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Selecting quality improvement projects among a variety of mutually competing ones is characterised by prioritisation. In
practice, this is often done by the rule of thumb, following a single attribute criterion or by subjective preferences of
individual stakeholders of a project team. An approach to track systematically nonconformities and to identify those criti-
cal ones that should be prioritised based on multi-attribute criteria is presented. The approach is introduced and its pur-
pose is explained. After the background of relevant topics is given, the method’s importance in research and for
practitioners is derived. Steps of the approach are portrayed and an application case of a mature industrial company, inte-
grated in the supply-chain of the automotive industry, is presented. Elements of quality tools and techniques are used as
attributes, namely failure mode and effect analysis and Pareto diagram. Results based on industrial data indicate that the
use of this approach contributes to support informed and structured prioritisation decisions, which foster a more efficient
improvement of future quality-based projects.

Keywords: multi-attribute decision-making; nonconformities; quality improvement projects; quality tool; TQM

1. Introduction

Targeting zero defects in production is an often sought
state in any company but more crucial for the ones aim-
ing to achieve world class manufacturing performance.
While theoretically claimed, it is very demanding to
establish into practice. This is owing to variability in
production and to imprecise measures of testing and
inspection equipment, among other minor sources of
deviations from target. Ambiguity of the existence of an
economical quality level characterises discussions around
cost of quality (CoQ) models. Notional CoQ models sup-
port both, the modern and the classic view, as explained
in CoQ reviews (Plunkett and Dale 1987; Schiffauerova
and Thomson 2006). According to the classic view the
economic optimal point is positioned prior to perfect
quality, because efforts to achieve zero defects are
beyond price. The modern view on the other hand
assumes that the cost of image loss through delivering
nonconforming quality is tremendous and therefore the
optimal economical point is only reached with zero
defects (Freiesleben 2004).

Quality is a term with various definitions. In the
realm of quality, a nonconformity (NC) is the nonfulfill-
ment of a specified requirement (ANSI/ISO/ASQC
A3534 1993). Deming (1986) recommends deriving from
customer needs measurable characteristics to design the

product in such a way that the customer receives
satisfaction for paying a certain price. Thus, by translat-
ing customer requirements into attributes and impart
those with metrics, quality becomes quantifiable and the
product can be assessed against meeting metrics. A prod-
uct that does not meet one of those metrics is noncon-
forming. Recording the occurrences yields a list of NCs
that can range from visual, in terms of aesthetics or con-
structional, in terms of functions. Up to a certain thresh-
old of not meeting a conforming metric products are
recoverable through rework efforts. The others are
scrapped or put to salvage. An NC list can be plentiful
and NCs can occur at different spots at the product or
multiple NCs can be identified for one product. Each sin-
gle NC may be caused by different sources.

NCs can be detected prior to shipment at an inspec-
tion stage, or customers may claim and return the prod-
uct if testing fails. Nonconforming products can cause
inestimable damage when revealed to the customer.
Losing future business with individual consumers is
obviously less disastrous than having a commercial cus-
tomer switching to competitors. Reducing the number of
delivered nonconforming products can either be achieved
(1) by reducing the occurring number of NCs through
improved quality at the manufacturing process or (2) by
increasing the efficiency of the inspection process. Both
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cases imply costs. In the first case, one has to invest in
improving the manufacturing process and in the second
case expenditures in tightening the detection of the
inspection process take effect. Within the dimension of
product and process quality it is thought that applying
the spirit of ‘do it right the first time’ is less costly than
maintaining a final inspection (Juran and Godfrey 1999).
Thus, reducing production losses through continuously
improving processes is aspired.

One lever to continuously ameliorate processes is to
focus on a specific NC and to identify and eliminate its
root causes. Among all NCs that are found, the selection
and prioritisation of the right ones is key for improving
quality efficiently. This is due to limited resources for
investigation and rectification of the problem and to take
multiple objectives into consideration. Within the total
quality management (TQM) realm suggestions are
provided on how to investigate root causes of NCs and
on how to prioritise NCs as well. However, there is no
published approach based on multi-attribute criteria to
monitor, prioritise and select NCs for further investigation
upon taking into consideration multi-attributes.

