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Abstract
Bidirectional transformations, in particular lenses, are programs
with a forward get transformation and a backward putback transfor-
mation that keep source and view data types synchronized. Several
bidirectional programming languages exist to aid programmers in
writing a (sort of) forward transformation, and deriving a back-
ward transformation for free. However, the maintainability offered
by such languages comes at the cost of expressiveness and (more
importantly) predictability because the ambiguity of synchroniza-
tion —handled by the putback transformation— is solved by default
strategies over which programmers have little control.

In this paper, we argue that controlling such ambiguity is essen-
tial for bidirectional transformations and propose a novel language
in which programmers write a (sort of) putback transformation, and
get the unique get transformation for free. Like traditional bidirec-
tional languages, our put-oriented language allows reasoning about
the correctness of defined transformations from the properties of
their building blocks. But it allows programmers to describe the be-
havior of a bidirectional transformation much more precisely, while
retaining the maintainability of writing a single program.

We demonstrate the practical power of the new approach through
a series of examples, ranging from simple ones that illustrate
traditional lenses to complex ones for which our putback-based
approach is central to specifying nontrivial update strategies.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.1 [Program-
ming Languages]: Formal Definitions and Theory; F.3.2 [Log-
ics and Meanings of Programs]: Semantics of Programming
Languages—Algebraic approaches to semantics

Keywords bidirectional programming, view update, lenses, Haskell,
monads, generic functional programming

1. Introduction
A bidirectional transformation (BX) [6] consists of a forward and a
backward transformation that ensure the consistency of two related
sources of information through modifications and evolution. During
the last decade, BXs have been gaining increasing attention from
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a wide range of communities, including programming languages,
software engineering and databases, which has motivated the pro-
posal of a vast number of bidirectional approaches aiming to solve
the problems of different bidirectional applications.

A particularly predominant BX trend within the programming
languages community are functional bidirectional programming
approaches, taking as main flag the pioneering work of Foster et
al. [10] on a combinatorial language for bidirectional tree transfor-
mations named lenses. Lenses recast many of the ideas from view
updating in the database community [1]. They provide forward get
functions that produce a view from a source, and backward put
functions that define view-update strategies describing how to “put
back” modifications on a view to the source.

Definition 1.1 (Lens). A well-behaved lens l , denoted by l :: s⇔ v ,
is a BX that comprises two (partial) functions get :: s → v and
put :: s → v → s , satisfying the following properties:

v ∈ get s ⇒ s = put s v GETPUT

s ′ ∈ put s v ′ ⇒ v ′ = get s ′ PUTGET

A lens is said to be total if get and put are total functions.

Here y ∈ f x means that f x is defined and that y = f x . Note
that our properties are implications [18]: GETPUT ensures that a
lens is stable, i.e., whenever a view produced by get is not modified,
put must return the original source; PUTGET guarantees that a lens
is acceptable, i.e., view updates must be translated exactly, so that
(if put is defined) the updated view can be retrieved by applying
get to the updated source.

An ad-hoc approach to bidirectional programming is to write
two unidirectional transformations using standard programming
languages. However, this scales badly for nontrivial transformations
as we have to write and maintain two transformations.

Moreover, a get function is in general not injective, so there
may exist many possible put functions that combined with get
form a well-behaved BX. Consider a get function that computes the
height of a rectangle, written in Haskell [19] as height (w , h) = h .
Even for this canonical example, updating the height may have
different “reasonable” effects on the original width: 1) we may keep
the original width; 2) we may enforce the source to be always a
square with equal width and height; or 3) we may want to make the
width of a predefined size if the height is modified:

put1height (w , h) h ′ = (w , h ′)

put2height (w , h) h ′ | w ≡ h = (h ′, h ′)

put3height i (w , h) h ′ = (if h ≡ h ′ then w else i , h ′)

This unavoidable ambiguity of put is what makes bidirectional
programming challenging in practice. To ease and enable maintain-
able bidirectional programming, lens frameworks favor writing just
a single program that can denote both transformations, and exist-



ing approaches can be classified into two main methods. The first
asks users to write get in a familiar (unidirectional) programming
language, and derives one single suitable put through bidirection-
alization techniques [13, 16, 17, 20, 28] (though some admit ad-
hoc parameterization). This method has been mostly followed for
view updating in the database community. The second method is
to design a domain-specific bidirectional programming language
whose programs can be interpreted both as a get function and a put
function [4, 5, 10, 14, 23, 26]. This has been the favored method
for functional bidirectional programming approaches, with various
lens languages populating the spectrum of existing BX approaches.
These languages tend to invite users to write lenses as they would
write get functions, but providing eventually different put strategies
via different combinators (that may accept additional parameters).

From the user perspective, this get-biased style simplifies bidirec-
tional programming, but also renders it unpredictable as users have
limited control over the backward direction, making it hard (or im-
possible) for them to specify their desired put functions using only
a fixed set of strategies. For example, many existing bidirectional
languages [10, 23] assume put1height as the most natural strategy in
detriment of other possible ones. Such unpredictability hinders the
adoption of BX frameworks and has been the trigger behind their
boom over the past years, each proposing to answer the needs of par-
ticular bidirectional applications via different tailor-made backward
semantics [6].

In this paper, we argue that the update strategy of a BX should
be considered from the start, and propose a novel language of
put-biased lenses entirely focused on the programming of put. To
change the programmer’s mindset towards writing put functions,
the new combinators denote transformations oriented from view
to source, in a different flavor from that of prior lens languages.
We then set to explore the inherent ambiguity of BXs farther
than previous work, by carefully designing each combinator with
concern for not compromising expressiveness and characterizing the
necessary conditions for well-behavedness and totality. As a result,
we attain a canonical and distinctively flexible bidirectional language
that naturally arises as a proper superset of existing lens languages:
many traditional lenses can be seen as specialized versions of our
(dual) put-based combinators, what helps clarifying the (not a priori
clear) implicit choices made by traditional lens languages that lead
to their often unsatisfactory update strategies.

For simple transformations, the effort of writing a put-based
lens will be the same as writing a dual get-based lens using fixed
update strategies; however, for more intricate transformations, a
subtle change of combinators or default parameters will endow
programmers with the necessary power to implement full-fledged
update strategies. Our exercise also provides an exciting opportunity
to re-evaluate where existing languages sit on this continuum.

Our main contributions can be summarized as follows:

• We propose the first attempt to carry observations about primacy
of put into the design of a put-based bidirectional programming
language (Section 3), and compare the combinators that arise
naturally as put-oriented lenses in detail with existing lens
languages.
• We enrich the structure of lenses with an abstract monadic inter-

face to support the programming of different update strategies.
By instantiating the monads, programmers can combine various
classes of computational effects to elegantly refine bidirectional
behavior without affecting the bidirectional properties.
• We demonstrate that put-based programming in our framework

can also be programmer-friendly through several nontrivial BX
examples written in our language (Section 4). Our approach al-
lows to natively specify various update strategies that would tra-
ditionally require different tailor-made bidirectional languages.

• We describe a prototype implementation of our language as
an embedded domain-specific combinator library in Haskell
(Section 5) and consider possible extensions and optimizations.

Section 2 opens by identifying necessary conditions on put
functions of well-behaved lenses and showing that these conditions
are indeed sufficient to determine uniqueness of get. We explain
our contributions in Sections 3, 4 and 5. Section 6 compares our
approach with related work and Section 7 concludes the paper with
a synthesis of the main ideas and directions for future work.

2. Put-based Bidirectional Programming
The primacy of the putback function for bidirectional (lens) pro-
gramming is not a new remark and has been recognized in prior
work [8, 9], in a setting where all functions are total. In this sec-
tion, we generalize such results to partial well-behaved lenses and
identify which of the conditions considered there arise from the
well-behavedness laws and which are a consequence of added total-
ity. We also illustrate how the combinators presented in Section 3
can be used to define a simple partial lens in putback style.

2.1 Partiality
Requiring all programs in a language to be total (as in the Agda
dependently typed functional programming language [22] or total
bidirectional programming languages [5, 10, 23]) requires working
with precise and complex type systems and is often too restrictive
in practice. Therefore, conventional functional languages such as
Haskell consider programs to be partial in general.

