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Abstract: Sinusoids are widely used to represent the oscillatory modes of musical instrument
sounds in both analysis and synthesis. However, musical instrument sounds feature transients
and instrumental noise that are poorly modeled with quasi-stationary sinusoids, requiring spectral
decomposition and further dedicated modeling. In this work, we propose a full-band representation
that fits sinusoids across the entire spectrum. We use the extended adaptive Quasi-Harmonic
Model (eaQHM) to iteratively estimate amplitude- and frequency-modulated (AM-FM) sinusoids
able to capture challenging features such as sharp attacks, transients, and instrumental noise. We
use the signal-to-reconstruction-error ratio (SRER) as the objective measure for the analysis and
synthesis of 89 musical instrument sounds from different instrumental families. We compare against
quasi-stationary sinusoids and exponentially damped sinusoids. First, we show that the SRER
increases with adaptation in eaQHM. Then, we show that full-band modeling with eaQHM captures
partials at the higher frequency end of the spectrum that are neglected by spectral decomposition.
Finally, we demonstrate that a frame size equal to three periods of the fundamental frequency results
in the highest SRER with AM-FM sinusoids from eaQHM. A listening test confirmed that the musical
instrument sounds resynthesized from full-band analysis with eaQHM are virtually perceptually
indistinguishable from the original recordings.

Keywords: musical instruments; analysis and synthesis; sinusoidal modeling; AM—-FM sinusoids;
adaptive modeling; nonstationary sinusoids; full-band modeling
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1. Introduction

Sinusoidal models are widely used in the analysis [1,2], synthesis [2,3], and transformation [4,5]
of musical instrument sounds. The musical instrument sound is modeled by a waveform consisting of
a sum of time-varying sinusoids parameterized by their amplitudes, frequencies, and phases [1-3].
Sinusoidal analysis consists of the estimation of parameters, synthesis comprises techniques to
retrieve a waveform from the analysis parameters, and transformations are performed as changes of
the parameter values. The time-varying sinusoids, called partials, represent how the oscillatory
modes of the musical instrument change with time, resulting in a flexible representation with
perceptually meaningful parameters. The parameters completely describe each partial, which can be
manipulated independently.
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Several important features can be directly estimated from the analysis parameters, such as
fundamental frequency, spectral centroid, inharmonicity, spectral flux, onset asynchrony, among many
others [2]. The model parameters can also be used in musical instrument classification, recognition,
and identification [6], vibrato detection [7], onset detection [8], source separation [9], audio restoration [10],
and audio coding [11]. Typical transformations are pitch shifting, time scaling [12], and musical instrument
sound morphing [5]. Additionally, the parameters from sinusoidal models can be used to estimate
alternative representations of musical instrument sounds, such as spectral envelopes [13] and the
source-filter model [14,15].

The quality of the representation is critical and can impact the results for the above applications.
In general, sinusoidal models render a close representation of musical instrument sounds because
most pitched musical instruments are designed to present very clear modes of vibration [16]. However,
sinusoidal models do not result in perfect reconstruction upon resynthesis, leaving a modeling
residual that contains whatever was not captured by the sinusoids [17]. Musical instrument
sounds have particularly challenging features to represent with sinusoids, such as sharp attacks,
transients, inharmonicity, and instrumental noise [16]. Percussive sounds produced by plucking strings
(such as harpsichords, harps, and the pizzicato playing technique) or striking percussion instruments
(such as drums, idiophones, or the piano) feature sharp onsets with highly nonstationary oscillations
that die out very quickly, called transients [18]. Flute sounds characteristically comprise partials on top
of breathing noise [16]. The reed in woodwind instruments presents a highly nonlinear behavior that
also results in attack transients [19], while the stiffness of piano strings results in a slightly inharmonic
spectrum [18]. The residual from most sinusoidal representations of musical instrument sounds
contains perceptually important information [17]. However, the extent of this information ultimately
depends on what the sinusoids are able to capture.

The standard sinusoidal model (SM) [1,20] was developed as a parametric extension of the
short-time Fourier transform (STFT) so both analysis and synthesis present the same time-frequency
limitations as the Discrete Fourier Transform (DFT) [21]. The parameters are estimated with
well-known techniques, such as peak-picking and parabolic interpolation [20,22], and then connected
across overlapping frames (partial tracking [23]). Peak-picking is known to bias the estimation of
parameters because errors in the estimation of frequencies can bias the estimation of amplitudes [22,24].
Additionally, the inherent time-frequency uncertainty of the DFT further limits the estimation
because long analysis windows blur the temporal resolution to improve the frequency resolution and
vice-versa [21]. The SM uses quasi-stationary sinusoids (QSS) under the assuption that the partials are
relatively stable inside each frame. QSS can accurately capture the lower frequencies because these have
fewer periods inside each frame and thus less temporal variation. However, higher frequencies have
more periods inside each frame with potentially more temporal variation lost by QSS. Additionally,
the parameters of QSS are estimated using the center of the frame as the reference and the values are
less accurate towards the edges because the DFT has a stationary basis [25]. This results in the loss of
sharpness of attack known as pre-echo.

The lack of transients and noise is perceptually noticeable in musical instrument sounds
represented with QSS [17,26]. Serra and Smith [1] proposed to decompose the musical instrument
sound into a sinusoidal component represented with QSS and a residual component obtained by
subtraction of the sinusoidal component from the original recording. This residual is assumed
to be noise not captured by the sinusoids and commonly modeled by filtering white noise with
a time-varying filter that emulates the spectral characteristics of the residual component [1,17].
However, the residual contains both errors in parameter estimation and transients plus noise missed
by the QSS [27].