This study intends to fill this gap by presenting a
novel approach to track and prioritise NCs with weighted
multi-attributes. This approach promotes selective track-
ing among a set of NCs fostering its prioritisation for the
selection of future improvement projects. The approach
has a multi-attributes weighting engine based on failure
mode and effect analysis (FMEA) and Pareto principles.
This research is a contribution to existing quality tools in
the TQM literature. Results indicate that the approach
presented in this study can be used by practitioners such
as quality engineers but can also be applied for any port-
folio prioritisation problem.

A literature review of relevant topics is given and
the approach for prioritising NCs is presented. After
illustrating the proposed notional model , instructions for
devising the approach is provided and a real-based data
case study from the automotive industry is presented.
In addition, a complementary presentation of NC is
introduced to enhance the understanding of its profile

according to quality-related attributes. Results are shown,
discussed and conclusions drawn.

2. Background and research development

This section frames the theoretical background on TQM,
FMEA and quality tools as its relation with the approach
proposed. Furthermore, the research aims and scope are
discussed.

2.1. The use of tools in quality

TQM is often described as a philosophy equipped with a
set of tools and a set of guidelines that form the basis
for continuous and gradual quality improvement of the
total organisation. The target is to increase customer sat-
isfaction and continuous improvement of products and
processes. Satisfying the needs of the internal customer
through tactics for changing a company’s culture and
some structured technical techniques are central elements
(Rampey and Roberts 1992; Hradesky 1995). However,
there is no global definition for TQM and companies
often show high variation regarding its interpretation and
level of implementation (Bounds 1994; Lakhe and
Mohanty 1994). TQM is also understood as a manage-
ment system consisting of values, techniques and tools,
as three interdependent components (Hellsten and
Klefsjö 2000). In literature, the tools of TQM have
evolved, however, the seven quality control tools, firstly
selected by Ishikawa (1976), are still generally accepted
(Table 1). After Ishikawa’s seven tools, a new set of
seven management tools was presented, which are more
related to process mapping and problem-solving (Mizuno
1988).

Many of the basic tools today were developed by a
handful of people – Shewhart (1931), Deming (2000),
Juran and Gyrna (1980), Ishikawa (1990), Ōno (1988),
Shingō (1986) and Taguchi (1986) – starting in the late
1930s. What evolved since that time is our ability for
using the tools together programmatically to achieve
company wide benefits (Beckman and Rosenfield 2007).

Table 1. Quality tools and techniques used in industry (Dale and McQuater 1998).

The seven basic quality control tools The seven management tools Other tools Techniques

Cause and effect diagram Affinity diagram Brainstorming Benchmarking
Check sheet Arrow diagram Control plan Department purpose analysis
Control chart Matrix diagram Flow chart Design of experiments
Graphs Matrix data analysis method Force field analysis Fault tree analysis
Histogram Process decission program chart Questionnaire FMEA
Pareto diagram Relations diagram Sampling Poka yoke
Scatter diagram Systematic diagram Problem solving methodology

Quality costing
Quality function deployment
Quality improvement teams
Statistical process control
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As the ‘old’ TQM tools were more focused on shop
floor visual quality assessment and control the ‘new’
TQM tools are more focused on offline quality monitor-
ing, action planning and complex problem depicting.
Besides those rather direct production management tools,
the TQM philosophy inspired the development of more
sophisticated approaches dedicated to main cause search-
ing, intricate correlations finding, variability controlling
and multi-attribute process optimisation.

The most widely used tools and techniques are sum-
marised by Dale and McQuater (1998) and depicted in
Table 1. McQuater et al. (1995) distinguish a tool, as a
gadget with a defined function, from a technique, whose
range of use is broader and can be composed of different
tools. Ahmed and Hassan (2003) conclude that quality
management is supported by the use of suitable tools.
Moreover, they identify that a greater implementation of
quality management tools results in a better firm
performance than a lower implementation.

One item listed in Table 1 is FMEA. In the automotive
industry, FMEA is adapted and applied as a quality
improvement tool and often as part of an installed quality
system (McDermott, Mikulak, and Beauregard 1996).
McDermott, Mikulak, and Beauregard (1996) state that
the use of FMEA contributes to its cost reduction. This
can be achieved in both stages, the development and man-
ufacturing stage, by the identification of product and pro-
cess improvements with the goal to avoid corrective action
and late changes (McDermott, Mikulak, and Beauregard
1996). Hereby, the relative risk of a specific failure is eval-
uated and attributed with a risk priority number which is
composed by three attributes: severity (consequence of
failure if occurs), occurrence (frequency of occurring
failure) and detection (probability of failure detection).
This yields a ranked list of failures with priority numbers,
of which the highest shall be given priority to.