In Haskell, a function f :: a → b can be defined by pattern
matching over the input type a . For example, the tail function from
the standard Haskell prelude computes the tail of a list as follows.

tail (x : xs) = xs

Partiality can be implicitly modeled via non-exhaustive pattern
matching, as for the empty list above. For non-defined patterns,
we can say that tail [ ] is ⊥, being ⊥ a special undefined Haskell
value that corresponds to the least-defined element of any type.
Partiality can also be expressed via non-comprehensive guards, e.g.:

heightSquare (w , h) | w ≡ h = h

This function computes the height of a square and is undefined if
the input pair does not satisfy the square constraint. The domain of
values on which f is defined is written dom(f ). For two functions
f and g , inclusion f v g is defined by ∀a. b ∈ f a ⇒ b = g a .
They are equal, f = g , if ∀a. f a = g a . Note that our well-
behavedness laws already considered lens functions to be possibly
partial. For instance, if get s is⊥ for a source s , then GETPUT does
not restrict the result of put s v ′ for arbitrary view values v ′1.

2.2 Put-based Laws
We now study certain implications of partial lens laws and use them
to characterize partial lenses based on their put functions.

Proposition 1. For a well-behaved lens, the function “put s” is
injective for any source s , in the following sense:

s ′ ∈ put s v ∧ s ′ ∈ put s v ′ ⇒ v = v ′ PUTINJ

Proposition 2. For a well-behaved lens, PUTTWICE [10] holds:

s ′ ∈ put s v ⇒ s ′ = put s ′ v PUTTWICE

While presented as necessary conditions for well-behavedness,
Propositions 1 and 2 on put functions are also sufficient in the sense

1 If put s v ′ is defined and equal to s′, then PUTGET requires get s′ to be
defined and equal to v ′, however.



that they give rise to a unique get such that the resulting lens is well-
behaved. The main result of this section is to show that well-behaved
lenses are uniquely determined by their put functions:

Theorem 2.1 (Uniqueness of get). Assume a put function such
that PUTTWICE holds and “put s” is injective. Then the following
propositions are also satisfied:

(a) For every source s , there is at most one view v such that
put s v = s .

(b) A lens with a get function such that get s = v⇔ s = put s v
is well-behaved.

(c) The get function in (b) is the only one such that the resulting
lens is well-behaved.

Total lenses satisfy additional surjectivity conditions, cf. [8].

2.3 A Taste of our Put-based Lens Language
Although writing put is semantically sufficient to uniquely deter-
mine a lens, the definition of get given in Theorem 2.1 is not effi-
ciently implementable in a traditional programming language, as it
requires finding a view v such that put s v = s . In [8], we demon-
strate how get functions can be derived using the Curry functional
logic programming language [12]. However, complex examples
require a careful implementation of put such that backtracking is
available when computing get, and no assistance is provided to users
in writing programs that will actually work. Moreover, backtracking
is not always an efficient method to derive get .

In the next section, we propose a particular language of put-based
lenses in which the get function can instead be given by construction
for each lens expression. We now give a taste of our language with
a simple example of a partial put-based lens.

Example 2.1 (List embedding). As an example of put-based pro-
gramming, consider an embedAt i function that embeds a view
value at the i-th position of a source list, as illustrated in the call:

embedAt 2 "abcd" ’x’ = "abxd"

The idea is to replace the element at position i in the source with
the updated view value. In Haskell, we can write embedAt as:

embedAt :: Int → [a ]→ a → [a ]
embedAt 0 (s : ss) v = v : ss
embedAt i (s : ss) v = s : embedAt (i − 1) ss v

The embedAt function traverses the source list while decreasing the
input index and, when the index reaches 0, replaces the head of the
source with the view element. It is partial, since it is undefined for
indexes larger than the length of the source list (due to the missing
pattern embedAt i [ ] v ). It is not difficult to see that this partial
put function is well-behaved: embedAt i s is injective for all views
whenever it is defined, and embedAt i (embedAt i s v) v updates
the same position in the list twice with the same view (PUTTWICE),
where the second invocation returns the already updated list.

Using the put-based language introduced in Section 3, we can
redefine embedAt as the following embedAt partial put-based lens.

embedAt :: Int → ([a ]⇐ a)
embedAt 0 = unhead
embedAt i = untail ◦< embedAt (i − 1)

This higher-order function performs induction on the argument
index to produce a lens that embeds a view value at a fixed source
index2. The auxiliary combinators unhead = cons ◦< keepsnd and
untail = cons ◦< keepfst update the head and tail of a source list,
where ◦< denotes point-free lens composition.

2 We are using a different Sans-Serif font to differentiate lenses from the
unidirectional Haskell functions such as embedAt , as followed in Section 3.

The unique get function derived by our language is Haskell’s
predefined (!!) operator3, that selects a list element by its index.

Since embedAt is partial, a call like embedAt 2 "a" ’x’ will
fail; embedAt i is only total for source lists with length greater than
i . Using our language, we can systematically adapt embedAt to
support this extra case, while preserving the same get, by redefining:

unhead′ = cons ◦< keepsndOr (λv → return [ ])
untail′ = cons ◦< keepfstOr (λvs → headM vs)

Here, keepfstOr is used to extend the original source list with
the view value when the source list is not long enough, given
headM [ ] = ∅ and headM (x :xs) = return x ; when the new list
is already long enough, keepsndOr returns a default empty tail. The
refined embedAt′ extends the source list to the necessary length by
repeating the view (embedAt′ 2 "a" ’x’ = "axx").

3. A Point-free Language of Put-based Lenses
One of the reasons behind the success of get-based approaches
is that users can write bidirectional programs while still thinking
in a simple unidirectional way from source to view. However,
put ::s → v → s functions are more difficult to write because users
can no longer think solely in source-to-view terms, but must consider
more complex update strategies that synchronize view updates with
existing sources. We raise the important question: can we design a
language of put functions such that more update strategies can be
expressed, while offering programmability similar to writing get?

Looking at Theorem 2.1, there is an essential condition indepen-
dent of source values —for any source s , put s (of type v → s)
must be injective— that will allow us to positively approach this
question. In this section, we propose a point-free language of put-
based lenses oriented from view to source, offering a set of primitive
combinators described in the following core grammar.

Put ::= id | Put ◦< Put | Φ p | bot | effect f Put | in | out
| addfst f | addsnd f | remfst f | remsnd f | Put ⊗Put
| inj p | Put ∇Put | Put ⊕Put

These combinators will serve as the simple building blocks to con-
struct put-based BXs. Writing put functions in this way will assure
users that corresponding lenses exist and are well-behaved: each
primitive in our language is designed so that the most important
premise —injectivity— is statically guaranteed by our combinators
(with the exception of ∇ ); and we annotate each combinator with
precise typing rules that make it possible to statically prove total-
ity based on the properties of each building block. Since different
instantiations of our combinators will have identical get functions
but different put update strategies, some receive extra parameters to
plug in contexts where such freedom of put exists. These parameters
may play different roles, and be of various types: predicates, pure
functions, monadic functions, etc. The implementation of some com-
binators with user-provided parameters will perform local dynamic
checks to guarantee that the programmer’s promise of PUTTWICE
indeed holds —although debatable, we have chosen this design to
really allow users to explore the inherent freedom of put , without
imposing fixed default strategies. Still, in many cases such additional
power is not necessary and these checks can be avoided by resorting
to more usual derived combinators.

To make it more practical, we have deployed our language as an
embedded domain-specific language in Haskell. Such integration
enables programmers to write extra parameters in a rich familiar
language without having to learn a new domain-specific language.
We define our framework of put-based lenses as follows. The used

3 The type and description of (!!) and many other Haskell standard functions
used in this paper can be found via http://haskell.org/hoogle.

http://haskell.org/hoogle


notation and technical details are explained below. The bidirectional
laws are those from Section 2.2, lifted to monads.

Definition 3.1 (Put-based lens). A well-behaved put-based lens l
(putlens for short) is a bidirectional transformation

type s⇐m v = Maybe s → v → m s

satisfying the following properties:

s ′ ∈ l s v ∧ s ′ ∈ l s v ′ ⇒ v = v ′ PUTINJ⇐

s ′ ∈ l s v ⇒ l s ′ v = return s ′ PUTTWICE⇐

In terms of interface, a putlens is just a put function; we give the alias
put :: Monad m ⇒ (s⇐m v) → (Maybe s → v → m s). It
takes as input not an original source of type s but an optional source
of type Maybe s , to account for the cases when an original source
does not exist and a new source must be reconstructed directly from
the updated view. It is a standard technique to extend lens languages
with such a create :: v → s function [5, 23]. Each well-behaved
putlens l has a unique get function given as:

get s = v ⇔ s ∈ l (Just s) v GET⇐

Concrete definitions for our language are given in Section 5.

