structural and a
behavioural perspective.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Complex distributed service-oriented systems require reliable and yet flexible architectures. A clear separation between
typical loci of computation (e.g., services or components) and the protocols that manage their interaction is at the heart of
what are called exogenous coordination models [1]. Actually, interaction is mediated by software connectors, such as in Reo
[2], which offer powerful “glue-code” to express such interaction protocols, while maintaining the envisaged separation of
concerns.

These systems often evolve at runtime, entailing the need for dynamic reconfiguration of their interaction protocols. This
is typically motivated by runtime faults, the need to cope with new requirements or the change in contextual conditions,
which often degrades the expected levels of quality of service (QoS) to unacceptable levels [3].

Conventionally, an architectural reconfiguration mainly targets the manipulation (e.g., substitution, update or removal)
of components, often disregarding the connectors, or otherwise taking them as yet another component [4-8]. In exoge-
nous systems, however, reconfigurations may target the interaction protocols themselves, i.e., the connector’s structure, as
discussed, for instance, by C. Krause [9]. Reconfigurations may thus substitute, add or remove communication channels, or
move communication interfaces between components, in order to restructuring a complex interaction policy.

Connector reconfiguration mechanisms play, in this setting, a major role to express change and adaptation of interaction
protocols. Moreover, identifying and understanding the consequences of applying these reconfigurations is an important
issue for the correct design of reconfigurable systems.

E-mail address: nunooliveira@di.uminho.pt (N. Oliveira).

http://dx.doi.org/10.1016/j.scic0.2015.05.013
0167-6423/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.05.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:nunooliveira@di.uminho.pt
http://dx.doi.org/10.1016/j.scico.2015.05.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.05.013&domain=pdf

N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103 79

This paper combines and extends our previous work [10,11], to set up a conceptual framework for modelling and rea-
soning about reconfigurations of software connectors. Connectors are syntactically represented as graphs of communication
primitives (e.g., channels), referred to as coordination patterns, whose nodes stand for interaction points. Edges are labelled
with identifiers and types which characterise their behaviour. The framework defines a number of elementary reconfigura-
tion primitives, as well as how they can be combined to yield ‘big-step’ reconfiguration patterns able to transform significant
parts of an architecture. Two complementary perspectives are introduced to reason about coordination pattern reconfigu-
rations. One is structural and independent of whatever semantics is chosen for coordination patterns. It is concerned with
requirements that, for example, enforce that during a reconfiguration a specific type of communication primitive remains
attached to another specific primitive or a set of primitives. Such properties are specified in a propositional hybrid logic
interpreted over the graph underlying the coordination pattern. The second perspective, on the other hand, is behavioural
and relies on the specific semantics of coordination patterns. It may be of use, for example, to discuss to what extent a
reconfiguration preserves the original interaction behaviour of a configuration.

It is important to emphasise, however, that reconfigurations in this paper are regarded from a static point of view. In-
tended for the software design phase, this approach allows the software architect (i) to specify connector reconfigurations;
and (ii) to express and analyse their properties, either from a behavioural or structural perspective. However, the prob-
lematic of their dynamic application, including possible mechanisms for keeping the system’s consistency along a run-time
reconfiguration, is not addressed here.

Contributions The main contributions of this paper are (i) the development of a model for connector reconfigurations,
their composition and application; (ii) a formal framework for comparing reconfigurations along the behavioural and the
structural dimensions; and (iii) a case study from the e-healthcare domain illustrating the approach. Our previous work
reported in references [10] and [11] introduced a notion of a reconfiguration pattern and discussed a first experiment
on the use of a hybrid logic to express structural properties of coordination protocols, respectively. Both topics, however,
are largely developed in this paper, leading to a new semantic model and a number of results for the logic, including a
characterisation of bisimilarity and the proof of a Hennessy-Milner-like theorem on the equivalence between the assertion
of two models being bisimilar and satisfying the same hybrid formulas.

Outline Coordination patterns are discussed in the next section paving the way to the detailed characterisation of re-
configuration operations in Section 3. The latter are combined to yield ‘big-step’ reconfiguration patterns. The following
two sections introduce mechanisms for reasoning about connector reconfigurations from two orthogonal perspectives: a be-
havioural one (in Section 4), relying on whatever semantics is chosen for the underlying coordination model, and a structural
one (in Section 5), in which properties of channel interconnection are expressed in a variant of propositional hybrid logic.
Moreover, Section 5 defines bisimilarity for the structural models and proves a Hennessy-Milner-like theorem. A case study,
taken from the e-healthcare domain, is discussed in Section 6 to illustrate the application of the approach proposed in the
paper. Related work is discussed in Section 7. Finally, Section 8 concludes the paper and points out a number of open issues.

Notation Standard mathematical notation, namely for logic, is used throughout the paper. Maybe not so common is the
representation of the powerset of a set X by 2% and its extension to functions: 2f(X) = {f x| x € X}. Function the and
projections mrj, for i a natural number, are used to retrieve the unique element of a singleton set and the ith component
of a tuple, respectively. Finally, if S is a set of sets notation |JS refers to the (iterated) union of all its elements, i.e.,
US={xeX|XeS}

2. Coordination patterns

Software connectors encoding reusable solutions for architectural problems in distributed, loosely-coupled systems are
called in this paper coordination patterns. They are specified as graphs whose nodes represent interaction points and edges,
standing for communication primitives, are labelled by pairs composed of their identifier and type. To keep exposition con-
crete, the Reo coordination model [1,2] (in particular, its set of primitive channels) is adopted, in the sequel, to provide
types (and consequently a semantics) to the communication primitives in a coordination pattern.

In order to keep the paper reasonably self-contained, a brief introduction to Reo is given below. Coordination patterns
are introduced afterwards.

2.1. A primer on Reo

Reo [1,2] is a popular model for exogenous service coordination based on channels. It is compositional, in the sense that
complex coordination structures are obtained from the combination of channels.

2.1.1. Channels, nodes and connectors

A Reo channel is a point-to-point communication device with exactly two directed ends and a behaviour (or coordination
protocol) defined within a specific semantic model. A channel end may accept or dispense data, in which cases it is said to
be a source, or a sink end, respectively. Normally, a channel has one source and one sink end, but Reo also allows channels to

80 N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103

a———>p a---->p a » < D a l:l b a El b
sync lossy drain fifoe fifor
01 09 l

O O _,0—0 b
S1 T82 SBT S4 _- -
a O——e— _ }>e——0b a O——> 0l »>—=« o,
cde x fgh ST~ T
J T~
e——>0O c¢
m
Sequencer ExclusiveRouter

Fig. 1. Primitive Reo channels (above) and two connectors (below).

have two source or two sink ends. Channel ends can be joined into nodes, which may be of three distinct types: (i) a source
node connects only source channel ends, (ii) a sink node connects only sink channel ends, and (iii) a mixed node which
connects both. Source and sink nodes are also referred to as the boundary nodes or ports of a connector. Fig. 1 depicts a
basic set of primitive channels in Reo and two connectors built from their composition.

Informally, the sync channel consumes data at its source end and transmits it through the sink end, provided that
both ends can communicate atomically, i.e., at the same logical time. Otherwise the channel blocks until communication is
allowed to proceed. The lossy channel behaves like sync when both ends are prepared for communication. However, in the
absence of a data request at the sink end, any data present at its source is taken and lost. The drain channel has two source
ends from which data is taken synchronously. A fifo channel, on the other hand, has a buffering capacity of one memory
position, allowing for asynchronous communication between its ends. Qualifiers e and f refer to the channel internal state
(either empty or full, respectively).

The Sequencer and the Exclusive Router are examples of Reo connectors built from the composition of several primitive
Reo channels, by joining their ends. A mixed node behaves as a replicator (respectively, a merger) when composed of a
source (respectively, a sink) channel end and two or more sink (respectively, source) ends. In the first case it accepts data
at the source end and replicates it to all connected sink ends. In the second, it merges non-deterministically to the sink end
data selected from the connected source ends. Clearly, when a mixed node is composed of multiple source and sink ends,
data is simultaneously merged and replicated, a behaviour referred in the Reo literature as the pumping station.

The Sequencer takes data from node a and transmits it to node o1 and buffer x in a first synchronous step. Then it
takes data from the buffer to nodes o, and b in a second synchronous step. The net effect is that nodes o and o, receive
data in sequence. The ExclusiveRouter connector takes data from node a and transmits it either to b or to c. In detail, data
is transmitted to b (respectively, c) when this has pending requests, but there are no requests at node c (respectively, b).
When there are pending requests at both b and c, the merger node k chooses non-deterministically one of these nodes to
receive data. Graphically, the white circles represent the boundaries of the connectors, i.e., source and sink nodes (used to
link the connector to external services or other connectors), while the black ones represent mixed (internal) nodes.

2.1.2. Semantics

Several formal semantics have been proposed for Reo for the last ten years [12]. Some models describe data flow
through timed data streams [13]; others through a labelling scheme with colours [14,15]; others still resort to some form
of generalised automata. Let us recall two of these automata-based models, namely constraint automata [16,17] and Reo
automata [18,19], briefly reviewed below.

Constraint automata Constraint automata [16,17] are defined over a set X of nodes representing the connector ports, and
data constraints over X.
Data constraints, collected in a set DC, are given by the grammar:
8.8 3 trueldx=dy|gVv gl gngl—g

where dy is for the data item associated to X, the latter standing either for a node in X or a data variable. Formally,

Definition 1. A constraint automaton A is a tuple (Q, ¥, —>, Qg), where Q is a set of states, Qg C Q, is the set of initial
states, ¥ is a (finite) set of ports, and —> € Q x 2 x DC x Q, is the transition relation: each state transition is labelled by
the set of ports which become active on its firing and a set of data constraints.

Two binary relations, = and <, are defined over DC as follows: g; = g» if g1 and g, define equal data assignments; on

the other hand, g; < g; if data assignments in g; imply those in g;. Additionally, dc(q, N, P) = \/{g:q H pPADpEP}Iis
the weakest data constraint that ensures the existence of a transition from g to any state in P, via a set of names N.

N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103 81

{a}
{a, b} {a, b} ds = da
dy = da b = do {a,0}
{o}
{a} db = dz
sync lossy drain fifo
{a7 01}
do, = dg Ny = do
{a, b}
{b7 02} {aa C}
db:dz/\dOQ :dz dc:du

Sequencer ExclusiveRouter

Fig. 2. Constraint automata for primitive Reo channels and two connectors.

Fig. 2 depicts the constraint automata for each of the primitive Reo channels and connectors shown in Fig. 1. Consider,
for instance, the sync channel: label {a, b} captures the fact that both ends a and b are synchronously activated, while the
constraint d, =d, specifies that data present in a is transmitted to b.

Constraint automata compose (composition is, as usual in automata theory, a combination of product and hide [16]).
However, the model is unable to capture context dependent behaviour. For example, a constraint automata corresponding
to a lossy channel models non-deterministically the choice between data flow and data loss, a decision which is intended
to be (deterministically) made by the environment.

