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Abstract

We design a graph-based framework for the analysis of access control policies
that aims at easing the specification and verification tasks for security adminis-
trators. We consider policies in the category-based access control model, which
has been shown to subsume many of the most well known access control models
(e.g., MAC, DAC, RBAC). Using a graphical representation of category-based
policies, we show how answers to usual administrator queries can be automat-
ically computed, and properties of access control policies checked. We show
applications in the context of emergency situations, where our framework can
be used to analyse the interaction between access control and emergency man-
agement.

Keywords: Security Policies, Access Control, Operational Semantics,
Graph-Based Analysis.

1. Introduction

Access control systems are used to protect resources against unauthorised
use. In its most basic form, an access control policy specifies the actions that
each user is allowed to perform on each resource. A pair of a resource and an
action is called a permission. A variety of access control models and languages
for access control policy specification are currently in use. One of the most
popular is the ANSI (hierarchical) role-based access control (RBAC) model [5],
where users, which we refer to as principals, are assigned to roles and each role
is assigned a set of permissions (extensions using time and location constraints
are discussed in, e.g., [25]). More flexible models, such as the event-based access
control (DEBAC) model [20] and the action-status access control model [11],
specify permissions that depend on dynamic conditions, defined in terms of
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events that happen in the system. Extensions to RBAC to take into account
context-based constraints are defined in e.g., [40].

A metamodel for access control, which can be specialised for domain-specific
applications, has been proposed in [9]. It identifies a core set of principles of
access control, abstracting away many of the complexities that are found in
specific access control models, in order to simplify the tasks of policy writing
and policy analysis. A key aspect of the metamodel is to focus attention on
the notion of a category. A category is a class of entities that share some
property. Classic types of groupings used in access control, like a role, a security
clearance, a discrete measure of trust, etc., are particular instances of the more
general notion of category. In category-based access control (CBAC) policies,
permissions are assigned to categories of users, rather than to individual users.
Categories can be defined on the basis of e.g., user attributes, geographical
constraints, resource attributes, etc. For example, a policy can give a permission
to perform an action (e.g., download) on a resource (e.g., a film) to users in
the category “older than 15” but not in the category “child”. In this way,
permissions change in a dynamic and autonomous way (e.g., when a registered
user has a birthday), unlike, e.g., role-based access control models, which require
the intervention of a security administrator to update role permissions.

Given the complexities and scope involved in the definition of access control
policies, formal methods to analyse and reason about access control policies
are essential [14]. This is particularly important in the case of systems dealing
with access control in the context of emergency situations, where users’ rights
may need to change in order to cope with specific emergencies. Formal speci-
fications of access control models and policies (see, for instance, [22, 50]) have
used theorem provers, purpose-built logics, and, more recently, functional and
rewriting-based approaches (see, for example, [49, 20]). Using standard rewrit-
ing tools, rewrite-based policies can be verified to ensure, for example, that each
access request has a unique answer [19, 37, 21]. A rewrite-based operational se-
mantics for CBAC policies is described in [17], where their expressive power is
also demonstrated. Distributed CBAC policies are defined in [19].

In this paper, we define a graph-based framework for the analysis of access
control policies that aims at easing the specification and verification tasks for
security administrators. Graphical or visual representations of data structures
and algorithms have significant advantages over textual representations, as they
tend to be easier to understand and analyse. Furthermore, being a well-studied
area, algorithms and properties of graph theory can be used to analyse properties
of policies. We consider category-based policies, since the category-based model
subsumes the most well known access control models [17, 19], thus allowing
us to obtain a generic framework. In addition to authorisations, the policies
we consider may also specify prohibitions. Using a graphical representation of
policies, we show how answers to usual administrator queries (such as, is every
resource covered by the policy?) can be automatically computed, and properties
of access control policies (such as, every access request receives a unique answer)
can be checked.

We show applications of the framework to the analysis of policies in dis-
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tributed (multi-site) environments, where the global system policy is defined as
a composition of individual policies that apply at each site. In addition, we
consider policies that include management of rights in emergency situations.
For example, in a hospital environment, an access control policy may specify
that each doctor has access only to the medical records of his/her own patients.
However, if a patient p has a cardiac arrest, then any doctor in the ward should
have access to p’s medical records. This kind of policy can be seen as a com-
position of a standard policy and an emergency policy, and can be specified in
our framework in a visual and formal way. Properties, such as a “separation of
duty” constraint, where no user should be allowed to perform two conflicting
actions on the same resource (e.g., issue a purchase order and approve it), can
be easily checked using graph-based algorithms and rewriting techniques.

Overview of the paper. The remainder of the paper is organised as follows. In
Section 2, we recall the category-based access control model. Section 3 presents
a graph-based framework to represent category-based policies, which we use
in Section 4 to analyse such policies. In Section 5 we give an application in
the context of emergency policies. Section 6 describes implementations of this
formalism. In Section 7, we discuss related work, and in Section 8, conclusions
are drawn and further work is suggested.

This paper is a revised and extended version of [3]. The extensions include
dealing with policies that specify prohibitions as well as authorisations, and
with distributed (multi-site) policies obtained as a composition of local site
policies. In addition, here we consider the graph representation of dynamic
policies, where the authorisation and prohibition relations evolve depending on
events that take place in the system (without needing the intervention of the
security administrator), and we show how graph-based policies can be used to
answer typical security administrator queries.

2. Preliminaries: Category-Based Access Control Policies

We assume familiarity with basic notions on first-order logic and term-
rewriting systems [6]. We briefly describe below the key concepts underlying
the category-based metamodel of access control, following [19] (see also [9]).

Informally, a category is any of several distinct classes or groups to which
entities may be assigned. Entities are denoted by constants in a many sorted
domain of discourse, including: a countable set C of categories, denoted c0,
c1, . . . ; a countable set P of principals, denoted p0, p1, . . . ; a countable set A
of named actions, denoted a0, a1, . . . ; a countable set R of resource identifiers,
denoted r0, r1, . . . and a countable set S of situational identifiers to denote
environmental information.

The metamodel includes the following relations:

• Principal-category assignment: PCA ⊆ P × C, such that (p, c) ∈ PCA iff
a principal p ∈ P is assigned to the category c ∈ C.
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• Permission-category assignment: ARCA ⊆ A×R×C, such that (a, r, c) ∈
ARCA iff the action a ∈ A on resource r ∈ R can be performed by
principals assigned to the category c ∈ C.

• Authorisations: PAR ⊆ P × A × R, such that (p, a, r) ∈ PAR iff a
principal p ∈ P can perform the action a ∈ A on the resource r ∈ R.

These relations can be defined extensionally (by enumeration of the tuples), in
which case we say that the policy is static, or by comprehension, using relevant
predicates, which might take into account the system state, in which case we
say that the policy is dynamic.

Definition 1 (Axioms) The relation PAR satisfies the following core axiom,
where we assume that there exists a relationship ⊆ between categories (a partial
ordering, which can simply be equality or set inclusion, i.e., c ⊆ c′ if the set of
principals assigned to c ∈ C is a subset of the set of principals assigned to c′ ∈ C,
or a specific relation may be used).

(a1) ∀p ∈ P, ∀a ∈ A, ∀r ∈ R,
(∃c, c′ ∈ C, (p, c) ∈ PCA ∧ c ⊆ c′ ∧ (a, r, c′) ∈ ARCA)⇔ (p, a, r) ∈ PAR

Definition 2 (CBAC policy) A category-based access control (CBAC) pol-
icy is a tuple 〈E ,PCA,ARCA,PAR〉, where E = (P, C,A,R,S,⊆), such that
axiom (a1) is satisfied.

Operationally, axiom (a1) can be realised through a set of functions, as shown
in [17]. We recall the definition of the function par below; it relies on functions
pca, which returns the list of categories assigned to a principal, and arca, which
returns the list of permissions assigned to a category.

Definition 3 A rewrite-based specification of axiom (a1) in Def. 1 is given by
the rewrite rule:

(a1′) par(P,A,R) → if (A,R) ∈ arca∗(contain(pca(P ))) then grant
else deny

The function contain computes the set of categories that contain any of the
categories given in the list pca(P ). The function ∈ is a membership operator
on lists, grant and deny are answers, and arca∗ generalises the function arca to
take into account lists of categories:

arca∗(nil)→ nil arca∗(cons(C,L))→ append(arca(C), arca∗(L))

An access request by a principal p to perform the action a on the resource r
can then be evaluated simply by rewriting the term par(p, a, r) to normal form.

The axiom (a1), and its algebraic version (a1′), state that a request by
a principal p to perform the action a on a resource r is authorised only if p
belongs to a category c such that for some category below c (e.g., c itself) the
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action a is authorised on r, otherwise the request is denied following the well-
known negative closed world assumption [14]. However, many systems permit
the definition of positive and negative authorisations (or authorisations and
prohibitions).

CBAC policies can handle prohibitions as well as authorisations, using the
relations BARCA and BAR:

• Banned actions on resources: BARCA ⊆ A×R× C, such that (a, r, c) ∈
BARCA iff the action a ∈ A on resource r ∈ R is forbidden for principals
assigned to the category c ∈ C.

• Banned access: BAR ∈ P×A×R, such that (p, a, r) ∈ BAR iff performing
the action a ∈ A on the resource r ∈ R is forbidden for the principal p ∈ P.

A relation UNDET can also be defined if PAR and BAR are not complete,
i.e., if there are access requests that are neither authorised nor denied (thus
producing an undetermined answer).

If the relation BARCA is admitted, the following axioms should be satisfied:

(a2) ∀p ∈ P,∀a ∈ A,∀r ∈ R
(∃c ∈ C,∃c′ ∈ C, (p, c) ∈ PCA ∧ c′ ⊆ c ∧ (a, r, c′) ∈ BARCA)⇔

(p, a, r) ∈ BAR
(a3) ∀p ∈ P,∀a ∈ A,∀r ∈ R

((p, a, r) /∈ PAR ∧ (p, a, r) /∈ BAR)⇔ (p, a, r) ∈ UNDET
(a4) PAR ∩ BAR = ∅

Note that (a2) states c′ ⊆ c, whereas in (a1) it is the reverse. Hence, a category
inherits permissions from junior categories, and prohibitions from senior ones.