The tools and techniques presented in Table 1 are
basically the same as the ones used widely by occidental
industrial companies. They are based on the pragmatic
and manufacturing related philosophies of six sigma and
lean thinking. Lean thinking derived from the Toyota
Production System in the 1950s and evolved ever since
(Womack, Jones, and Roos 1990). Shah, Chandraseka-
ran, and Linderman (2008) present lean production to be
describable differently such as a philosophy, a batch of
principles and as a pack of practices. They go on and
elaborate its definition to be based on a philosophy of
eliminating waste within a product’s value stream and
practices to be related with quality management, pull
production, preventive maintenance and man resource
management. Wong, Ignatius, and Soh (2012) provide
with an index to measure leanness of lean transformation
of an organisation. Wong, Ignatius, and Soh (2012)
understand leanness to be the degree of the adoption and
implementation of lean philosophy in an organisation.

The six sigma concept was developed and introduced
by Morotola and awarded with the Baldrige National
Quality Award in 1988 (Oakland 2008). Besides being a
measure for process variation through capability it is also
described as a philosophy for improvement with statisti-
cal tools and metrics (Gowen III, Stock, and McFadden
2008; Shah, Chandrasekaran, and Linderman 2008).
While originating from manufacturing processes, nowa-
days, six sigma is implemented in activities such as mar-
keting, purchasing, invoicing and answering customer
calls among others to increase customer satisfaction
through continually improving its processes (Antony,
Gijo, and Childe 2012). It is also related to process error
reduction within a process improvement initiative and
many of the tools and techniques of Table 1 are
applied (Gowen III, Stock, and McFadden 2008; Shah,
Chandrasekaran, and Linderman 2008).

Besides the richness and completeness of these phi-
losophies and manufacturing management strategies the
selection of the project to develop or the next problem to
solve is not always a defined and structured process.
Kumar, Antony, and Cho (2009) identified room of
improvement when selecting the right project within the
six sigma initiative. Difficulties are independent of the
company’s performance or level of good administration.
Hu et al. (2008) assumed that decisions are based on
experience and subjective preferences of individual
decision-makers and that the significance of quantitative
support in project selection increases with the number of
available projects. Consequently, the need for a tool that
assists in prioritising mutually exclusive alternatives as
selection is demonstrated.

Table 2 was built-up to summarise methods and
styles of presenting results around selecting improvement
projects or selecting lean tools, respectively, in literature.
The Analytic Hierarchy Process (AHP) or variations of it
are used and results are presented as ranking of alterna-
tives (Ahire and Rana 1995; Singh et al. 2006; Van de
Water and Vries 2006, Kumar, Antony, and Cho 2009).
Van de Water and Vries (2006) presented in an overview
of technical papers of AHP modelling around quality
management. The input, however, is mostly qualitative
data retrieved from experts. A fuzzy AHP method is pro-
posed by Bilgen and Şen (2011) whose objective is to
identify the best alternative given their defined criteria.
Hu et al. (2008) proposed a matrix of alternatives based
on a multi-objective mathematical model based on lean
and Six Sigma concepts. They demonstrate that their
decision support system can be used in the context of
lean and six sigma concept implementation. ANP, also
developed by Saaty (1980), is rather a network presenta-
tion of nonlinear relationships between elements
(Büyüközkan and Öztürkcan 2010).

All methods presented in Table 2 have cost, benefit,
risk or effort-related criteria. Some authors also consider
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the organisational fit, customer and employee satisfaction
but none is using quantitative or qualitative production
data or quality related (real or production derived) data.

The approach resulted from this research is akin to the
concept of the Share/Growth matrix (The Boston Box),
which was published in 1973 by Henderson, a founder of
The Boston Consulting Group (Morrison and Wensley
1991). In that paper, Henderson (1973) described how all
products of a company’s portfolio are plotted in a 2 × 2
matrix according to single attributes (ratio to market share
of the biggest competitor and growth in capital opportu-
nity alternatives). He goes on and includes two divisional
lines to divide the matrix in four sections (high growth
and large market share; high growth and less market share;
low growth and large market share; low growth and less
market share). Each section is provided with advice on
whether to invest or not.