Reo automata Reo automata [18,19], on the other hand, are context-sensitive and act as acceptors of guarded strings. For-
mally, let ¥ = {01, ...,02} be a set of ports. The set of guards is the free Boolean algebra By over X generated by the
following grammar

g>0€eX|T|Ll|gvglgnglg

and represent constraints on the firing of a transition. Atomic guards, collected in a set Aty, are conjunctions of p, p, for
p € X. Intuitively they specify which ports are and are not enabled (i.e, exhibiting pending requests or their absence).
A guarded string over X is a sequence (g1, f1)...(gn, fn), for n >0, f; € X, where each g; is a guard and each f; stands for
the ports that synchronously fire read/write operations. Relation < on guards is defined as g1 < g, <= g1 A g2 = g1, thus
expressing logic implication.

Definition 2. A Reo automaton ARge, is a tuple (2, Q, §), where T is a set of ports, Q is a set of states and § € Q x By x
2% x Q is the transition function which satisfies the reactivity and uniformity conditions.

A transition (q, g, f,q’), typically represented as q ﬂ> q’, says that if the connector is in state q and the port requests
present at the moment, encoded as an atomic guard g/, are such that g’ < g, then the ports in f will fire and the connector
will evolve to state ¢’. Intuitively, reactivity ensures that data flows through ports with pending requests, and uniformity
enforces that the firing set of a port is a subset of its request set (see [19] for the formal definition).

Fig. 3 depicts the Reo automata for each of the primitive Reo channels and the two connectors considered in Fig. 1. In
the sequel, notation ablab denotes a guarded string element (a A b, {a, b}).

As shown in the lossy channel example, the context-awareness is captured through the use of negative information in
Reo automata. In this example, the operation in a fires (without synchronisation with b) when there is a request in a but
not in b (represented by b), as expressed in the guard.

2.2. Coordination patterns

Reo channels can be put together to form coordination patterns. The notion, essentially a methodological one, is in-
tended to encode a reusable architectural solution for a coordination problem. Formally, it is defined as an abstract graph
of communication primitives where edges are labelled with a pair formed by an identifier and a type, and nodes represent
interaction points. Interaction points are locations where communication primitives synchronise their interfaces (ends) for
interaction with other patterns or external components. When these locations are composed of more than one end, those

82 N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103

ala
ablab ablab ablab
& abla @ blb
sync lossy drain fifo
ao1|ao;

boz |boy abe|ab C@D abclac

Sequencer ExclusiveRouter

Fig. 3. Reo automata for primitive Reo channels and the sequencer connector.

are said co-located. In the remaining of this paper, references to the notion of communication primitive will be substituted by
the more concrete one of a channel, without loss of generality.

Definition 3 (Channel). Let £ be a set of channel ends, Z a set of unique identifiers and 7 = {sync, lossy, drain, fifoe, fifos, . ..}
a set of channel types. A channel is a tuple

c=(S,i,t,K)

whereieZ, te 7T, and S, K C &, such that SN K =0, are the sets of source and sink ends, respectively.

Definition 4 (Coordination pattern). A coordination pattern is a pair
P ={Cp, Np)

where C, is a set of channels, and NV, is a set of nodes specified as a partition on the union of all ends of all channels in
Cp, such that,

1. channel identifiers are unique:
Ver.caec, - T2(c1) =m2(C2) = €1 =02
2. the number of channels sharing a node is never greater than the number of co-located ends in it:

Ynen, - Inl = [{c € C[n N (w1(c) Umy(c)) # B}

Notation 0 = (), @) denotes the empty coordination pattern; P is the set of coordination patterns. Whenever clear from
the context, subscript p in C, and A, will be omitted.

Operations I(p) ={i e N, | Jeec, - iNT1(C) £V Aind, p)} and 0(p) ={oeN, | Jeec, - 0 N74(c) # P Aout(o, p)}, where
in(x, p) =Veec, - XN 74(c) =¥ and out(x, p) =Veec, - xN71(c) =¥, are used to retrieve, respectively, the set of source and
sink nodes (i.e., the 1/O interface) of coordination pattern p.

The set of channel identifiers in a coordination pattern p is given by J, = 272(C,). Another auxiliary operation computes
the set of ends of a channel (uniquely) identified by ch in the context of a coordination pattern p: @;" =let(c =the{c’ € C, |

12(c") = ch}) in 1 (¢c) U m4(c). Finally, ‘)?i)“ ={neN,| QS;" Nn # @} retrieves the nodes of the coordination pattern p where
the ends of channel ch participate.

Example 1. An instance sc of a sync channel (cf, Fig. 1) is written as ({a}, sc, sync, {b}). Plugging a drain channel
(for example, the one specified as ({c,d}, sd, drain, #)) to its output end b yields the DummySynchroniser pattern p =
({{a}, sc, sync, {b}), ({c, d}, sd, drain, #)}, {a, d, bc})' which allows data to be written on a, if there exist pending requests
at d. Fig. 4 depicts its topology.

Finally, I(p) = {a,d} and O (p) = 4.

In the sequel a visual, Reo-like representation of coordination patterns (as in Fig. 1) will be adopted. To increase read-
ability channel identifiers are only added to the visual representation when needed.

! In order to improve readability, nodes {a, b} are written as ab; accordingly, a set of nodes {{c}, {d}} is denoted by {c, d}.

N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103 83

sc sd
aO—>0 »—=< 0O d

be

Fig. 4. The DummySynchroniser coordination pattern.

3. Reconfigurations

In an exogenous coordination framework, the focus of reconfigurations is the set of coordination pattern themselves,
instead of the plugged-in components which are considered external services. Therefore, any change to the original structure
of a coordination pattern qualifies as a reconfiguration. These changes are driven by the sequential application of a number
of primitive reconfiguration operations which manipulate the basic elements of a coordination pattern.

3.1. Primitive reconfiguration operations

Primitive reconfiguration operations change atomically the basic structure of a coordination pattern, namely, its nodes
and channels. We consider the following five primitive operations:

Prim = {const,, par,,, joinp, split,, removec, | p € P, P SN, p e N,ch e T}

where N is the set of all nodes.

The application of a primitive reconfiguration r to a coordination pattern p, denoted by p er, yields a new coordination
pattern suitably modified. The semantics of e is defined below for each primitive reconfiguration. In the sequel, conditional
expressions are written as (¢ — eq, ey) (read return eq if ¢ holds, e; otherwise).

The most trivial reconfiguration is the constant one, along which the original coordination pattern is replaced by a new
one. Formally:

Definition 5 (const). Let p1, p2 € P. Then,
p1econst,, =

The par operation sets the original coordination pattern in parallel with the one given as a parameter without creating
any connection between them. It assumes, without loss of generality, that nodes and channel identifiers in both patterns
are disjoint.

Definition 6 (par). Let p1, p2 € P. Then,
p1 e pary, = (Cp, UCp,, Np; UNp,)

The join operation performs connections in the coordination pattern by merging a set of nodes into a single one.

Definition 7 (join). Let p € P, and N C N. Then

p e joiny = (Cp. (NS N, > {{ JNJUW, \N)., N,))

Example 2. Consider
p = {{{{a}, sc, sync, {b}), ({c, d}, sd, drain, ¥)}, {a, b, ¢, d})

and use the join primitive to obtain the coordination pattern in Fig. 4. The relevant operation is 0 e joing,). Since {b,c} C
{a, b, ¢, d} =, this entails computing {(_{b, c}} = {bc} and N}, \ {b, ¢} = {a, d}, whose union is {a, d, bc}. Therefore,

p e joiny, oy = ({{{a}, sc, sync, {b}), ({c, d}, sd, drain, ¥}, {a. d, bc}).

The split primitive reconfiguration is dual to join. It breaks connections within a coordination pattern by separating all
channel ends co-located on a given node.

Definition 8 (split). Let p € P and n € V. Then,
pesplit,=(Cp, MeN, — 25" U (N, \ {n)), Np))

where sing(x) = {x}.

84 N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103

Example 3. Let p stand for the coordination pattern in Fig. 4. Applying the o e split,. primitive makes it possible to retrieve
the initial pattern of the previous example. Since bc € {a,d, bc}, compute 25"9bc = {b, ¢} and N, \ {bc} = {a, d}, whose
union is {a, b, c, d}. Therefore,

p e split,e = ({{{a}, sc, sync, {b}), ({c, d}, sd, drain, #)}, {a, b, c, d}).
Finally, the remove operation removes a channel from a coordination pattern and updates the nodes in which the channel
synchronised its ends.
Definition 9 (remove). Let p € P and ch € J,,. Then,

p eremovesy = let R={e €C, |ma(e) =ch}

minus _cp
N=R#0 - 2 ¢
in (Cp \ R, N)

where minusg(X) = X \ E.

No) \ {2}, Np)

Example 4. Consider again the coordination pattern p depicted in Fig. 4, but extended with a fifo, connected to channels
sync and drain as follows:

p = ({{{a}, sc, sync, {b}), ({e}, q. fifoe, { f}). ({c, d}, sd, drain, #) Ha, be, fc,d})

The original pattern can be obtained as (p e removeq) e joing, o, On computing o e removeg note that R = {({e}, q, fifoe, {f})}
and N = 2™"se.n) {a, be, fc,d}) \ {#} = {a, bc, d}. Thus,

(p e removeg) e joiny, oy = ({({a}, sc, sync, {b}), ({c,d}, sd, drain, #)}, {a, bc, d}).

The following results characterise the effect of primitive reconfigurations. Lemma 1 shows that the set P of coordi-
nation patterns is closed under the application of these primitives. Lemma 2 identifies contexts which are unaffected by
reconfigurations.

Lemma 1. The set P of coordination patterns is closed under the application of reconfigurations in Prim.

Proof. Let p,p' € P, NCN;neN, cheT and r € Prim. For each primitive reconfiguration let us check the properties in
Definition 4. Thus,

e For p e const,y, all properties hold since p and p’ are assumed well-formed.

e For p e par,, the resulting pattern is the component-wise union of o and p’, which are assumed to be disjoint. There-
fore, since p and p’ are well-formed and union does not change their specification, well-formedness is preserved.

e For p ejoiny, all the nodes in N are merged together. Condition 1 in Definition 4 is preserved because p is well formed
and no channels are added to it. The second condition in the same definition also holds because each node in N
preserves the inequality. By merging these nodes into one, the inequality still remains, because the nodes are disjoint
partitions of channel ends.

e For p esplit,, all the channel ends co-located in n are separated into simple nodes. Condition 1 is preserved because p is
well formed and no channels are added to it. Condition 2 is also preserved because, ends being unique, the separation
of node n results in |n| nodes, each of which is formed by a single channel end naturally associated to a single channel.

e As a result of p e removey, the channel identified by ch is removed and its ends are removed from the nodes to which
it was previously connected. Condition 1 is preserved because no channel is added to the well-formed pattern p, and
so is condition 2. Because p is well-formed, then each node n to which ch is connected preserves the inequality. By
removing ends of ch from n it is obtained either |n| =0, in this case the node is removed from p; or |n| > 0, meaning
that a number k of channels share ends in n. Then, either each of these channels contribute with one end to n, yielding
n=k; or they contribute with more than one end to n, yielding n >k. O

Lemma 2. Let p,p’ € P; P C N; p € N and ch € Z. The following properties, stated as strict equalities between coordination
patterns, hold:

peconst, =pifp=p' M
pejoinp =pif P\ N, #0 (2)
pesplit,=pifp ¢ Ny (3)

p e removecy = p if Veey, € # ch (4)

N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103 85

Proof. The lemma guarantees that reconfiguration operations that do not affect elements of the coordination pattern have
no effect. All of them come easily from the definitions. For (4), note that if Vcez,c # ch then {e € C, | m2(e) = ch} = 4.
Therefore, p e removec, = (Cp \ {8}, Np) = p. O

3.2. Composing reconfigurations

In most cases, the application of a single primitive reconfiguration is not enough. Single steps, however, can be combined
sequentially.

