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Abstract: We analyse a model of immune response by T cells (CD4), wiegndatory T cells (Tregs) act by inhibiting IL-2 secretion.
We introduced an asymmetry reflecting that the differendevésen the growth and death rates can be higher for the actoal|3
and the active Tregs than for the inactive T cells and inactiregs. This asymmetry mimics the presence of memory T.dglkhis
paper we start by analysing the model in the absence of TYégbtain an explicit formula that gives approximately tinigenic
stimulation of T cells from the concentration of Tregs. Aftards, we present an explicit formula that describes apmately the
balance between the concentration of T cells and the caratimt of Tregs; and an explicit formula that relates apprately the
antigenic stimulation of T cells, the concentration of TIgend the concentration of Tregs. For our parameter vathesielation
between the antigenic stimulation of T cells and the comatinh of T cells is an hysteresis that is unfold when soméefiarameters
are changed. We also consider a linear tuning between thggeait stimulation of T cells and the antigenic stimulatadiTregs. Again,
we have obtained an explicit formula relating approximatbk antigenic stimulation of T cells, the concentrationTafells and the
concentration of Tregs. With it, we can explain the appeaganf an isola and a transcritical bifurcation.

Keywords: Equilibria, hysteresis, bifurcation, ODE model, immurm}oT cells, Tregs, asymmetry, death rates.

This paper is dedicated to the memory of Professor Under exposure to their specific antigen, conventional
José Sousa Ramos. T cells are activated, leading to secretion of growth
cytokines (predominantly interleukine 2, denoted IL-2),
and expression of the interleukine 2 receptor which
1 Introduction triggers cytokine driven proliferation. However, in the
presence of active Tregs, the growth of conventional T
The immune system protects the host from pathoger?e".s.i.s inhibited. Part.of this growth inhibition is the
invasion. During such an invasion, T cells specific to theInhlbltlon Qf ”7'2 secretion by T C?”S].[:ﬂ’ [15]. Further,_ .
antigen proliferate and act to remove the pathogen!”nOSt studlgs !nQ|cate that regulatlon IS nthceII specific,
However, the immune system can erroneously target sel e._Treg_s inhibit al_llc_onventlonal T cells _mdependent of
antigens (autoimmunity) and cause tissue damage and'c" antigen specificity16], although a different report

death. Regulatory T cells, or Tregs, are a fundamenta] uggests'the contrarg4). Tregs clearly funct'lon to limit
he autoimmune responses with a delicate balance

component of the T cell repertoire, being generated in th . . LT .
etween appropriate immune activation and immune

thymus under positive selection by self peptidéls The ion bei hieved
Treg repertoire is as diverse as conventional T cd]s [ response suppression being achieved.

and performs vital immune suppressive functions. How such a balance is established and controlled is
Removal of Tregs, e.g. by (cell sorted) adoptive transferthe central focus of the paper$][[2], [3], [4]. For a
experiments, causes a variety of autoimmune disorders ineview see 10] and references within. We observe that T
rodents, whilst many autoimmune diseases can beell proliferation through cytokines already has a control
associated with a misregulation of Tregs, e.g. IPEX [ structure: cytokine driven growth exhibits a quorum
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population size threshold 5. For low antigenic in another case the suppression of the immune responses
stimulation b of T cells, only one stable equilibria is (slow increase)10].
found characterized by low concentrations of T cells, thus  In Section2, we present our immune response model
corresponding to an controlled state. For high antigenicas a set of five ordinary differential equations. The
stimulationb of T cells, again only one stable equilibriais approximate equilibria of the model are exhibited in
found, this time corresponding to an immune responseSection3, where we analyse the model in the absence of
state, since the concentration of T cells is high, close toTregs, presenting an explicit formula for the approximate
the capacity of T cells. For intermediate values of thevalue of the antigenic stimulation of T cells given the
antigenic stimulationb of T cells, between two concentration of T cells. Furthermore, we analyse the
catastrophe pointb. and by, two stable equilibria are  model in the presence of Tregs and we show an
found, a controlled and an immune response stateapproximate formula that yields the balance between the
Furthermore, an unstable equilibria is also present. If theconcentration of T cells and the concentration of Tregs.
antigenic stimulation rises above the threshmidcontrol ~ We also analyse how both concentrations are related to
is lost and autoimmunity arises. Note that even if thethe approximate value of the antigenic stimulation of T
antigenic stimulation leveb falls to the original value, at cells. In Section4, we consider a tuning between the
which control was originally achieved, control may not be antigenic stimuli and we obtain an analytic expression
reacquired. Control is only attained if stimulation falls with the approximate relation between the antigenic
below the second thresholil. This phenomena, termed stimulation of T cells, the concentration of T cells and the
hysteresis, is common in many physical and biologicalconcentration of Tregs. We discuss the results in Section
systems. 5.