Definition 4 (CBAC policy with prohibitions) A CBAC policy with pro-
hibitions is a tuple 〈E ,PCA,ARCA,PAR,BARCA,BAR,UNDET 〉, where
E = (P, C,A,R,S,⊆), such that axioms (a1)-(a4) are satisfied.

Below the term CBAC policy will be used to refer to category-based access
control policies in general (with or without prohibitions).

A distinctive feature of CBAC policies is the fact that all the relations may
evolve in time (without the intervention of the security administrator), as long as
the axioms are satisfied. In other words, the allocation of principals to categories
and the allocation of rights and prohibitions to categories may depend on the
system state. In this sense, CBAC policies are dynamic.

An axiomatisation of distributed category-based access control was proposed
in [18] to specify federative policies as a composition of individual access control
policies. In a federation, each member has its own access control policy, and
contributes to the definition of a global access control policy. We will use this
notion of distributed access control to define emergency policies in Section 5.
We recall the main axioms of the distributed category-based model below.

Assume the set S of situational identifiers includes identifiers for sites, i.e.,
s ∈ S identifies one of the components of the federation. PCAs, ARCAs,
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BARCAs, UNDET s, PARs and BARs, where s ∈ S, denote families of rela-
tions indexed by site identifiers. Intuitively, PARs (respectively BARs) denotes
the authorisations (resp. prohibitions) that are valid in the site s. The relation
PAR defining the global authorisation policy is obtained by composing the local
policies defined by the relations PARs (using operators OPpar and OPbar that
are specific to the global policy). The sets P, C,A,R include, respectively, the
principals, categories, actions and resources in any of the sites of the system,
which are assumed to be globally known in the federation (alternatively we can
define sets Ps, Cs, As, Rs for each site).

Definition 5 (Axioms for distributed CBAC) The distributed category-
based model is defined by the following core axioms.

(b1) ∀p ∈ P, ∀a ∈ A, ∀r ∈ R, ∀s ∈ S,
(∃c, c′ ∈ C, (p, c) ∈ PCAs ∧ c ⊆ c′ ∧ (a, r, c′) ∈ ARCAs)⇔

(p, a, r) ∈ PARs
(c1) ∀p ∈ P,∀a ∈ A,∀r ∈ R,∀s ∈ S,

(∃c, c′ ∈ C, (p, c) ∈ PCAs ∧ c′ ⊆ c ∧ (a, r, c′) ∈ BARCAs)⇔
(p, a, r) ∈ BARs

(d1) ∀p ∈ P,∀a ∈ A,∀r ∈ R,∀s ∈ S,
((p, a, r) /∈ PARs ∧ (p, a, r) /∈ BARs)⇔ (p, a, r) ∈ UNDET s

(e1) ∀s ∈ S,PARs ∩ BARs = ∅
(f1) ∀p ∈ P, ∀a ∈ A, ∀r ∈ R,

(p, a, r) ∈ OPpar({PARs,BARs | s ∈ S})⇔ (p, a, r) ∈ PAR
(g1) ∀p ∈ P,∀a ∈ A,∀r ∈ R,

(p, a, r) ∈ OPbar({PARs,BARs | s ∈ S})⇔ (p, a, r) ∈ BAR
(h1) PAR ∩ BAR = ∅

The axioms (b1)-(e1) generalise (a1)-(a4). According to axioms (b1) and
(c1), the result of an access request may be different depending on the site
where the request is evaluated, since each site s has its own authorisation policy
defined by the local relations PARs and BARs. Note that (p, a, r) ∈ UNDET s
if and only if the action a ∈ A on resource r ∈ R is neither allowed nor forbidden
for the principal p ∈ P at site s ∈ S; hence, every tuple in P × A × R is in
PARs ∪ BARs ∪ UNDET s. The axioms (e1) and (h1) preclude inconsistent
specifications (i.e., a request cannot be both authorised and forbidden). The
global authorisations and prohibitions (axioms (f1) and (g1)) are obtained by
composing the local relations, using the operators OPpar and OPbar, respec-
tively, which are application-dependent. For example, in some applications a
request should be denied if any of the component policies denies it (i.e., a “deny
takes precedence principle” [34] applies), whereas in other cases, grant takes
precedence. A “first-applicable” principle takes a list of policies and returns the
answer corresponding to the first policy that produces grant or deny (it returns
undetermined only if no policy in the list returns grant or deny). We illustrate
below the definition of a deny-takes-precedence operator in CBAC.
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Example 6 Consider a system with two sites s, t ∈ S. To define a global pol-
icy where deny takes precedence, it is sufficient to use the operators OPbar =
(BARs ∪BARt) and OPpar = ((PARs/BARt)∪ (PARt/BARs)). This corre-
sponds to a union operator giving priority to deny, since tuples in BARs∪BARt
are removed from the authorisation relation by the operator OPpar. The defini-
tion of a union operator with priority to grant in CBAC is also straightforward.

While most of the existing policy languages (e.g., XACML [47]) have a fixed
set of operators to combine policies, the axioms (f1), (g1) allow us to accommo-
date a large range of composition operators. We refer to [16, 15] for examples.

Definition 7 (Distributed CBAC policy) A distributed category-based
access control policy is defined by a tuple:

〈E , {PCAi}i∈S , {ARCAi}i∈S , {BARCAi}i∈S , {PARi}i∈S , {BARi}i∈S ,
{UNDET i}i∈S ,OPpar,OPbar〉,

where E = (P, C,A,R,S,⊆), such that axioms (b1)-(h1) are satisfied.

We refer to [19] for a rewrite-based operational semantics of the distributed
model, defined by extending the functions presented in Definition 3.

3. Graph Representation of Policies

Access control policies specify the authorisations and prohibitions that
should be enforced in any implementation of the system. Policies should there-
fore include the authorisations that are needed for users to be able to carry out
their tasks, but no more. To facilitate the task of specifying policies and check-
ing that they are correctly defined, it is essential to design policy languages with
a precise semantics and easy to use by security administrators (who are in charge
of the creation and update of policies). Small changes in policy rules can have
enormous consequences, which means that not only should policy languages be
easy to use but also easy to analyse. For this reason, in this paper we advocate
the use of formal languages that offer visual representations of policies. More
precisely, we propose a graph-based language to represent policies.

In this section, we start by defining how static CBAC policies are represented
by means of graphs (we consider first policies with only positive authorisations
and then policies with both positive and negative authorisations, that is, au-
thorisations and prohibitions). We then extend the framework in order to deal
with distributed policies. Finally we show how to incorporate dynamic features,
obtaining a graph formalism that is sufficiently expressive to represent the full
CBAC metamodel.

To represent CBAC policies we use labelled undirected graphs, where nodes
and edges represent entities and relations in the model, respectively.

We choose undirected graphs instead of directed graphs because we are rep-
resenting relations rather than functions, and there is no preferred orientation
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for edges: we use policies not only to evaluate requests but also to check prop-
erties, for which we need to traverse edges in both directions. For instance, if
we represent the fact that p is in the category c by an edge between the nodes
representing p and c, then we may need to go from p to c when p issues an access
request (i.e., we need to check that p’s category permits this access) but we may
also need to traverse the edge from c to p to check properties of c (for example,
to check whether the set of principals in c is non-empty; see Section 4.1, Q4).

Labels are attached to nodes and edges, and store data (in the form of pairs
attribute-value) of relevance for the policy. More precisely, labels are records,
as defined below.

Notation 8 (Record) Let ai range over a finite set of attribute names, and
ti range over a finite set of values. A record R ∈ REC, is a term of the form
{a1 = t1, . . . , an = tn}. We use the notation R.a for attribute selection, and the
notation update(R, a, t) to modify the value of attribute a in record R to t; if the
attribute a does not exist in R, i.e. R.a is undefined, then the field a is added,
with value t.

In our representation of policies below, we assume all records have an at-
tribute ent with the name of the entity to which the record belongs.

Example 9 The record containing information about the principal John
Lewis could be specified as follows: R = {ent = JohnLewis, type =
P, birthdate = 19931216}, then R.ent is equal to JohnLewis, and
update(R, qualification, intern) results in the record {ent = JohnLewis, type =
P, birthdate = 19931216, qualification = intern}.

3.1. Representing static CBAC policies

We consider first CBAC policies with positive authorisations only, satisfying
axiom (a1).

Definition 10 (Policy graph) A policy graph, or graph for short, is a tuple
G = (V, E, lv, le), where V is a set of nodes, E is a set of undirected edges,
lv : V → REC is a labelling function for nodes, such that, for every v ∈ V,
lv(v).ent ∈ P ∪ C ∪ A ∪ R, and le : E → REC is a labelling function for edges,
such that, for every e ∈ E between nodes v1 and v2, le(e).adj = {v1, v2}, where
v1, v2 ∈ V and v1 6= v2. In addition, we assume that the record labels of nodes
contain a field type = T , where T ∈ {P,C,AR, R}, such that lv(v).type = P if
lv(v).ent = p ∈ P (that is, P is the type of the nodes representing principals),
and, similarly, C is the type of nodes representing categories and R resources.
Types of the form AR are used to type nodes representing actions. These types
are indexed with a set R = {r1, . . . , rn}, representing the nodes of type R to
which the action can apply. In general, unless it is needed, we will omit this index
and write only A when referring to types of action nodes. The type of an edge
is determined by the type of its adjacent nodes, that is, if le(e).adj = {v1, v2},
then type(e) = (lv(v1).type, lv(v2).type).
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For simplicity we will represent edge-types (T1, T2) as T1T2. For example,
AC is the type of an edge connecting a node of type A with a node of type C.
Since our edges are undirected, we do not distinguish between the types T1T2
and T2T1.

We assume the usual notion of degree of a node, as the number of edges
connected to that node.

Definition 11 A path of length n in a policy graph G, between two nodes
v0, vn, is a sequence v0, v1, . . . , vn of pairwise distinct nodes, such that, for all
1 ≤ i ≤ n, {vi−1, vi} = le(e).adj, for some e ∈ E.