Definition 10. Let p € P and ry,r, be two reconfigurations. The application of r; followed by r; is given by
pe{ri;ni=(per)ern

Lemma 3. The set P of coordination patterns is closed for sequential composition.

Proof. The proof is by induction on the structure of reconfigurations. The base case, of primitive reconfigurations, is already
proved in Lemma 1. Consider now p e {r{; 2}, and assume, without loss of generality that rp is a primitive reconfiguration.
If not, r, can always be rewritten as a sequence of reconfigurations ri,r,---, such that its last element is a primitive
reconfiguration. By induction hypothesis p er; is in P. Then conclude by Lemma 1, for rp primitive. O

The following lemma introduces a number of properties of primitive reconfigurations, stated as strict equalities between
coordination patterns.

Lemmad4. Let p, p1, p2 € P, {n}, N, N1, N, € N. Then,

p e consty, = p1 (5)

p epar, = pjepar, (6)

(p epary,) epary, = p epary opar, 7

(o ejoiny,) ejoiny, = (0 e joiny,) e joiny, ifUN1 OUNZ:Q) (8)

(p ejoiny) esplit,=p if | JN=nAVpen - Ip|=1 9)

(0 @ splity) sjoiny = o if | JN=nAVpen-[pI=1 (10)

(0 epar,s k) ® remove; = p (11)

where ((S,1,t, KC) = ({{S,1,t, K)}, {{S}, {K}}) regards channel (S, 1i,t, K) as a single coordination pattern.

Proof. Property (5) is an immediate consequence of the definition of const. Laws (6) and (7) are proved in a similar way
resorting to commutativity and associativity of set union, respectively. Thus,
p epar,,
= { definition of par }
(CpUCpys Np UNp,)
= { U commutative }
(Cpy UCp, Np; UNp)
= { definition of par }
(Cp1. Npy) epare, nr,)

{ projections }

p1 e par,

For (7),

86 N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103

(p epar,) epar,,
= { definition of par }
(CpUCpy UCpy, Np UNp UNG,)
= { U associative, definition of par }
(Co. Np) e Paric, uc,, Ny UN,,)
= { definition of par }

(Cp, Nﬂ) o par(Cp1 N, Yeparc,, Np,)
= { projections }

pe par/o].parp2

For the following laws, involving join and split, we restrict attention to the cases in which the reconfiguration actually
changes the pattern (i.e,, in the then-cases in the conditional definition of both operators). The other cases are trivial. Thus,
for (8),

(p ejoiny,) e joiny,
= { definition of join (then-case) applied twice }

(Cp (N2 U AU N1} U W, \ N1\ Na)

= { set difference distributes over union }
(Co (N2} UL N1} \ N2 U (W) \ (N1 UN2))

= {condition | JNy N|_JNy = implies {{_JN1} NN =1}
(o AUN2VU (N1} U W)\ (Ng UN))

= {similarly}
(Co. (N1} U N2} U, \ N2)) \ Ny)
= { definition of join (then-case) applied twice }
(p ejoiny,) e joiny,
For (9)
(p e joiny) e split,
= { definition of join (then-case) }
(Co. (L NYU W, \ N)) @ split,
= { definition of split (then-case) }
(Cp, 2™ U ({|JNYU W, \ N\ ()
= { assumption: U N=n}
(€p,2°™nU (N, \ N))
— {assumption: Vpen - [p| =1)
(Co, NU W, \ N))

{ sets, projections }

o)
For (10),

(o e split,) e joiny
= { definition of split (then-case) }

(Cp, 2™ U (N, \ {n})) e joiny

N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103 87

Ao T

removeP overlapP insertP
& FPN A
replaceP implodeP moveP

Fig. 5. Reconfiguration patterns.

= { assumptions: U N =n (which implies 25™n = N) and Vpen - Ipl=1}
(Cp, NU W\ {n})) e joiny

= { definition of join (then-case) }
(Cp AJNIUNUW, \ (n) \ N)

= { U N =n; sets }
(Cp, Np)

= { projections }

For (11),

(p eparys it x)) ® remove;
= { definition of ¢ }

(P e pars.ic k). ((s).(c))) ® remove;
= { definition of par }

(Co U{(S,1,t,K)}, Np U{{S}, {K}}) e remove;
= { definition of remove }

(Cp \ {(S. 1,1, K)}, 2MMSSUR N, U (S}, (K1)

= { sets; S and K are new nodes, i.e., not present in Np }

(Cps Np)
= { projections }
o O

3.3. Reconfiguration patterns

Through composition, one may express ‘big step’ reconfigurations able to affect significant parts of a connector (rather
than just a node or a channel). These will be referred to as reconfiguration patterns. The word pattern is used to emphasise
their generic nature and reusability.

Fig. 5 depicts a set of reconfiguration patterns, first introduced in [10], and found useful in practice. Each of them shall
be read from left (the original configuration) to right (what was obtained after applying the reconfiguration). They are formally
described and exemplified in the following paragraphs.

Remove. Pattern p e removeP(Cs) removes a set of channel identifiers Cs € J, from p € P, by successively applying the
primitive remove operation. Formally,

p e removeP(Cs) =rS(p, Cs)

where

rS(p.) =p
rS(p, {c}UC)=rS(p e remove., C)

88 N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103

Overlap. Pattern p e overlapP(p;, X) connects a new pattern o, € P to p by joining specific nodes in X €N, x N,. Each
pair in X indicates which nodes from p and p, are to be joined. Formally,

p e overlapP(pr, X) =10 (p e par, , X)
where
ro(p, %) =p
rO(p, {y}UY) =r0(p ®join, (y),m,(y))> ¥)

Insert. Pattern p e insertP(por, n, m;, my) places p, pr € P side by side and splits n € /\/'p to make room for p; to be interset
Connections are then re-built as follows: all the output ports produced by the split operation are joined with m; € I(p;).
Dually, the input ports produced by the split operation are joined with m, € O(p;). Formally,

peinsertP(pr,n,m;,my) =let p1=pe par,,
P2 = p1 e split,
Isp = 1(p2) \ I(01)
Osp=0(p2) \ 0(p1)

in (/02 .jOinOSpU{m,.}) .joinlspu{mo}

Example 5. Consider ps to be the sequencer coordination pattern depicted in Fig. 1. Suppose that a company uses this
protocol to coordinate the sequential execution of two services connected to ports o1 and o0,. For some reason there was a
need to restrict the second service to execute only on completion of the first. A possible solution is to let the first service
to acknowledge its termination and the protocol to memorise it. The following reconfiguration

i O
Tproactive = Ps ® insertP(X y , fgh, izi3, 0)
i2i3 O—__}>0 ©

does the job, yielding the proactive waiting sequencer coordination pattern depicted in Fig. 6.

Replace. Pattern p e replaceP(pr, X, Cs) replaces a sub-structure of p € P by removing the old structure composed of the
channels in set Cs € J,, and overlapping p; via information in a set X €N, x N, . Formally,

p e replaceP(pr, X, Cs) = (p e removeP(Cs)) e overlapP (o, X))

Example 6. Consider again the sequencer coordination pattern. Suppose that the services connected to ports o1 and o0, can
fail for long periods of time, possibly leading to deadlocks. A possible solution is not to always enforce services to answer.
Replacing the sync channels that provide ports 01 and o0, by lossy channels solves the problem, as encoded in the following
reconfiguration:

. S

i1 O--2>0 01
T'weak = Ps ® replaceP (" S6)
2 O--->0 922

which produces the weak sequencer depicted in Fig. 6, which actually avoids deadlock.

{(cde. i1). (fgh, i2)}, {s2,53))

Implode. Pattern p e implodeP(Cs) collapses a sub-structure of p € P composed of the channels in Cs € J,. The resulting
ports are joined together into a new node. Formally,

p e implodeP(Cs) = let p1 = p e removeP(Cs)
in pre jOiﬂN'/)1 \N,p

Move. Pattern p e moveP(ch, e, n) moves the end of a channel ch € J, from node e to node n € J\/'p. Formally,

N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103 89

“
o1 O 02 01 02
X O O
A
T) I's '86
e O0——eo— > [—>e——0b a O—>0—|:l—>0—>0 b
cde fizois gho ciie T figh
The pro-active waiting sequencer The weak sequencer
Fig. 6. Reconfigurations of the sequencer pattern.
o1
O 02 o1 02 o 02
T o) o o
o b o] aw lu o] 2
O—»O O—D—»o—»O Oo—e O—D—»o—»O O—e== o——0O
z fgh cd z fgh
x
pP1L = pPs® Split@ P2 = pP1 ojoin{g}d} pskem = P2 ojoin{g’g}

1) (2) ®3)

Fig. 7. Step-by-step example of moveP reconfiguration.

p emoveP(ch,e,n) = let e = ‘J“(i,h \ {e}
1= p e split,
E= o)
Isp =1(p1) \ 1(p)
Osp=0(p1)\ 0(p)
in (o1 'J'Oi”(lspuosp)\f) ® 0N g\ (e uin)

Example 7. This example uses the sequencer coordination pattern in order to explain, step by step, the moveP recon-
figuration pattern. Consider the reconfiguration rg,, = ps e moveP(x, cde, a). that takes a channel identified by x with
an end in node cde to be moved to node a. The first step is to obtain the node where the other end of channel x is:
e’ _‘ﬁ" \ {cde} = fgh. Then reconfiguration split.4. is applied to the sequencer pattern, yielding p; as depicted in Fig. 7 (1).
Now, the three sets of nodes E, Isp and Oy are computed:

E=2 ={e. fgh);
Iy =1(p1) \ I(p) ={a,e,d}\ {a} = {e, d};
Osp=0(p1)\ 0(p) ={c, 01,02, b} \ {01,02, b} = {c}.
Finally, two join reconfigurations are applied with arguments (IspU Ogp) \ E = {c, d} and (E\{fgh})U{a} = {g, e}, respectively.

Their effects are depicted in Fig. 7 (2) and (3). The final coordination pattern is ps,,, .

In spite of the apparently complex definition of some of these reconfiguration patterns, they all arise as sequential
applications of primitive reconfigurations. Lemma 5 makes this observation precise.

Lemma 5. Each reconfiguration pattern above arises as the product of a sequence of primitive reconfigurations.
Proof.

e An inductive argument establishes the result for removeP(C):
- Base case: C = (. By definition, p e removeP(?) =rS(p, %) =
- Inductive case: C # . Let C = {c} UC’. Assume that rS(p, C’) = p er, where r is a sequence of remove reconfiguration
primitives. By definition, p e removeP(C) =rS(p, C) =rS(p e removec, {c} U C’). Using the hypothesis we obtain (p e
remove.) o r, which is equal to p e {remove. ; r}. Therefore, the pattern may be expressed as a sequence of remove
primitives.