We propose in 1] that Tregs locally adjust these
thresholds by inhibiting IL-2 secretion. The immune
response-suppression axis is then a balance between tfeTheory
local numbers of activated T cells (e.g. from a pathogen

encounter) and activated Tregs. W fwe introduce an  There are a number of different (CD4) T cell regulatory
asymmetry reflecting that the difference between thephenotypes reported; we use a model of Tregs that are
growth and death rates can be higher for the active T cellgyrrently identified as CD25T cells, although this is not
and the active Tregs than for the inactive T cells anda definitive molecular marker. At a genetic level, these
inactive Tregs. This asymmetry can be explained by theTregs express Foxp3, a master regulator of the Treg
effect of memory T cells. The memory T cells last longer phenotype inducing CD25, CTLA-4 and GITR

than the other T cells and react more promptly to theirexpression, all correlating with a suppressive phenotype
specific antigen11]. This results in a positive correlation [12],

between the antigenic stimulation and the difference
between the growth rate and the death rate of T cells.
Hence, this asymmetry brings up the relevance of the
antigenic stimulation of Tregs in the control of the local

Treg population size4]. As a result, under homeostasis, a O Inactive Tregs| _ relaxation [ Active Tregs Q

larger antigenic stimulation of Tregs results in a larger R specificantigena| R”®
Treg population size. We observe id] [that there is a  proliferation on I ? ¢ proliferation on I
direct association between the antigenic stimulation of R dontn ~secretion donth
Tregs and the thresholdd. and by of antigenic Vg "
stimulation of T cells. Therefore, by adjusting the level of O Autoimmune | _ relaxation [ T producers Q
self-antigenic stimulation of T cells to different levels, T spocific antigen b T
organs can have different levels of protection against theroiiferation on I proliferation on I
development of an (auto-)immune response by T cells. ? ¢ ¢

We will study the relation between the antigenic Lo death death

stimulationa of Tregs and the antigenic stimulati@nof

T cells, both being presented by antigen presenting cell§ig 1: Model schematic showing growth, death and phenotype
(APC), such as dendritic cells7][ For simplicity, we  ansitions of the Treg populatioms R*, and autoimmune T cell
analyse a linear tuning between these stimuli as4in [ T T* populations. Cytokine dynamics are not shown: IL-2 is
with the slope parameter modeling the effect of thesecreted by activated T cells* and adsorbed by all the T cell
antigen presenting cells (APC). Changing the slopepopulations equally. Reproduced frosj.[

parameter reveals the presence of an isola. Additionally, a

transcritical bifurcation occurs when the isola merges

with the hysteresis4]. This transcritical bifurcation may Our model from #] uses a population of Tregs and
give rise to two alternative scenarios, depending on theconventional T cells with processes shown schematically
rate of increase of the antigenic stimuli: in one case thein Figure 1. Both populations require antigenic
appearance of autoimmune responses (fast increase) astimulation for activation. Levels of antigenic stimutai
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are denotech and b for Tregs and conventional T cells Table 1 New parameters of the model.
respectively. Tregs are activated by self antigens froman Symbol Range  Value
inactive state, denoteld, to an active stat®*. The IL-2
secreting T cells are denotdd and the non secreting T .
cells are denoted. On activation conventional T cells Tell T T
secrete IL-2 and acquire proliferative capacity in the Death rate of inactive dr 01-001 01
presence of IL-2. Tregs also proliferate in the presence of T cells(day?) [9]
IL-2 although less efficiently than normal T cell§q, Death rate ratio of dr+ /ot 001-100 0.1
and they do not secrete IL-2. Finally, we include an influx active:inactive T cells
of (auto) immune T cells into the tissu&qput) and Tregs Input rate of inactive Toput 010" 100
(Rinput), Which can represent T cell circulation or naive T T cells (cells/mliday)
cell input from the thymus.