The time-frequency resolution trade-off imposes severe limits on the detection of transients with
the DFT. Transients are essentially localized in time and usually require shorter frames which blur
the peaks in the spectrum. Daudet [28] reviews several techniques to detect and extract transients
with sinusoidal models. Multi-resolution techniques [29,30] use multiple frame sizes to circumvent
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the time-frequency uncertainty and to detect modulations at different time scales. Transient modeling
synthesis (TMS) [26,27,31] decomposes sounds into sinusoids plus transients plus noise and models
each separately. TMS performs sinusoidal plus residual decomposition with QSS and then extracts the
transients from the residual.

An alternative to multiresolution techniques is the use of high-resolution techniques based on
total least squares [32] such as ESPRIT [33], MUSIC [34], and RELAX [35] to fit exponentially damped
sinusoids (EDS). EDS are widely used to represent musical instrument sounds [11,36,37]. EDS are
sinusoids with stationary (i.e., constant) frequencies modulated in amplitude by an exponential
function. The exponentially decaying amplitude envelope from EDS is considered suitable to represent
percussive sounds when the beginning of the frame is synchronized with the onsets [38]. However,
EDS requires additional partials when there is no synchronization, which increases the complexity of
the representation. ESPRIT decomposes the signal space into sinusoidal and residual, further ranking
the sinusoids by decreasing magnitude of eigenvalue (i.e., spectral energy). Therefore, the first K
sinusoids maximize the energy upon resynthesis regardless of their frequencies.

Both the SM and EDS rely on sinusoids with stationary frequencies, which are not appropriate
to represent nonstationary oscillations [21]. Time-frequency reassignment [39—41] was developed to
estimate nonstationary sinusoids. Polynomial phase signals [20,25] such as splines [21] are commonly
used as an alternative to stationary sinusoids. McAulay and Quatieri [20] were among the first to
interpolate the phase values estimated at the center of the analysis window across frames with cubic
polynomials to obtain nonstationary sinusoids inside each frame. Girin et al. [42] investigated the
impact of the order of the polynomial used to represent the phase and concluded that order five does
not improve the modeling performance sufficiently to justify the increased complexity. However,
even nonstationary sinusoids leave a residual with perceptually important information that requires
further modeling [25].

Sinusoidal models rely on spectral decomposition assuming that the lower end of the spectrum
can be modeled with sinusoids while the higher end essentially contains noise. The estimation of
the separation between the sinusoidal and residual components has proved difficult [27]. Ultimately,
spectral decomposition misses partials on the higher end of the spectrum because the separation is
artificial, depending on the spectrum estimation method rather than the spectral characteristics of
musical instrument sounds. We consider spectral decomposition to be a consequence of artifacts
from previous sinusoidal models instead of an acoustic property of musical instruments. Therefore,
we propose the full-band modeling of musical instrument sounds with adaptive sinusoids as
an alternative to spectral decomposition.

Adaptive sinusoids (AS) are nonstationary sinusoids estimated to fit the signal being analyzed
usually via an iterative parameter re-estimation process. AS have been used to model speech [43—46]
and musical instrument sounds [25,47]. Pantazis [45,48] developed the adaptive Quasi-Harmonic
Model (aQHM), which iteratively adapts the frequency trajectories of all sinusoids at the same time
based on the Quasi-Harmonic Model (QHM). Adaptation improves the fit of a spectral template
via an iterative least-squares (LS) parameter estimation followed by frequency correction. Later,
Kafentzis [43] devised the extended adaptive Quasi-Harmonic Model (eaQHM), capable of adapting
both amplitude and frequency trajectories of all sinusoids iteratively. In eaQHM, adaptation is
equivalent to the iterative projection of the original waveform onto nonstationary basis functions
that are locally adapted to the time-varying characteristics of the sound, capable of modeling sudden
changes such as sharp attacks, transients, and instrumental noise. In a previous work [47], we showed
that eaQHM is capable of retaining the sharpness of the attack of percussive sounds.

In this work, we propose full-band modeling with eaQHM for a high-quality analysis and
synthesis of isolated musical instrument sounds with a single component. We compare our method to
QSS estimated with the standard SM [20] and EDS estimated with ESPRIT [36]. In the next section,
we discuss the differences in full-band spectral modeling and traditional decomposition for musical
instrument sounds. Next, we describe the full-band quasi-harmonic adaptive sinusoidal modeling
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behind eaQHM. Then, we present the experimental setup, describe the musical instrument sound
database used in this work and the analysis parameters. We proceed to the experiments, present the results,
and evaluate the performance of QSS, EDS, and eaQHM in modeling musical instrument sounds.
Finally, we discuss the results and present conclusions and perspectives for future work.

2. Full-Band Modeling

Spectrum decomposition splits the spectrum of musical instrument sounds into a sinusoidal
component and a residual as illustrated in Figure 1a. Spectrum decomposition assumes that there are
partials only up to a certain cutoff frequency f., above which there is only noise. Figure 1a represents
the spectral peaks as spikes on top of colored noise (wide light grey frequency bands) and f. as the
separation between the sinusoidal and residual components. Therefore, f. determines the number of
sinusoids because only the peaks at the lower frequency end of the spectrum are represented with
sinusoids (narrow dark grey bars) and the rest is considered wide-band and stochastic noise existing
across the whole range of the spectrum. There is noise between the spectral peaks and at the higher
end of the spectrum. In a previous study [17], we showed that the residual from the SM is perceptually
different from filtered (colored) white noise. Figure 1a shows that there are spectral peaks left in the
residual because the spectral peaks above f. are buried under the estimation noise floor (and sidelobes).
Consequently, the residual from sinusoidal models that rely on spectral decomposition such as the SM
is perceptually different from filtered white noise.
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(a) Spectrum Decomposition (b) Full-Band Harmonic Template

Figure 1. Illustration of the spectral decomposition and full-band modeling paradigms.