This concept is taught in academia and the basis of
further developments by industry. General Electric’s
(GE) Multifactor Portfolio Matrix and the nine box
matrix by McKinsey are prominent successors beside
several others (Morrison and Wensley 1991). It gratifies
of a high adoption rate of several companies across
industries and is mostly used in corporate planning and
strategy, and thus one can conclude that its emergence
filled an existing gap. Morrison and Wensley (1991) also
report the matrix to be a part of curricular in marketing
and strategy courses. Identifying product/ strategic
business unit (SBU) market positions and assessments
and opportunities is one of the major reasons for being

taught. They continue and refer to the Share/Growth
matrix to be part of the business language one of the
main reasons for its use.

2.2. Research aims and scope

The main aims of the developed approach were the
identification of the most critical NCs that should be pri-
oritised for future improvement projects and to foster the
communication of quality related topics to management.
The method is a contribution to the field of TQM and
targeted to the audience of researchers and practitioners
in quality management.

Applying TQM tools and techniques have proven to
be beneficial tasks for quality improvement. Selecting
the right levers to improve quality is especially important
for industries that are characterised by mass production,
100% manual product inspection and demanding custom-
ers. In this context, a novel approach for identifying and
prioritising the most promising NCs among a numerous
set based on a selection process of multi-attributes is an
actual need. The proposed approach integrates elements
of TQM tools such as Pareto diagram and FMEA. A
popular concept of the marketing area is adopted to be
applied in the realm of quality.

In this paper, we make two significant contributions
to the area. First, to support the categorisation of NCs,
we develop a structured way of defining a weighted
multi-attribute evaluation approach and to categorise
them in two groups.

Table 2. Methods and presenting style in selecting quality improvement projects.

Selection Method
Presenting
style of results Criteria Project Author

Analytical Hierarchy Process
(AHP)

Ranking of
alternatives

Organizational fit; customer
satisfaction, employee satisfaction;
effort and impact variables

Quality
improvement
project, TQM
project
selection

van de Water and Vries
(2006); Kumar, Antony,
and Cho (2009); Ahire
and Rana (1995)

Multi-objective mathematical
model

Matrix
presentation of
alternatives

Costs and estimated benefits Implementing
lean and six
sigma concepts

Hu et al. (2008)

Fuzzy Analytical Hierarchy
Process (AHP)

Result referral
of AHP to
select a project
alternative

Cost and time of resources; benefits
in cost savings, productivity and
scrap decrease; effects on quality
capacity and energy

Six Sigma
project
selection and
method
adoption

Bilgen and Şen (2011)

Fuzzy-logic based multi-preference,
multi-criteria AHP

Ranking of
alternatives

Lean tool
selection

Singh et al. (2006)

Fuzzy analytical network process
(ANP) to prioritize Six Sigma
projects

Ranking of
alternatives

Strategy, Financial, Customer and
Process Improvement

Six Sigma
project
selection

Boran, Yazgan, and
Goztepe (2011)

Combined analytic network process
(ANP) and Decision Making
Trial and Evaluation Laboratory
(DEMATEL) approach

Ranking of
alternatives

Strategies and factors: Risk, cost,
benefit, opportunities

Six Sigma
project
selection

Büyüközkan, and
Öztürkcan (2010)
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Secondly, in order to support the identification and
selection of future improvement projects, we created a
two-dimensional matrix partitioned in four sections, that
allows the positioning of different NCs, according differ-
ent weighting strategies, and consequently allowing the
prioritisation analysis in a structured way.

After a notional model is presented in the next
section, an application case of a real industrial company
integrated in the automotive supply chain is given.

3. NC tracking and prioritisation matrix

In this section, a methodology overview is given. The
tool’s functionality, the required inputs and generated
outputs are explained and discussed.

3.1. Purpose and overview

It is of particular interest for manufacturing companies
whose imperfect production processes result in a
variety of NCs of a given product of their high volume
production processes. This paper proposes a weighted
multi-attribute evaluation approach. A structured way of
defining attributes is presented, which integrates
elements of quality tools such as Pareto diagram and
FMEA. NCs are displayed in a 2 × 2 matrix with two-
weighted multi-attribute axis. One axis targets risk level
attributes (x-axis) and the other causes and impacts
(y-axis). Thus, in addition to the risk level elements of
FMEA NCs are also evaluated in another dimension
related to causes and impacts in order to achieve a
refined prioritisation. This enables the user to identify
and select the improvement projects in structured man-
ner and additionally to follow-up the evolution of the
improvement projects through a clear representation of
the assessment results. The approach can be applied by
decision-makers of industrial companies with several
competing improvement projects. Moreover, the
approach can be used for any portfolio decision-making
problem.