The model consists of a set of five ordinary TregsR, R*
differential equations. We have a compartment for each T .

Death rate ratio of dr/dr 0.01—100 1

cell population (inactive Treg®, active TregsR*, non
secreting T cellsT, secreting activated T cell§*) and

interleukine 2 density: Death rate relative %BR*;/
ratio of Tregs : T

inactive Tregs : inactive T

0.01-100 1

4T

dR Input rate ratio of Riput/Tnput ~ 0.01— 100 1
i (epl-B(R+R +T+T")—dr)R irqggti\sz '?’r:eaglso:?nactive T /oo
+R(R* - aR) +Rin put,
de * * o
P least one eigenvalue has a positive real part, we are in the
—k(R" - aR), presence of an unstable equilibria.
daT . . Letx=T +T* be the total concentration of T cells and
at ~ P BRERAT AT —dr)T y = R+ R* be the total concentration of Tregs. When the
+k(T* = bT+yR'T*) + Tinput, system is at equilibrium we have that:
ddit = (pl = B(R+RA4T +T*) —dr)T* (epl—B(x+y) —dr)R
—K(T* = bT+HyRT*) +k(R* —aR) + Rnpu =0, (1)
dl * pk *
Fri o(T"— (a(R+R+T+T*)+9)I). (epl —B(x+Y) — dr:)R*
The new parameters are in Taldland the other ones —k(R*-aR) =0, (2)
are in [i].

The model studied in this paper keeps the basic (p| — B(x+y)—dr)T
properties of the immune response by T cells, controlled . — .
by Tregs, that were present iri][and [2]. The main KT = BTHYRT) + Tinpur =0, (3)
distinction of this model is the asymmetry in the
difference between the growth and death rates modeled as(pl — B(x+Yy) — dy+)T*
in [3], [4] and [10].'With this. kind of asymmetry present  _(T* — bT+yR'T*) =0, 4)
for the T cells, an increase in the antigenic stimulation of
T cells results in an increase in the population of T cells i
caused both by the increase in cytokine secretion and by (T — (a(x+y)+9)1)=0. (5)
the decrease in the average death rate of T cells. Let Ar = dr — dr- and 6 = k(1 + b) — Ar. When

Furthermore, the asymmetry improves  the dynamchT < k, theT, T* balance is much faster than the T cell

behaviour of the model (introduced iri]], as shown death his inf : biai
reviously in B and [4]. eath rates. We can use this information to obtain an
P approximate expression of the relation betw&érandx.

Lemma 1.When the system is at equilibrium (stable or
unstable) andAt < Kk, the concentration of active T cells
T* is given approximately by

3 Equilibria of the model

In a ODE model, the equilibria, stable or unstable, is the
set of points where all the derivatives vanish. When the Kbs2

Jacobian matrix of the steady state has all eigenvalues T~ ) (6)
with negative real parts, we have a stable equilibria. If at (8 4 kyR*)x+Tinput
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Remark: For the default parameter values used in this

paper, we observe thaty = 0.099« 2.4 =Kk . We can
observe in figure2 that, for different values of, the

difference between the approximate value and the exact

value of T* is smaller than 1%.

11

1.081

1.061

dif

1.041

1.02r

1 -
102107 10° 10" 10% 10° 10" 10° 10° 10" 10°
y:R+R*

Fig. 2. Relative deviationdifr = Tipprox/ Texact b€tween the
approximate value of * obtained from the Lemma and the
exact value.

gs = 0.1 (dashes), 1 (solid), and 10 (dash-dot). The colors

indicate when it is plotted the smallest root (green) ordatgoot
(blue) ofx from Theoren?.