From an acoustic point of view, the physical behavior of musical instruments can be modeled as
the interaction between an excitation and a resonator (the body of the instrument) [16]. This excitation
is responsible for the oscillatory modes whose amplitudes are shaped by the frequency response of the
resonator. The excitation signal commonly contains discontinuities, resulting in wide-band spectra.
For instance, the vibration of the reed in woodwinds can be approximated by a square wave [49],
the friction between the bow and the strings results in an excitation similar to a sawtooth wave [16],
the strike in percussion instruments can be approximated by a pulse [2], while the vibration of the lips
in brass instruments results in a sequence of pulses [50] (somewhat similar to the glottal excitation,
which is also wide band [46]).

Figure 1b illustrates a full-band harmonic template spanning the entire frequency range,
fitting sinusoids to spectral peaks in the vicinity of harmonics of the fundamental frequency fo.
The spectrum of musical instruments is known to present deviations from perfect harmonicity [16],
but quasi-harmonicity is supported by previous studies [51] that found deviations as small as 1%.
In this work, the full-band harmonic template becomes quasi-harmonic after the estimation of
parameters via least-squares followed by a frequency correction mechanism (see details in Section 3.1).
Therefore, full-band spectral modeling assumes that both the excitation and the instrumental noise are
wide band.



Appl. Sci. 2016, 6, 127 5 of 20

3. Adaptive Sinusoidal Modeling with eaQHM

In what follows, x (n) is the original sound waveform and £ (n) is the sinusoidal model with
sample index n. Then, the following relation holds:

x(n)=2%(n)+e(n), (1)
where ¢ (1) is the modeling error or residual. Each frame of x (n) is
x(n,m)=xmn)wmn-mH), m=0,---,M—1, )

where m is the frame number, M is the number of frames, and H is the hop size. The analysis window
w (n) has L samples and it defines the frame size. Typically, H < L such that the frames m overlap.

Figure 2 presents an overview of the modeling steps in eaQHM. The feedback loop illustrates the
adaptation cycle, where % (1) gets closer to x (1) with each iteration. The iterative process stops when
the fit improves by less than a threshold e. The dark blocks represent parameter estimation based on
the quasi-harmonic model (QHM)), followed by interpolation of the parameters across frames before
additive [1] resynthesis (instead of overlap add (OLA) [52]). The resulting time-varying sinusoids are
used as nonstationary basis functions for the next iteration, so the adaptation procedure illustrated
in Figure 3 iteratively projects x (1) onto £ (n). Next, QHM is summarized, followed by parameter
interpolation and then eaQHM.

) . Least Frequency Parameter . & A
x(t)—)[Wmdowmg]—A—b[ Squares }—»[CorrectionHmerpolaﬁorHResynthess —>X(1)
I Time-Varying |4
l Basis Functions |‘

Figure 2. Block diagram depicting the modeling steps in the extended adaptive Quasi-Harmonic

Model (eaQHM). The blocks with a dark background correspond to parameter estimation, while the
feedback loop illustrates adaptation as iteration cycles around the loop. See text for the explanation of
the symbols.
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Figure 3. Illustration of the adaptation of the frequency trajectory of a sinusoidal partial inside the
analysis window in eaQHM. The figure depicts the first and second iterations of eaQHM around the
loop in Figure 2, showing local adaptation as the iterative projection of the original waveform onto
the model.

3.1. The Quasi-Harmonic Model (QHM)

QHM [48] projects x (11, 1) onto a template of sinusoids e/27/+/%s with constant frequencies f and
sampling frequency f;. QHM estimates the parameters of £ (1, m) using
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K R
£(nm) =Y (a+ nby) el27fn/fs, 3)
k=—-K

where k is the partial number, K is the number of real sinusoids, a the complex amplitude and by is
the complex slope of the k™ sinusoid. The term nby, arises from the derivative of el27nf/fs with respect
to frequency. The constant frequencies f; define the spectral template used by QHM to fit the analysis
parameters a; and by by least-squares (LS) [44,45]. In principle, any set of frequencies f can be used
because the estimation of a; and by, also provides a means of correcting the initial frequency values f;
by making f; converge to nearby frequencies f; present in the signal frame. The mismatch between
fi and f leads to an estimation error 7 = fi — f¢. Pantazis et al. [48] showed that QHM provides
an estimate of 1 given by

» _ fs Re{ag}Im{b;} —Im{a} Re {b;} @
= on lay|? ’

which corresponds to the frequency correction block in Figure 2. Then £ (1, m) is locally synthesized as

K . Y- ~
£ (n,m) = Z ﬁke](ankn/fswk), 5)
k=—K

where a4, = |ay|, Fy = f¢ + i, and ¢ = Zay are constant inside the frame .

The full-band harmonic spectral template shown in Figure 1b is obtained by setting f; = kfy with
k an integer and 1 < k < fs/2fy. The fy is not necessary to estimate the parameters, but it improves
the fit because the initial full-band harmonic template approximates better the spectrum of isolated
quasi-harmonic sounds. QHM assumes that the sound being analyzed contains a single source, so, for
isolated notes from pitched musical instruments, a constant fj is used across all frames m.

3.2. Parameter Interpolation across Frames

The model parameters 4y, £, and ¢; from Equation (5) are estimated as samples at the frame
rate 1/H of the amplitude- and frequency-modulation (AM-FM) functions d; (1) and ¢ (n) =
21t/ £, F (n) + ¢, which describe, respectively, the long-term amplitude and frequency temporal
variation of each sinusoid k. For each frame m, 4 (t,m) and Fy (T, m) are estimated using the sample
index at the center of the frame n = 7 as reference. Resynthesis of % (n, m) requires 4y (n,m) and
F (n,m) at the signal sampling rate f;. Equation (5) uses constant values, resulting in locally stationary
sinusoids with constant amplitudes and frequencies inside each frame m.