Figure 1 shows the conceptual model of the matrix
partitioned in four areas. The top right area (dark shaded)
is the ‘critical’ area that contains NCs that are strongly
weighted by both multi-attributes. NCs in this area are
critical and impose themselves for immediate actions of
improvement. The two areas lightly shaded, one posi-
tioned on the top left and the other on the lower right
side, are in the ‘to be observed’ zone. The development
of those NCs should be observed over time and selected
for improvement if threatened to turn into a ‘critical’
NC. Individual NCs in these areas can also be selected
for improvement projects, if resources are available (or if
there are no NCs in the critical area). The lower left
quarter is the ‘controlled’ area with NCs ranked low
regarding both multi-attributes (not shaded).

Following the process steps in Figure 2 guides to
create the quality tool. Firstly, the attributes that are rele-
vant for the identification of NCs are defined as a basis
for selecting quality improvement projects. Table 3 pro-
vides a list, without claiming to be complete, of typical
attributes of quality relevant data. Some of them are
selected to device the axis of the application case in
Section 4.

The attributes that are chosen for creating the NC
tracking and prioritisation matrix should be mutually
exclusive but do not have to be collectively exhaustive.
After defining the attributes one must categorise them
into two groups. Each group represents the composition
of attributes (multi-attribute) of one matrix’s axis. The
aggregation of single attributes to compose a multi-attri-
bute can be done randomly or based on common ground,
as advance information FMEA is the basis of selecting
attributes in Section 4. Expert interviews to identify the
rule of aggregating attributes can also be of help. Having
defined the attributes and grouped them as a multi-attri-
bute the next step is to gather and treat the data of each
attribute. Data can be retrieved from information systems
and treated. Hereby, quality tools for example or depart-
mental reports can be used. Borrowing from social sci-
ence the four basic methods for gathering data can be of
assistance. The next step is the scaling of data. The scal-
ing or normalisation is required to fit the single attributes
in a multi-attribute model aiming a multi-comparison
framework. In order to overcome different spectrum of
the attribute’s data, the xjð yjÞ must be scaled as follows,
with xmax being the highest value of the attribute data
and xmin being the lowest:

Figure 1. Conceptual model of the matrix with multi-attributes
plotted in a 2 × 2 matrix.

Figure 2. Process steps to develop the tool.
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xi ¼ xj � xmin
xmax � xmin

(1)

yi ¼ yj � ymin
ymax � ymin

(2)

After data gathering and set-up for further numerical
manipulation the proposed tool requires the definition of
weights. This allows controlling the importance of the
attributes aiming to identify the most critical NCs for
different levels or types of quality targets scenarios. The
final output consists of a matrix where the several NCs
are plotted in different severity zones depending on the
strengths given to each weight. These last two steps are
described in detail in the following section.

3.2. Formalisation and use

In this section, the step of weighting the attributes is for-
malised and the multi-attribute matrix construction is
described.

A lot of possible methods to determine the weights
of the attributes can be considered. A rather simple one
is to leave this as an input for the user to establish levels
of importance, based on his or her preferences given
towards the individual attributes. A different approach is
to use the weights based on feedback given. Feedback

could be the cost of the attribute which are determined
prior to modelling the matrix. Based on historical data
and cost of the attributes one can calculate the weights.
Also, company philosophy can be taken into account if
certain attributes comply better with mission statements
of the company. Identifying weights based on pairwise
comparison as done for instance in the Analytic
Hierarchy Process (Saaty 1980), which is used plentifully
as one can see in Table 2, is also thinkable.

The objective is to create a scatter chart with
elements positioned based on their x and y values, which
are composed by other attributes as schematically shown
in Figure 1.

One can state:

xk ¼
Xn

i¼1

xi � vi (3)

yk ¼
Xn

i¼1

yi � wi (4)

With vi;wi 2 ½0; 1� and Pn

i
vi ¼ 1 and

Pn

i
wi ¼ 1

As a result one calculates positions of elements
within the scatter diagram based on weighted attributes:
Pkðxk ;ykÞ

The farther away from the point of origin of one
axis, the more extreme the element is based on its
attributes and weights given (please refer to Figure 1).