Proof of Lemmeél:
Adding (3) and @), we obtain

_ adrT+dp:T" —Tinput

T+T* %

pl—B(x+y)

Subtracting 4) from (3), we get

(PI=BX+Y))(T =T") —drT +dr-T"
Replacing 7) in (8) we get

(8)

T-T*F
TIT (drT+dpT*— Tinput) — T +dm=T"

+2k(T* = bT + yR*T*) + Tinpu =0.

9)

SinceT = x—T*, we have thaff— = 1— 2~ and
we obtain,
dr(x—T")+dp=T" — Tinput
2T* . .
X (dT (X_ T ) +drT" — Tinput)
—dr(x—=T")+dr=T"
+2K(T* —b(X—T") + yRT*) + Tinput=0.. (20)
Multiplying equation (L0) by x/2, reordering the terms
and substituting\y = dt — dr+ and@ = k(1+b) — Ar, we
get

At (T*)2+ (0 +KyR )X+ Tinput) T —kbX¥2 = 0. (11)

We have a polynomial of the second degre@ in By
usingH (x, R*) = (6 + KyR*)X+ Tinput, we get

1o _ —H= VHZ £ A7kDR

2
o (12)

We must havel * > 0, therefore we will only get the
positive root.

By assuming thatdt < k, we can make a first order
Taylor expansion of the square root.

Sincekb < 6 andAt <« 6, we have that

Arkb¥ < AT1Ox% < 02x% < H?. (13)
Therefore,
H2 -+ 4Atkbx = \/<1+
2A7kbX
From (12) and (4) we get

—H+ (1+ 2rkb?

4ATkbx
=)

(14)

H2

T = (15)

Simplifying this equation and using the expression of
H(x,R"), we obtain 6).

O

3.1 Equilibria in the absence of the Tregs

Here, we consider the simplified model of the immune
response by T cells in the absence of Tregs, by assuming
thatR= R* = 0, thus eliminating equationg)and @):

O (o1 BT T dr)T k(T —bT) 4 Topu
ddT: (ol = B(T+T") —dr)T* —K(T* —bT)
% =o(T —(a(T+T+d)).
Let
At = dr —dr, (16)
E(X) = (ax+ 8)(drX— Tinput+ BX%), 17)
F(x) = px+Ar(ax+9) . (18)

Theorem 1.Let y(x) be the antigen function in the
absence of Tregs. The level of antigenic stimulation of T
cells is given approximately by {x), when the simplified
system in the absence of Tregs is at equilibrium (stable or
unstable).

(X(k — A1)+ Tinput) E
kx(xF —E)

bo(X) = (19)
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Conversely, given an antigenic stimulation levgldb Sincef = k(1+ b) — At = k+ kb— At, we obtain

T cells, the approximate concentration x of T cells is a
zero of a fourth order polynomial that can be explicitly
constructed.

Moving the terms wittb to the left side of the equation,

Remark: Both the numerator and the denominator ofyye get

bo(x) are polynomials of degree four in
Proof of Theorent. b(k@F —XKE) = x(K—AT)E+TinpuE . (34)

When the system is at equilibrium we have that:
By solving equation34) for b we obtain (9).

KoXF = (k-+Kb—Ar)XE+ TinpuE . (33)

(pl —BX—dT)T—Fk(T*—bT)+-|-input:07 (20) -
(pl — Bx—dr)T*—k(T*—bT) =0, (22)
. o(T"—(ax+9)1)=0. 22 g
( ( W (e2) 3.2 Equilibria in the presence of the Tregs
Solving 22) for T* gives
. We now study the full model, with both the T cells and
T"=1(ax+9). (23)  the Tregs. Letdg = dr— dr- and A = k(1 + a) — Ar.
Adding (20) and @1), we obtain Similarly to what is observed for the T cells, when
Ar < k, the R, R* balance is much faster than the Treg

death rates. Once more, we can use this information to
obtain an approximate expression of the relation between

Reordering the terms gives R* andy.