However, the parameter values might vary across frames, resulting in discontinuities
such as 4y (t,m) # dx(t,m+1) due to temporal variations happening at the frame rate 1/H.
OLA resynthesis [52] uses the analysis window w (1) to taper discontinuities at the frame boundaries
by resynthesizing % (n,m) = £ (n) w (n) for each m similarly to Equation (2) and then overlap-adding
% (n,m) across m to obtain £ (n).

Additive synthesis is an alternative to OLA that results in smoother temporal variation [20] by
first interpolating ;. (t,m) and ¢y (T, m) across m and then summing over k. In this case, 4 (1) is
obtained by linear interpolation of 4y (7, m) and 4y (7, m + 1). Recursive calculation across m results in
a piece-wise linear approximation of @y (1). F; (n) is estimated via piece-wise polynomial interpolation
of Fy (t,m) across m with quadratic splines, and ¢ (1) is obtained integrating F; (1) in two steps
because ¢y (T, m) is wrapped around 27t across m. First, ¢ (1) is calculated as

m+1

G (n) = i (r,m) + zf" Y Fi(w). ®)
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The calculation of ¢y (1) using Equation (6) does not guarantee that ¢y (7,m + 1) = ¢ (t,m + 1) +27P,
with P the closest integer to unwrap the phase (see details in [45]). Thus, ¢ (n) is calculated as

m+1 U—m
() = bulrom) + 57 3 [fulo -+ yvsin (0 )

where the term given by the sine function ensures continuity with ¢ (t,m + 1) when v is

_7'[{(fbk(f,val)—i—P—(ﬁk(T,m—i—l)} ®)

2 (m+1)t—mt

with P given by | (t,m + 1) — @ (T,m + 1) | (see [45]).

3.3. The Extended Adaptive Quasi-Harmonic Model (eaQHM)

Pantazis et al. [45] proposed adapting the phase of the sinusoids. The adaptive procedure applies LS,
frequency correction, and frequency interpolation iteratively (see Figure 2), projecting x (n,m) onto
% (n,m). Figure 3 shows the first and second iterations to illustrate adaptation of one sinusoid.
Kafentzis et al. [43] adapted both the instantaneous amplitude and the instantaneous phase of & (1, m)
with a similar iterative procedure in eaQHM. The analysis stage uses

K A
&(nm)= Y (ag+nby) Ay (n,m) e/ Pcnm), ©)
K=K

where Ay (n,m) and & (n,m) are functions of the time-varying instantaneous amplitude and phase of
each sinusoid, respectively [43,45], obtained from the parameter interpolation step and defined as

Ag (n,m) = ﬁflzr(nnl)’ (10a)
by (n,m) = Gx (n) — i (t,m), (10b)

where 4 (n) is the piece-wise linear amplitude and ¢ (n) is estimated using Equation (7). Finally,
eaQHM models x (n) as a set of amplitude and frequency modulated nonstationary sinusoids given by

K ”
gi(n)= Y fgiq (n) i, (11)
k=K

where 4;; 1 (n) and ;1 (n) are the instantaneous amplitude and phase from the previous iteration
i — 1. Adaptation results from the iterative projection of x (1) onto & (n) from i — 1 as the model & (n) are
used as nonstationary basis functions locally adapted to the time-varying behavior of x (). Note that
Equation (9) is simply Equation (3) with a nonstationary basis Ay (1, m) of®(nm) In fact, Equation (9)
represents the next parameter estimation step, which will be again followed by frequency correction
as in Figure 2. The convergence criterion for eaQHM is either a maximum number of iterations i or
an adaptation threshold e calculated as

SRER ! — SRER!
SRER!!

<eg (12)

where the signal-to-reconstruction-error ratio (SRER) is calculated as

RMS (x RMS (x
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The SRER measures the fit between the model % (1) and the original recording x (1) by dividing
the total energy in x (1) by the energy in the residual e (n). The higher the SRER, the better the fit.
Note that € stops adaptation whenever the fit does not improve from iteration i — 1 to i regardless of
the absolute SRER value. Thus, even sounds from the same instruments can reach different SRER.

4. Experimental Setup

We now investigate the full-band representation of musical instrument sounds and the
nonstationarity of the adaptive AM-FM sinusoids from eaQHM. We aim to show that spectral
decomposition fails to capture partials at the higher end of the spectrum so full-band quasi-harmonic
modeling increases the quality of analysis and resynthesis by capturing sinusoids across the full range
of the spectrum. Additionally, we aim to show that adaptive AM—-FM sinusoids from eaQHM capture
nonstationary partials inside the frame. We compare full-band modeling with eaQHM against the
SM [1,20] and EDS estimated with ESPRIT [36] using the same number of partials K. We assume
that the musical instrument sounds under investigation can be well represented as quasi-harmonic.
Thus, we set Kiax to the highest harmonic number k below Nyquist frequency fs/2 or equivalently the
highest integer K that satisfies Kfy < fs/2. The fundamental frequency fy of all sounds was estimated
using the sawtooth waveform inspired pitch estimator (SWIPE) [53] because in the experiments the
frame size L, the maximum number of partials Kmax, and the full-band harmonic template depend on
fo- In the SM, K is the number of spectral peaks modeled by sinusoids. For EDS, ESPRIT uses K to
determine the separation between the dimension of the signal space (sinusoidal component) and of
the residual.

The SM is considered the baseline for comparison due to the quasi-stationary nature of the
sinusoids and the need for spectral decomposition. EDS estimated with ESPRIT is considered the
state-of-the-art due to the accurate analysis and synthesis and constant frequency of EDS inside
the frame m. We present a comparison of the local and global SRER as a function of K and L for
the SM and EDS against eaQHM in two experiments. In experiment 1, we vary K from 2 to Kmax
and record the SRER. In experiment 2, we vary L from 3Tyf; to 8Ty f; samples and record the SRER,
where Ty = 1/, is the fundamental period. The local SRER is calculated within the first frame m =0,
where we expect the attack transients to be. The first frame is centered at the onset with T = 0 (and the
first half is zero-padded), so artifacts such as pre-echo (in the first half of the frame) are also expected
to be captured by the local SRER. The global SRER is calculated across all frames, thus considering the
whole sound signal % (). Next, we describe the musical instrument sounds modeled and the selection
of parameter values for the algorithms.