Example 12 Consider a hospital where principals are categorised as patients,
registered nurses, nurse practitioners, interns, resident doctors and specialists.
The following diagram represents a policy graph, showing for each node the value
of the ent attribute. Nodes of different types are shown in different colours. For
example, node J.Dorian has type P , nodes Specialist, Resident and Intern have
type C, node Read has type A, and node Labresult has type R.

In a policy graph, nodes should be uniquely identified by the fields ent and
type. We will use the notation v1 ≡ v2 if lv(v1) and lv(v2) have the same values
for ent and type. Furthermore, we will use types to restrict the edges of graphs
representing policies (see Definition 18 below).

Our goal is to be able to compute the PAR relation of a CBAC policy
directly from the graph representation. If there is no ⊆ relation between cate-
gories, from all the paths of length 3 starting in a node of type P and ending
in a node of type R, one can effectively compute the PAR relation. In order to
deal with hierarchical category definitions and be able to compute the PAR re-
lation based on paths, we formalise the ⊆ relation in terms of edges of type CC
(that is, edges between nodes {v1, v2}, such that lv(v1).type = lv(v2).type = C).
Note that edges are undirected, however, in ⊆ one might have c1 ⊆ c2 but not
c2 ⊆ c1. Thus, we define an attribute target on edges of type CC to specify the
destination node of the edge (note that both extremities could be destination
nodes, if the nodes represent equivalent categories).
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Since the relation between categories is hierarchical, we need a notion of
path taking into account the target attribute:

Definition 13 A constrained path of length n in a policy graph G, between
two nodes v0, vn, is a sequence v0, e1, v1, e2 . . . , en, vn, where all the nodes are
different, such that for all 1 ≤ i ≤ n, le(ei).adj = {vi−1, vi} ∧ vi ∈ le(ei).target,
if target exists in le(ei).

Definition 14 Let G be a policy graph and c1, c2 be two categories in C. We
write c1 ⊆ c2 if there is a constrained path between the nodes labelled by c1
and c2 where all the edges are of type (CC). If c1 ⊆ c2 and c2 ⊆ c1 then the
categories c1, c2 are equivalent and we write c1 = c2.

In this paper we are only considering a relation ⊆ between categories, but the
same could be considered for other entities (for example resources or actions).

Definition 15 (Types for paths) Let v0, . . . , vn be a path of length n, such
that lv(vi).type = Ti for 0 ≤ i ≤ n. The type of the path is the sequence given
by the types of the edges along the path, that is T0T1, T1T2, . . . , Tn−1Tn.

The notation type(v0, v1, . . . , vn) = T0T1, T1T2, . . . , Tn−1Tn will be used
to indicate that there is a path v0, v1, . . . , vn and its edges have types
T0T1, T1T2, . . . , Tn−1Tn.

Furthermore, if an edge e between nodes vi and vi+1 in a path v0, v1, . . . , vn
has type CC, then we will denote its type as

−−→
CC if vi+1 ∈ le(e).target, and

←−−
CC

if vi ∈ le(e).target (that is, type
−−→
CC means that the edge is traversed from a

category ci to a category ci+1 where ci ⊆ ci+1, that is, from a senior category to

a junior category, and type
←−−
CC means that the edge is traversed in the opposite

direction, from a junior category to a senior category).
As usual, a∗ denotes a sequence of the form a, a, . . . , a︸ ︷︷ ︸

n

, with n ≥ 0, so, for

example, a path of type (
−−→
CC)∗ represents a chain of categories in the ⊆ relation

As a consequence of Definitions 14 and 15, the relation c1 ⊆ c2 between

categories c1 and c2 is represented in the policy graph by a path of type (
−−→
CC)∗.

Note that an edge may have type
−−→
CC and also type

←−−
CC: if le(e).target =

{vi, vi+1} then the edge can be traversed in both directions and has both
types. In fact, a chain of equivalent categories is represented by a path

v0, v1, . . . , vn of both types (
−−→
CC)∗ and (

←−−
CC)∗, instead of using, for instance,

a cycle v0, v1, . . . , vn, v0 of type (
−−→
CC)∗ — our goal is to avoid redundant edges

(Definition 17) in well-formed policy graphs.
We now give an example of a path illustrating the propagation of authori-

sations.

Example 16 The following image shows a constrained path of type

PC,
−−→
CC,

−−→
CC,CA,AR:

10



Definition 17 (Redundant edges) Redundant edges of type PC, CC and
CA are defined as follows:

• An edge of type PC, between nodes representing a principal p and a

category c is redundant if there is a path of size n ≥ 2 and type PC, (
−−→
CC)∗

connecting p and c in the graph.

• An edge of type CC, between nodes representing two categories c1 and c2
is redundant if there is a path of size n ≥ 2 and type (

−−→
CC)∗ connecting c1

and c2 in the graph.

• An edge of type CA between nodes representing a category c and an

action a is redundant if there is a path of size n ≥ 2 and type (
−−→
CC)∗CA

connecting c and a in the graph.

The definition of redundant edge takes into account the fact that senior cat-
egories inherit permissions from junior categories, therefore there is no need
to establish connections to senior categories, if there is already a connection
through a junior category. In the case of edges of type CC, transitive edges are
redundant.

Definition 18 (Well-formed policy graph) A policy graph (V, E, lv, le) is
well-formed iff for every v1, v2 ∈ V, if lv(v1).ent = lv(v2).ent and lv(v1).type =
lv(v2).type (that is, v1 ≡ v2) then v1 = v2; for every e1, e2 ∈ E, if le(e1).adj =
le(e2).adj = {v1, v2}, then e1 = e2; and every e ∈ E with le(e).adj = {v1, v2}
satisfies one of the following conditions:

(a) lv(v1).type = P ∧ lv(v2).type = C. This corresponds to an edge of type
PC, which connects a principal and a category.

(b) lv(v1).type = C ∧ lv(v2).type = AR. This corresponds to an edge of type
CA, which connects a category and an action.

(c) lv(v1).type = A{r1,...,rn} ∧ lv(v2).type = R ∧ lv(v2).ent = ri. This corre-
sponds to an edge of type A{r1,...,rn}R, which connects an action and a
resource.

(d) lv(v1).type = C ∧ lv(v2).type = C and le(e).target ⊆ {v1, v2}, for an edge
connecting categories, that is, an edge of type CC.

(e) There are no redundant edges.

Example 19 The graph shown in Example 12 is a well-formed policy graph.

Proposition 20 (Characterisation of paths) Any path of size 3 in a well-
formed policy graph, starting in a node of type P and ending in a node of type
R, must have the following shape:

11



More generally, in a well-formed policy graph, paths starting in a node of
type P and ending in a node of type R must start with an edge of type PC and
end with edges of type CA and AR.

Proof Direct consequence of the restriction imposed on edge types in well-
formed policy graphs (see Definition 18). Note that all the paths of length 1
starting in a node of type P end on a node of type C. The paths of length 1
starting from a node of type C end on a node of type A or a node of type P
or a node of type C, and the paths of length 1 starting from a node of type A
end on a node of type C or a node of type R. Hence, the only paths of size 3
starting in a node of type P and ending in a node of type R are the ones that
traverse a node of type C and a node of type A. Longer paths starting in a
node of type P and ending in a node of type R must traverse nodes of type C
before traversing an edge of type AC and an edge of type AR 2

The relations PCAG , ARCAG and PARG can now be defined in terms of
typed-paths of a certain type.

Definition 21 (Relations PCAG, ARCAG and PARG associated with G)
Let G be a well-formed policy graph. Then we define the following relations
associated with G:

• PCAG = {(lv(v1).ent, lv(v2).ent) | type(v1, v2) = PC}.

• ARCAG = {(lv(v1).ent, lv(v2).ent, lv(v3).ent) | type(v1, v2, v3) = CA,AR}.

• PARG = {(lv(v1).ent, lv(v3).ent, lv(v4).ent) | ∃v21, . . . , v2n s.t.

type(v1, v21, . . . , v2n, v3, v4) = PC, (
−−→
CC)∗, CA,AR}.

We denote CBACG the tuple 〈EG ,PCAG ,ARCAG ,PARG〉, where EG =
(PG , CG ,AG ,RG ,SG ,⊆) consists of the sets of principals, categories, actions, re-
sources, situational identifiers, and the containment relation ⊆, obtained from
the graph. For example, PG = {lv(v).ent | lv(v).type = P, v ∈ V}. The other
sets in EG are computed similarly, and the relation ⊆ can be obtained directly
from the graph by a simple path computation, as indicated in Definition 14. The
set S, of situational identifiers, contains all the remaining attributes (note that,
S is usually used to denote environmental information relevant to the policy,
such as time, places, etc.).

Example 22 In the policy graph G shown in Example 12, the relation PCAG
contains the tuples:

(J. Dorian, Intern), (C. Tuck,Resident),
(P. Cox,Specialist), (P. Flowers,Nurse Practitioner)
(L. Roberts,Registed Nurse), (C. Espinosa,Registed Nurse)

12



and the relation PARG contains:

(J. Dorian,Read,Lab result), (C. Tuck,Read,Lab result),
(P. Cox,Read,Lab result), (L. Roberts,Perform,Specimen collection),
(L. Roberts,Cancel,Lab order), (C. Espinosa,Perform,Specimen collection),
(C. Espinosa,Cancel,Lab order), (P. Flowers,Perform,Specimen collection)

Now we are ready to show that any well-formed policy graph represents a
policy, and for any CBAC policy there is (at least one) associated policy graph.

Proposition 23 For each well-formed policy graph G = (V, E, lv, le), the tuple
CBACG defines a CBAC policy.

Proof By Def. 2, it is sufficient to prove that PCAG , ARCAG and PARG
satisfy axiom (a1), which is a consequence of Definitions 21 and 14. 2

Regarding the converse, note that there may be more than one graph that
generates a given policy; for example, take any graph that differs on the unas-
signed permissions (that is, differing on edges between actions and resources
such that there is no edge connecting the action to any category). There is,
however, a unique minimal graph corresponding to the policy, which contains
one node for each principal, category, action and resource, one edge for each
tuple in the relations PCA and ARCA, and edges for ⊆.