(Pl =BX)(T+T") —drT —dr-T"+Tinpue=0. (25)  Lemma2When the system is at equilibrium (stable or
unstable) andAr < k, the concentration of active Tregs

(ol = BX—dr)T + (pl — Bx—dr)T* + Tinpu = 0. (24)

Isolatingpl — Bx we get R* is given approximately by
pl — =T inT*_ o (26) R~ K (35)
AY+ Rinput -
Replacing 23) in (26) and usingl = x— T* we get, o
. Remark: For the default parameter values used in this
<p ( T ) —BX> (X—T*4+T%) paper, we observe thdir = 0.099« 2.4 =k . We can
ax+o observe in figure3d that, for different values ofy, the

(27)  relative difference between the approximate value and the

:dT(X_T*)+dT*T*_-I—|nput g
exact value oR* is smaller than 10%.

UsingAr = dr — dr+ we have,

T*
p < )X—BXZZdTX—ATT*—Tinput . (28)

ax+9o 11
Multiplying both sides byoax+ o 1.08 ,‘!
PXT* — (ax+ 8)Bx* 1.06 ;
— (ax-+8)(crx— ArT* — Tpu) (29) = ;
1.04 ;
Isolating the terms witf * gives i
(px+ At (ax+8)T* 102
_—
= (ax+98)(drx—Tinput) + (ax+ 6)BX2 : (30) 110‘210'1 10° 10" 10° 10° 10° 10° 10° 107 10°
USIiNgE () = (ax+ ) (drX— Tinput+ BX2) andF (x) = YRR
px+ At (ax+9), results in Fig. 3: Relative deviationdifr = Rgpprox/Rexact Petween the
N approximate value oR* obtained from the Lemma& and the
T'F=E. (31) exact value.
Applying Lemmal we get, gg = 0.1 (dashes), 1 (solid), and 10 (dash-dot).
kbxX
— |F=E. 32 .
( Ox+ Tmput) (32) Proof of Lemm&:
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Adding (1) and @), we obtain
drR+dr<R* — Rin put
R+ R '
Subtracting 2) from (1), we get
(epl —B(x+Y))(R—R") —drR+ dr-R*
+2k(R* —aR) + Rnput=0.
Replacing 86) in (37) we get

epl—B(x+y) = (36)

(37)

R-R*
Rt R
+2k(R* — aR) + Rnput = 0. (38)

i _ « R _q_ 2R
Slnch_ y—R*, we have tha% =1- 5 Hence
we obtain,

dR(y_ R*) +dr-R" — Rinput

2R*
y (dR(y_ R*) +dr R — Rinput)

—dr(y— R") + dr:R"
+2k(R* —a(y—R")) + Rinput = 0. (39)
Multiplying equation 89) byy/2, reordering the terms
and usingA = Kk(1+a) — Ag, we obtain

(drR+ dr: R*— R put) —drR+ dr:R*

AR(RY)?+ (AY+Rnpu) R —kay? =0.  (40)

The above is polynomial of the second degre®in
By substituting.(y) = Ay + Rinput, We get

—L 4+ /L2 + 4Agka
R = Rkay” (41)

2AR

We must haveR* > 0, therefore we will only get the
positive root. A

By assuming thaf\r < k, we can make a first order
Taylor expansion of the square root.

Sinceka < A andAg < A, we have that

Arkay? < ARAY? < A3P < L2 (42)
Therefore
/L2 + 4Agkay? — J <1+ 4Ai2ay2> L2
2Arkay?
~ <1+T_72> L+0(2). (43)
From @1) and @3) we get
L+ (1422820 L
R = +0(2). (44)

2AR

O

Using Lemma2, we can obtain a polynomial that gives
the balance between the concentration of T celsT +
T* and the concentration of Tregs= R+ R* (see Figure
4).

: Let
P2 = BA (aAr +p(1-¢))
Py = BRinput(aAT +p(l-¢))
Pi3 = BA (2aAr 4+ p(1—¢))
P12 = BRiput (2047 + p(1—¢€)) — kadr(p + a/r)
+A (p(dr— €d7) + A7 (adr+ B9))
P11 = Rnput(p(dr— £d7) + At (adr+ 39))

—Rinput/\ (p + GAT)
Pro = _Rﬁmut (p+adr) (45)
Pos = aBA AT

Pos = At (aBRinput+ A (adr+ B3) — akadg)
Po2 = At Rinput (adR+ 35) - 6RaATAR
+A (€PTinput — A At Rinput + 0ATdR)