4.1. The Musical Instrument Sound Dataset

In total, 92 musical instrument sounds were selected. “Popular” and “Keyboard” musical
instruments are from the RWC Music Database: Musical Instrument Sound [54]. All other
sounds are from the Vienna Symphonic Library [55] database of musical instrument samples.
Table 1 lists the musical instrument sounds used. The recordings were chosen to represent the
range of musical instruments commonly found in traditional Western orchestras and in popular
recordings. Some instruments feature different registers (alto, baritone, bass, efc). All sounds
used belong to the same pitch class (C), ranging in pitch height from C2 (f0 ~ 65 Hz) to C6
(f0 ~ 1046 Hz). The dynamics is indicated as forte (“f”) or fortissimo (“ff”), and the duration of
most sounds is less than 2 s. Normal attack (“na”) and no vibrato (“nv”) were chosen whenever
available. Presence of vibrato (“vib”), progressive attack (“pa”), and slow attack (“sa”) are indicated,
as well as different playing modes such as staccato (“stacc”), sforzando (“sforz”), and pizzicato
(“pz”), achieved by plucking string instruments. Extended techniques were also included, such
as tongue ram (“tr”) for the flute, preés de la table (“pdlt”) for the harp, muted (“mu”) strings,
and bowed idiophones (vibraphone, xylophone, etc.) for short (“sh”) and long (“lg”) sounds.
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Different mallet materials such as metal (“met”), plastic (“pl”), and wood (“wo”) and hardness
such as soft (“so0”), medium (“med”), and hard (“ha”) are indicated.

Table 1. Musical instrument sounds used in all experiments. See text in Section 4.1 for a description
of the terms in brackets. Sounds in bold were used in the listening test described in Section 6. The
quasi-harmonic model (QHM) failed for the sounds in italics marked *.

Family Musical Instrument Sounds

Bass Trombone (C3 f nv na), Bass Trombone (C3 f stac), Bass Trumpet (C3 f na
vib), Cimbasso (C3 f nv na), Cimbasso (C3 f stac), Contrabass Trombone* (C2f f stac),
Contrabass Tuba (C3 f na), Contrabass Tuba (C3 f stac), Cornet (C4 f), French Horn

Brass (C3 f nv na), French Horn (C3 f stac), Piccolo Trumpet (C5 f nv na), Piccolo Trumpet
(C5 f stac), Tenor Trombone (C3 f na vib), Tenor Trombone (C3 f nv sa), Tenor
Trombone (C3 f stac), C Trumpet (C4 f nv na), C Trumpet (C4 f stac), Tuba (C3 f vib
na), Tuba (C3 f stac), Wagner Tuba (C3 f na), Wagner Tuba (C3 f stac)

Alto Flute (C4 f vib na), Bass Clarinet (C3 f na), Bass Clarinet (C3 f sforz), Bass
Clarinet (C3 f stac), Bassoon (C3 f na), Bassoon (C3 f stac), Clarinet (C4 f na), Clarinet

Woodwinds (C4 f stac), Contra Bassoon* (C2 f stac), Contra Bassoon* (C2 f sforz), English Horn
(C4 f na), English Horn (C4 f stac), Flute (C4 f nv na), Flute (C4 f stac), Flute (C4 f tr),
Flute (C4 f vib na), Oboe 1 (C4 £ stac), Oboe 2 (C4 f nv na), Oboe (C4 f pa), Piccolo
Flute (Céf f vib sforz), Piccolo Flute (C6 f nv ha ff)

Plucked Cello (C3 f pz vib), Harp (C3 f), Harp (C3 f pdlt), Harp (C3 f mu), Viola (C3 f pz vib),
Strings Violin (C4 f pz mu)

Bowed Cello (C3 f vib), Cello (C3 f stac), Viola (C3 f vib), Viola (C4 f stac), Violin (C4 f),
Strings Violin (C4{ ff vib), Violin (C4 f stac)

Glockenspiel (C4 f), Glockenspiel (C6 f wo), Glockenspiel (C6 f pl), Glockenspiel
(C6 f met), Marimba (C4 f), Vibraphone (C4 f ha 0), Vibraphone (C4 f ha fa),
Struck Vibraphone (C4 f ha sl), Vibraphone (C4 f med 0), Vibraphone (C4 f med fa),
Percussion  Vibraphone (C4 f med 0 mu), Vibraphone (C4 f med sl), Vibraphone (C4 f so 0),
Vibraphone (C4 f so fa), Xylophone (C5 f GA L), Xylophone (C5 met), Xylophone
(C5fHO L), Xylophone (C5 f mP L), Xylophone (C5 f wP L)

Bowed

Percussion Vibraphone (C4 f sh vib), Vibraphone (C4 f sh nv), Vibraphone (C4 f 1g nv)

Accordion (C3f f), Acoustic Guitar (C3 f), Baritone Sax (C3 f), Bass Harmonica
Popular (C34 ), Chromatic Harmonica (C4 f), Classic Guitar (C3 f), Mandolin (C4 f), Pan
Flute (C5 f), Tenor Sax (C34 f), Ukulele (C4 f)

Keyboard Celesta (C3 f na nv), Celesta (C3 f stac), Clavinet (C3 f), Piano (C3 f)

In what follows, we will present the results for 89 sounds because QHM failed to adapt for the
three sounds marked * in Table 1. The estimation of parameters for QHM uses LS [45]. The matrix
inversion fails numerically when the matrix is close to singular (see [44]). The fundamental frequency
(C2 = 65 Hz) of these sounds determines a full-band harmonic spectral template whose frequencies
are separated by C2, which results in singular matrices.