Proposition 24 For any static CBAC policy 〈E ,PCA,ARCA,PAR〉 there
exists a well-formed policy graph G such that PCA = PCAG , ARCA =
ARCAG ,PAR = PARG .

Proof The set of nodes in G is determined by the set E of entities in the CBAC
policy: For each principal p ∈ P, there is a node v such that lv(v).ent = p
and lv(v).type = P , since we assume principals are uniquely identified by their
name and type. Similarly, for each resource r ∈ R there is a node v such
that lv(v).ent = r and lv(v).type = R. For actions we need to consider the
resources to which they apply and identify actions that have the same name
and apply to the same resources. More precisely, for each action a ∈ A, let
{(C1,R1), . . . , (Ck,Rk)}, be pairs of sets of categories and resources, respectively,
such that, for each pair ({c1, . . . , cn}, . . . , {r1, . . . , rm}), the tuple (a, ri, cj) is
in ARCA, for every 1 ≤ i ≤ m, 1 ≤ j ≤ n, and for every r, c such that
(a, r, c) ∈ ARCA then c ∈ Ci, r ∈ Ri for some 1 ≤ i ≤ k. Furthermore, for any
two pairs (Ci, r ∈ Ri), (Cj , r ∈ Rj), with i 6= j, then Ci 6= Cj ∧ Ri 6= Rj . Then
for each 1 ≤ i ≤ k, with Ci = {ci1, . . . , cini

}, Ri = {ri1, . . . , rimi
} there exists

a node v representing the action a, such that lv(v).ent = a ∧ lv(v).type = ARi

and edges e11, . . . , e1n, e21, . . . , e2m, such that lv(e1j).adj = {vcij , v}, 1 ≤ j ≤ n,
lv(e2l).adj = {v, vril}, 1 ≤ l ≤ m.

13



3.2. Representing static CBAC policies with prohibitions

To represent prohibitions we need to be able to define the relations BARCAG
and BARG in addition to ARCAG and PARG . This means that, whenever we
have an edge connecting a node of type C with a node of type A, we must
specify if this corresponds to an authorisation or a prohibition. It also means
that to deal with CBAC policies with prohibitions we need multigraphs, where
more than one edge may connect two given nodes. Note that a policy could have
both kinds of edges between categories and actions and still satisfy the axiom
(a4), i.e., the overall policy may still be consistent (e.g. if no principal belongs to
the category). However, it is likely that the allocation of both an authorisation
and a prohibition for the same action to a category is not intended, so it will
be useful to be able to detect this kind of situation.

To deal with policies including prohibitions, we consider an extra field auth
on labels of edges of type CA, with values in {A,B}, to represent positive
and negative authorisations (or authorised and banned actions), respectively.
We also annotate edge types CA with the same possible values {A,B}, and
divide edges of type CA into two sets CAA and CAB , corresponding to edges
representing authorisations and prohibitions, respectively. Edges are no longer
uniquely identified by their adjacent nodes, but rather by adj and auth (unless
auth is undefined for a particular edge)3.

The definition of well-formed policy graph has to be adapted to accommodate
prohibitions. Our aim is to be able to compute the policy relations directly
from the graph. The relation PCAG can be computed as in Definition 21, but
the computation of BARG involves traversing edges between categories in the
inverse sense (since a category inherits prohibitions from its senior categories,
whereas it inherits authorisations from junior categories). For this reason, we
define a notion of constrained inverse path (differing from Definition 13 only in
the traversal of edges between categories).

Definition 25 A constrained inverse path of length n in a policy graph G,
between two nodes v0, vn, is a sequence v0, e1, v1, e2 . . . , en, vn, such that for all
1 ≤ i ≤ n, le(ei).adj = {vi−1, vi} ∧ vi−1 ∈ le(ei).target if target exists in le(ei).

Example 26 The following figure shows the propagation of the prohibition to
“create a prescription”, represented by the red edge: it is propagated from the
Registered Nurse to the Nurse Practitioner (if the former is not allowed to create
prescriptions then the latter is not allowed either).

3We use the notation e1 ≡ e2 if the edges have the same values for adj and auth (or just
for adj if auth is undefined).
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Constrained paths between nodes of type C and constrained inverse paths

between nodes of type C are characterised by types of the form (
−−→
CC)∗ and

(
←−−
CC)∗ respectively. This characterisation is useful to compute the relations
PARG and BARG associated with a graph G. First, we define the conditions
under which a policy graph with prohibitions is well formed.

Note that, as before, we can define redundant edges of type CA (see Defi-
nition 17), but now we need to consider separately the edges of type CAA and
CAB : an edge of type CAA connecting a category c with an action a is redun-

dant if there is already a path of type (
−−→
CC)∗CAA connecting c and a (this is

because senior categories inherit permissions from junior categories); an edge of

type CAB is redundant if there is another path of type (
←−−
CC)∗CAB connecting

the same nodes. This is because junior categories inherit prohibitions from se-
nior categories, so there is no need to add the edge of type CAB from a junior
category to an action if a senior category is already connected to this action.

Definition 27 (Well-formed policy graph with prohibitions) A policy
graph (V, E, lv, le) is a well-formed policy graph with prohibitions iff

1. For every v1, v2 ∈ V, if lv(v1).ent = lv(v2).ent and lv(v1).type = lv(v2).type
(that is, v1 ≡ v2) then v1 = v2.

2. Every e ∈ E, where le(e).adj = {v1, v2}, satisfies one of the following
conditions:

(a) lv(v1).type = P ∧ lv(v2).type = C. This corresponds to an edge of
type PC, which connects principals to categories.

(b) lv(v1).type = C ∧ lv(v2).type = A. This corresponds to an edge e
of type CA, which connects categories to actions, and in this case
le(e).auth must be defined, such that le(e).auth ∈ {A,B}.

(c) lv(v1).type = A{r1,...,rn} ∧ lv(v2).type = R ∧ lv(v2).ent = ri. This
corresponds to an edge of type A{r1,...,rn}R, which connects an action
and a resource.

(d) lv(v1).type = C ∧ lv(v2).type = C and le(e).target ⊆ {v1, v2}. This
corresponds to an edge of type CC, which connects categories.

Moreover, for every e1, e2 ∈ E, if le(e1).adj = le(e2).adj = {v1, v2}, then
either e1 = e2 or e1, e2 have type CA and le(e1).auth 6= le(e2).auth.
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3. If a constrained path and an inverse constrained path start in the same
node p of type P and end in nodes of type A, such that the last edges in
the paths are of type CAA, CAB respectively, then the end nodes must
be different.

4. There are no redundant edges.

From a well-formed policy graph with prohibitions, we can extract a CBAC
policy with prohibitions.

Definition 28 The relations PCAG , ARCAG , BARCAG , PARG , BARG and
UNDET G associated with a policy graph with prohibitions, G, are defined as
follows.

• PCAG = {(lv(v1).ent, lv(v2).ent) | type(v1, v2) = PC}.

• ARCAG = {(lv(v1).ent, lv(v2).ent, lv(v3).ent) |
type(v3, v1, v2) = CAA, AR}.

• BARCAG = {(lv(v1).ent, lv(v2).ent, lv(v3).ent) |
type(v3, v1, v2) = CAB , AR}.

• PARG = {(lv(v1).ent, lv(v3).ent, lv(v4).ent) |

∃v21, . . . , v2n s.t. type(v1, v21, . . . , v2n, v3, v4) = PC, (
−−→
CC)∗, CAA, AR}.

• BARG = {(lv(v1).ent, lv(v3).ent, lv(v4).ent) |

∃v21, . . . , v2n s.t. type(v1, v21, . . . , v2n, v3, v4) = PC, (
←−−
CC)∗, CAB , AR}.

• UNDET G = {(lv(v1).ent, lv(v2).ent, lv(v3).ent) |
lv(v1).type = P, lv(v2).type = A, lv(v3).type = R} − (PARG ∪ BARG).

As before we write CBACG as an abbreviation for the tuple
〈E ,PCAG ,ARCAG ,PARG ,BARCAG ,BARG ,UNDET G〉

where the sets of principals, categories, actions, resources and situational
identifiers, as well as the relation ⊆, are defined as indicated in Definition 21.

Considering the relations above, the results in Propositions 23 and 24 can
be extended to graphs/policies with prohibitions.

Proposition 29 For each well-formed policy graph with prohibitions G, the
tuple CBACG defines a CBAC policy with prohibitions.

Proof To prove the result, we need to show that the relations PCAG , ARCAG ,
PARG , BARCAG and BARG and UNDET G given in Definition 28 satisfy ax-
ioms (a1)-(a4), according to Def. 4. It is easy to see that axioms (a1)-(a3) are
satisfied. To show (a4), that is, PARG ∩ BARG = ∅, we rely on condition 3 in
Definition 27. 2

Proposition 30 For any static CBAC policy with prohibitions
〈E ,PCA,ARCA,PAR,BARCA,BAR,UNDET 〉 there exists a well-formed
policy graph with prohibitions G such that PCA = PCAG , ARCA = ARCAG ,
PAR = PARG , BARCA = BARCAG , BAR = BARG , UNDET = UNDET G .
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3.3. Representing Distributed CBAC Policies

We now extend the notion of policy graph to accommodate multi-site poli-
cies, by including site information in the labels.

Definition 31 (Distributed policy graph) Let G = (V, E, lv, le) be a well-
formed policy graph with prohibitions, representing a CBAC policy, and let
s ∈ S be a location identifier in the distributed system. Then Gs, the policy
graph of site s, is defined by (V, E, lv′, le′), where lv′(v) = update(lv(v), site, {s}),
for all v ∈ V and le′(e) = update(le(e), site, {s}), for all e ∈ E.