Por = Rinput(nginput — 0ATRinput+ 0AT(dr— A ))
Poo = —8ATRG put -
Theorem 2.When the system is at equilibrium (stable or
unstable) andAr < k, the approximate concentration of
T cells x=T + T* is given implicitly as function of the
concentration of Tregs ¥ R+ R* by the zeros of the
second degree polynomial in x:

PooX?y? + Popx®y + Puaxy® + Puoxy? -+ PLaxy+ Prox

+Poay* + Pogy® + Pooy? + Pory + Poo=0. (46)

Conversely, the approximate concentration y of Tregs

is given implicitly as a function of the concentration x of T
cells by the zeros of the above fourth order polynomial in

y.

Proof of Theoren:
Isolatingpl from (7) gives:

_ drT+dp-T" —Tinput

pl . +B(x+y).  (47)
By replacing 47) in (36) we obtain
drT+dpT* — Tinput
(ST By ) - Blxcty)
_ drR+ dr-R* — Rinput
N R+R* (48)

SinceT =x—T* andR=y— R*, and multiplying 48)
by xy results in

((edr —dr) = B(1—€)(x+y))xy

Simplifying this equation and using the expression of — ((dr+ —dr)T" = Tinpur) €y

L(y) we obtain 85).

- ((dR* - dR)R* - Rinput)x =0. (49)
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A Multiplying both sides of %4) by a(x+y) + and
solving for T* we obtain
10°,
po_ (A0CHY) +8) (BOHYX O =Tipw) g
%10 px+Ar(a(x+y)+9) '
2108 ; ; i i
- Replacing §5) in (50), reordering the terms and using
10 G(x,y) = px+Ar(a(x+y)+9), we get
o (ax+y)+0)(B (Xg YXH drX = Tinpu) 5
dg/dp 10'1\‘51/(/)ﬂ ° x=T+T" —Tinputgy+ (ARR* + Rinput) X= 0 . (56)
" B Applying Lemma2 and usingL(y) = Ay + Rinput we
T have
10t )
o(x o) X X+ drx—T;
7 - (G0 3) B K ST,
10° et ] ~
. ! ka
£ 10 e : 1 —TinputdT €Y + X <ARTy2 + Rinput) =0. (57)
10°t ' I
o Multiplying by G(x,y)L(y) we obtain
Lol ~ CGL— (a(x+Yy)+9d) (B(x+y)x+ drX— Tinput) AT €YL
T —TinputeyGL+ X (ARka)g + Rinput'—) G=0. (58)
10 10 10’ 10 10 . 10 10 10 10 . . . .
X=T+T Expanding the previous expression and reordering the
Fig. 4: Relation between the concentration of T cells T +T* 'grms, vae obtalr::“fhe polynolmlal I.ml@' We note that
and the concentration of Tregs= R+ R*, from Theoren®. (x.y), G(x,y) andL(y) are polynomials.
A: Horizontal axisx=T + T*; "away axis”: gB; vertical axis: 0
y = R+ R*. Low values ofb are darker and Bigher values are
lighter. From the results above, we are able to buildghgégen
B: Cross sections of the equilibria manifold in figure A @ = functionthat relates the concentrationof Tcells T4+ T*

0.1 (dashes), 1 (solid), and 10 (dash-dot). The horizonta @xi  and the concentration of Tregs= R+ R* with the level of
the total concentration=T +T* of T cells, and the vertical axis  the antigenic stimulation of T cells Let

is the total concentratiopn= R+ R* of Tregs. The colors indicate “
when it is plotted the smallest root (green) or largest rohi) A =k(1l+a)—-4r
of x from Theoren?. 6 = k(1+ b) — At

L(y) = Ay+ Rinput

_ C(xy) = ((edr —dr) — B(1—€)(X+Y))xy
Using C(xy) = ((edr —dr) =B(1=&)X+Y)XY,  M(xy) = C(XYy) — Tnpu€y + RinpuiX (59)
At = dr — dy+ andAgr = dr — dr- gives N(KY) = M(x y)L(y) +ARany2
C— (ATT" + Tinput) €Y+ (ARR" + Rinpu) x=0.  (50) Q(x,Y) = akkyxy? + TinputL(y)
Multiplying (7) by x and usingl = x— T*, we obtain J(x,y) = eATkxyL(y) .