90 N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103

e For pattern overlapP(pr, X) the proof is also by induction (over a set X):
- Base case: X = . By definition, overlapP(pr, #) =10 (p e par, ,#) = p e par,,
- Inductive case: X # . Let X = {x} U X’. Assume, as induction hypothesis, that rO(p, X') = p er, where r is a sequence
of reconfiguration primitives. By definition, p e overlapP(pr, X) =10 (p e par,, {x} U X"), and yet, it is equivalent to
rO(((pepar,) ®joinr, x) 7)) X"). Using the hypothesis we get ((0 ® par,,) ®joiN i, o 7, (x)) ® - This is equivalent to

p e fpary, ; joiN(r, ¢o,myx) 5 T
which encodes the overlapP pattern as a sequence of reconfiguration primitives.
e For pattern insertP(or, n, m;, m,) the result comes directly from the definition. Let Is, = I((p e par),) e split;) \ I(p e par,)
and Osp = O((p e par,,) e split;) \ O(p e par,,). Then,
p einsertP(por, n, m;, my)
= (((p e pary,) e split,) & joing _ i;m;)) ® J0IN; m,))
=pe {parpr ; split, ; iOi“ospu{mi} ; join,spu{mu}}

e The proof for replaceP(p;, X, C) is also a consequence of its definition and the fact that this Lemma holds for both
removeP and overlapP. Therefore, assuming r; = removeP(C) and r; = overlapP(pr, X), with r; and r; sequences of
primitive reconfigurations, one gets

p e replaceP(pr, X, C)
= (o e removeP(C)) e overlapP(p, X)
=(pery)er;
=pef{r; rz}

e For implodeP(C) the proof is similar to the previous one. Assume that r = removeP(C), where r is a sequence of recon-

figuration primitives, because this lemma holds for removeP. Let p1 = p e removeP(C) Therefore,
0 e implodeP(C)
= (o e removeP(C)) ojoian1 W,
= (10) r) .joianl \Np
=pef{r;joiny, \w,}
e Finally, for moveP(ch, e, n) let e/ = ‘ﬁf)h \{e}, p1 = pesplity; Isp =1(p1) \ 1(0)); Osp=0(p1)\ O(p)) and E = ‘J"tf)’} Then,

p e moveP(ch, e, n)
= (1 ®JOiIN(1,U0,,)\E) @ IOINE\(e)yUfn}

=pe {Spllte) join(,spuosp)\,:-) jOin(E\{e/})U{n]}. O
4. Reasoning about reconfigurations: behaviour

The following two sections investigate criteria to order reconfigurations and enable the working software architect to
choose among them. The objective is to provide means to rule out configurations that, e.g, fail to preserve the overall inter-
connection behaviour or introduce channels which are, for some reason, not immediately available. This section introduces
a behaviour-based criterium for reasoning about reconfigurations. A complementary structural criterium is discussed later in
Section 5.

4.1. Semantic models

The behavioural point of view requires fixing a concrete semantic model for the coordination pattern. For illustration
purposes, constraint automata and Reo automata, two well-known models for Reo already discussed in Section 2, will be
considered here. Comparing reconfigurations in terms of the behaviour enforced on the coordination patterns to which they
are applied, entails the need for suitable notions of similarity and bisimilarity. Fortunately, they are already available in the
literature.

N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103 91

iri

o1 O 922

©) X O

| = v]
O——eo— }—>eo o |(—>e—0
@ cde Jiz kl ogh b

Fig. 8. The pro-active dependent sequencer patterns and corresponding Reo automata.

4.2. Comparing reconfigurations

Let [p]on stand for the semantics of the coordination pattern p € P in the semantic model 2Jt, and ~ and < the bisimi-
larity and similarity relations in 9t, respectively. As before consider 9t € {CA, RA}, with CA standing for constraint automata,
and RA for Reo automata. Reference to 90t can be omitted when the model is clear from the context. Reconfigurations can
be compared with respect to their application to a specific coordination pattern. Thus,

Definition 11. Let p € P, r1,r, be reconfigurations and 9t a semantic model. Then,

(r
(r

—_

é5)317‘2),0 iff [[porl]]gm’v[[porz]]gm

Km12)p iff [peri]om <[per]om

—_

Example 8. Consider again the sequencer coordination pattern. Suppose that a new requirement enforces a strict depen-
dence between services in a row. In particular, suppose the second service (connected to port 03) is launched with the
output of the first service, and that such an output is memorised whenever the second service is not ready to consume it.
Reconfiguration

1113 O

T'dependent = iNsertP(z\ Y , fgh,iz,0)
20 e }>0o
kl

which is akin to ryreacrive (se€ Example 5), meets the envisaged requirement. Fig. 8 presents the resulting pattern, which will
be referred to as the pro-active dependent sequencer. The corresponding Reo automata is exactly the same of the coordination
pattern obtained through application of the rprqacrive Teconfiguration. So, although both patterns are slightly different, they
exhibit a bisimilar behaviour (up to port names), expressed in the Reo automata model.

Therefore,

(rproactive éRA rdependent),os

Using constraint automata as a semantic model, however, bisimilarity fails. Fig. 9 shows the constraint automata for each
case. The difference (highlighted in the dashed transition) is that on the pro-active sequencer, data on the buffer y comes
from buffer x; while in the pro-active dependant sequencer data on buffer y comes from node iyis.

Example 9. Consider again the sequencer coordination pattern. Suppose that the results delivered by the second service are
an alternative to those offered by the first. Therefore, whenever this fails, the system may proceed normally through port b,
disregarding port 0,. This requirement is met by applying the following reconfiguration:

02, {(fgh. D)}, {s3))

which is actually part of the reconfiguration ry,q, discussed in Example 6. The resulting coordination pattern (referred to as
a quasi-weak sequencer) is a variant of the weak sequencer. Their structure and behaviour model are depicted in Fig. 10.

In spite of their similarity, it is possible to see that the upper transition of the automata for the weak sequencer has an ex-
tra guard expressing that data may be lost on the first lossy channel. So that, for 9t € {CA, RA}, [quasi-weak sequencer]on <
[weak sequencer]sn. Thus, (rquasiweak =< Tweak) ps-

Tquasiweak = Ps ® replaceP(¢ O- - ->O

92 N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103

{a,01} {a,01}

do, = dy = da do, = Ndy = da

¥ - -
s

{b, 02}

do, =dz =dg

doy = do = dg

Fig. 9. CA semantics for the pro-active sequencer (left) and the pro-active dependent sequencer (right).

o1 o2 o1 o2
©) @) @) @)

)\\)\\85)\\86
a0——e— }J>e——0b e0——e—{ j>e—50b
cde T fih cite T fish

The quasi-weak sequencer The weak sequencer
{Q} dy =dg
{g,g}dﬂ:dgAdz:dg {g,g}dﬂ:dgAdz:dg
{b} dy = do {b} dp = d
{b,03} doy = dy N dy = d, {b,03} doy = du Ny = d,
lquasi-weak sequencer]cp [weak sequencer]ca
go1|aoy
ao1]aoy aoila
bos|boy boa|boy
boz |b boz|b
lquasi-weak sequencer]ga [weak sequencer]ga

Fig. 10. The quasi weak and the weak sequencer semantics.

This suggests a possible classification of reconfigurations w.r.t. a coordination pattern and a semantic model as follows:

Definition 12. Let p € P, r a reconfiguration, and 9t a semantic model. Then,

e 1 is unobtrusive iff (1, =gn 1), (original behaviour preserved),

o 1 is expansive iff (1; <an 1), (new behaviour added),

e 1 is contractive iff (r <on 1), (original behaviour partially removed),
e 1 is disruptive otherwise,

where 1, denotes the identity reconfiguration, which, as expected, when applied to a coordination pattern keeps it un-
changed.

Example 10. It is now possible to classify all the reconfigurations of the sequencer pattern mentioned above w.r.t. either
the constraint automata or Reo automata semantic models. The r'progctive and the rgependens Teconfigurations are disruptive

N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103 93

o1

@)
A
Pweak ® imp|0dep({s47 86}) a O 5 ‘ ¢ 5 O f

cde

Fig. 11. Contractive reconfiguration.

while the ryeqr and the rgugsiweak are expansive. Moreover, TSyept is an unobtrusive reconfiguration. Fig. 11 shows a contractive
reconfiguration w.r.t., and up to node renaming, the weak sequencer coordination pattern.

5. Reasoning about reconfigurations: structure

As discussed in the previous section, connectors exhibit behaviour, determined by the underlying semantic model, and
therefore the effect of a reconfiguration can be ‘measured’ by whatever behavioural changes are entailed by its application.
For example, in certain cases, it may be necessary to rule out reconfigurations leading to non-bisimilar behaviours.

There is, however, another perspective whose focus is placed on the interconnection structure, with no reference to the
emerging behaviour. Examples of structural, or ‘syntactic’ properties are:

i) every fifoe channel from a node n is connected to at least a lossy channel or
ii) node i is a connector’s output node.

One may then require that a reconfiguration preserves such properties. This will lead to a different family of relations
to compare reconfigurations. What should be remarked is the fact that such relations are independent of the underlying
semantic model and, in a broader sense, not committed to the use of a specific coordination modelling language. This
section introduces a hybrid logic to express and reason about them.

5.1. A hybrid logic

Modal logic provides the standard way of expressing properties over the graph-like structure underlying coordination
patterns. Actually, any coordination pattern o gives rise to a transition system G(p) over nodes in N and labelled by

. t . .
connector types in 7, such that m — n if data may flow from node m to node n through a connector of type t in p.
Formally,

Definition 13. Given a coordination pattern p = (C,, N), its may-flow graph G(p) is a labelled transition structure over N,
labelled by channel types, and given by

U {m.t,n) | mneN, AmNS#H AnNK %) (12)
(S.LLK)EC,, S CHD

The set of nodes in G(p) is denoted by Gpodes(0).

Clearly, Gnodes(0) € Np. A similar transition could be defined labelled by connector identifiers in Z or even by pairs in
T x Z, both cases giving rise to deterministic transition systems. The logic below is, of course, independent of whatever
labels are chosen for representing specific views of the connector structure.

Often, however, structural properties are to be formulated relatively to a particular node in the pattern. An example is
given by property ii) above. In general, one may require, for instance, that all the channels incident in a specific node and
their interconnections remain unchanged under a reconfiguration. This justifies the choice of hybrid logic [20] to express
such properties.

In general, hybrid logic adds to a modal language the ability to name, or to explicitly refer to specific states of the
underlying Kripke structure. This is done through the introduction of propositional symbols of a new sort, called nominals,
each of which is true at exactly one possible state. The sentences are then enriched in two directions. On the one hand,
nominals are used as simple sentences holding exclusively in the state they name. On the other hand, explicit reference to
states is provided by a satisfaction operator @ such that @;¢ asserts the validity of ¢ at the state named i.