Monads Additionally, we enrich put with an arbitrary monad
m , allowing the use of various sorts of computational effects.
As demonstrated in Section 4, this will enable the encoding of
more global update strategies that go beyond the typically local
and unsatisfactory update strategies induced by combinatorial BX
approaches, without having to design a specialized BX language.
The notion of monad is captured by the following Haskell type class.

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b
∅ :: m a

The two essential ‘return’ and ‘bind’ operations denote identity and
sequential composition of monadic actions, satisfying particular
soundness laws. To account for partial put computations, we con-
sider an additional ‘fail’ operation along the lines of [11]. We will
often make use of three conventional monadic combinators:

(>>) :: Monad m ⇒ m a → m b → m b
mx >>my = mx >>= (λx → my)

guard :: Monad m ⇒ Bool → m ()
guard b = if b then return () else ∅
mfilter :: Monad m ⇒ (a → Bool)→ m a → m a
mfilter p mx = do {x ← mx ; guard (p x ); return x }

The >> combinator composes two monadic actions by ignoring the
first result; guard succeeds if a boolean condition holds or fails
otherwise; mfilter checks a predicate applied to the current value4.

To inspect values inside a monad, we introduce a monad mem-
bership relation x ∈ m denoting that “some execution of the com-
putation of monad m produces a pure value x”, satisfying two laws:

x ∈ return x ∈-ID

y ∈ m >>= f = (∃x . x ∈ m ∧ y ∈ f x ) ∈-COMP

For particular monads, we can make this abstract notion more pre-
cise as x ∈ m ≡ (∃h. h m = x ), if h is a (polymorphic) algebra
for the monad at hand, essentially, a function of type m a → a for
any type a . For example, for the State st monad (presented later in
Section 4) we can define x ∈ m ≡ (∃st . evalState m st = x ).

4 The do notation provides an alternative Haskell syntax for performing
monadic computations in a more imperative programming style.

For the context of this paper, we will assume all monadic
computations (including user-provided parameters) to be totally
defined, with partiality of put modeled by monadic failure. A
monadic function f is said to be total if ∀a. f a 6= ∅.

In the course of this section we will describe our core put-based
language, together with various common derived combinators that
improve programmability in our framework and help us drawing a
closer relationship with existing lens languages.

Putlens notation We will present each combinator in the notation
shown to the right: the implementation is given in Haskell code
and the Haskell type signature guarantees that (non-recursive) well-
typed putlenses are well-behaved between standard Haskell types.

semantic constraints

put :: Haskell type
put = implementation

We formulate additional seman-
tic constraints that state the pre-
cise conditions and domains under
which (non-recursive) putlenses are
also total. We express these con-
straints in a semantic setting of sets and total functions. To high-
light the difference, we refer to such semantic types using up-
per case letters A,B , ... and total functions (and lenses) between
sets of values using membership f ∈ A→ B . Given a predicate
p : A→ 2 on values of type A (where the set 2 = {True,False }
corresponds to the Haskell primitive Bool type), we write Ap

for {a | a ∈ A ∧ p a }. We define set-theoretic unit (1 = {()}),
product (A×B = {(x , y) | x ∈ A ∧ y ∈ B }) and disjoint sum
(A + B = {Left x | x ∈ A} ∪ {Right y | y ∈ B }) types.

3.1 Basic combinators
The identity combinator simply replaces the view for the source.
View-based filtering Φ defines subsets of the identity putlens5:

id ∈ V ⇐m V

id :: v⇐m v
id s v ′ = return v ′

Φ V ∈ V ⇐m V

Φ :: (v → Bool)→ (v⇐m v)
Φ p s v ′ = guard (p v ′)>> return v ′

Although Φ may seem semantically similar to id, it is subtly different
in that it allows users to parameterize the exact set (as a predicate or
set-theoretic type) over which it is defined. We also define a special
empty filter bot :: s⇐m v that is always undefined; since the empty
set is a subtype of any type, its domains can be of any type.

Sequential composition applies a putlens f after a putlens g :

f ∈ S⇐m U g ∈ U ⇐m V

f ◦< g ∈ S⇐m V

(◦< ) :: (s⇐m u)→ (u⇐m v)→ (s⇐m v)
(f ◦< g) s v ′ = g (fmap (get f ) s) v ′ >>= f s

Composition first applies g (same as put g) to map the updated
view to an intermediate view, and then maps the intermediate view
to the source by applying f , using a monadic bind. The unique
get f function computes the original intermediate view of g , and is
applied to the “maybe” original source using fmap :: (a → b)→
Maybe a → Maybe b (as specialized for the Maybe type).

3.2 Effectful put computations
As a distinctive feature in comparison with existing bidirectional
languages, our put-based language supports executing put compu-
tations augmented with an arbitrary monad, that programmers can
instantiate to elegantly specify put functions incorporating different
computational effects. The added monadic layer permits refining
the behavior of put, but get functions remain purely functional.

5 For readability, we will often omit necessary Haskell type contexts like
Monad m or Eq a from the type signatures of putlens combinators.



The effect combinator executes a general monadic side-effect, by
running a putlens over a monad n as a putlens over a monad m:

f ∈ Maybe S → V → n →̇ m g ∈ S⇐n V

effect f g ∈ S⇐m V

effect :: (Maybe s → v → n →̇ m)→ (s⇐n v)→ (s⇐m v)
effect f g s v ′ = f s v ′ (g s v ′)

We write n →̇ m for the polymorphic function ∀α. n α → m α.
For this putlens to be well-behaved, the argument f needs to be a
sort of (polymorphic) monad morphism satisfying an identity law:

f s v ′ (return x ) = return x

The kind of effects that we have in mind may not change the monad
at all, like updating some internal state by increasing a counter, or
run one monad and put its value inside another monad, like executing
a subcomputation in a different state. Note that it does not affect
well-behavedness since the bidirectional behavior of the resulting
putlens is still completely determined by g . This will be the case
for other combinators —monadic information can only affect free
choices made by put, preserving the same get.

3.3 Products
We also provide a set of primitive combinators to manipulate pairs.
The addfst combinator (and dual addsnd) creates a pair in the source
by adding a new element to the left (or right) of the view:

P ⊆ S1×V f ∈ Maybe P → V → m S1

f (Just (s1, v)) v = return s1

addfst f ∈ P⇐m V

addfst :: (Maybe (s1, v)→ v → m s1)→ ((s1, v)⇐m v)
addfst f = enforceGetPut put ′ where

put ′ s v ′ = f s v ′ >>= λs ′1 → return (s ′1, v
′)

Its put embeds the view to the second source element, while
producing the first element using a user-provided function; f can be
arbitrary, but it must return the original first element for the identity
view update to ensure well-behavedness. In the implementation, we
have two options: 1) make get undefined for sources for which f
does not guarantee PUTTWICE⇐ or 2) repair the argument function
by returning the original source when necessary. The latter is our
only option as long as we want to enable the use of supplementary
monadic information6. This is performed by the auxiliary function
enforceGetPut , defined later in Section 5. At the semantic level, we
state a condition that user-defined functions shall statically satisfy
to be well-behaved. The source domain of addfst f is a dependent
product P , formalized as a subtype of the source product S1×V ,
because the way f constructs new source values may in general
introduce a dependency between the view and source types.

The traditional projection lens [5, 10, 23] is the conservative
variant of addfst that restores the original source if available:

∀f ∈ V → m S1. keepfstOr f ∈ S1×V ⇐m V

keepfstOr :: (v → m s1)→ ((s1, v)⇐m v)
keepfstOr f = addfst (λs v ′ → maybe (f v ′) (return ◦ fst) s)

Like many other derived combinators that we will define, keepfstOr
is well-behaved by construction and does not require a dynamic
check, by committing to a very particular update strategy. The typing
rule becomes much simpler since keepfstOr does not introduce any

6 We could instead define a weaker version of addfst f receiving a non-
monadic f function and enforcing PUTTWICE⇐ by making get partial.

dependency. A partial projection that only knows to recover the
original source is given by keepfst = keepfstOr (λv → ∅).

Another variant of addfst is to always ‘copy’ the updated view
value in duplicate to create a new source pair:

copy ∈ (V ×V )←−
id
⇐m V

copy :: (v , v)⇐m v

copy = Φ
←−
id ◦< addfst (λs → return)

The copy putlens is only total for source pairs with equal compo-
nents, as modeled by the predicate

←−
id (with

←−
f (x , y) = x ≡ f y).

The definition explicitly restricts its source domain7. The more re-
laxed addfst (λs → return) resembles the ‘merge’ lens from [10].