IX=B(X+yX=0dr(X—=T")+dr+T" = Tinput. (51
plx =B _ Z l )+ dr _ e (_ ) Theorem 3.Let b(x,y) be the antigen function, and let
Reordering the terms of the previous expression and(y) (or y(x)) be as in Theoren2. The level of the

usingAr = dr — dr+ we have antigenic stimulation of T cells is given approximately by
,_ T b(x,y), when the system is at equilibrium (stable or
P|X+ATT = B(X-I-Y)X-l- dTX Tlnput . (52) Unstable).
Solving () for | we get
((k—Ar)XL+Q)N
L (53) POy = T T (60)
a(x+y)+90°
. . Conversely, given an antigenic stimulation level b of T
Replacing §3) in (52) we get

cells, the approximate concentration x of T cells and the
approximate concentration y of Tregs are zeros of
polynomials that can be explicitly constructed.

PX

WT +A7T :B(X—FY)X—FdTX—Tinput- (54)
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X=T+T"

16 10

Fig. 5: Relation between antigenic stimulatibrof T cells, the
concentration of T cells=T 4+ T* and the relatiorﬁf.

A: Horizontal axisb; "away axis”: 35; vertical axisx=T +T*.
Low values ofy = R+ R* are darker and higher values are lighter.
B: Cross sections of the equilibria manifold in figure A @ =
0.1 (dashes), 1 (solid), and 10 (dash-dot). The horizonta iaxi
the antigenic stimulatiob of T cells, and the vertical axis is the
total concentratiorx =T +T* of T cells. The colors indicate
when it is plotted the smallest root (green) or largest rohie)
of x from Theoren?.

Remark: The numerator di(x,y) is a polynomial of
degree three i and degree five iy and the denominator
of b(x,y) is a polynomial of degree three iand degree
fouriny.

Proof of Theoren3:
Isolating theT * term in (B0) gives

eATYT* =C—Tin put€y + (ARR* 4+ Rin put)x . (61)

Replacing T* by the expression from Lemma,
multiplying both sides of§1) by (8 + kyR*)X+ Tinput and
using the definition oM(x,y) from (59), results in

eAtkbXRy = (M + ArR™X) ((8 + KyR*)X+ Tinput) - (62)

Applying Lemmaz2 to obtain an expression f&* and

multiplying both sides of§2) by L?(y) from (59), we get
eATkbXyL?

= (ML + Agkaxy?) (6L + kykay?)x + Tinputl) - (63)

Fig. 6: Relation between antigenic stimulatibrof T cells, the
concentration of T cells =T 4+ T* and the relatiorﬂf.

A: Horizontal axisb; "away axis”: g§; vertical axisy = R+ R".
Low values ofk=T + T* are darker and higher values are lighter.
B: Cross sections of the equilibria manifold in figure A f% =

0.1 (dashes), 1 (solid), and 10 (dash-dot). The horizontad axi
is the antigenic stimulatiob of T cells and the vertical axis is
the total concentratiog = R+ R* of Tregs. The colors indicate
when it is plotted the smallest root (green) or largest robie)

of x from Theoren?.

Using the definitions od(x,y), N(x,y), Q(x,y) and8
from (59), we obtain
bxJL=N((k(1+b)—Ar)XL+Q) . (64)
Moving the terms wittb to the left side of the equation,
we get

bxJL— bkxLN= ((k—A7)XL+ Q)N . (65)

Solving the last expression forgives us 60).
U

For the default values of our parameters, the antigen
function determines that the relation between the
concentratiorx of T cells and the antigenic stimulatidn
of T cells is an hysteresis (see FiguB. For low
antigenic values of the antigenic stimulatibrof T cells
there is only one stable equilibria - a controlled state
characterized by low concentratiorof T cells. Initial
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conditions (at least those that are biologically plaugible Theorem 4.Let B(X,y) be the tuned antigen function, let
converge over time to that stable state. For high antigenia(b) = ap+ mb and let Xy) (or y(x)) be as in Theorerg.
values of the antigenic stimulatidm of T cells there is  The approximate level of antigenic stimulation of T cells
also only one stable equilibria - an immune response statgs a zero of the third degree polynomia(x,y), when the
characterized by high concentratiorsof T cells. For  system is at equilibrium (stable or unstable).