3.3. Strength and limitations

The main strength of the approach is the ability of
objective decision-making, which is based on weighted
multi-attributes. In addition to that changing the settings
of the weights might result in different matrix graphs
and can uncover NCs that should be prioritised, which
might have been neglected otherwise. Furthermore, the
approach allows monitoring the NCs, which have been
selected in previous periods for improvement. If the
improvement actions take effect the NCs should recede
from the critical area of prioritisation.

One has also to mention that the approach is highly
illustrative in terms of result representation. The matrix
is partitioned in four sections, which makes it intuitive to
identify the critical or controlled NCs according to the
weighted relevant attributes. The presentation style is
analogue to an already established approach in marketing
and one can take advantage of the publicity for commu-
nicating quality-related topics in business language.
Lowy and Hood (2004) name the simplicity of a 2 × 2
matrix as one of its greatest characteristics and state that
2 × 2 thinking improves clarity, honesty and quality of
problem-solving. Thus, it is in accordance with nowa-
days trends of visual management.

Table 3. List of attributes for creating the nonconformity prior-
itisation and tracking matrix.

Attributes Comments

Risk level attributes
Occurrences of NCs Total numbers of NCs in a given

period
Severity Hypothetical impact on safety of

a given NC if delivered to and
used by the customer

Detectability The difficulty of detecting a
specific NC

Causes and impacts attributes
Rework rate The number of products

reworked in relation to its
number of occurrences of a
specific NC

Scrap rate The number of products scrapped
in relation to its number of
occurrences of a specific NC

Concentration of NCs at
specific production
machines

The concentration of occurrences
of NCs at specific production
machines

Correlation of NCs to a
specific product attribute

The occurrences of NCs given a
specific product attribute

Cost Scrap or rework cost of a
specific product

Customer complaints The occurrences of customer
complaints that can be related to
a specific NC
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In addition to that the approach is highly flexible
considering the attributes. All inputs are not only inter-
changeable but also exchangeable with new attributes
that are of interest to be taken into consideration for the
evaluation.

The proposed approach fills the gap of prioritising
NCs for future improvement projects based on multi-cri-
teria.

A drawback of this approach is that its use is sup-
posed to be an offline tool and thus requires periodical
updates. If wanted to act in real time it is upgradable
with additional IT development to operate as an online
tool according to the on-site IT environment. However,
with restriction to flexibility since attributes are then not
as easily exchangeable. Moreover, qualitative input data
requires reassessments over time on whether the assess-
ments still hold. This means that participating people for
qualitative input must be re-interviewed. Besides the pre-
vious mentioned objective decision-making is at stake
when over-weighting one specific attribute and neglect-
ing the others. When doing this the multi-attribute deci-
sion-making is turned back to a single attribute decision
making.

4. Application case

The case study under analysis was developed on a
mature producer of a high technology product integrated
in the supply-chain of the automotive industry. A quality
management system certified according to various stan-
dards such as DIN EN ISO 9000, DIN EN ISO 9004
and ISO/TS 16,949 relates to all business and operating
processes.

The product of the case study is a complex product
involving several areas of engineering knowledge and it
requires a sequence of several manufacturing processes
to be produced. A final product inspection appraises out-
comes of the production steps upon conformance to
requirements prior to shipping. The product inspection is
entirely human based and performed on 100% of the
production volume. The previous production steps are
mixing of raw materials, assembling of subassemblies
and an injection akin process, among others. Hereby, the
spectrum of processes reach from fully automated, fully
manual to semi-automated. The company produces a
high technology and complex product which is varying
in size and composition. The product is produced in a
large production volume and production-related data are
massively available. The products’ processes are very
complex. Thus, causes for NCs are multiple and attribut-
able to process failures, machine stoppages, incorrect
composition, quality of raw material or human error.
Specific for the product is that the vast majority of NCs
are only detectable at the finished product. Furthermore,

NCs vary from minor cosmetic to severe imperfections,
which are not recoverable.