A distributed policy graph is a tuple (Gs1 , . . . ,Gsn ,OP) where Gsi =
(Vi, Ei, lv′i, le′i) is the policy graph of site si, 1 ≤ i ≤ n, and OP is an oper-
ation on graphs that will be used to define the global policy as a composition of
site policies. For each location s ∈ S, the relations PCAs, ARCAs, BARCAs,
PARs and BARs are defined (as paths on Gs) as in the non-distributed scenario
(cf. Def. 28). We call Gs1 , . . . ,Gsn the site graphs.

Note that the entities of the metamodel (principals, categories, actions and
resources) may be known by different sites. This means that in the graph
representation of the global policy one has to be able to distinguish whether a
node/edge belongs to a particular site or not. This information is given by the
site field in the labels.

Formalising the global policy in terms of PAR and BAR, is not so straight-
forward. One possibility to define PAR is simply by the union of the site
relations, but there are more sophisticated ways to combine the policies. This
is the purpose of the OP parameter in the distributed policy graph.

We now define some useful operations on policy graphs. We will define these
as binary operations, but they can be easily generalised to the n-ary case.

We assume without loss of generality that in any two site graphs the sets of
nodes (resp. edges) are disjoint (for example, if an entity, let’s say a principal p,
is known in more than one site, each site policy graph will have its own node v
to represent this principal). This does not contradict Def. 27: in each site policy
graph, nodes are uniquely identified by the values of the ent and type fields in
their records.

Definition 32 (Union Graph) Given two well-formed site graphs G1 =
(V1, E1, lv1, le1) and G2 = (V2, E2, lv2, le2), where lvi.(vi).site = {si}, i = 1, 2,
the union graph G1 ∪ G2 is a graph (V, E, lv, le) where:
V is the smallest set satisfying:

1. for every v1 ∈ V1 such that there exists no v2 ∈ V2 where v1 ≡ v2, v1 ∈ V
and lv(v1) = lv1(v1);

2. similarly, for every v2 ∈ V2 such that there exists no v1 ∈ V1 where v1 ≡ v2,
v2 ∈ V and lv(v2) = lv2(v2);

3. for every pair v1 ∈ V1, v2 ∈ V2 such that v1 ≡ v2, there exists a node
v ∈ V, which we call the image of v1 and v2 (written v = Im(vi), i = 1, 2)
such that lv(v).ent = lv1(v1).ent, lv(v).type = lv1(v1).type, lv(v).site =
{s1, s2} and for every other pair of attribute and value (a1i = v1i) ∈
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lv1(v1) (respectively, (a2j = v2j) ∈ lv2(v2)), lv(v).as11i = v1i (respectively,
lv(v).as22j = v2j), that is, the record lv(v) is obtained by merging the
records lv1(v1), lv2(v2), keeping track of the sites where the attributes
were originally defined by means of superindices;

and E is the smallest set satisfying:

1. for every e1 ∈ E1 such that le1(e1).adj = {v1, v2} and there is no e2 ∈ E2

where le2(e2).adj = {v3, v4} and {v1, v2} ≡ {v3, v4}, e1 ∈ E and le(e1) =
le1(e1);

2. similarly, for every e2 ∈ E2 such that le2(e2).adj = {v1, v2} and there is
no e1 ∈ E1 where le1(e1).adj = {v3, v4} and {v1, v2} ≡ {v3, v4}, e2 ∈ E
and le(e2) = le2(e2);

3. for every pair e1 ∈ E1, e2 ∈ E2 such that le1(e1).adj = {v1, v2},
le2(e2).adj = {v3, v4}, {v1, v2} ≡ {v3, v4} and le1(e1).auth = le2(e2).auth
(i.e., the attribute auth is defined and equal in both, or undefined in
both), there exists an edge e ∈ E, where le(e).adj = {Im(v1), Im(v2)},
le(e).auth = le1(e1) if defined, le(e).site = {s1, s2}, and for every other
(a1i = v1i) ∈ le1(e1) (respectively, (a2j = v2j) ∈ le2(e2)), le(e).as11i = v1i
(respectively, le(e).as22j = v2j);

4. for every pair e1 ∈ E1, e2 ∈ E2 such that le1(e1).adj = {v1, v2},
le2(e2).adj = {v3, v4}, {v1, v2} ≡ {v3, v4} and le1(e1).auth 6= le2(e2).auth
(i.e., the attribute auth is defined in both, but one edge corresponds to an
authorisation and the other to a prohibition, no other cases are possible
since the site graphs are well formed), there exist two edges e′1 ∈ E, e′2 ∈ E,
such that le(e′1).adj = le(e′2).adj = {Im(v1), Im(v2)}, le(e′1).site = {s1},
le(e′2).site = {s2}, and for every other (a1i = v1i) ∈ le1(e1) (respectively,
(a2j = v2j) ∈ le2(e2)), le(e′1).as11i = v1i (respectively, le(e′2).as22j = v2j).

We can define the intersection graph G1∩G2 in a similar way, merging nodes
and edges if they appear in both graphs and discarding them otherwise.

The difference graph G1 \ G2 is the graph (V1, E, lv1, le), obtained by elim-
inating the edges from G1 that appear in G2, that is, for every e1 ∈ E1, such
that le1(e1).adj = {v1, v2}, if there is e2 ∈ E2, such that e1 ≡ e2 then e1 /∈ E,
otherwise e1 ∈ E and le(e1) = le1(e1).

The union, intersection and difference graph have different applications:
whereas the union graph is useful for combining policies, the intersection can
be used to detect redundancies and the difference to remove redundancies.

From a union graph we can extract relations PARG and BARG defining a
composition of site policies according to different kinds of union operators (e.g.,
union with priority to grant or union with priority to deny; see Example 6). To
extract the policy relations, we start by classifying paths according to the site
graphs from which they originate.

Definition 33 A site-path of length n in site s, in a union graph G, between
two nodes v0, vn, is a sequence v0, e1, v1, e2 . . . , en, vn, such that le(ei).adj =
{vi−1, vi} for all 1 ≤ i ≤ n, and s ∈ le(ei).site, for all 1 ≤ i ≤ n, that is, all the
edges in the path belong to the same site s.
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To highlight the fact that all the edges in the path belong to the same site,
the type of a site-path will be annotated with the site identifier, for example,
(PC,CAA, AR)s denotes a site-path of length 3 in site s.

Now we can compute the authorisations and prohibitions of a distributed
CBAC policy defined as a union with priority to grant (or as a union with pri-
ority to deny, or as a “first-applicable”) by computing site-paths: for example,

site-paths in the union graph with type PC, (
−−→
CC)∗, CAA, AR represent autho-

risations (since such a path in the union graph indicates the authorisation exists
in at least one policy).

Definition 34 Let G = G1 ∪ . . . ∪ Gn be a union graph obtained from site
policies G1, . . . ,Gn. The relations PARGG and BARGG (resp. PARDG and BARDG )
defining union with priority to grant (resp. union with priority to deny) and

PARFA(s1,...,sn)
G , BARFA(s1,...,sn)

G for “first applicable” are defined as follows.

• PARGG = {(lv(v1).ent, lv(v3).ent, lv(v4).ent) |

∃v21, . . . , v2n, s, type(v1, v21, . . . , v2n, v3, v4) = (PC, (
−−→
CC)∗, CAA, AR)s}.

• BARGG = {(lv(v1).ent, lv(v3).ent, lv(v4).ent) |

∃v21, . . . , v2n, s, type(v1, v21, . . . , v2n, v3, v4) = (PC, (
←−−
CC)∗, CAB , AR)s ∧

(lv(v1).ent, lv(v3).ent, lv(v4).ent) 6∈ PARGG }.

• BARDG = {(lv(v1).ent, lv(v3).ent, lv(v4).ent) |

∃v21, . . . , v2n, s, type(v1, v21, . . . , v2n, v3, v4) = (PC, (
←−−
CC)∗, CAB , AR)s}.

• PARDG = {(lv(v1).ent, lv(v3).ent, lv(v4).ent) |

∃v21, . . . , v2n, s, type(v1, v21, . . . , v2n, v3, v4) = (PC, (
−−→
CC)∗, CAA, AR)s ∧

(lv(v1).ent, lv(v3).ent, lv(v4).ent) 6∈ BARDG }.

• PARFA(s1,...,sn)
G = {(lv(v1).ent, lv(v3).ent, lv(v4).ent) |

∃v21, . . . , v2n, si, type(v1, v21, . . . , v2n, v3, v4) = (PC, (
−−→
CC)∗, CAA, AR)si∧

¬∃j, v′21, . . . , v′2m s.t. (j < i)∧

type(v1, v
′
21, . . . , v

′
2m, v3, v4) = (PC, (

←−−
CC)∗, CAB , AR)sj}.

• BARFA(s1,...,sn)
G = {(lv(v1).ent, lv(v3).ent, lv(v4).ent) |

∃v21, . . . , v2n, si, type(v1, v21, . . . , v2n, v3, v4) = (PC, (
←−−
CC)∗, CAB , AR)si∧

¬∃j, v′21, . . . , v′2m s.t. (j < i)∧

type(v1, v
′
21, . . . , v

′
2m, v3, v4) = (PC, (

−−→
CC)∗, CAA, AR)sj}.
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Proposition 35 Let G = G1 ∪ . . . ∪ Gn be a union graph and CBACGi =
〈Ei,PCAi,ARCAi,BARCAi,PARi,BARi,UNDET i〉, for each 1 ≤ i ≤ n,
be the policies associated to each site graph according to Definition 21. Let
Pol = 〈E , {PCAi}i∈S , {ARCAi}i∈S , {BARCAi}i∈S , {PARi}i∈S , {BARi}i∈S ,
{UNDET i}i∈S ,OPpar,OPbar〉, where E is obtained as the union of the cor-
responding sets (of principals, categories, etc) in Ei, and OPpar,OPbar define a
union with priority to grant (resp. union with priority to deny, “first-applicable”
composition). Then Pol is a distributed CBAC policy, and relations PARGG and

BARGG (resp. PARDG and BARDG , PARFA(s1,...,sn)
G , BARFA(s1,...,sn)

G ), respec-
tively compute its set of permissions and prohibitions.