Exercise 1 (Height). Write the put functions from our introductory
height example as putlenses using addsnd, keepsnd or copy.

Dually to addfst and addsnd, the remfst and remsnd combina-
tors delete view pairs by discarding their left or right elements:

∀f ∈ V → V1. remfst f ∈ V ⇐m (V1×V )←−
f

remfst :: (v → v1)→ (v⇐m (v1, v))
remfst f s (v ′1, v

′) = guard (f v ′ ≡ v ′1)>> return v ′

To ensure PUTINJ⇐, their put functions are only defined if the
discarded view value can be reconstructed by applying a user-
provided function to the kept value; the typing rules capture this
dependency. Note that such argument function is not monadic, as it
will be used in the get direction to reconstruct a new source.

The following laws emphasize the duality between our addition
and removal combinators on products.

Φ
←−
f ◦< addfst (λs → return ◦ f ) ◦< remfst f v Φ

←−
f

remfst f ◦< addfst (λs → return ◦ f ) v id

Removing an element from a pair and adding it back or adding an
element and removing it afterwards are both subsets of the identity
putlens. These laws use inclusion of putlenses to account for partial
f functions. For a total f , the laws becomes equalities: the first for
the domain of pairs consistent under f , and the second for any pair.

Using combinators on products, we can also define the derived
ignore and new combinators that delete a concrete view or create a
new source from an empty view, respectively:

∀x∈V . ignore x∈1⇐m {x }
ignore :: v → (()⇐m v)
ignore v = remfst (λ()→ v)
◦< addsnd (λs v → return ())

∀x ∈ S . new x ∈ S⇐m 1

new :: s → (s⇐m ())
new x = remfst (λs → ())
◦< addsnd (λs v → return x )

The definition of ignore takes as argument a particular view v to
delete, for which it is defined; new introduces a default source x ,
but needs to return the original source if available. A combination
of the two yields the ‘constant’ lens [5, 10].

The ‘product’ combinator applies two putlenses in parallel to
distinct sides of a view pair, producing a source pair:

f ∈ S1⇐m V1 g ∈ S2⇐m V2

f ⊗ g ∈ S1×S2⇐m V1×V2

(⊗ ) :: (s1⇐m v1)→ (s2⇐m v2)→ ((s1, s2)⇐m (v1, v2))
(f ⊗ g) s (v ′1, v

′
2) = do {s ′1 ← f (fmap fst s) v ′1;

s ′2 ← g (fmap snd s) v ′2; return (s ′1, s
′
2)}

7 The backward behavior of addfst would otherwise enforce PUTTWICE⇐
for any source pair, as it is not able to infer the more precise source type.



The monadic encoding applies f to the left source/view, followed
by applying g to the right source/view. Depending on the monad
instantiations, this chaining may induce a left-to-right evaluation
order, but for simple monads (like Identity or Reader defined
later) f and g can be computed in parallel. Its non-monadic variant
is known as the ‘product’ [14, 23] or ‘concatenation’ [5] lens.

3.4 Sums
Moving to sums, the ‘injection’ combinator uses a predicate to
decides whether to “tag” views as left or right values in the source:

p ∈ Maybe (V1 + V2)→ V1 ∪ V2 → m 2
p (Just (Left v)) v = return True

p (Just (Right v)) v = return False

inj p ∈ V1 + V2⇐m V1 ∪ V2

inj :: (Maybe (Either v v)→ v → m Bool)
→ (Either v v⇐m v)

inj p = enforceGetPut put ′ where put ′ s v ′ = p s v ′ >>=
λb → if b then return (Left v ′) else return (Right v ′)

Once again, we employ enforceGetPut to dynamically enforce that
put preserves the tags from the original source if the view is not
modified. At the semantic level, we enunciate the conditions on p
to statically satisfy PUTTWICE⇐. Note that the left (V1) and right
(V2) view domains do not need to be the same and may overlap.

The specialized injsOr combinator recovers the tags from the
original source if available, or uses a predicate on views instead:

∀p ∈ V → m 2. injsOr p ∈ V + V ⇐m V

injsOr :: (v → m Bool)→ (Either v v⇐m v)
injsOr p = inj (λs v ′ → maybe (p v ′) (return ◦ isLeft) s)
where isLeft = either (const True) (const False)

Seeing that the view is injected to the left when the original source
is a left value (and vice-versa), the source domains must be the same.
This embodies the behavior of the ‘either’ lens from [24].

The ‘either’ combinator (∇ ) enables the specification of put-
lenses by case analysis and applies two different putlenses depending
on the view branching, producing a source of the same type:

f ∈ S1⇐m V1 g ∈ S2⇐m V2 S1 ∩ S2 = ∅
f ∇ g ∈ S1 ∪ S2⇐m V1 + V2

(∇ ) :: (s⇐m v1)→ (s⇐m v2)→ (s⇐m Either v1 v2)
(f ∇ g) s (Left v ′1) = mfilter (disjoint f g) (f v ′1)
(f ∇ g) s (Right v ′2) = mfilter (disjoint g f ) (g v ′2)

disjoint x y s = s ∈ dom(get x ) ∧ s /∈ dom(get y)

It applies put f or put g to left or right view values, respectively. To
guarantee PUTINJ⇐, we must ensure the ranges of put f and put g
(that are the domains of get f and get g) to be disjoint – this tells us
that we can later apply get f or get g unambiguously, thus getting
a view through the same side that had put it to the source. Such
test is performed by the pseudo-code of disjoint , whose particular
implementation is discussed later in Section 5. Accordingly, the
typing rule requires the source domains of f and g to be disjoint.

One way to guarantee disjointness for ∇ is to ask programmers
to provide a predicate that declares how to branch source values:

f ∇p g = (Φ p ◦< f )∇ (Φ (not ◦ p) ◦< g)

Here, the Φ combinator restricts the left and right source domains
according to the predicate. We can also define left- (f •∇ g) and right-
biased (f ∇• g) variants of∇S1 that favor the domain of the left or
right putlens, by instantiating S1 = dom(f ) or S1 = ¬(dom(g)).

The following laws reveal the duality between our injection and
either combinators on sums.

(id ∇p id) ◦< inj (λs → return ◦ p) v id

Φ (p?) ◦< inj (λs → return ◦ p) ◦< (id ∇p id) v Φ (p?)

Specifically, injecting view tags with a predicate p and ignoring
them with ∇p or ignoring view tags with ∇p and re-injecting
them according to p are both subsets of the identity putlens. If
the predicate p is a total function, the laws become equalities: the
first for any sum and the second for sums consistent with p (we
define p? = either p (not ◦ p)).

The ‘sum’ combinator (as found in [14, 23]) applies two put-
lenses to distinct sides of the view, keeping the view branching:

f ∈ S1⇐m V1 g ∈ S2⇐m V2

f ⊕ g ∈ S1 + S2⇐m V1 + V2

(⊕ ) :: (s1⇐m v1)→ (s2⇐m v2)
→ (Either s1 s2⇐m Either v1 v2)

(f ⊕ g) s (Left v ′1) = f (l s) v ′1 >>= return ◦ Left where
l = maybe Nothing (either Just (const Nothing))

(f ⊕ g) s (Right v ′2) = f (r s) v ′2 >>= return ◦ Right where
r = maybe Nothing (either (const Nothing) Just)

The putlenses f or g are applied to left/right views, producing
left/right sources. The original source is considered if its branching
is consistent with the view branching, or ignored otherwise.

We define standard left and right injections as derived putlenses:

injl ∈ V + ∅⇐m V

injl :: Either v v2⇐m v
injl = (id⊕ bot) ◦< inj

(λs v ′ → return True)

injr ∈ ∅+ V ⇐m V

injr :: Either v1 v⇐m v
injr = (bot⊕ id) ◦< inj

(λs v ′ → return False)

When applied to the view, injl (and injr) injects the view with a left
(or right) tag; bot generalizes the opposite choice to any type.

3.5 Recursion
In the point-free style of programming [3], algebraic data types are
usually seen as sums of products. Each data type A comes equipped
with an isomorphism out ∈ A→ F A that exposes its top-level
structure (in a sense, encoding pattern matching over that type),
and its converse inn ∈ F A→ A that determines how values of
that type can be constructed. Here, F is a particular functor that
represents the sums-of-products structure of type A. For instance,
for lists we have F A = 1 + A× [A] and the following instances:

inn s = either (λ()→ [ ]) (λ(x , xs)→ x : xs) s
out l = case l of { [ ]→ Left (); (x : xs)→ Right (x , xs)}

The inn and out isomorphisms can be lifted to the putlenses
in ∈ A⇐m F A and out ∈ F A⇐m A in a trivial way. The
usual constructors and deconstructors for lists are defined as follows.

nil = in ◦< injl unnil = (id∇ bot) ◦< out
cons = in ◦< injr uncons = (bot∇ id) ◦< out

The putlenses nil and unnil construct/destruct an empty list, and
cons and uncons construct/destruct a non-empty list.