Structural properties of coordination patterns will be expressed in a variant of hybrid propositional logic, called Hp&,
where modalities are indexed by channel types in 7, or, more generally, by subsets of 7. The logic is interpreted over G(p),
for each coordination pattern p. Each node n in Gpoges(0) is endowed with a model of a propositional logic p€ defined over
channel ends in £ and the usual Boolean connectives:

p.p'3el-plpAp

where e € £. The satisfaction relation is as follows

94 N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103

nEePee iff een
n=PE —p iff npPe p
nEPEpap iff nEPEp AnEPEp
On top of p& a hybrid language is defined as follows:
.0 3plil—¢|ong | [Klp | [K]¢ | @g

where p is a sentence of p£, K €7, and i € Nom for a set Nom of nominals. Constants true and false, as well as the usual
Boolean connectives, are defined by abbreviation. For simplicity, in modalities ‘—’' stands for the whole set 7, and [—t], with
t € T, stands for T\ {t}.

Modality [K] quantifies universally over the edges of G(p) labelled by channel types in K; its dual (K) = —[K]— provides
an existential quantification. Modalities (K) and [K] express properties of outgoing connections from the node in which
they are evaluated, in a coordination pattern. Dually, modalities (K)) and [K] express properties of incoming connections.
Finally, the satisfaction operator @ redirects the formula evaluation to the context of a specific node. Nominals make possible
to express proprieties local to a specific node.

A semantic model, M, for this language is a pair (G(p), o : Nom —> A), where p is a coordination pattern, and o
assigns to each nominal a node in G(p). The satisfaction relation, given a model M = (G(p), o) and a node n is defined as
follows:

M,nk=p it nE=PEop

M,nkE—¢p iff M,nlE¢

MnEp A ifft M,nE=¢ and M,n ¢’
M,nEi iff o@l)=n

M, n = @;¢ iff M,o()E¢

M, n = [Klg iff Vme(p|n.t,p)eGo) Atek) - M, M E=¢
M,n = [[K]]¢ iff VYme(pi(p.t.n) eG(p) Atek} - M, mE¢

The satisfaction relation = lifts, as usual, to (global) satisfiability by quantifying over all the nodes in the model. Le., ¢
is globally satisfied in M (M = ¢) if it is satisfied at all nodes in M.

Example 11. Consider the following properties:

e Property i) above, is expressed as

@y [fifoe | {lossy)true.

Property ii), expressed as
@;[—]false,

uses [—]false to state the absence of outgoing channels from the node referred by nominal i.
e All outgoing channels from i are lossy:

@; ({(—)true A [—lossy]false).

Absence of a loop formed by a sync followed by a lossy channel at i:
i — —(sync)(lossy)i.

Notice that the absence of loops, and in general, irreflexivity of a binary relation is not expressible in classical modal
logic [21].
All output nodes are accessible through a sync channel but never through a fifo, channel:

[—Ifalse — ({(sync)) true A [fifoe] false)

Properties expressed in HpE can be verified, after a translation to classical propositional hybrid logic in the HyloRes [22]
system. The translation involves a restriction of propositional symbols to nominals and an encoding of the backward modal-
ities ((K)) and [K].

5.2. Bisimulation for HpE
The notion of bisimulation for HpE-models provides the right tool to compare coordination patterns from a structural

point of view. Formally, let M = (G(p), o) and M’ = (G(p’), 0"}, defined over the same set Nom of nominals and, of course,
the same set of channel ends £. Then,

N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103 95

Definition 14. A bisimulation for HpE-models is a binary relation R C G odes(0) X Gnodes(p’) such that

i) for any i € Nom and nRn’, o (i) =niffo’ (i) =n’
ii) for any i € Nom, o (i)Ro”’ (i)
iii) if nRn’, nodes n and n’ are elementary equivalent, i.e.,

Vpepe n =PE piffn =PE p

iv) (zig) for any t € T, if nRn’ and (n, t,m) € G(p), then there exists a node m’ such that (n’,t,m’) € G(p’) and mRm’
v) (zag) for any t € T, if nRn’ and (n’,t,m’) € G(p), then there exists a node m such that (n,t,m) € G(p) and mRm’

Lemma 6. The union and the relational composition of two bisimulations are still bisimulations.

Proof. Union. Let R = R1 U Ry, where both Rq, Ry are bisimulations. Clearly, any two nodes n,n’ related by R also satisfy
nRyn’ or nRyn’. Therefore, clauses i), ii) and iii) of Definition 14 hold. For clause iv) consider a connection (n, c, m). If nRyn’
(respectively, nR,n’) there is a node m’ such that (n’,c, m’) and mRym’ (respectively, mRym’), which, in either case, entails
mRm’. Clause v) is proved similarly.

Composition. Consider two (composable) bisimulations R, Ry and suppose nR; - Rin’, for nodes n,n’. Clauses i), ii) and iii)
of Definition 14 hold for Ry - Ry because they also hold individually for Ry and R3; for clause iii) note that the elementary
equivalence used in its statement is an equivalence relation. For clause iv), suppose nR> - Ryn’, for nodes n, n’. By definition
of relational composition, there is a node p such that nRyp and pR,n’. Suppose there is a connection (n,c,m); then, Rq
being a bisimulation, there exists a node p’ and a connection (p, c, p’), with mRp’. Connection (p, ¢, p’) and the fact that
pRyn’ for R, a bisimulation, on the other hand, entails the existence of a node m’ such that there is a connection (n’, c, m’)
and p’Rom’. Thus mR; - Rym’, as wanted. Clause v) is proved similarly. O

Definition 15. Given two models, M = (G(p), o) and M’ = (G(p'),0’), and two nodes n,n" in Gnoges(0) and Gpoges(0),
respectively, n,n’ are bisimilar, denoted by n = n’, iff there is a relation R which is a bisimulation over M, M’ and also
over M°, Mo, such that nRn’, where M° is a model identical to M but defined over the relational converse of G(p).

This extra requirement for R in the definition above comes from the presence of a backwards modality [K] to reason
about incoming connections. Clearly,

Lemma 7. Let U be a set of coordination patterns. Relation = is an equivalence relation over the set of nodes of all patterns in U.

Proof. It is immediate to show that the identity relation is a bisimulation, and so is the relational converse of a bisim-
ulation (if n = n’ is witnessed by a bisimulation R C G odes(0) X Grodes(0), for p, p’ € U, then " = n is witnessed by
R° C Grodes(P') X Gnodes(p)). Transitivity, on the other hand, comes from the fact that the relational composition of bisimu-
lations is also a bisimulation, as proved in the second part of Lemma 6. O

The usual connection between bisimilarity and modal satisfaction also holds as shown in the sequel.

Lemma 8. Given two models, M = (G(p),o) and M’ = (G(p'), '), and two nodes n,n’ in Gyoges(0) and Groges(0), such that
n=rn/, then

MnE® & M. 1o
for every formula ® € HpE.

Proof. The proof proceeds by induction on the structure of formulas.

i)®=p. Let M,n = p which, by definition of |=, is equivalent to n =P¢ p. Nodes n and n’ are elementary equivalent
because n = n’, which entails n’ =P p. Therefore, M’,n’ k= p.

ii) ® =i. Let M,n =i which, by definition of |=, is equivalent to o (i) = n. Then o’/(i) =n’ because n = n’, which entails
M =i

iii) ® = @;¢. Let M,n & @;¢ which, by definition of =, is equivalent to M, o (i) &= ¢. By definition of bisimulation
o (j) = o’(j), for any nominal j. This combined with the induction hypothesis yields M’, ¢’(i) &= ¢. Therefore,
M1 = @

iv) ® =[K]¢. Let M,n |= [K]¢ which, by definition of |=, is equivalent t0 Yme(pim.c,p) e G(p) A cek} - M, M = ¢. Assume
n=n' is witnessed by a relation R, and for each m above. For each connection (n’,c,m’) in M’, there exists,
by clause v) in Definition 14, a node m € M such that (n,c,m) in M and m = m’. As M, m |= ¢, by induction
hypothesis, M’, m’ |= ¢. Therefore, V(' |in.c,p') € G(p) A cek} - M, m’ |= ¢ which entails M',n" = [K]¢. Clause
iv) in Definition 14 gives the converse implication.

96 N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103

v) @ = [K]¢. The argument is similar to the one used in iv) with R being a bisimulation for M°, M'°.

Vi)®P=¢ AY. Let M,n &= ¢ A which, by definition of |, is equivalent to M,n = ¢ and M,n = ¢. By induction
hypothesis M’,n’ = ¢ and M’,n’ = ¢, which entails M’,n" |= ¢ A . The argument is similar for ® = —¢ (and,
in general, for the derived Boolean connectives). 0O

The converse of this result also holds whenever G(p) is image finite. Being image finite means that the number of inci-
dent connections in a node, for all nodes in G(p), is finite. Note, however, this is always the case, for any p, as coordination
patterns are typically composed of a finite number of connectors.

Lemma 9. Consider two models, M = (G(p), o) and M’ = (G(p"), ¢'), and two nodes n, n" in Gpodes (0) and Gnodes(0”), respectively,
suchthat M,n = ® < M',n’ &= &, for every formula ® € HpE. Thenn =n'.

Proof. Let us show that

Z ={(n,n") € Gnodes(P) X Gnodes(P") | VoeHpe - M,n=¢ & M 1" =)

is a bisimulation over M, M’ and M°, M’°. The atomic conditions, in clauses i), ii) and iii) of Definition 14 trivially hold.
Consider, now clause iv) (the (zig) condition). Let nZn" and assume there is a connection (n, c, m).

Both G(p) and G(p’) are, by construction, image finite, which makes S = {p’ | (n’,c, p’)} finite. It cannot be empty,
however, because in such a case M’,n’ = —(c)true and, by definition of Z, M, n |= —(c)true which is inconsistent with the
existence of connection (n, c,m) assumed above.

To obtain a contradiction, suppose that there is no node m’ € Gpoges(0’) such that mZm’ and is part of a connection
(n’, c,m’). Therefore, for every v € S, there is a formula v, such that M, m = ¢, and M’, v [~ ¢,. Consider now the
conjunction

v=/\ v

ves

of all of these formulas. Then, on the one hand, M, n = (c)y, but, on the other, M’,n’ |~ (c)y. This, however, contradicts
nZn'. The (zag) condition, clause v) in Definition 14 is shown in a similar way.

This proves relation Z is a bisimulation over G(p) and G(p’). A similar argument shows it is also a bisimulation for their
relational converses, which are also image finite. O

Combining both lemmas entails a Hennessy-Milner like result: modal equivalence in Hp€ and bisimilarity coincide for
models constructed from coordination patterns according to Definition 13. Note the result is valid in general for image finite
models.