Proof According to Definition 7, we need to prove that Pol satisfies axioms
(b1)-(h1), where OPpar,OPbar define a union operator with priority to grant
(resp. priority to deny or first applicable).

Axioms (b1)-(e1) hold because each site policy is well-formed. The interest-
ing axioms are (f1), (g1) and (h1).

To show (f1) and (g1) for union with priority to grant (resp. union with
priority to deny, first applicable) we need to prove that the authorisations com-
puted from the union graph correspond to these operators. Let us consider
first the case of union with priority to grant. We need to show that if one of
the site policies authorises p to perform action a on r, then the global policy
authorises it; and if at least one policy prohibits p to perform a on r and no
policy authorises it then the global policy denies it. This follows from the fact
that PARGG contains the tuple (p, a, r) if there is a site path corresponding to

an authorisation (p, a, r) for some site s, and BARGG contains the tuple (p, a, r)

only if it is not in PARGG (so, no site authorises it) and moreover at least one
site prohibits it.

To show (h1), we observe that by Definition 34, PARGG and BARGG are

disjoint since BARGG (p, a, r) implies ¬PARGG (p, a, r).
We reason in a similar way for the union with priority to deny and first-

applicable. 2

3.4. Representing Dynamic CBAC Policies

Relations between entities in the CBAC model can change in an autonomous
way (e.g., due to events that happen in the system), with principals/permissions
being added or removed from certain categories. In this sense a policy graph
can be seen as a snapshot of the authorisations and prohibitions that hold in
the system at a particular time. From the graph one can extract the relations
PCA, ARCA, PAR and BAR at a particular instant, but not how to build the
next “photo”. For this, we will enrich policy graphs by adding mechanisms to
specify dynamic policies. More precisely, we will use functional attributes to
model the evolution of authorisations and prohibitions in the system.

Definition 36 (Dynamic policy graph) A dynamic policy graph is a well-
formed policy graph with prohibitions G = (V, E, lv, le) such that for every v ∈ V
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there exists a field fun in lv(v) such that lv(v).fun = R, for some convergent
rewrite system R satisfying the following conditions:

• if lv(v).type = P , then lv(v).fun defines a function pca that returns the list
of categories of the principal lv(v).ent, written pcalv(v).fun = [c1, . . . , cn],
which may depend on the system state;

• if lv(v).type = C, then lv(v).fun defines two functions arca and barca,
each returning a list of pairs of the form (action,resource) (one of permis-
sions of the category lv(v).ent and the other of prohibitions, respectively),
written arcalv(v).fun = [(a11, r11), . . . , (a1n, r1n)] (resp. barcalv(v).fun =
[(a21, r21), . . . , (a2m, r2m)], which may depend on the system state.

In this definition, we assume that the functions that compute categories,
permissions and prohibitions have access to a global state, which could, for
instance, be a log containing the history of events that are relevant for the
system.

All dynamic policy graphs are well formed by definition, and therefore define
a unique CBAC policy by Proposition 23. However, since now policy graphs
include function specifications, we need to check that the current graph structure
is consistent with these specifications.

Definition 37 A dynamic policy graph G is correct with respect to a system
state st (i.e., at a particular instant) iff:

• for every node v of type P , pcalv(v).fun = [c1, . . . , cn] iff there exists an edge
ei ∈ E, with le(ei).adj = {v, vi} for i = 1, . . . , n, such that lv(vi).ent = ci;

• for every node v of type C,

arcalv(v).fun = [(a1i, r1i)|i = 1, . . . , n], barcalv(v).fun = [(a2j , r2j)|j = 1, . . . ,m]

iff there exists in E edges e1i, e
′
1i, with le(e1i).adj = {va1i, vr1i},

le(e′1i).auth = A and le(e′1i).adj = {v, va1i} for i = 1, . . . , n such that
lv(va1i).ent = a1i, lv(vr1i).ent = r1i, and edges e2j , e

′
2j , with le(e2j).adj =

{va2j , vr2j}, le(e′2j).auth = B and le(e′2j).adj = {v, va2j} for j = 1, . . . ,m
such that lv(va2j).ent = a2j , lv(vr2j).ent = r2j .

If a policy graph G is correct with respect to a state st, we say that the config-
uration 〈G, st〉 is correct.

A correct dynamic policy graph represents a category-based policy where the
relations evolve as the system state changes. Formally, we define a transition
relation on configurations.

Definition 38 Let → denote a transition relation on system states, that is,
st → st′ denotes a transition from state st to st′. The transition relation on
configurations is defined as follows: 〈Gi, sti〉 →ev 〈Gi+1, sti+1〉 if 〈Gi, sti〉 is a
correct configuration, Gi+1 is a policy graph with the same set of nodes as Gi,
sti → sti+1 and Gi+1 is correct with respect to sti+1.
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Note that, each correct configuration defines its own set of PAR and BAR
relations, as explained in Definition 28. Thus, dynamic policy graphs can
be used to define the evolution of authorisations and prohibitions. This dy-
namic behavior can potentially be defined as graph rewriting rules, using a
formalism capable of representing graphs with relevant information associated
to nodes/edges. In the future, our goal is to use the formalism of port-graphs
and the PORGY graphical framework [4] to implement dynamic policy graphs.

4. Analysis of Category-Based Policies

Managing access control policies is a challenging task, in particular in any
medium size organisation, where several policies are usually in place and their
interactions need to be controlled. This motivated the work on distributed and
federative access control models, and the development of tools and technologies
to manage the policies (see, e.g., [14] for a survey of analysis techniques). Secu-
rity administrators need to query policies to extract information and to verify
basic correctness properties. In this section we first consider standard queries
in CBAC policies and show how they can be answered using policy graphs. We
then show how to use policy graphs to manage and analyse policies.

4.1. Extracting information from policy graphs and checking constraints

According to the basic policy analysis model defined in [14], analysis queries
are classified as policy metadata queries, policy content queries and policy effect
queries.

Policy metadata queries concern metadata information about the policy;
examples of information that can be retrieved with metadata queries are the
author and date of creation of the policy, and the available principals, actions
and resources in the system. Using the graph model we propose in this paper,
metadata information about principals, actions and resources can be extracted
by a simple traversal of the graph, since this kind of information is stored in
the labels of nodes and edges. If metadata concerning the whole policy, such as
date of creation, is of interest, a simple solution would be to add a node of type
‘metadata’ in the graph to store additional information.

Policy content queries directly examine the content of policies, and policy
effect queries are queries about the outcome the policy will produce in various
situations. More precisely, policy effect queries relate to the authorisations and
prohibitions specified by the policy, and usually mention principals, actions and
resources. Property verification queries are a particular case of policy effect
queries.

Policy content queries and policy effect queries are the traditional adminis-
trator queries in access control systems. We discuss them below.

Policy content queries. The following are typical policy content queries in
CBAC; they aim at obtaining information about the policy at the time the
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query is issued.4

• Q1: Are all the principals associated with at least one category?

• Q2: Are there (positive or negative) permissions associated to each cate-
gory?

• Q3: Are all the resources accessible (in terms of principals and permis-
sions)?

• Q4: For a given category, who are the associated principals?

• Q5: To which categories belongs a given principal?

• Q6: For a given category, what are the associated permissions?

• Q7: For a given principal, what are the associated permissions?

Following [14], if for a given policy there is a principal not assigned to any
category, or a category without associated permissions, or a resource which is
not accessible, we say that the policy is ineffective for that principal, category,
or resource respectively. It is unlikely that a policy is intentionally written
to behave in this way; the analysis should try to identify ineffectiveness. We
show how this can be done (and can be easily visualised) using the graph-
based framework defined in the previous sections. We deal with non-distributed
systems first and then generalise the results to distributed policies.

Given a policy represented by a well-formed graph G = (V, E, lv, le), the
queries Q1-Q7 above can be formalised and answered in the following way,
where the semantics of the ⊆ relation between categories is set inclusion (if a
principal p is in the category c1 and c1 ⊆ c2 then p is in c2; see Definition 1).

1. All the principals are associated with at least one category if and only if
the degree of every node of type P is positive.

2. All the categories have some associated (positive or negative) permis-
sions if and only if for each node v of type C there is a path of type

(
−−→
CC)∗, CAA, AR or a path of type (

←−−
CC)∗, CAB , AR starting in v .

3. All the resources are accessible if and only if for each node v of type R

there is a path of type PC, (
−−→
CC)∗, CAA, AR starting in v.

4. To retrieve the set of principals that belong to a category c, compute the
set {v1, . . . , vn} of nodes of type P such that for each vi there is a path

of type PC, (
−−→
CC)∗ starting from vi and ending in the node of type C

representing c, and output lv(vi).ent (1 ≤ i ≤ n).

4If a policy is static (e.g., in the case of an RBAC policy) then the answer does not depend
on time. However, in the general case of a dynamic policy (e.g., policies in the DEBAC model)
the answer may depend on events that happen in the system, and so it may change in time.
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5. For a given node v of type P representing the principal p, the set of
‘least’ categories to which p belongs is obtained by computing the set of
neighbours of type C of v. To retrieve all the categories to which p belongs,

it is sufficient to compute the set of paths of type PC, (
−−→
CC)∗ starting from

v.
6. For a given node v of type C representing the category c, the set of asso-

ciated (positive or negative) permissions is obtained by computing all the

paths of type (
−−→
CC)∗, CAA, AR and all the paths of type (

←−−
CC)∗, CAB , AR,

starting at v. The last two nodes of each path define a permission (autho-
risation or prohibition) associated to that category.

7. For a given node v of type P representing the principal p, the set of
associated (positive or negative) permissions is obtained by computing

all the paths of type PC, (
−−→
CC)∗, CAA, AR and all the paths of type

PC, (
←−−
CC)∗, CAB , AR, starting at v. The last two nodes of each path

define a permission associated to that principal.

Proposition 39 The queries Q1-Q7 listed above can be answered in polyno-
mial time with respect to |V |+ |E|.

Proof In each case, the algorithm suggested consists of a simple graph
traversal. 2

The queries mentioned above are still valid in a distributed scenario, and
can be solved in a similar way, either by considering paths in the individual
graphs Gs1 , . . . ,Gsn , or computing paths in the union-graph defined above (Def-
inition 32).