4.2. Analysis Parameters

The parameter estimation for the SM follows [20] with a Hann window for analysis, and phase
interpolation across frames via cubic splines followed by additive resynthesis. The estimation of
parameters for EDS uses ESPRIT with a rectangular window for analysis and OLA resynthesis [36].
Parameter estimation in eaQHM used a Hann window for analysis and additive resynthesis following
Equation (11). In all experiments, ¢ in Equation (12) is set to 0.01 and f; = 16 kHz for all sounds.
The step size for analysis (and OLA synthesis) was H = 16 samples for all algorithms, corresponding
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to 1 ms. The frame size is L = q1Tfs samples with g an integer. The size of the FFT for the SM is kept
constant at N = 4096 samples with zero padding.

5. Results and Discussion

5.1. Adaptation Cycles in eaQHM

Figure 4 shows the global and local SRER as a function of the number of adaptation cycles
(iterations). Each plot was averaged across the sounds indicated, while the plot “all instruments”
is an average of the previously shown. The SRER increases quickly after a few iterations, slowly
converging to a final value considerably higher than before adaptation. Iteration 0 corresponds to
QHM initialized with the full-band harmonic template, thus Figure 4 demonstrates that the adaptation
of the sinusoids by eaQHM increases the SRER when compared to QHM.
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Figure 4. Plot of the signal-to-reconstruction-error ratio (SRER) as a function of number of adaptations
to illustrate how adaptation increases the SRER in eaQHM. Iteration 0 corresponds to QHM initialized
with the full-band harmonic spectral template.

5.2. Experiment 1: Variation Across K (Constant L = 3Ty fs)

We ran each algorithm varying K (the frame size was kept at L = 3Ty f;s) and recorded the resulting
local and global SRER values. We started from K = 2 and increased K by two partials up to Kmax.
Figure 5 shows the local and global SRER (averaged across sounds) as a function of K for the SM, EDS,
and eaQHM. Sounds with different fj values have different Kmax. Figure 5 shows that the addition of
partials for the SM does not result in an increase in SRER after a certain K. EDS tends to continuously
increase the SRER with more partials that capture more spectral energy. Finally, eaQHM increases the

SRER up to Kmax-
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Figure 5. Comparison between local and global SRER as a function of the number of partials for
the three models (the standard sinusoidal model (SM), exponentially damped sinusoids (EDS), and
eaQHM). The bars around the mean are the standard deviation across different sounds from the family

indicated. The distributions are not symmetrical as suggested by the bars.

The SM, EDS, and eaQHM use different analysis and different synthesis methods, which partially
explains the different behavior under variation of K. More importantly, the addition of partials for each
algorithm uses different criteria. Both the SM and EDS use spectral energy as a criterion, while eaQHM
uses the frequencies of the sinusoids assuming quasi-harmonicity. In the SM, a new sinusoid is selected
as the next spectral peak (increasing frequency) with spectral energy above a selected threshold
regardless of the frequency of the peak. In fact, the frequency is estimated from the peak afterwards.
For EDS, K determines the number of sinusoids used upon resynthesis. However, ESPRIT ranks the
sinusoids by decreasing eigenvalue rather than the frequency, adding partials with high spectral energy
that will increase the fit of the reconstruction. The frequencies of the new partials are not constrained
by harmonicity. Finally, eaQHM uses the spectral template to search for nearby spectral peaks with LS
and frequency correction. The sinusoids will converge to spectral peaks in the neighborhood of the
harmonic template with K harmonically related partials starting from fy. Therefore, Kmax in eaQHM
corresponds to full-band analysis and synthesis but not necessarily for the SM or EDS.

5.3. Experiment 2: Variation Across L (Constant K = Kmax)

We ran each algorithm varying L from 3T f; to 8T fs with a constant number of partials Kmax
and measured the resulting local and global SRER. In the literature [46], L = 3Ty f; is considered
a reasonable value for speech and audio signals when using the SM. We are unaware of a systematic
investigation of how L affects modeling accuracy for EDS. Figure 6 shows the local and global SRER
(averaged across sounds) as a function of L expressed as g times Tjfs, so sounds with different fy
values have different frame size L in samples.

Figure 6 shows that the SRER decreases with L for all algorithms. The SM seldom outperforms EDS
or eaQHM, but it is more robust against variations of L. For the SM, L affects both spectral estimation
and temporal representation. In the FFT, L determines the trade-off between temporal and spectral
resolution, which affects the performance of the peak picking algorithm for parameter estimation.
The temporal representation is affected because the parameters are an average across L referenced
to the center of the frame. In turn, ESPRIT estimates EDS with constant frequency inside the frames
referenced to the beginning of the frame, thus L affects the temporal modeling accuracy more than the



Appl. Sci. 2016, 6, 127 13 of 20

spectral estimation. However, the addition of sinusoids might compensate for the stationary frequency
of EDS inside the frame. Finally, the SRER for eaQHM decreases considerably when L increases
because L adversely affects the frequency correction and interpolation mechanisms. Frequency
correction is applied at the center of the analysis frame and eaQHM uses spline interpolation to capture
frequency modulations across frames. Thus, adaptation improves the fit more slowly for longer L,
generally reaching a lower absolute SRER value.
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Figure 6. Comparison between local and global SRER as a function of the size of the frame for the three
models (SM, EDS, and eaQHM). The bars around the mean are the standard deviation across different
sounds from the family indicated. The distributions are not symmetrical as suggested by the bars.