some values of the parameters (for instance, Wg\?él'rs K — Kkrmekp3
near 1), we observe two catastrophe polmtsaand bH of (kmxyd — kkmxy)

antigenic stimulation of T cells. For intermediate values +(kmxyJ+xJL —kkmxyN— NV)b?

of the antigenic stimulatiom of T cells, between these | (xjL— NV —RNU)b—NU =0. (68)
two points, (for instance fob =~ 0.5), we observe that,

there are two stable equilibria and one unstable equilibria  Conversely, given an antigenic stimulation level b of T
Hence,b. andby bound the bistability region. Different cells, the approximate concentration x of T cells and the
initial conditions converge to either one of these two approximate concentration y of Tregs are zeros of
stable equilibria, defining two basins of attraction didde Polynomials that can be explicitly constructed.

by a separatrix that contains the unstable equilibria.

The reIationﬂ—?, between the death rates of Tregsand T
cells, affects the bistability region of the hysteresigl$p
affects the concentration of Tregs. The distance betwee
the threshold$, andby is very large for low values of
g—$. When this relation is increased, the distance between

b. andby is reduced and the hysteresis is unfold ggm Proof of Theorend:

1.23.... (see Figures ano!6). The corjcentration of Tregsis The equalities in§7) are obtained by applyind6) to
negatively correlated Wltﬂ% (see Figurel). equation 69). Replacing these ir65) we get

Remark:b(x,y) is a polynomial of degree three in
and degree five ig. Note that Theorer8 can be obtained
as a corollary of theoreh by assuming that the antigenic
Ytimuli a andb are independent, i.e. by setting= 0.

4 Tuning between the antigenic stimuli b(3+Jb) (L + kmby)x

The antigen presenting cells (APC), such as dendritic (N+Nb) ((k(1+ b) —Ar)(L+ krrby)x)

cells, present both self and non self antiger®. [  +(N-+Nb)(Q+ Ob). (69)
Therefore, there is a positive correlation between the R
levels of antigen stimulatioa of the Tregs and the levels Expanding the products to obtain polynomial®iand
of antigen stimulatiorb of the T cells. For simplicity, we using 67), we get

study a linear tuning between these stimuli in the form: RmxydB2 + (kmyd-- JL)XB2 + xJLD

a(b) =ap+mhb (66) = kkmxyNbB® + (NV + kkmxyN b?
with ag as in {] and m > 0. If the levels of antigenic  +(NV-+NU)b+NU . (70)
stimulation a of Tregs and the levels of antigen Reordering the terms of the previous expression we
stimulationb of the T cells are independent, the slopés obtain 69).
equal to zero.

Using this linear tuning, we can expand the result from O
Theorenm3. Let

A(B) = A +knb 5 Discussion
J(xy) = earkkmxy? In this paper, we examined a mechanism proposed]in [
J(x,y,b) =J+Jb (and also presented i2][ [3], [4] and reviewed in10])
C(y,b) = L+ kmby of Treg pontrol of immune responses t'hrough regulatlon
o\ of cytokine dependent T cell proliferation. In particular,
N(X,y) = (M + Arxy) kmy (67)  we study here the asymmetry introduced3h [4]. When
N(x, Y, 6) = N+RNb we analyse the model in the absence of Tregs we already
~ observe an hysteresis, similar to the result presented in
Q(x.y) = (Kyxy+ Tinpu) kmy [1]. This is shown by the approximate formula in
Q(x,y,b) = Q+ &b Theorlem ﬁ IndTheobremZ, we deterrlnin(; the angl)l/tic
formula that describes approximately the fine balance
Uy) = (k=Ar)bx+Q between Regulatory T cells and T cells, in particular at
V(xy) = kbx+ (k—Ar)kmxy+ Q. controlled and immune response equilibrium states. We
(© 2015 NSP
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observe that, for the parameter values chosen, thé&xeferences
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