Theorem 1. Consider two models M = (G(p), o) and M’ = (G(p’), o'}, and two nodes n,n" in Gpoges(0) and Gyoges(0’), respec-
tively. Then,

n=n"iff Vomppe MinE® < M n=o
Proof. Corollary of Lemmas 8 and 9 above. O
5.3. Expressing ‘long scope’ properties

Hp& can be extended to allow for modalities which take the form of regular expressions over pairs of channel names
and types. Technically this is a particular case of the extension of a modal logic with fixed points as in the p-calculus [23].
This is particularly useful to express ‘long scope’ properties, such as

i) A channel of type t is accessible from a node referred to by i
ii) All input ports lead to an output port via, at least, one fifo, channel

Consider, thus, the following syntax for modalities:

vael|t|vv|v+v|vE|vT

where € is the empty word, t € T, *. denotes concatenation, ‘+’ choice and v* and v* the Kleene and transitive closures. The
intuitive semantics is given below (a precise rendering requires the introduction of fixed points). Note that the modalities
referring to incoming connections are defined dually.

Definition 16. Let v, v{ and v, be modalities and ¢ a formula. The following define the semantics of the modalities exten-
sion:

N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103 97

(a) (t)
) a O PO SO

-
e O—e_

e}

bo——>0d Jgh g

QOXDQ ey

o——©0_

e T Yy
(c)

Fig. 12. Example of a displaced invariant.

(vi.v2)¢ = (v1)(v2)o

(Vi +v2)p = (v1)p Vv ()¢
(VYp=0 VvV (V){v)pV...
whHe =WV V)W V...

o (e)p=9¢=]I€l¢

o [V1.12]¢p = [v1][v2]@

o [V1 +1v2]9 =[vilp V [12]d

s [V'p=0¢VvipV[VIVIpV...
o Vg =[vip Vv VIVigV...

Example 12. With this extension it is now possible to express the properties above as follows:

i) @;(—*.t)true
ii) [—]false — (—* fifoe.—*)[—]false

5.4. Comparing reconfigurations

Equipped with a language to express structural properties of coordination patterns, we can define a new criterium for
comparing reconfigurations. Without loss of generality we will identify the set of nominals in each model M = (G(p), o)
with the set NV, of nodes in pattern p, thus making o = id,. Notation idx stands for the identity on set X, ie., for all
x € X idx(x) = x. In such a context, we define:

Definition 17 (Structural invariant). A structural property ¢ is invariant for a reconfiguration r in a model M = (G(p), id;,)
iff it is preserved by r. Formally,

(G(p).idp,) E ¢ = (G(pen),idy,,) E ¢
Then,

Definition 18 (Structural equivalence). Given a model M = (G(p), idy;,), reconfigurations r,rq and r; and a set of formu-
las @, it is said that

1. reconfiguration r preserves @ iff every ¢ € @ is invariant for r in M;
2. reconfigurations r; and r, are structurally equivalent with respect to &, written rq Eé/[ro, iff

(G(por).idy,.,) ¢ & (G(per).idy,.,) F ¢
for every ¢ € ®.
In practice, however, reconfigurations entail a sort of displacement of most structural relationships in the coordination

pattern. This means they often remain valid but at a different node in the pattern. A typical situation is illustrated in the
following example.

Example 13. Consider the coordination pattern whose evolution is depicted in Fig. 12(a). Clearly, at node cde it is true that,
after a connection made through a sync channel, all the others are established by lossy channels, i.e.
@cge (sync)({—)true A [—lossy]false).

Consider now that an insertP reconfiguration pattern is applied at node cde. In a first step, node cde is split because of the
application of the split elementary reconfiguration (Fig. 12(b)). Then a new structure is linked to the nodes resulting from

98 N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103

this operation (Fig. 12(c)). In both steps, however, the property is still valid for nodes e and moe, respectively. With respect
to the example in Fig. 12(c), this is expressed as

@M (sync)({—)true A [—lossy]false).
This example motivates the following generalisation of Definition 17.

Definition 19. Let 7 be a surjection on nominals. A structural property ¢ is invariant for a reconfiguration r, up to a name
translation t iff

(G(p).idpr,) E ¢ = (G(per),idaper) = PlT]
where ¢[t] stands for ¢ with all occurrences of a nominal i replaced by 7 (i).
Back to the example, if (G(p),0) &= ¢, then (G(p e1),0) = ¥[cde — mye] for r the relevant insertP reconfiguration.

Notation [x +— y] denotes a function that maps x to y and behaves as the identity in all other cases. Naturally, structural
equivalence can be tailored to this more general notion of invariant.

6. A case study

This section introduces a (fragment of a) case study in the domain of Healthcare Information Systems (HIS), to illustrate
the approach proposed in the paper. The implementation of Electronic Medical Records (EMR) systems brings benefits to
safely store all patient records, including their clinical episodes information and replacing manually kept medical records,
as well as to leverage the processing, interpretation and interchanging of medical information. EMR systems track and
store patient records and institution activity by supporting all the general healthcare workflows from scheduling patient’s
appointments to their admission, observation, exam, prescription and billing. Some systems also embody more specific med-
ical workflows concerning surgeries, ambulatory or post-surgery surveillance. The case study is concerned the management
of emergency waiting times in Permanent Hospital Services.

6.1. Permanent service workflow

A simplified version of the generic workflow followed in permanent hospital services is depicted in Fig. 13. Informally,
the patient arrives at the hospital and triggers the process by asking the administrative operator for a medical appointment.
The operator registers the patient’s admission as a new episode of his Electronic Patient Record (EPR). Later the patient is
admitted to triage. Upon the triage outcome, the patient may be sent to an immediate medical appointment or asked to
wait. Once admitted to a medical appointment, and depending on the severity of the symptoms, the healthcare professional
may terminate the occurrence (often issuing a prescription) or send the patient for further exams. If this is the case, the
patient waits to be called, then goes through the exam and finally, waits for the results. At this point, the patient meets
the healthcare professional again and, depending on the examination results, he may be routed to a specialist or to more
specific exams. Eventually the patient may be discharged, normally with a pharmacy prescription.

In an EMR system, this workflow is mapped into interacting services and a coordination layer to define the overall
system behaviour, which can be modelled as a coordination pattern. In the sequel we will focus on the parts of the workflow
involving waiting periods for the patients (the sub-workflow delimited by a dashed line in Fig. 13). The coordination pattern
depicted in Fig. 14 is a service interaction model in this sub-workflow. It will be referred to as pps.

Note that, for simplicity, services Medical Appointment (MAs) and Examination (Es) are modelled as buffered communi-
cation channels (regarded, henceforth, as a new type of channels). On the other hand, w (waiting) channels represent the
relevant waiting queues within the workflow. Other waiting times are left implicit within the Examination service. Port t, is
the unique input port of the coordination pattern to be connected to an external service for triage which is not represented
here. Similarly, port h, is the output port to be connected to a (also omitted) billing service. To simplify the picture, node
Q) represents an exclusive router coordination pattern that accepts data on its input port (x;), and, depending on context,
routes data to one of its two output ports (x; or x). The mixed nodes are named a, e and es;.

Usually, patient waiting times in the permanent hospital services are due to a lack of medical resources or to their
inappropriate scheduling. To lower costs hospital administrators tend to schedule a low number of professionals to deal
with the rather high number of emergency episodes.

The implementation of EMR systems opens the possibility to infer knowledge about the requirements depending on
contextual parameters like periods of the day, number of patients, days in the week, etc., and to design adaptations based
on such knowledge.

More interesting would be the possibility to anticipate a set of exams that would, most likely, be issued only during
the medical appointment phase. The inference of such a set by a decision support service is made possible by taking into
account the triage diagnosis, the patient’s symptoms and the generic patients’ clinical history stored in the EMR system.
Therefore, some patients would be routed immediately for exam, while others remain in a waiting stage. Only when the

N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103 99

Medical
Appointment

Patient
Admission

Examination
Results

Patient
Triage

Pharmacy

Specialist Prescription Examination
Patient
Discharge
Fig. 13. A generic workflow for permanent hospital services.
Es es;
cOo——H = |——e
w l MAs 1
t ® h
The Permanent Service pattern
(Pps)
Fig. 14. The coordination pattern for part of the permanent service system.
— >0
o1
Yi Y1
Feo 0—)
1 Y2
O O -
in T T2 My, 002
The Medical Resource pattern The Ezclusive Router pattern
(Pmr) (Per)

Fig. 15. Coordination patterns for the first reconfiguration: the medical resource pattern (left), is a variant of the exclusive router (right).

patients’ symptoms are inconclusive to infer the set of exams to be carried on, would he be dispatched to the waiting queue.
With this reconfiguration of the permanent service workflow, the overall waiting periods for the medical appointment are
expected to decrease, upon specific contextual conditions.

6.2. Reconfiguring the workflow

To cut down waiting times two possible solutions can be considered: either to assign extra medical resources, or to
anticipate a set of exams according to the symptoms of the patient. Let us consider the inclusion of a new medical resource
in the system. The two coordination pattern, depicted in Fig. 15, will be of use in the sequel.

The medical resource coordination pattern (henceforth referred to as pn;) represents the part of the protocol to deal with
patient admittance for medical appointment and its final decision. The variant of the exclusive router (henceforth referred to

100 N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103

Ls es;
g ®
MAs T
1
®. — ;Y Q fo
w Yi Y1
to O—_F—>0—X)
J Y2
MAs Z1
([J
b % Tzg

Fig. 16. The coordination pattern pgqq,, for the reconfigured permanent service system by the addition of medical resources.

Yi LY1 Es l
i O). co—df 1—e
w l M As T
j e—{_—e- ()0 ho

Fig. 17. The coordination pattern for the reconfigured permanent service system to support immediate examination period, referred to as Pexams-

as per) considers a number of synchronous channels to observe its ports. In this context, the reconfiguration rgqq4,,, to add a
new medical resource is specified as

insertP(er, a, i,01) ; overlapP(omr, {(02,in), (esi, €o), (ho, Mo)})

Application pps e rqqq,,, vields the desired reconfiguration on the permanent service system. The corresponding coordination
pattern is depicted in Fig. 16 and referred to as 0gdd,,-

The second solution entails the need for a reconfiguration which adapts the system to decide the next step based on the
patients’ symptoms. For this we resort again to the p. coordination pattern depicted in Fig. 15. A suitable reconfiguration
is therefore

Texams = overlapP(per, {(to, 02), (€Si,01)}).

The application of pps e rexams reconfigures the permanent service system coordination as illustrated in Fig. 17, referred to,
henceforth, as Pexams. With this reconfiguration, the system will automatically distribute patients either to be immediately
examined or to wait in a queue for medical appointment.

6.3. Reasoning about reconfigurations

A typical requirement of hospital administrations is that although the workflow may change at runtime, it must keep its
original features (as those embody the hospital business model). Therefore, any reconfiguration should meet this requirement.
Let’s see how this discussion can be made rigorous in our framework.

For the behavioural assessment of the two reconfigurations proposed one rely on Reo automata, assuming Reo as the
concrete underlying coordination language. Clearly:

1, < raddres)pps and (1, < rexams),ops-

Therefore, both reconfigurations are classified as expansive. This means the original behaviour of the coordination layer of
the permanent service system is preserved, but more functionality is added, as expected. In this sense the requirement
above is preserved.

What one is able to say about the functionality added by each reconfiguration forces us to conclude that the two
reconfigurations are behaviourally incomparable. There is not even a simulation relating them. Therefore, the emergent
behaviours are different.