5.4. Full-Band Quasi-Harmonic Analysis with AM-FM Sinusoids

To simplify the comparison and reduce the information, we present the differences of SRER
instead of absolute SRER values. For each sound, we subtract the absolute SRER values (in dB) for
the SM and EDS from that of eaQHM to obtain the differences of SRER. The local value measures the
fit for the attack and the global value measures the overall fit. Positive values indicate that eaQHM
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results in higher SRER than the other method for that particular sound, while a negative value means
the opposite. The different SRER values are averaged across all musical instruments that belong to the
family indicated. Table 2 shows the comparison of eaQHM against EDS and the SM with K = Kmax
and L = 3Tyfs clustered by instrumental family. The distributions are not symmetrical around the
mean as suggested by the standard deviation.

Table 2. Local and global difference of signal-to-reconstruction-error ratio (SRER) comparing eaQHM
with exponentially damped sinusoids (EDS) and eaQHM with the standard sinusoidal model (SM) for
the frame size L = 3Ty f; and number of partials K = Kmax. The three C2 sounds are not included.

SRER (eaQHM-EDS) SRER (eaQHM-SM)
Family Local (dB) Global (dB) Local (dB) Global (dB)
Brass —94+70 125 £ 6.8 273 £5.8 319 £ 4.0
Woodwinds 78+39 220+£59 309 +£75 36.1 47

Bowed Strings 122 +42 241+ 6.7 35.0 4.7 40.0 £4.7
Plucked Strings 83+5.0 47 +34 495+ 4.3 46.6 +5.1
Bowed Percussion —2.7+2.5 16.3 +2.2 12.7 £ 2.6 37.6 £ 3.6
Struck Percussion  10.5 +4.8 10.1 £ 2.6 28.6 133 26.0+11.3

Popular 6.3 +33 119+70 26.5+10.8 275+11.6
Keyboard 57+34 54+£43 37.0£8.0 346 £2.0
Total 53+24 132 £33 31071 35.0£59

Thus, Table 2 summarizes the result of full-band quasi-harmonic analysis with adaptive AM-FM
sinusoids from eaQHM comparing with the SM and EDS under the same conditions, namely the
same number of sinusoids K = Kpnax and frame size L = 3Tyf;. When eaQHM is compared to
the SM, both local and global difference SRER are positive for all families. This means that full-band
quasi-harmonic modeling with eaQHM results in a better fit for the analysis and synthesis of musical
instrument sounds.

When eaQHM is compared to EDS, all global difference SRER are positive and all local difference
SRER are positive except for Brass and Bowed Percussion. Thus, EDS can fit the attack of Brass and
Bowed Percussion better than eaQHM. The exponential amplitude envelope of EDS is considered
suitable to model percussive sounds with sharp attacks such as harps, pianos, and marimbas [36,37].
The musical instrument families that contain percussive sounds are Plucked strings, Struck percussion,
and Keyboard. Table 2 shows that eaQHM outperformed EDS locally and globally for all percussive
sounds. The ability to adapt the amplitude of the sinusoidal partials to the local characteristics of
the waveform makes eaQHM extremely flexible to fit both percussive and nonpercussive musical
instrument sounds. On the other hand, both Brass and Bowed Percussion present slow attacks typically
lasting longer than one frame L. Note that L/f, = 3Ty ~ 22 ms for C3 (fy ~ 131 Hz) while Bowed
Percussion can have attacks longer than 100 ms. Therefore, one frame L = 3T fs does not measure the
fit for the entire duration of the attack.

Note that the local SRER is important because the global SRER measures the overall fit without
indication of where the differences lie in the waveform. For musical instrument sounds, differences in
the attack impact the results differently than elsewhere because the attack is among the most important
perceptual features in dissimilarity judgment [56-58]. Consequently, when comparing two models
with the global SRER, it is only safe to say that a higher SRER indicates that resynthesis results in
a waveform that is closer to the original recording.

5.5. Full-Band Modeling and Quasi-Harmonicity

Time-frequency transforms such as the STFT represent L samples in a frame with N DFT
coefficients provided that N > L. Note that N € C, corresponding to p = 2N real numbers. There is
signal expansion whenever the representation uses p parameters to represent L samples and p > L.
Sinusoidal models represent L samples in a frame with K sinusoids. In turn, each sinusoid is described
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by p parameters, requiring pK parameters to represent L samples. Therefore, there is a maximum
number of sinusoids to represent a frame without signal expansion. For example, white noise has a flat
spectrum across that would take a large number of sinusoids close together in frequency resulting in
signal expansion.

The pK parameters to represent L samples can be interpreted as the degrees of freedom of the
fit. As a general rule, more parameters mean greater flexibility of representation (hence potentially
a better fit), but with the risk of over-fitting. Table 3 shows a comparison of the number of real
parameters p (per sinusoid k per frame m) for the analysis and synthesis stages of the SM, EDS,
and eaQHM. Note that eaQHM and EDS require more parameters than the SM at the analysis stage,
but eaQHM and the SM require fewer parameters than EDS for the synthesis stage. The difference is
due to the resynthesis strategy used by each algorithm. EDS uses OLA resynthesis, which requires all
analysis parameters for resynthesis, while both eaQHM and the SM use additive resynthesis.

Table 3. Comparison of the number of real parameters p per sinusoid k per frame m for the analysis
and synthesis stages of the SM, EDS, and eaQHM. The table presents the number of real parameters p
to estimate and to resynthesize each sinusoid inside a frame.

Number of Real Parameters p Per Sinusoid k Per Frame m

SM EDS eaQHM
Analysis p=3 p=+4 p=+4
Synthesis p=3 p=4 p=3

Harmonicity of the partials guarantees that there are no signal expansions in full-band modeling
with sinusoids. Consider L = gTyfs with g an integer and Ty = 1/f,. Using Kmax =~ f5/2fp
quasi-harmonic partials and p parameters per partial, it takes at most pKmax = (¢fs)/2f, numbers
to represent L = qTyfs = (4/)/ f; samples, which gives the ratio r = (pKmax)/L = p/24. Table 3 shows
that analysis with eaQHM requires p = 4 real parameters. Thus, a frame size with 4 > 2 is enough to
guarantee no signal expansion. This result is due to the full-band paradigm using Kimax harmonically
related partials, not a particular model. The advantage of full-band modeling results from the use of
one single component instead of decomposition.