Instead of introducing an explicit fixed-point combinator [3],
we define recursive putlenses implicitly, relying on Haskell’s lazy
recursion mechanism. Consequently, it is not guaranteed that (the
recursive functions of) recursive putlenses terminate, and ensuring
totality (and well-behavedness8) requires tools beyond composi-

8 Precisely speaking, our well-behavedness laws also demand put and get
to be defined (i.e., terminating) for particular domains.



tional reasoning. The standard development to prove termination is
then to introduce an ordering on putlenses and show that all descend-
ing chains of elements produced by a putlens fixed-point are finite
and have a minimal element [7]. This problem has been orthogonally
considered for lenses in other publications [10, 23]. Still, we will
present examples that can be proved total for particular domains.

The standard map function can be lifted to a (total) recursive
combinator that maps an argument (total) putlens over a view list:

map :: (b⇐m a)→ ([b ]⇐m [a ])
map f = in ◦< (id⊕ (f ⊗map f )) ◦< out

We can also define a putlens for the ubiquitous foldr function:

unfoldr :: ((b, a)⇐m a)→ a → ([b ]⇐m a)
unfoldr f x = in ◦< iterate ◦< (inj (λs → return ◦ (≡ x )))

where iterate = ignore x ⊕ ((id⊗ unfoldr f x ) ◦< f )

The unfoldr putlens9 takes a putlens f and a default view value x .
Its get function will perform just as the (uncurried) foldr function,
and fold a list of type [b ] in a bottom-up approach to produce a
value of type a , by applying get f at each iteration and returning
the default x for the empty list. Its put function will unfold the view
of type a to produce an updated source list (while consuming the
original source list in some way). An interesting detail is how inj
tests if the view matches the default x to decide whether to stop
recursion in the backward direction (generating the [ ] list) or not.
For this reason, unfoldr will only build a total well-behaved putlens
if the given put f somehow converges into a minimal element x .

3.6 Injective functions are putlenses
The simplest cases of BXs are isomorphisms. Given an injective
function f and its inverse f −1, we can trivially build a lens with
put s = f and get = f −1. In existing combinatorial BX lan-
guages [21, 23], the variable-free style used to specify BXs requires
making the control flow explicit through the use of some “piping”
isomorphisms. These combinators play an important role in ex-
tending the expressiveness of the bidirectional language (as lens
categories [14, 24] do not support categorical sums and products).
For example, the following piping combinators reflect the commuta-
tivity, associativity and distributivity of sums and products.

swap :: (b, a)⇐m (a, b)
assocl :: ((a, b), c)⇐m (a, (b, c))
coswap :: Either b a⇐m Either a b
coassocl :: Either (Either a b) c⇐m Either a (Either b c)
distl :: Either (a, c) (b, c)⇐m (Either a b, c)
undistl :: (Either a b, c)⇐m Either (a, c) (b, c)

The putlens inverses for these combinators are correspondingly
named assocr, coassocl, distr and undistr. We can define all these
combinators not as primitives but as derived (partial) putlenses, by
lifting their standard unidirectional definitions to putlenses.

3.7 Conditionals are putlenses
Using putlenses on sums, we can define a conditional combinator:

ifthenelse p f g = (f •∇ g) ◦< inj p

It takes two putlenses f and g and a predicate p deciding to apply
either f or g . When the source domains of the two putlenses overlap,
f is preferred. Despite general, it is not very interesting by itself as
its semantic constraints and behavior just combine those of inj and
•∇ : source domains must be disjoint and view domains can overlap.

9 We use the name unfoldr to denote the view-to-source putlens for the foldr
forward function and not a lens version of the Haskell unfoldr function.

To avoid overlapping between the source domains of f and g ,
we can define specific conditionals that work over more constrained
domains. Consider the view-based ‘if-then-else’ combinator:

V1 ⊆ V f ∈ S1⇐m V1 g ∈ S \ S1⇐m V \ V1

ifVthenelse V1 f g ∈ S⇐m V

ifVthenelse :: (v → Bool)→ (s⇐m v)→ (s⇐m v)
→ (s⇐m v)

ifVthenelse p f g = ((f ◦<Φ p) •∇ g) ◦< inj (λs → return ◦ p)

Given a user-specified predicate p on views, it applies either f or g
depending on p. At the semantic level, f and g must map disjoint
view domains (consistent with p) to disjoint source domains, thus
behaving as some sort of ‘sum’ combinator on sets instead of disjoint
sums. It is equivalent to the acond combinator from [10].

We can also provide a source-based ‘if-then-else’ combinator:

S1 ⊆ S f ∈ S1⇐m V g ∈ S \ S1⇐m V

ifSthenelse S1 f g ∈ S⇐m V

ifSthenelse :: (s → Bool)→ (s⇐m v)→ (s⇐m v)
→ (s⇐m v)

ifSthenelse p f g = (f ∇p g) ◦< injsOr (λv → return True)

This time, the branching is decided by a predicate p on sources
applied to the original source (if it is unavailable, then f is preferred).
As a consequence of using injsOr, the view domains of f and g must
be identical. This corresponds to the ccond combinator from [10].

Conditionals also allow to encode pattern matching without
mentioning in and out, in favor of more intuitive constructors or
destructors, as in the following alternative formulation of map.

map f = ifVthenelse null (nil ◦< unnil) iterate
where iterate = cons ◦< (f ⊗map f ) ◦< uncons

3.8 User-defined putlenses
To make our Haskell library of putlenses extensible, we also admit
user-defined lenses. These are useful in practice to define putlenses
for primitive types (like integers or strings) directly in terms of their
primitive operations. Any custom lens (a pair of well-behaved put
and get functions) can be encoded using custom:

custom :: (Maybe s → v → m s)→ (s → v)→ (s⇐m v)
custom put get = remfst get ◦< addsnd (λp → put (fmap snd p))

Custom putlenses are always well-behaved10, but should only be
used for simple transformations since programmers must write two
put and get functions by hand, without bidirectional support.

4. Put-based Lens Programming
In this section, we argue for specifying a well-behaved BX by
writing a put-based lens in our language. We illustrate the spirit
of put-based programming through several examples that highlight
the features of our language, and discuss how their corresponding
put functions can be programmed and instantiated with different
monadic effects to reflect different update strategies.

4.1 Common monadic effects
Thus far, the presentation of our language has only assumed an
abstract monadic interface, not imposing any special structure on
computational effects. Naturally, concrete monads are likely to be
used and combined for particular examples.

10 The custom combinator ensures well-behavedness of the resulting putlens
by possibly making it less defined than the passed functions.



The Identity monad models pure function application, and com-
prises a constructor Identity a , with a trivial algebra runIdentity ::
Identity a → a that simply retrieves a pure value. We can pro-
gram in a language of traditionally pure putlenses by instantiating
our combinators with the Identity monad. For putlenses without
monadic effects, we often write s⇐ v as short for s⇐Identity v .

The Reader r monad models computations that access a shared
environment r . We can run a reader-aware putlens l :: s⇐Reader r v
in putback direction using an algebra runReader (l s v ′) r , for
some initial environment r , source s and view v ′. We can easily lift
specific monadic operations to putlenses using effect, for example:

runReader :: (Maybe s → v → m r)
→ (s⇐ReaderT r m v)→ (s⇐m v)

runReader f g s v ′ = effect (λs v ′ → f s v ′ >>= runReaderT m)

The runReader combinator runs a putlens computation in a newly
initialized environment11. For the sake of generalization, the
ReaderT monad transformer (Reader r = ReaderT r Identity)
adds a reader environment to any other monad.

Perhaps more familiar is the State st monad of computations
using an internal state st . Additionally to reading from a shared
state (readState :: State s a → s), computations may also modify
the current state via an operation writeState :: s → State s (). We
can define similar lifted combinators over states, like runState that
runs a putlens computations under an initialized state:

runState :: (Maybe s → v → m st)
→ (s⇐StateT st m v)→ (s⇐m v)

A particular subclass of monads that permit computations to
recover from failure is captured by the exception monad [11]:

class Monad m ⇒ MonadExcept m where
catch :: m a → m a → m a

The intention is that ∅ raises exceptions and catch m h can capture
failures of m and pass control to the handler h , satisfying sensible
laws. A typical instance of MonadExcept is the Maybe monad,
with an algebra fromJust :: Maybe a → a .