The structural perspective provides a different insight. The objective here is to check that both reconfigurations are
structurally equivalent for a given set of properties. These properties are supposed to exist on the original coordination
pattern and to remain true upon reconfiguration.

For illustration purposes, suppose the hospital administration placed the following two requirements to keep the system
consistent with the main workflow: 1. a patient always meets a doctor in a medical appointment after triage; 2. the patient
is always routed to a billing service at the end of the procedure. These requirements are essentially behavioural, and as

N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103 101

such discussed in terms of the underlying semantic model for Reo. However, they can also be analysed from a structural
perspective: the question becomes to know if such a data flow is possible, i.e., if there exist in the graph the necessary
connections to make the intended flow possible. The requirements are then rephrased as: 1. there is a path from triage input
port (t,) to a MAs edge; 2. all paths from input ports, lead to the billing service (h,) output port, which can be expressed
in the hybrid logic introduced in Section 5 as follows:

1. ¢1 = @ (—)true A [—*][—MAs]false
2. ¢2 = [[—]]false —> [—*]ho.

Pattern (t)true A [—t]false captures the fact of a connector of type t being the only outgoing connector from the current
node, i.e., the node at which the formula is evaluated. Expression [—]false, in ¢y, identifies which nodes are entry points
into the coordination pattern as the ones which are not connected backwards.

We may now establish that both formulas are preserved by the two reconfigurations suggested above. Formally this
amounts to show that, given model M = (G(ops), id/\/pps), equivalence

(G(Pps ® T'addyes)s id./\fpps.r) E ¢ < (G(0ps ® Texams), id./\f,;ps.rexa,m) = ¢

holds for ¢’ = ¢[i > t,] for ¢ € {¢1, ¢2}.

By inspection of diagrams depicted in Figs. 16 and 17 it is easy to verify that both properties, up to the given correspon-
dence of nominals, are valid in both (reconfigured) patterns. For ¢; note that in the first pattern there are only two possible
connections from node t, and both of them involve a MAs connector. After applying rexams to pps, node t, is replaced by a
node i, which entails the need for introducing surjection [i — t,]. Then, all connections from i link to a channel of type MAs.
The argument for ¢, similar, noting that t, is in both cases the unique node with no incoming connections, thus satisfying
[—false.

addres

7. Related work

The (essentially methodological) approach put forward in this paper is in debt to previous research on the reconfigu-
ration of Reo connectors, in particular to the work of D. Clarke [24,25]. The first reference provides an axiomatisation of
connector constructions (with a role similar to the primitive reconfiguration operations in the framework proposed here) to
discuss connector equivalence. The second one introduces a basic modal logic to reason about reconfigurations, interpreted
over constraint automata. What distinguishes our approach from this pioneering work is the graph-based representation of
connectors (referred here as coordination patterns) and the independence with respect to the coordination model. Moreover,
we distinguish behavioural from structural reasoning and stress the independence of the latter w.r.t. whatever behavioural
semantic model is chosen for the coordination layer.

Structural and behavioural characterisations of dynamic update operations for reconfiguration of interacting systems also
appear in the context of process calculi. M. Bravetti [26,27] shows that these different characterisations affect expressiveness
and decidability/reachability results on adaptable processes. Our own approach also clearly separates the structural from the
behavioural levels when analysing reconfigurations. Reconfigurations are characterised structurally (rather than behaviourally
and structurally) but inspected under both perspectives.

Much work on reconfiguration has been conducted in graph-theoretical settings. Categorial accounts of graph grammars
as formal frameworks for reasoning about software architectures and their dynamic changes are largely explored in the
literature. Pioneer works [28,29] model software architectures as labelled graphs of components and connectors. The former
uses productions on graph grammars to describe the style of an architecture and how it may evolve over time; the latter
takes advantage of the double pushout approach [30,31] to express reconfigurations of a system architecture. R. Bruni and
his collaborators [32] also adopt graph grammars applied to hypergraphs to both describe different notions of dynamic
reconfiguration for software architectures.

D. Plump [33,34] introduces GP2, a programming language for solving graph problems, based on a notion of graph
transformation and four operators shown to be Turing-complete. The language allows for the creation of programs over
graphs at a high-level of abstraction. A program is a set of rules defining a transformation scheme based on the double
pushout approach. Guards may be used to restrict the application of the program rules. A recent extension to Plump’s
work [35] introduces a Hoare logic for verifying graph programs. Although formulated in a different setting, the problem
has several points of contact with our own effort to verify properties of coordination patterns.

The most recent and detailed work on architectural reconfigurations in a context close to ours is that of C. Krause [9,
36,37], in which Reo connectors are described by typed hypergraphs whose vertices are nodes and (typed hyper-)edges
represent communication channels and components. High-level replacement systems, which form a powerful generalisation
of algebraic graph-rewriting techniques to cope with enriched structures, from e.g. labelled graphs to Petri nets, are used to
express reconfigurations. Those are specified as rewriting rules with a left-hand side (to be matched with a source structure)
and a right-hand side (that specifies how the latter is changed). The authors claim several advantages of this approach based
on graph rewriting: (i) the rewriting rules describe complex reconfigurations that are applied in an atomic step, rather than
in a sequence of low-level operations; (ii) these rules are applied not only locally but also globally, wherever the left-hand

102 N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103

side of the rule matches the source structure; and (iii) by using positive or negative conditions associated to rewriting
rules, it is possible to define in which specific situations the system should be changed. However, the approach is not fully
compositional and, from our point of view, may become too complex to automate its application even in simple cases.

8. Conclusions

This paper introduces a framework for reasoning about reconfiguration of coordination patterns. Such patterns are de-
scribed as graphs of primitive channels and their reconfigurations defined through the composition of a set of elementary
operations: const, join, split, par and remove. Reconfigurations are assessed and compared according to two orthogonal per-
spectives: behavioural, based on the evaluation of the reconfigured pattern with respect to the underlying semantic model
(Reo models were used for illustration purposes), and structural, in which properties of the interconnection graph are for-
mulated in a variant of propositional hybrid logic.

This approach provides the basis to a systematic classification of reconfiguration strategies which are expected to lead to
effective derivation of semi-automatic monitoring tools in the near future.

Although exposition resorted to Reo, as a concrete coordination setting, for illustration purposes, the basic ideas have
a wider application. Recent experiments with BIP [38,39] show that the approach can easily be reused in the context of
different coordination models, provided that they offer a well-defined notion of a software connector.

The reader may wonder why we have chosen the particular class of primitive reconfigurations introduced in Section 3 or
the specific definitions of behavioural or structural equivalence put forward in Sections 4 and 5. The choice was essentially
motivated by pragmatic considerations, leading to a small number of primitives upon which complex reconfigurations can be
built compositionally and notions of equivalence intuitive for a software architect. Other options could have been considered,
however. An important example, we would like to briefly discuss here, concerns the definition of structural properties.

Actually, the hybrid logic proposed in Section 5 to reason about reconfigurations from a structural point of view, is inter-
preted over a transition system whose transitions express the possibility of data flowing from one node to another through
a channel of a certain type. Of course, for a coordination pattern p, the behavioural semantics assigned to connectors may
prevent a specific sort of data flowing allowed by G(p). For example, a lossy channel gives rise to a transition from the
node in which its source end participates to the one where its sink end lies, indicating the possible flow direction. However,
data will only flow when a data request is present at the sink end. The structural view is blind with respect to this sort of
behavioural restrictions.

We could, however, go a step further and totally forget the possible flow direction. For this the underlying transition sys-
tem must connect by a transition of type t all nodes in which the ends of the corresponding channel (S,i,t, K) participate.
Note that, a synchronous drain is ruled out from the may-flow graph, because data simply does not flow from one of its
nodes to the other, but gives rise, in this new graph, to two transitions in opposite direction connecting the corresponding
nodes. Note that this sort of double connection is always present if one adopts such a purely structural point of view: in
other words, the transition system becomes a symmetric graph. Formally, it is built as

U {(m,t,n) [mneN, AmMNSUK)#D ANN(SUK)#0D An#m)
(8,i.t,K)eC)

Symmetry has a number of advantages: in particular it frees us from bothering with past modalities, i.e., defined over the
converse of G(p), as well as to consider this converse case in the definition of bisimulation. Apart from this simplification
of the logic, all constructions and results remain. Whether such a purely structural view, capturing simply the existence of a
connector between two nodes, irrespective of the data flow direction, is useful in practice for reasoning about coordination
patterns, is debatable. It should be emphasised, however, that all tools are available for use with it, if such is the case.

A lot of work remains to be done. Providing tool support for both sorts of analysis is in order as well as classifying
and organising reconfigurations in a suitable ontology. Tool support may build on already available tools either for the
behavioural analysis of Reo circuits (e.g., for CA, Vereofy [17]) or for hybrid logic verification (e.g., HyloRes [22]).

Another line of enquire concerns dynamic reconfiguration, i.e., the principles and mechanisms that may govern the appli-
cation of reconfigurations at runtime. This is partially addressed by C. Krause [9]. In our case, as reconfigurations are defined
as sequences of low-level (graph) operations, it will be mandatory to require their execution as transactions, with suitable
roll-back mechanisms. Their definition is still current work.

Finally, it would also be interesting to extend the overall framework to deal with quantitative measures and express
typical QoS constraints. We are currently working on this topic taking into account, on a reconfiguration, suitable measures
of QoS levels attached to coordination patterns [40] and to their deployment context.

References

[1] E. Arbab, F. Mavaddat, Coordination through channel composition, in: F. Arbab, C. Talcott (Eds.), Coordination Models and Languages, in: Lecture Notes
in Computer Science, vol. 2315, Springer, Berlin, Heidelberg, 2002, pp. 275-297, Ch. 6.

[2] F. Arbab, Reo: a channel-based coordination model for component composition, Math. Struct. Comput. Sci. 14 (3) (2004) 329-366.

[3] H. Gomaa, M. Hussein, Software reconfiguration patterns for dynamic evolution of software architectures, in: Proceedings. Fourth Working IEEE/IFIP
Conference on Software Architecture, 2004, WICSA 2004, 2004, pp. 79-88.

http://refhub.elsevier.com/S0167-6423(15)00125-2/bib61726261623032s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib61726261623032s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib61726261623034s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib676F6D616132303034s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib676F6D616132303034s1

N. Oliveira, L.S. Barbosa / Science of Computer Programming 110 (2015) 78-103 103

[4] AJ. Ramirez, B.H.C. Cheng, Design patterns for developing dynamically adaptive systems, in: Proceedings of the 2010 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS '10, ACM, New York, NY, USA, 2010, pp. 49-58.

[5] P. Oreizy, N. Medvidovic, R.N. Taylor, Architecture-based runtime software evolution, in: Proceedings of the 20th International Conference on Software
Engineering, ICSE 98, IEEE Computer Society, Washington, DC, USA, 1998, pp. 177-186.

[6] P. Hnétynka, F. Plasil, Dynamic reconfiguration and access to services in hierarchical component models, in: I. Gorton, G.T. Heineman, 1. Crnkovic,
H.W. Schmidt, J.A. Stafford, C. Szyperski, K. Wallnau (Eds.), Component-Based Software Engineering, in: Lecture Notes in Computer Science, vol. 4063,
Springer, Berlin, Heidelberg, 2006, pp. 352-359, Ch. 27.