For this study, the last two production steps are
analysed and the data retrospectively retrieved at the
inspection process at the end of the manufacturing line.
This can be seen schematically in Figure 3. Each
machine at each production step leaves distinct evidence
at the product that is identified and gathered at the IT
system. A result of the inspection is an evaluation deci-
sion of the product to be conforming or nonconforming
to requirements. Conforming products are approved and
forwarded to be shipped to the customer. Nonconforming
products are registered and characterised by the type of
NC and evaluated upon recoverability. In addition, infor-
mation about the history of production steps is available,
containing information regarding the specific machines
the product had passed. Both steps, step n-1 and n in
Figure 3 consist of several machines and each product
has to pass exactly one machine in each step. Hence, a
clear identification which machine of the two production
steps is the contributor of the NC is not possible
retrospectively at the appraisal of the finished product.

The categories of the NCs are visual, functional and
geometrical; additional information is given regarding
the location at the product. After having the list of NCs,
one can generate the NC Tracking and Prioritisation
Matrix, following the previously mentioned formalisation
instructions.

4.1. Defining the attributes

Defining the attributes is the first step of building the
matrix. The authors suggest composing the x-axis with
attributes related to the risk level and the y-axis with
attributes related to causes and impacts.

Attributes on the x-axis comprise the attributes of the
known systematic method FMEA: frequency of occur-
rences, severity and detection probability. Attributes on
the y-axis are composed by scrap rate, concentration of
NCs to single machines and customer complains related
to the NCs. This approach considers in addition to the
important risk level attributes also the company specific
attributes related to the installed quality system.

The proposed attributes in Table 4 are all data related
to quality and represent production related data regarding
the NCs. The selected data stem from both quantitative
and qualitative data. The selection of the remaining
attributes besides the ones of the FMEA method is based

Figure 3. Production process steps of the case under analysis.

Production Planning & Control 137



on expert interviews and validation cycles and were all
evaluated to be important.

Frequency of occurrences is the number of
occurrences of one specific type of NC among the total
number of all occurring NCs. It is an important indicator
to quantify the magnitude of the occurrences of NCs. If
the quality tool Pareto diagram already exists, its data
can be reused as a model input and the corresponding
data can be directly scaled as previously described.
Figure 4 presents the Pareto diagram of the NCs in the
application case. All 35 different NCs are presented with
their corresponding number of occurrences.

The severity attribute is addressing the hypothetical
impact on customer’s safety if a by the inspection system
undetected product with an NC failed in use by the
customer. The harm is estimated on a Likert scale based
on interviews with experts from production, quality and
engineering departments. Although, the information is
based on rough estimates of expert interviewees and
biased by subjectivity it provides very important
information about consequences if NCs unintentionally
pass the inspection system.

The detection attribute is related to the effectiveness
of the inspection. Data were gathered through expert

interviews from the company’s quality department. The
experts were asked to rate the likelihood of each specific
NC to not be detected by the inspection system on a
scale of 0 to 10. The value 0 represents that the NC is
always detectable and the value 10 indicates that the NC
is impossible to be detected. This is an important
attribute as selection and prioritisation criterion with the
goal to diminish the NCs with a high likelihood to be
undetected by the inspection system.

As previously mentioned, the appraisal of the product
is done at the end of the manufacturing line. In that way
(unless very obvious to the experienced inspector, which
is valid for the minority of the cases), a direct root cause
for the NC is not possible to identify. Nevertheless, the
authors suggest to process existing data to highlight pos-
sible contributors to the creation of NCs. The database
contains information of the production steps that the
product undertook, which makes each product retrace-
able to the production steps and the path of machines
that the product took becomes visible. After collecting
data at the end of the production line and treating it, one
can relate NCs to production machines. The production
machines that show higher occurrences of specific NCs
can be identified. For this analysis it is assumed, for sake
of simplification, that if the NC is related with a machine
the NC was caused by that machine. The authors suggest
analysing this information with a method from econom-
ics to identify the concentration of the NC production:
The Herfindahl Index (Hirschman 1964). Since each
conforming and nonconforming product passes exactly
one machine at each production step, all NCs add up to
the total sum of NCs. However, they do not distribute
equally to them and one machine might show a higher
relation to a specific NC than another. Identifying the
degree of concentration of the NCs to single machines
can be of valuable information and follows the economic
concept of the Herfindahl–Hirschman Index (HHI), also
known as the Herfindahl Index (Rhoades 1993).

Table 4. List of attributes of the application case.