Table 4 compares the complexity of SM, EDS, and eaQHM in Big-O notation. The complexity of
SMis O (Nlog N), which is the complexity of the FFT algorithm for size N inputs. ESPRIT estimates
the parameters of EDS with singular value decomposition (SVD), whose algorithmic complexity is
O(L? + K3) for an L by K matrix (frame size versus the number of sinusoids). Adaptation in eaQHM
is an iterative fit where each iteration i requires running the model again as described in Section 3.
For each iteration i, eaQHM estimates the parameters with least squares (LS) via calculation of the
pseudoinverse matrix using QR decomposition. The algorithmic complexity of QR decomposition is
O (K3) for a square matrix of size K (the number of sinusoids).

Adaptation of the sinusoids in eaQHM can result in over-fitting. The amplitude and frequency
modulations capture temporal variations inside the frame such as transients and instrumental noise
around the partials. However, adaptation must not capture noise resulting from sources such as
quantization, which is extraneous to the sound. Ideally, the residual should contain only external
additive noise without any perceptually important information from the sound [17].

Table 4. Comparison of algorithmic complexity in Big-O notation. The table presents the complexity as
a function of the size of the input N, L, and K and the number of iterations i. See text for details.

Algorithmic Complexity

SM EDS eaQHM
Complexity O (NlogN) O(L2+K3) O (iK3)
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6. Evaluation of Perceptual Transparency with a Listening Test

We performed a listening test to validate the full-band representation of musical instrument
sounds with eaQHM. The aim of the test was to evaluate whether full-band modeling with eaQHM
resulted in resynthesized musical instrument sounds that are perceptually indistinguishable from
the original recordings. The 21 sounds in bold in Table 1 were selected for the listening test, which
presented pairs original and resynthesis. The participants were instructed to listen to each pair as many
times as necessary and to answer the question “Can you tell the difference between the two sounds
in each pair?” Full-band (FB) resynthesis with eaQHM (using a harmonic template with K = Kmax
sinusoids) was used for all 21 musical instrument sounds. For nine of these sounds, half-band (HB)
resynthesis with eaQHM (using a harmonic template with K = Kmax/2 sinusoids) was also included as
control group to test the aptitude of the listeners and compare against the FB version. All HB versions
were placed at random positions among the FB, so the test presented 30 pairs overall. The listening
test can be accessed at [59].

In total, 20 people aged between 26 and 40 took the test. The participants declared
themselves as experienced with listening tests and familiar with signal processing techniques.
Figure 7 shows the result of the listening test as the percentage of the people who answered
“no” to the question, indicating that they cannot tell the difference between the original recording
and the resynthesis. In general, the result of the listening test shows that full-band modeling
with eaQHM results in perceptually indistinguishable resynthesis for most musical instrument
sounds tested. The figure indicates that 10 out of the 21 FB sounds tested were rated perceptually
identical to the original by 100% of the listeners. As expected, most HB sounds fall under 30%
(except Tenor Trombone) and most FB sounds lie above 70% (except Pan Flute). Table 1 shows that
Tenor Trombone is played at C3 and Pan Flute at C5. The Tenor Trombone sound is not bright,
which indicates that there is little spectral energy at the higher frequency end of the spectrum. Thus, the
HB version synthesized with fewer partials than Knax was perceived as identical to the original by
some listeners. The Pan Flute sound contains a characteristic breathing noise captured as AM-FM
elements in eaQHM. However, the breathing noise in the full-band version sounds brighter than the
original recording and most listeners were able to tell the difference.

Perceptual Similarity of Full-Band Modelin
T T T T

1 T T T T T T T T
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08
Qo7t
o 06+
()}
Sos}
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(O] L
o 0.3

0.2

Figure 7. Result of the listening test on perceptual similarity of full-band (FB) and half-band (HB)
resynthesis with eaQHM compared to the original recording. The sounds used in the listening test
appear in bold in Table 1.
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7. Conclusions

We proposed the full-band quasi-harmonic modeling of musical instrument sounds with adaptive
AM-FM sinusoids from eaQHM as an alternative to spectrum decomposition. We used the SRER to
measure the fit of the sinusoidal model to the original recording of 89 percussive and nonpercussive
musical instruments sounds from different families. We showed that full-band modeling with eaQHM
results in higher global SRER values when compared to the standard SM and to EDS estimated with
ESPRIT for Kmax sinusoids and frame size L = 3Ty f;. EDS resulted in higher local SRER than eaQHM
for two of nine instrumental families, namely Brass and Bowed Percussion. A listening test confirmed
that full-band modeling with eaQHM resulted in perceptually indistinguishable resynthesis for most
musical instrument sounds tested.

Future work should investigate a method to prevent over-fitting with eaQHM. Additionally,
the use of least-squares to estimate the parameters leads to matrices that are badly conditioned
for sounds with low fundamental frequencies. A more robust estimation method to prevent
bad-conditioning would improve the stability of eaQHM. Currently, eaQHM can only estimate the
parameters of isolated sounds. We intend to develop a method for polyphonic instruments and music.
Future work also involves using eaQHM in musical instrument sound transformation, estimation
of musical expressivity features such as vibrato, and solo instrumental music. The companion
webpage [60] contains sound examples. Finally, the proposal of a full-band representation of musical
instrument sounds with adaptive sinusoids motivates further investigation on full-band extensions of
other sinusoidal methods, such as SM and EDS used here.
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