[7] M. Malohlava, T. Bures, Language for reconfiguring runtime infrastructure of component-based systems, in: Proceedings of MEMICS 2008, Znojmo,
Czech Republic, 2008, pp. 1-8.

[8] L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni,]. Stefani, A component-based middleware platform for reconfigurable service-oriented
architectures, Softw. Pract. Exp. 42 (5) (2012) 559-583.

[9] C. Krause, Reconfigurable component connectors, Ph.D. thesis, Leiden University, Amsterdam, The Netherlands, 2011.

[10] N. Oliveira, L.S. Barbosa, Reconfiguration mechanisms for service coordination, in: M. ter Beek, N. Lohmann (Eds.), Web Services and Formal Methods,
in: Lecture Notes in Computer Science, vol. 7843, Springer, Berlin Heidelberg, 2013, pp. 134-149.

[11] N. Oliveira, L.S. Barbosa, On the reconfiguration of software connectors, in: Proceedings of the 28th Annual ACM Symposium on Applied Computing,
Vol. 2, SAC "13, ACM, New York, NY, USA, 2013, pp. 1885-1892.

[12] S.-S.T.Q. Jongmans, F. Arbab, Overview of thirty semantic formalisms for Reo, Sci. Ann. Comput. Sci. 22 (1) (2012) 201-251.

[13] F. Arbab, Abstract behavior types: a foundation model for components and their composition, in: E.S. de Boer, M.M. Bonsangue, S. Graf, W.-P. de Roever
(Eds.), Formal Methods for Components and Objects, in: Lecture Notes in Computer Science, vol. 2852, Springer, Berlin, Heidelberg, 2003, pp. 33-70,
Ch. 2.

[14] D. Costa, Formal models for component connectors, Ph.D. thesis, Vrije University, Amsterdam, Oct. 2010.

[15] D. Clarke, D. Costa, F. Arbab, Connector colouring I: synchronisation and context dependency, Electron. Notes Theor. Comput. Sci. 154 (2006) 101-119.

[16] C. Baier, M. Sirjani, F. Arbab,]. Rutten, Modeling component connectors in Reo by constraint automata, Sci. Comput. Program. 61 (2) (2006) 75-113.

[17] C. Baier, T. Blechmann, J. Klein, S. Kliippelholz, A uniform framework for modeling and verifying components and connectors, in: Proc. 11th Int. Conf
on Coordination Models and Languages, in: Lecture Notes Computer Science, vol. 5521, Springer, 2009, pp. 247-267.

[18] M. Bonsangue, D. Clarke, A. Silva, Automata for context-dependent connectors, in: Proceedings of the 11th International Conference on Coordination
Models and Languages, COORDINATION '09, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 184-203.

[19] M.M. Bonsangue, D. Clarke, A. Silva, A model of context-dependent component connectors, Sci. Comput. Program. 77 (6) (2012) 685-706.

[20] P. Blackburn, Representation, reasoning, and relational structures: a hybrid logic manifesto, Log. J. IGPL 8 (3) (2000) 339-365.

[21] T. Brauner, Hybrid Logic and Its Proof-Theory, Applied Logic Series, Springer, 2010.

[22] C. Areces,]. Heguiabehere, HyLoRes 1.0: direct resolution for hybrid logics, in: A. Voronkov (Ed.), Automated Deduction—CADE-18, in: Lecture Notes in
Computer Science, vol. 2392, Springer, Berlin Heidelberg, 2002, pp. 156-160.

[23] D. Kozen, Results on the propositional p-calculus, Theor. Comput. Sci. 27 (1983) 333-354.

[24] D. Clarke, Reasoning about connector reconfiguration I: equivalence of constructions, Tech. rep., CWI-Centrum voor Wiskunde en Informatique, Ams-
terdam, Feb. 2005.

[25] D. Clarke, A basic logic for reasoning about connector reconfiguration, Fundam. Inform. 82 (2008) 361-390.

[26] M. Bravetti, C. Di Giusto, J.A. Pérez, G. Zavattaro, Adaptable processes, Log. Methods Comput. Sci. 8 (4) (2012) 1-71.

[27] M. Bravetti, C. Giusto, J. Pérez, G. Zavattaro, Towards the verification of adaptable processes, in: T. Margaria, B. Steffen (Eds.), Leveraging Applications
of Formal Methods, Verification and Validation. Technologies for Mastering Change, in: Lecture Notes in Computer Science, vol. 7609, Springer, Berlin
Heidelberg, 2012, pp. 269-283.

[28] D. Hirsch, P. Inverardi, U. Montanari, Modeling software architectures and styles with graph grammars and constraint solving, in: P. Donohoe (Ed.),
IFIP—The International Federation for Information Processing, in: Software Architecture, vol. 12, Springer US, 1999, pp. 127-143.

[29] M. Wermelinger, J.L. Fiadeiro, Algebraic software architecture reconfiguration, in: Proceedings of the 7th European Software Engineering Conference
Held Jointly with the 7th ACM SIGSOFT International Symposium on Foundations of Software Engineering, ESEC/FSE-7, Springer-Verlag, London, UK,
1999, pp. 393-409.

[30] H. Ehrig, M. Pfender, HJ. Schneider, Graph-grammars: an algebraic approach, in: 14th Annual Symposium on Switching and Automata Theory, lowa
City, lowa, USA, October 15-17, 1973, 1973, pp. 167-180.

[31] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, M. Lowe, Algebraic approaches to graph transformation—part I: basic concepts and double
pushout approach, in: G. Rozenberg (Ed.), Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1: Foundations, World
Scientific, 1997, pp. 163-246.

[32] R. Bruni, A. Bucchiarone, S. Gnesi, H. Melgratti, Modelling dynamic software architectures using typed graph grammars, Electron. Notes Theor. Comput.
Sci. 213 (1) (2008) 39-53.

[33] D. Plump, The graph programming language GP, in: S. Bozapalidis, G. Rahonis (Eds.), Algebraic Informatics, in: Lecture Notes in Computer Science,
vol. 5725, Springer, Berlin, Heidelberg, 2009, pp. 99-122, Ch. 6.

[34] D. Plump, The design of GP 2, in: S. Escobar (Ed.), Proceedings of the 10th International Workshop on Reduction Strategies in Rewriting and Program-
ming, Novi Sad, Serbia, in: Electronic Proceedings in Theoretical Computer Science, vol. 82, 2011, pp. 1-16.

[35] C.M. Poskitt, D. Plump, Verifying total correctness of graph programs, Electron. Commun. EASST 61 (2013) 1-20.

[36] C. Koehler, A. Lazovik, F. Arbab, Connector rewriting with high-level replacement systems, Electron. Notes Theor. Comput. Sci. 194 (4) (2008) 77-92.

[37] C. Krause, Z. Maraikar, A. Lazovik, F. Arbab, Modeling dynamic reconfigurations in Reo using high-level replacement systems, Sci. Comput. Program.
76 (1) (2011) 23-36.

[38] A. Basu, M. Bozga,]. Sifakis, Modeling heterogeneous real-time components in BIP, in: Proceedings of the Fourth IEEE International Conference on
Software Engineering and Formal Methods, SEFM '06, IEEE Computer Society, Washington, DC, USA, 2006, pp. 3-12.

[39] A. Basu, S. Bensalem, M. Bozga,]. Combaz, M. Jaber, T.-H. Nguyen,]. Sifakis, Rigorous component-based system design using the BIP framework, IEEE
Softw. 28 (3) (2011) 41-48.

[40] F. Arbab, T. Chothia, R. van der Mei, S. Meng, Y. Moon, C. Verhoef, From coordination to stochastic models of QoS, in:]. Field, V. Vasconcelos (Eds.),
Coordination Models and Languages, in: Lecture Notes in Computer Science, vol. 5521, Springer, Berlin, Heidelberg, 2009, pp. 268-287, Ch. 14.

http://refhub.elsevier.com/S0167-6423(15)00125-2/bib72616D6972657A32303130s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib72616D6972657A32303130s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6F7265697A7931393938s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6F7265697A7931393938s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib686E6574796E6B6132303036s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib686E6574796E6B6132303036s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib686E6574796E6B6132303036s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6D616C6F686C61766132303038s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6D616C6F686C61766132303038s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib7365696E74757269657232303131s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib7365696E74757269657232303131s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6B72617573653230313162s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6F6C69766569726132303133s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6F6C69766569726132303133s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6F6C6976656972613230313362s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6F6C6976656972613230313362s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6A6F6E676D616E7332303132s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib617262616232303032s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib617262616232303032s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib617262616232303032s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib636F73746132303130s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib636C61726B653036s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib62616965723036s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib626169657232303039s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib626169657232303039s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib626F6E73616E6775653039s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib626F6E73616E6775653039s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib626F6E73616E67756532303132s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib626C61636B6275726E32303030s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib746F7262656Es1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6172656365733230303262s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6172656365733230303262s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib4B6F7A3833s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib636C61726B653035s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib636C61726B653035s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib636C61726B6532303038s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib62726176657474693230313262s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib627261766574746932303132s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib627261766574746932303132s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib627261766574746932303132s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib68697273636831393939s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib68697273636831393939s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib7765726D656C696E67657231393939s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib7765726D656C696E67657231393939s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib7765726D656C696E67657231393939s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib456872696750533733s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib456872696750533733s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib436F72726164696E694D5245484C3937s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib436F72726164696E694D5245484C3937s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib436F72726164696E694D5245484C3937s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6272756E6932303038s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6272756E6932303038s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib706C756D7032303039s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib706C756D7032303039s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib706C756D7032303131s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib706C756D7032303131s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib706F736B69747432303133s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6B6F65686C657232303038s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6B726175736532303131s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6B726175736532303131s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6261737532303036s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6261737532303036s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6261737532303131s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib6261737532303131s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib617262616232303039s1
http://refhub.elsevier.com/S0167-6423(15)00125-2/bib617262616232303039s1

	Reasoning about software reconﬁgurations: The behavioural and structural perspectives
	1 Introduction
	2 Coordination patterns
	2.1 A primer on Reo
	2.1.1 Channels, nodes and connectors
	2.1.2 Semantics
	Constraint automata
	Reo automata

	2.2 Coordination patterns

	3 Reconﬁgurations
	3.1 Primitive reconﬁguration operations
	3.2 Composing reconﬁgurations
	3.3 Reconﬁguration patterns

	4 Reasoning about reconﬁgurations: behaviour
	4.1 Semantic models
	4.2 Comparing reconﬁgurations

	5 Reasoning about reconﬁgurations: structure
	5.1 A hybrid logic
	5.2 Bisimulation for HpE
	5.3 Expressing `long scope' properties
	5.4 Comparing reconﬁgurations

	6 A case study
	6.1 Permanent service workﬂow
	6.2 Reconﬁguring the workﬂow
	6.3 Reasoning about reconﬁgurations

	7 Related work
	8 Conclusions
	References