Despite these are the monads that we found most useful for the
coming examples, other interesting monads could be considered. For
instance, a list or probabilistic monad could be useful for specifying
update strategies in a functional logic programming style [12] or for
lenses that are non-deterministic in general [18].

4.2 Defining putlenses using structural recursion
As common in functional programming, our language allows writing
putlenses using structural recursion patterns that hide recursion from
the users, like map and unfoldr from Section 3. More importantly,
we can express different update strategies in this style.

Example 4.1 (Update sum of list). Imagine a put function that,
given a source list of numbers and an updated view number, modifies
the source list so that its summation becomes the updated view:

summands :: [Int ]→ Int → [Int ]

There are naturally many ways to update a list so that it meets a
particular sum. For instance, consider the following put functions
for three possible summands putlenses.

> get [1, 2, 3, 4] > put1 [1, 2, 3, 4] 15
10 [1, 2, 3, 4, 5]
> put2 [1, 2, 3, 4] 15 > put3 [1, 2, 3, 4] 15
[3, 3, 4, 4, 1] [2, 3, 4, 6]

11 Remember that for, runReader to be well-behaved, programmers must
ensure that f (Just s) (get s) = return r , for some environment r .

The get function is the same for the three putlenses: the Haskell
sum function that sums a list of numbers. Our first strategy (put1)
preserves the original source and appends the view update (the
modified view subtracted by the original view) as a last element of
the updated source. Our second strategy (put2) recursively traverses
the source list and divides the view update by two at each recursive
step: half of the view update is added to the first element of the
source, a quarter to the second, and so on until the remainder is
0. Our third strategy (put3) behaves similarly to the second one
but instead divides the view update by the length of the source, to
distribute the difference evenly among the original source elements.

In order to encode these strategies, we start by hand-coding an
arithmetic putlens that splits a view integer into two summands12:

split :: (Int → Int → m Int)→ ((Int , Int)⇐m Int)
split offset = custom put (uncurry (+)) where

put (Just (x , y)) z = do i ← offset (x + y) z
return (x + i , z − x − i)

put Nothing z = return (z , 0)

The corresponding get function is just (uncurried) binary addition.
To support different splitting behaviors, the auxiliary function offset
computes the offset to be added to the original left value, while the
remainder of the view modification is added to the original right
value. The resulting putlens is total for any total offset argument
function. We can now encode the three strategies (put1, put2, put3)
for summands using a recursive unfoldr and different offsets:

summands1, summands2, summands3 :: [Int ]⇐m Int
summands1 = unfoldr (split (λs v → return 0)) 0

summands2 = unfoldr (split (λv v ′ → div (v ′ − v) 2)) 0

summands3 = runState (λs v → len s) (unfoldr split 0)
where len = return ◦maybe 0 length

split = split (λv v ′ → readState >>= λi →
writeState (i − 1)>> return (div (v ′ − v) i))

The put of summands1 keeps the original source and appends the
view update as a last element, because its underlying split always
adds 0 to the original left value. For summands2, split divides the
view update in half. To evenly split the view update, summands3

needs more information at the time it (binarily) splits a view integer;
we extend it with an additional state that counts the length of the
original source, decreased at each put iteration. These three variants
can be proved total, by observing that split will return a pair (z , 0)
when the original source list is empty, what will produce a singleton
list [z ] according to the stop condition of unfoldr.

4.3 Defining putlenses in analogy to get-based style
Users can also program putlenses by “reversing” existing unidi-
rectional programs, written from source to view, in a style dual to
traditional get-based bidirectional languages.

Example 4.2 (Insertion “unsort”). A simple sorting algorithm is
insertion sort, that can be encoded in Haskell as follows.

isort :: Ord a ⇒ [a ]→ a ins :: Ord a ⇒ a → [a ]→ [a ]
isort [ ] = [ ] ins x [ ] = [x ]
isort (x : xs) = ins x (y : ys) = if x 6 y

ins x (isort xs) then x : y : ys else y : ins x ys

Consider now that we want to write a putlens that “unsorts” a list by
reversing isort . It may be useful, for example, to compose with other
lenses that assume sorted lists. Since we consider view lists to be
always sorted, a put function for isort has the liberty to “disarrange”
the elements in the view as long as it preserves the same elements.
We consider two of many possible update strategies:

12 Note that custom will enforce PUTTWICE for any offset function.



put1 [4, 1, 3, 2] [5, 6, 7, 8, 9, 10] = [8, 5, 7, 6, 9, 10]
put2 [4, 1, 3, 2] [5, 6, 7, 8, 9, 10] = [5, 6, 7, 8, 9, 10]
put2 [4, 1, 3, 2] [1, 2, 3, 4] = [4, 1, 3, 2]

Our first strategy (iunsort1) just disarranges the view based on the
“disarrangedness” of the source, i.e., the view list is “unsorted” in
reverse way to which the original source was sorted (up to the length
of the original source). But other strategies may freely disarrange the
view in a different way, like iunsort2 that simply copies the (sorted)
view to the source whenever the view is modified.

We can define the first putlens by dualizing isort to iunsort1 and
ins to del using default conditional combinators as follows.

iunsort1 :: Ord a ⇒ ([a ]⇐m [a ])
iunsort1 = ifVthenelse null (nil ◦< unnil) iterate

where iterate = cons ◦< (id⊗ iunsort1) ◦< del

del = ifVthenelse (null ◦ snd) id disarrange ◦< uncons
where disarrange = ifSthenelse p id reorder

p (x , y : ys) = x 6 y
reorder = (id⊗ cons) ◦< subr ◦< (id⊗ del)

The piping combinator subr (that swaps the order of x and y in
the code of ins) is defined as assocr ◦< (swap⊗ id) ◦< assocl. The
definition of iunsort1 essentially consists in removing variables,
and the most interesting part lies in the code of disarrange, that
decides if the order of the view shall be preserved in the source
(id) or if view elements shall be reordered in some way (reorder ).
The default behavior of ifSthenelse will preserve the relative order
of the elements in the source. Other strategies can be simulated
by adequately changing the code of disarrange, e.g., iunsort2 is
defined using disarrange = ifthenelse mod (Φ p) reorder , with
mod (Just (Right v)) v = return False and mod s v =
return True otherwise. As expected, both iunsort1 and iunsort2

are total for all source lists and sorted view lists.

4.4 Defining flexible alignment strategies
For state-based BXs (in contrast to operation-based BXs [6]),
the put function of a lens must align the original source with
the modified view to identity view modifications and translate
them to the source. This alignment problem is well-known in the
literature, and some languages [2, 5, 25] promote decomposing
update strategies into: an explicit alignment phase, that infers
an high-level description of a view update between source and
view structures; and a backward transformation phase, that makes
use of the inferred information to guide the propagation of view
modifications to the source. Our language can flexibly specify
various alignment strategies, as we now illustrate with the encoding
of a typical database projection operation.

For the sake of simplicity, we regard database tables as sets of
rows represented as lists sorted by a key that identifies rows uniquely.
In Haskell, a row can be seen as a record type with the names of
columns as fields. Consider a record of people and a conforming
database where each person is identified by its name:

data Person = Person {name :: Name, city :: City }
type Name = String type City = String

people = [peter , roberto, david ]
peter = Person "Peter" "San Diego"

roberto = Person "Roberto" "Rome"

david = Person "David" "San Diego"

The following putlenses allow modifying the fields of people.

name :: Person⇐m Name city :: Person⇐m City
name = in ◦< keepsnd city = in ◦< keepfst

Example 4.3 (DB projection). Using a bidirectional language, we
can easily define a lens like the one below that projects only names
from of a database of people, ignoring their cities.

peopleNames0 : City → ([Person ]⇐m [Name ])
peopleNames0 newc = map (in ◦< addsnd cityOf )

where cityOf s v = return (maybe newc snd s)

This projection putlens maps addsnd cityOf over a list of view
names, applying cityOf to retrieve the city of each person’s name if
a city exists in the original database, or creating a new city otherwise.
However, the behavior of this putlens is highly unsatisfactory.
Consider the following invocation:

> let s = [roberto, david ]
> let v ′ = ["Peter", "Roberto", "David"]
> runIdentity (put (peopleNames0 "Lyon") s v ′)
[Person "Peter" "Rome",Person "Roberto" "San Diego"

,Person "David" "Lyon" ]

By adding Peter to a list of names with only Roberto and David, this
naive put will align people in the two lists positionally instead of by
name, what results in the incorrectly matched cities.