Policy effect queries. Policy effect queries relate to specific properties of the
policy and are usually stated in terms of authorisations, prohibitions and their
interactions. Typical queries relate to the totality and consistency of the pol-
icy [19]. A policy is total if every access request from a principal p to perform
an action a on a resource r receives a grant or deny answer. It is consistent if
there is a unique answer for each request (this ensures that the same request
cannot be both authorised and prohibited by the policy). The latter is a chal-
lenging problem, in particular in distributed systems, where the answer to an
access request depends on the way the individual policies are composed. Pol-
icy graphs can help in the analysis of distributed policies, since they provide a
visual specification of the policy.

We consider first totality and consistency of policies defined by a single policy
graph, and then deal with distributed policies: To check that a CBAC policy is
total at a given time, assuming there is a well-formed policy graph G representing
the policy, it is sufficient to compute the relations PARG and BARG as specified
in Definition 28 and check that PARG ∪ BARG = P × A ×R. Consistency is
guaranteed by axiom (a4), that is, the policy graph satisfies PARG∩BARG = ∅.

In a distributed policy, where the global access rights are defined in terms of
individual policies, the consistency of the global policy relies on a specific mech-
anism to avoid conflicts between permissions in different sites (e.g., union with
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priority to deny). In the previous section, we proposed to define a distributed
policy graph as a tuple of site policies, and then compute a graph operation,
depending on the kind of composition defined by the distributed policy. To anal-
yse a distributed CBAC policy we first compute a distributed policy graph by
computing the policy graphs of each individual CBAC policy, and then compute
a graph using the operators to combine authorisations and permissions specified
in the distributed policy. Let G be the resulting graph. Totality and consistency
of the distributed policy can now be checked on G, by computing the PARG
and BARG relations, as specified in Definition 34, and then proceeding as in
the case of a single policy.

The checks described above can answer a totality or a consistency query for
a static policy, or a query pertaining to a dynamic policy at a specific time (i.e.
for a given configuration consisting of a system state and a policy graph). For
dynamic policies, these properties are generally undecidable, since it is necessary
to consider the way the relations PCA, ARCA and BARCA evolve. Decidable
sufficient conditions exist, if these relations are defined by rewrite rules; we
refer to [19] (see also [21]) for details. These results can be directly applied to
dynamic policy graphs (see Definition 37).

Policy effect queries include also queries about specific properties of policies,
which involve checking that the policy satisfies certain constraints. A well-
known example is the “separation of duty” constraint, where no user should be
allowed to perform two conflicting actions on the same resource (e.g., issue a
purchase order and approve it).

Proposition 40 Let G be a well-formed policy graph and assume an action
a1 in a resource r is in conflict with an action a2 in r. The policy graph G
ensures separation of duty constraint, if for each principal p, in the paths of

type PC, (
−−→
CC)∗, CAA, AR (resp. (PC, (

−−→
CC)∗, CAA, AR)s for distributed poli-

cies) linking the nodes representing p and r, the set of values for the attribute
ent in labels of nodes of type A in each path do not contain simultaneously a1
and a2.

Another interesting constraint in RBAC systems is the mutual exclusion of
roles. Such a constraint between roles r1 and r2 is satisfied if no user can be
a member of both roles. RBAC policies are a particular case of static CBAC
policies, and mutual exclusion constraints can be specified as constraints on
paths in the policy graph as follows.

Proposition 41 Let G be a policy graph representing an RBAC policy, where
roles r1 and r2 are defined as categories under a mutual exclusion constraint.
To check that the policy satisfies this mutual exclusion constraint, it is sufficient
to apply the algorithm specified to answer Q4 above (For a given category, who
are the associated principals?). More precisely, for the given roles, compute the
associated sets of principals and check that the sets are disjoint.
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5. Application: Emergency Policies as Distributed CBAC Policies

In this section we consider a particular kind of composition, where an access
control policy is combined with an emergency policy that specifies how various
emergency situations affect the rights of users to access resources.

Emergency situations are usually associated with one or more events that
happen in the system [24]. In this approach, events can be thought of as ele-
mentary or compound actions [31], which we represent using terms of the form
event(ei, p, a, o, t, l), following [17]. Here, event is a data constructor, ei is an
event identifier, p is a principal associated to the event, a is an action, o its
object, t is the time when the event happened, and l is a list of arguments (de-
pending on the event type, some arguments might not be required). Emergency
policies will be associated with specific events. To simplify, we consider only
atomic events, and assume that a history of all events that happened in the
system is available (e.g., via a log). We follow the definition of emergency given
in [24]:

An emergency takes place at time T if an event E happened at a
time Ts which is earlier than T , and resulted in the initiation of the
emergency, and this emergency has not been ended before T as a
consequence either of (i) clipping, i.e., an event E′ happening at a
time T ′ between Ts and T that causes the emergency to be terminated
or (ii) expiring a timeout δ for this emergency.

For example, in a hospital environment, an access control policy may specify
that each doctor has access to the medical records of his/her own patients.
However, if a patient p has a cardiac arrest, then any doctor in the ward should
have access to p’s medical records during the cardiac emergency.

The distributed metamodel and the notion of event defined above can be used
to specify access control in emergency situations. We consider two sites π1 and
π2 such that π1 contains a standard policy and π2 contains an emergency policy.
In the previous example, let patient be a category consisting of all patients (of a
given hospital), and doctor be a category consisting of all doctors (of the given
hospital). Let doctor(X) be a (parameterised) category consisting of all doctors
of the patient X, such that for all X, doctor(X) ⊆ doctor, i.e., the category
doctor(X) inherits all permissions from the category doctor. Assume the re-
lations PCA and ARCA satisfy the following axioms, where emerg(bcrd, P ) is
true if an event initiating a cardiac emergency for P has been detected, and no
event ending the emergency has been recorded:

∀P, (P, patient) ∈ PCA ⇒ (read, record(P ), doctor(P )) ∈ ARCAπ1

∀P, (P, patient) ∈ PCA ∧ emerg(bcrd, P )⇒
(read, record(P ), doctor) ∈ ARCAπ2

Operationally, we specify rewrite rules for arca in the standard (π1) and emer-
gency (π2) sites, and combine the policies using a union operator with priority
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to grant, or a first-applicable(π2, π1) if there are both positive and negative
authorisations to combine.

arcaπ1
(doctor(P )) → [(read, record(P ))]

arcaπ2
(doctor) → [(read, record(P )) | P ∈ patientList ∧ emerg(bcrd, P )])

where patientList returns the list of patients, that is, P such that patient ∈
pca(P ).

In this scenario, the graph representing the standard policy, Gπ1 , has a node
v of type P (principal) for each doctor, where lv(v).ent contains the doctor’s
identification, and nodes of type C representing the categories doctor(p), for each
patient p (if the number of nodes is too large, zooming mechanisms could be
implemented to help security administrators visualise the subgraphs of interest,
see Section 6). A category node doctor(p) is connected to nodes representing
the authorised actions for p’s doctors (e.g., an action read with type Arecord(p),
on p’s patient record represented by a node record(p) of type R). Furthemore,
every category node doctor(p) is connected to a category node doctor by an edge

of type
−−→
CC (that is, doctor(p) ⊆ doctor), to which all the doctors are connected.

The category node doctor is connected to the actions that are available to all
doctors (e.g., reading the rota information). In the following image representing
the standard policy graph, red edges are used to represent banned actions.

The dynamic policy graph representing the emergency policy in site π2, Gπ2 ,
has again a node of type P to represent each doctor, linked to a node of type C
representing the category doctor, with the function arcaπ2

defined above. This
function takes into account the occurrence of the event emerg(bcrd, p): there is
an edge connecting the category doctor to read and record(p) if and only if p
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is suffering a cardiac emergency.

We now discuss techniques to prove properties of such policies, e.g., to show
that any doctor has access to the record of a patient suffering a cardiac emer-
gency.

The graph representation of a policy in an emergency scenario will be given
by combining the graphs of the normal policy and the emergency policy within
a union graph (Def. 32) and implementing a “union with priority to grant”
operator or a “first-applicable” operator (see Def. 34). The analysis described
in the previous section can then be used to specify properties when dealing with
the emergency. For example, one guarantees that in the case of a patient i
suffering a cardiac emergency any doctor has access to his/her medical record,
by showing that, for every principal p in the category doctor, there exists a

path of type PC, (
−−→
CC)∗, CA,AR of the form p, c∗, read, record(i) in the graph

associated to the emergency policy.
The graphs of the normal and emergency policies can be used to analyse

other properties. For example, determining what are the permissions revoked
by the emergency can be realised by checking for multi-edges of type CA in
the union graph (corresponding to positive and negative authorisations, which
shows that the normal policy and the emergency policy disagree); what per-
missions were created by the emergency can be obtained from the difference
between the emergency and the normal policy graphs; etc. All these properties
can easily be established using our graph formalisation. “Separation of duties”
constraints are also useful in this context. For example, the constraint “no user
has permission to both activate an alarm (triggering an emergency and possibly
acquiring more permissions) and delete the emergency log (which records which
users have activated alarms)”, can be expressed as a separation of duties and
checked as explained in Section 4.

6. Graphical tools to analyse policies

In this section we describe two tools to analyse policies based on our graph
formalisation.
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6.1. Policy Manager

An application called Policy Manager [44] was implemented to provide an
easy to use graphical tool for security administrators, allowing the construc-
tion and management of multiple policies. The application was implemented in
Ruby [29]: an interpreted, object-oriented, multi-paradigm programming lan-
guage.

In terms of graphical display of policy data, the Policy Manager provides
user-friendly visual representations that facilitate the task of identifying policy
flaws such as unassigned principals, unused resources, policy conflicts, etc. The
application provides security administrators with a complete view of a policy
as a tree, allowing them to zoom in on overcrowded sections of the tree. It
also allows the selection of particular entities, highlighting the nodes and edges
associated to that entity. For example, by clicking on a principal name, the
tree will centre on the selected object, allowing a clearer view of the categories
and permissions associated to that principal. Furthermore, the user is able to
reposition the elements by dragging, as well as remove irrelevant elements from
the view. The application also comprises a textual view, allowing for simple
policy queries.