This problem occurs because, as in a traditional bidirectional
language, map simultaneously traverses source and view lists, and
addsnd can only see the old source element for a view element at
the same position, but not the whole source list. To align people by
their names, we can introduce an environment that remembers the
associations between names and cities in the original source, and
extend cityOf to reuse such information (provided by the monad):

peopleNames :: City → [Person ]⇐Reader [Person ] [Name ]
peopleNames newc = map (in ◦< addsnd cityOf ) where

cityOf s n = ask >>= λpeople → return
(case find (λp → get name p ≡ n) people of
{Just p → get city p; Nothing → newc})

Initializing the reader with the associations from the original source,
newly inserted names are now processed accordingly:

> runReader (put (peopleNames "Lyon") s v ′) s
[Person "Peter" "Lyon", roberto, david ]

Although we have just demonstrated a simple key-based example,
virtually any alignment-based strategy can be simulated using a
Reader monad: the original source and modified view are pre-
aligned as a separate aspect controlled by users, and the inferred
associations initialize an environment that is pipelined through
put transformations. BX developers could then devise alignment-
aware variants of putlens combinators that use and propagate such
alignment information, hiding the internal plumbing from the users
in the same way other alignment-aware languages [2, 5, 25] do.

4.5 Defining various database view-update strategies
Historically, database view updating is a primary source of moti-
vation for research in BXs. Apart from very restrictive scenarios,
view updating is inherently ambiguous and some existing solutions
propose allowing users to control the update strategy to some extent.
We now demonstrate how similar user-parameterizable database
views can be encoded in our put-based language.

Example 4.4 (DB selection). One typical operation for defining
views of databases is selection, which filters rows satisfying a
given condition. Reflecting view insertions and modifications is
straightforward: we must copy such rows to the source. When source
rows are deleted (either by selection or by the update), however, we
may either reasonably: 1) delete them from the original database
table, or 2) change them so that they do not satisfy the selection



condition. Keller [16] uses this as a classical example to illustrate
the ambiguity of view update translation.

Consider a database query peopleFrom from that selects people
from a city from , and two update strategies: peopleFrom from that
removes deleted people in the view, and peopleFromTo from to
that moves deleted people to a new city to different than from:

> peopleFrom "San Diego" people = [peter , david ]
> put (peopleFrom "San Diego") people [david ]
Identity [roberto, david ]
> put (peopleFromTo "San Diego" "Lyon") people [david ]
Identity [Person "Peter" "Lyon", roberto, david ]

We start by defining a general selection putlens that manipulates an
internal state of filtered out rows to be recovered:

select :: Ord k ⇒ (a → k)→ (Maybe [a ]→ m [a ])
→ (a → Bool)→ ([a ]⇐m [a ])

select key entries p = runState rs (select′ key p) where
rs s v = entries s >>= λrs → return (Nothing , rs)

select′ key p = ifthenelse cond recover iterate where
cond s v ′ = do ( , rs)← readState

let (h, t) = recoverRow key rs v ′

writeState (h, t)>> return (isJust h)
recover = cons ◦< (Φ (not ◦ p)⊗ select′ key p) ◦< addfst

(λs v → do {(Just x , )← readState; return x })
iterate = in ◦< (id⊕ id⊗ select′ key p) ◦< out

recoverRow key [ ] = (Nothing , [ ])
recoverRow key (x : xs) [ ] = (Just x , xs)
recoverRow key (x : xs) (v : vs)
| key v < key x = (Nothing , x : xs)
| key v ≡ key x = (Nothing , xs)
| key v > key x = (Just x , xs)

Our select combinator takes as arguments a predicate p (the filtering
criterion), a key function that uniquely determines rows, and an
entries function that computes a subtable of rows (not satisfying
p) to be merged with the updated view. It starts by initializing a
state monad with such subtable; then, it either recovers a row from
the state (recover ) or proceeds recursively by copying a row from
the view (iterate). The auxiliary function recoverRow controls this
choice: it takes two (we assume sorted) lists of “recoverable” rows
and view rows, and recovers a row if it has key smaller than the first
view row (or there are no view rows), updating the state.

We define peopleFrom by initializing the state of select with
only the people not in from , and peopleFromTo by considering
also the people originally in city from but moved to city to:

peopleFrom :: City → ([Person ]⇐m [Person ])
peopleFrom from = select (get name) rs (isFrom from)

where rs = return ◦maybe [ ] (filter (not ◦ isFrom from))

peopleFromTo :: City → City → ([Person ]⇐m [Person ])
peopleFromTo from to = select (get name) rs (isFrom from)
where rs = return ◦maybe [ ] (map move)

move p = if isFrom from p then put city p to else p

Both putlenses are total for view lists satisfying p, and peopleFromTo
only for cities to 6= from . (Lists don’t need to be especially sorted
– we just assumed so to clarify our exposition.) Here, we define the
predicate isFrom c p = get city p ≡ c.

Using our bidirectional semantics for selection, we can also
define a relational join putlens. Strategies for joins are more complex
because there is more ambiguity on which source information to
delete when a row is deleted from the updated join [4, 8]. We refrain
from presenting this combinator due to space limitations.

4.6 Defining putlenses by program inversion
In our language, put functions may innately fail for partial putlenses.
Imagine that we would like to combine two putlenses unnil and
uncons into a single putlens that processes both empty and non-
empty lists. Being so, we need to account for the event that unnil
may fail for non-empty views, and apply uncons instead. Using
catch , we can express this behavior as a ‘union’ putlens:

f ∈ S1⇐m V1 g ∈ S \ S1⇐m V2

union f g ∈ S⇐m V1 ∪ V2

union :: (s⇐m v)→ (s⇐m v)→ (s⇐m v)
union f g = (Φ (dom(get f )) •∇ id) ◦< inju where

inju Nothing v = (f Nothing v >>= return ◦ Left)
‘catch‘ (g Nothing v >>= return ◦ Right)

inju (Just (Left s)) v = (f (Just s) v >>= return ◦ Left)
‘catch‘ (g Nothing v ′ >>= return ◦ Right)

inju (Just (Right s)) v = (g (Just s) v >>= return ◦ Right)
‘catch‘ (f Nothing v >>= return ◦ Left)

The typing rule for this combinator is similar to that of our general
conditional combinator, allowing the view domains to overlap but
forcing the source domains to be disjoint. (As an exercise, readers are
invited to write this putlens as a derived form of ifthenelse, but in a
less effective way.) The putback direction applies f or g , preferring
f when the view domains overlap except if the original source
belongs to the source domain of g . It can be found in the literature
as the cond [10] or ‘union’ [5] lens. The ‘union’ lens of [14] follows
the same spirit of our auxiliary inju combinator. A similar form of
shallow backtracking is used for the ‘junc’ combinator of [29].

Example 4.5 (Tokenize words). The Haskell unwords function
joins a list of words with a separating space. Using union, we can
write an inverse putlens that parses a view string into a list of words:

words :: MonadExcept m ⇒ [String ]⇐m String
words = union (nil ◦< ignore "") (unfoldr1 (sepPut " "))

unfoldr1 :: MonadExcept m ⇒ ((a, a)⇐m a)→ ([a ]⇐m a)
unfoldr1 f = union (cons ◦< (id⊗ unfoldr1 f ) ◦< f ) wrap

Our encoding mimics the standard Haskell definition of unwords:
it breaks the view string into two words separated by a single
space, employing a custom sepPut::((String ,String)⇐m String)
putlens that fails if the string has no spaces; the empty view string
generates an empty source list; and any other string (without spaces)
is put to the source as a singleton word. The resulting putlens can
be proved total for any source list and view string. For example:

get words ["a", "b", "c"] = Just "a b c"

put words Nothing "he llo" = Just ["he", "", "llo"]

5. Implementation
This section unveils the implementation of our put-based lens lan-
guage as a Haskell library. Although our presentation of putlenses
this far focuses on writing put transformations, which is sufficient to
describe the interface to users, our implementation internally manip-
ulates explicit definitions of get. We also unveil a standard technique
that improves the efficiency of our prototype implementation.