One key aspect of the project was the implementation of the dynamic be-
haviour of categories. Unlike roles in RBAC, categories can change dynamically
based on events or changes in the state of the system (emergencies can be seen
as specific kinds of events). To represent dynamic graphs (see Def. 36), the
tool allows the user to save Ruby code describing events in the database. This,
however, requires the users to have knowledge of the Ruby language. A more
desirable solution, would be to define a user-friendly Domain Specific Language,
to allow users to specify categories and permissions, for example, using rewrite
rules. This language could then be compiled into code to be inserted in the
policy database (as is currently done with the Ruby code used to specify cate-
gories).

6.2. The G-ACM Tool

Another prototype based on our formalism, called the G-ACM Tool [48], uses a
rule engine to implement the dynamic aspects of categories (more precisely, the
the JBoss Drools rule engine [28]). In G-ACM , rules are used both to compute
permissions from given relations (PCA and ARCA), but also permissions that
depend on customisable facts of the system.

This tool is a step towards our long-term goal of having a user-friendly
language to describe the dynamic behaviour of categories, suitable for policy
administrators and that could be translated into other programming languages
for integration with policy analysis tools. In G-ACM , Drools are used to compute
permissions based on a set of pre-defined rules that can be changed by the
security administrator. In particular, the definitions of categories, therefore
the permissions, can be changed by redefining the rules based on the available
attributes.

There is a separation in the graphical representation given in Section 3,
between the graphical representation of the policy at a given moment, which
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corresponds to a static graph where one can use static analysis to extract proper-
ties, and the rewrite-based operational semantics that allows for the permissions
to change dynamically. In G-ACM this separation is also clear, where Drools is
used as a mechanism to derive new instances of the graph, when changes occur
in the attributes defining categories.

Additional functionalities that improve permission analysis include: identify-
ing/displaying the changes in the policy graph, resulting from two different sets
of facts/parameters; filtering entities so that only the associated policy (sub-)
graph is displayed; aggregate nodes into compound nodes, which can be unfolded
whenever required, representing sets of entities with the same connections (this
results in more compact and intelligible graphs, allowing the identification of
entities with the same properties).

7. Related Work

Previous works on CBAC policies have used only textual languages and
have focused mainly on the expressivity of the model, the analysis of policies
and the techniques that can be used to enforce policies [9, 17, 18, 19, 1]. Graph-
based languages have been used in the literature to model and analyse access
control problems, but not within CBAC (with the exception of [3], which is the
basis for this paper and considers CBAC policies without prohibitions). Koch
et al. [38, 39], inspired by the role-permission assignment model proposed by
Nyanchama and Osborn [46], use directed graphs to formalise RBAC, using a
graph model similar to Baldwin’s privilege graphs [8]. A privilege graph is a
three layered acyclic graph where the first layer represents the users, the second
the roles and the third the permissions (actions and resources). A distinctive
feature of [38, 39] is the modelling of role management operations by graph
transformation rules. The graphs used in [38, 39] are typed in a similar way
as our policy graphs, and are also labelled, but labels in [38, 39] are simply
identifiers to encode RBAC policies, whereas we use a richer label structure in
order to express richer CBAC policies where access rights may depend on data
associated to entities in the policy. Using our policy graphs we can represent
the RBAC policies considered in [38, 39], since a role is a particular case of a
category; however, the graphs used in [38, 39] represent also session information.
We have not dealt with sessions in policy graphs in this paper, but the notion
of a session in CBAC is similar to the notion of a session in RBAC and the
representation of sessions provided in [38, 39] could be easily adapted to policy
graphs representing CBAC policies.

LASCO [33] is a language in which system states and security constraints
can be specified using graphs, which are labelled with attributes and values. A
LASCO policy graph describes both the situation (system state) in which an
access control policy applies and the access control constraints. More precisely, a
system state is represented by a graph where nodes represent users and resources
and edges represent actions (events in the LASCO terminology). The edges are
oriented from user (source) to object (target). Nodes and edges are labelled with
attributes and values, and the constraints are annotated on edges in the form
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of predicates involving attributes and values. In our policy graphs, actions are
represented by nodes, which can also be labelled with attributes and values, and
the LASCO constraints can be seen as a particular case of category specification:
the predicates and matching semantics of LASCO can be easily mapped to
rewrite rules defining the pca function in the CBAC model (see Definition 3).
Another closely related system is Miró [32], which is similar to LASCO in that
graphs are used to represent instances of the system and constraints, however,
Miró focuses on security policies for file systems, whereas we consider general
CBAC policies.

Another related approach uses term rewrite rules to model particular access
control models, relying on the power of term rewriting systems to express general
dynamic access control policies [10, 49, 37, 20, 19]. Properties of policies are
then checked using techniques to check confluence and termination of sets of
rewrite rules. Our approach combines the use of a visual graph formalism to
represent a concrete state of the system, and the use of rewrite rules to model
the dynamics of the system. In [37], it is shown how narrowing can be used
to solve administrator queries of the form “what if a request is made under
these conditions?”, by representing a query as a pair of a term and a first-
order equational constraint. Narrowing-based techniques could also be used in
dynamic graph policies, since the functions defining the main relevant relations
are defined by sets of rewrite rules.

The specification of policies by means of rewriting systems allows, not only
to take advantage of the extensive theory of rewriting to establish security prop-
erties, as shown in [49, 23, 15] amongst other works, but also to make use of
rewriting-based frameworks (such as CiME, MAUDE or TOM) to reason about
policy properties. Our work addresses similar issues, but is based on a notion of
category-based access control for distributed environments, which we interpret
using labelled graphs, and which can be instantiated to include concepts like
time, events, and histories that are not included as elements of RT or RBAC.
In [21], CiME is integrated in a tool designed to automatically check consistency
and totality of RBAC access control policies. A similar technique could be used
to analyse the rewrite system in a dynamic policy graph.

Several extensions of RBAC have been proposed to deal with dynamic poli-
cies, where permissions may change depending on internal or external con-
ditions such as time, location, or context-based properties (see, for exam-
ple, [25, 36, 40]). All of these extensions can be seen as instances of the more
abstract CBAC model.

The Generalised TRBAC model [36] and ASL [34] are related to CBAC in
that they aim at providing a general framework for the definition of policies.
However, they focus essentially on the notion of users, groups and roles (inter-
preted as being synonymous with the notion of job function). Li et al.’s RT
family of role-trust models [41] provides a general framework specialised for
defining specific policy requirements (in terms of credentials). Li and Tripuni-
tara [42] state a family of security analysis problems in RBAC systems, and
propose techniques to maintain desirable security properties, in particular when
administrators perform operations that change the authorisations in the sys-
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tem. Since the CBAC model permits the specification of dynamic categories,
authorisations in a CBAC policy can change without the intervention of the ad-
ministrator. The techniques developed in [42] to control administrative changes
in RBAC (e.g., to ensure that roles do not grow or do not shrink) could be
adapted to control the allocation of principals to categories in CBAC. This is
left for future work.

Recent work on enforcement of CBAC policies within web-based applications
relies on static analysis techniques and code injection [1]. Graph-based policies
could be used to bridge the gap between security administrators (who are not
always programming experts) and programmers applying this kind of language-
based techniques for policy enforcement.

The framework that we have described is more expressive than any of the
Datalog-based languages that have been proposed for distributed access con-
trol policies (see [7, 35, 26, 12]); these languages, being based on a monotonic
semantics, are not especially well suited for representing dynamically changing
distributed policies. Recent research addressed these limitations by extending
Datalog to include notions such as updates and persistency, but these features
have an operational semantics outside Datalog, which may cause semantic am-
biguities [43, 45]. Dedalus [2] is an extension of Datalog with an explicit notion
of time: all the predicates have an additional parameter to represent time. In
this way, Dedalus can easily express the dynamics of distributed systems. How-
ever, although dealing with time explicitly is useful in certain scenarios, it is
unnecessary in other cases (a simpler ordering of events might be sufficient).

Analysis of dynamic policies is also addressed by Dougherty, Fisler and Kr-
ishnamurthi [27] using Datalog to specify policies as logic programs, and state
transition systems to model program execution and the passage of time.

In [13], the constraint logic programming language SecPal is proposed, to
specify a wide range of authorisation policies and credentials, using predicates
defined by clauses. In our approach, we focus on graph interpretations of a
general metamodel suitable for distributed systems rather than on the design of
a specification language, but the operational semantics of the metamodel could
serve as a basis for a policy definition language.

8. Conclusions and Further Work

This paper describes a framework that aims at aiding the specification and
analysis of access control policies, by using a graph-based formalism to represent
policies: from single to distributed, and from static to dynamics policies.

Using this representation, we rely on graph properties and graph algorithms,
to extract properties on policies, including policy content and policy effect
queries. Although most of these properties are static, we are also interested
in other (dynamic) properties (such as verifying that at any point in time, each
access request to a resource by a principal will always receive a unique answer),
which are related to the operational semantics (defined using term rewriting),
and are therefore significantly more challenging. Other more challenging prop-
erties that we wish to address in the future, deal with optimisation queries, such
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as what is the minimal number of changes or the minimal connections necessary
to ensure a particular authorisation assignment. In future work, to analyse dy-
namic properties of policies and help administrators develop and manage policy
updates, we plan to develop a version of Policy Manager within PORGY [4], a
tool that allows users to visualise and simulate systems via port-graph rewriting.

Additionally, in the context of an analysis application such as the Policy
Manager and the G-ACM tool, we would like to continue our efforts to describe
dynamic behaviour using a user-friendly Domain Specific Language, suitable for
policy administrators. We believe that a rewriting-based language could be an
appropriate solution to that problem. This would provide an implementation of
the operational semantics of the category-based metamodel, could be integrated
with tools such as CiME to verify desirable properties, and translated into other
programming languages for integration in policy analysis tools.
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