5.1 Explicit get functions with observable domains
First, we redefine a putlens as a record of a put and a get function:

data s⇐m v = Putlens {put :: Maybe s → v → m s
, get :: s → Maybe v }

In this definition, we extend the view type of get to Maybe v in
order to make its domain “observable”, i.e., for a particular source



get id s = Just s get (f ◦< g) s = get f s >>= get g

get (Φ p) s = if p s then Just s else Nothing

get bot s = Nothing get (effect f g) s = get g s

get (addfst f ) (s1, s2) = Just s2 get (addsnd f ) (s1, s2) = Just s1
get (remfst f ) s = Just (f s, s) get (inj p) (Left s) = Just s

get (remsnd f ) s = Just (s, f s) get (inj p) (Right s) = Just s

get (f ⊗ g) (s1, s2) = do

{v1 ← get f s1; v2 ← get g s2; return (v1, v2)}
get (f ∇ g) s | isNothing (get f s) = fmap Right (get g s)

| isNothing (get g s) = fmap Left (get f s)

| otherwise = Nothing

get (f ⊕ g) (Left s1) = fmap Left (get f s1)

get (f ⊕ g) (Right s2) = fmap Right (get g s2)

get in s = out s get out s = inn s

Figure 1. Explicit get functions for our putlens language.

s , we can know whether get s is defined or not given that it returns
a view value Just v or Nothing13. Extending get with the Maybe
monad is merely an implementation detail, as users don’t write
get functions. Alternatively to Definition 3.1, we can characterize
well-behaved putlenses in terms of put and get functions.

Proposition 3. A putlens l :: s⇐m v is well-behaved iff it satisfies
the following properties:

s ′ ∈ put s v ′ ⇒ Just v ′ = get s ′ PUTGET⇐

Just v ∈ get s ⇒ put (Just s) v = return s GETPUT⇐

Figure 1 shows concrete get definitions for the combinators
in our language. As an example, the get of addfst f always
selects the second element of a pair, since we ensure that its put
function always satisfies PUTTWICE⇐. A technical remark is that,
for some combinators like remfst or Φ, our implementation may
overestimate the domain of get if their argument functions are
not total. In practice, this does not disrupt well-behavedness and
just renders the domain of get “non-observable” for some sources
(get s = Just ⊥); the domain of get is exact for total arguments.

5.2 Improve efficiency via tupling transformation
The traditional usage scenario of lenses is to apply get to an original
source to compute a view, and invoke put with an updated view
to produce a correspondingly updated source. Since put takes into
account the original source information in order to propagate a
view update, it often performs redundant computations of get —an
elucidative example is putlens composition (◦< ). For this reason, it
is better to partially evaluate put for the original source at the same
time we compute get; in algebraic programming, this optimization
is known as tupling. In our implementation, we reshape the putlens
framework into an equivalent formulation but where get and put
are tupled into a single function, as originally suggested in [27]:

data s⇐m v = Putlens {create :: v → m s
, getput :: s → (Maybe v , v → m s)}

A putlens in the tupled framework consists of two functions: a create
function that corresponds to put for the case when the original
source is not available, and a tupled getput function that takes an

13 We define disjoint x y s = isJust (get x s) ∧
isNothing (get y s) and enforceGetPut f = Putlens put (get f )
with put s v = if isJust s ∧ get (fromJust s) ≡
Just v then return s else put f s v .

original source to produce a (maybe) original view and a create
function for the case when the original source is available.

6. Related Work
BXs in the database community are known under the classical
view update problem [1]. To tackle the ambiguity of view update
translation, some approaches [16, 17] propose interactive algorithms
that run a dialog with the view programmer and the view user to
choose a particular view update strategy obeying a set of intuitive
criteria. Unlike put programming, dialog approaches only consider
update translations deemed intuitive (to reduce the number of
questions asked), but not all well-behaved update translators.

All existing bidirectional programming approaches based on
lenses focus on writing bidirectional programs that resemble get
functions. Some examples are lens languages or techniques for
generalized trees [10], algebraic data types [14, 20, 23, 25, 28], XML
data [15, 26, 27], strings [2, 5], relational data [4] or graphs [13].

Some of these approaches provide stronger guarantees by ensur-
ing that all lenses are total [2, 4, 5, 10, 14, 23, 25, 26]. However,
meeting totality implies limiting the expressiveness of the supported
transformations. (Note that totality and consequent surjectivity are
not necessary conditions for the uniqueness of BXs in Theorem 2.1.)
For example, the point-free language of [23] does not support injec-
tive get functions such as constant functions of type ()→ a , dupli-
cation or injections, all supported as putlenses. Other approaches re-
lax valid programs to partial well-behaved lenses [13, 15, 20, 27, 28],
although that may represent a serious drawback on updatability,
since users cannot predict when particular view updates will fail
simply from the specification of the forward transformation. The
seminal lens language of [10] instead assumes a very precise seman-
tic type system to ensure that well-typed lenses are well-behaved
and total, despite not providing automated type checking; we follow
a similar approach by introducing a set-theoretic type system to rea-
son about totality of well-typed putlenses, but nevertheless ensure
that (non-recursive) partial putlenses are well-behaved with respect
to the more conventional Haskell type system. In comparison to
get-based languages, putlenses may fail for particular inputs but
the programmer has a chance of molding the partiality of put (as
programming with partial functions in Haskell) by taking into ac-
count the semantic annotations, and knowing that (for non-recursive
expressions) the combinators map total putlenses to total putlenses.

On a different topic, all the abovementioned bidirectional pro-
gramming approaches are state-based, meaning that the put function
of a lens must align the updated view with the original source to infer
a corresponding view update. Although for unordered data (relations,
graphs) such alignment can be done rather straightforwardly, for
ordered data (strings, trees) it is more problematic to find reasonable
alignment strategies. Regardless of this fact, these approaches either
consider a single update strategy or provide limited control over the
update strategy, and even alignment-aware languages [2, 25] still
support restricted user control over specific transformation patterns
for particular kinds of data. Operation-based approaches (see [6, 8]),
that consider actual update operations, possess more information,
but also tend to commit to particular update strategies for particular
classes of updates. Conversely, our put-based lens language allows
programmers to control the update strategies, making BX behavior
more predictable.

The work from [21] proposes a point-free BX language of
injective functions and their partial inverses, from which we draw
many ideas. But in our terms [21] only amounts to writing injective
create functions, while our language of injective put s functions
supports programming of more challenging put update strategies.

The Haskell lens package provides an interface of lenses
that define getters/setters for records and other general containers.
Lenses in this context are typically projections (in the style of



keepfst) and rather conservative —they live in the class of very
well-behaved lenses [10]— having a much simpler bidirectional
semantics. As evidence, our partial embedAt example can only be
described as a Traversal (which satisfies weaker laws unrelated to
bidirectional behavior). The package also features type-changing
view updates; this is fairly common for example when updating
fields of polymorphic records, but becomes less tangible for more
complex type-changing bidirectional transformations.

7. Conclusions
In this paper, we have proposed a novel put-based lens language that
invites programmers to shift into a put programming style in which
they write sort of injective put functions from view to source.

When writing lenses in traditional languages, users often have to
think about the behavior of both the get and the put functions, but
they may not be allowed to describe them in terms of the provided
language constructs. Put-based programming is more powerful in
that it allows them to specify a BX more precisely just in terms of
put . The tradeoff is that some of the responsibility is passed from
the bidirectional system to the lens programmer.

Notwithstanding, put-based lens programming is not necessarily
more complex. Users can start with a (dual of a) get-oriented lens
using default combinators. (It is worth noticing that most combi-
nators in our language that have analogous in lens languages are
derived ones, which supports the claim that our language is a proper
superset of those languages.) Next, they can systematically adapt
the behavior of unsatisfactory putlenses by combining monadic ef-
fects or replacing particular defaults with more general variants. Our
examples suggest that this shift is manageable in practice, as the
additional expressive power —although crucial to express intricate
update strategies— is often needed only at precise parts of a BX.
The additional complexity of writing a putlens can be roughly com-
pared by ignoring monadic effects and user-defined parameters, to
obtain a lens with essentially the same get but a different put .

To highlight the potential of put programming, we have devel-
oped a very flexible low-level put-based lens language, that we hope
can serve as a general-purpose framework in which other BX ap-
proaches can be implemented. Our prototype library is available on-
line at the Hackage package repository under the name putlenses,
and bundles the examples presented in this paper and more. Nev-
ertheless, it may be hard to write intricate put functions as put-
lenses, and the next step is to improve on static guarantees and
programmability. On this account, we are currently developing a
more maintainable (but less expressive) high-level put-based lan-
guage for updating XML databases, with core semantics given as
putlenses. In the future, a more serious user evaluation is necessary
to assess the practical value of put programming techniques.

A further direction is to investigate the design of put program-
ming languages for other data domains, e.g., relational databases.
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