Attribute Attribute Name Type of data Comment

X1 Frequency of NC occurrences Quantitative
data

X1 ¼
Px1;i

The number of frequency of occurrences of a specific NC.
X2 Severity of NC Qualitative

data
Hypothetical impact on customer’s safety if NC remains undetected,
delivered to customer and used.

X3 Detection Qualitative
data

Likelihood of a specific NC to not be detected by the inspection
system.

Y1 Concentration of NCs to machines
(Herfindahl-Index)

Quantitative
data

Y1;i ¼ maxðHHI1;1;HHI1;2Þwith HHI1;i ¼
PN

i¼1
a2i and ai ¼ xjPN

j
xjHHI

represents the concentration of an individual NC to single machines.
Y2 Customer evaluation Quantitative

data
Data analysis regarding customer complaints and warranty claims,
which are related to specific NCs.

Y3 Scrap rate Quantitative
data

Y3i ¼ yjPN

j
yj

Figure 4. Pareto diagram of NCs of the application case.
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The HHI is a method to statistically measure
concentration and express it through an index value.
Rhoades (1993) report its application in different
contexts such as the measurement of concentration of
income in households or to measure concentration of
output of companies of specific industrial markets. This
author states the HHI as the sum of the squared market
shares (MS) of the number of the sample size e.g.
households or companies.
with

HHI ¼
XN

i¼1

ðMSÞ2 ¼
XN

i¼1

a2i and ai ¼ xiPN
j xj

(5)

In the figurative sense, the production machines of
one production step are producing output – NCs – and
the concentration of it is measured. This concentration or
HHI is measured for production step n − 1 and n for
each NC, respectively. The maximum index value of the
two production steps for a specific NC is considered
with the assumption that the higher the HHI value the
more NCs do concentrate to single machines. Thus, the
likelihood of single contributors of NC production is
increased. This assumption must be proven to be correct

if further analysis of root causes takes place. Figure 5
depicts the maximum HHI value of two consecutive pro-
duction steps of the application case. Additional data
processing and visualisation yield information to which
exact machine specific NCs are concentrated on. Consid-
ering this attribute provides indication for a possible
source of root causes at machines, which are well worth
to further investigate. It is also in accordance on the
company’s standard of continuous improvement.

The customer evaluation attribute is related to cus-
tomer complaints and warranty data that are collected by
the company. This data must be related and if necessary
adapted to the NC coding of the inspection. A Pareto
analysis of the customer complaints can serve for analy-
sis. This attribute is important and in accordance with
the company’s quality system. The company claims cus-
tomer complaints and warranty rates to be low due to
possible penalties for delivering nonconforming products
and reputation loss.

The scrap rate attribute is the ratio of positive
decisions to scrap the product to its total number of NC
occurrences of a given period. The total number of NCs
includes all incidents such as scrap, rework or false nega-
tive product evaluation. Figure 6 depicts scrap rate of the

Figure 5. Maximum value of the HHI of two consecutive production steps of the application case.

Figure 6. Scrap rate of NCs of the application case.
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NCs of the application case of a given period. Some NCs
show a 100% scrap rate, which means that the product is
scraped every time an NC is detected by the inspection
system. This is inefficient and expensive to the company
due to production losses. Furthermore, focusing on reduc-
ing scrap is an important attribute to consider and used to
be considered as one of the main criterion for selecting
improvement projects by the company.

4.2. Gathering and treating data

After defining the attributes, the production resident data
are computed to calculate the scores of the relevant
attributes as presented in Table 4. At each production
step, the product has a specific identifier in form of a
barcode. At every production step, information is input
to the database with machine number, operator number,
time and date. At the end of the production process, the
product is evaluated by the inspection process upon
conformance. If stated as nonconforming, the type of NC
and the decision of whether to scrap or recover the
product is recorded. After retrieving the relevant data
from the database it is treated according to the formula
given in Section 4.1. The result of the data treatment can
be seen in Appendix 1.

4.3. Scaling data

If data are gathered and treated, one has to scale it for it
to fit into a composed multi-attribute axis. Within the
data sample of an attribute, the maximum and minimum

values are identified and every data-set element is
scaled based on the presented equations in Section 3.1
(Equations 1 and 2).

Table 5 provides an example of scaling based on
those scaling equations. In the presented application
case, the gathered data of the attribute frequency of NC
occurrences has a maximum of 7026 and minimum of 0
(see Appendix 1). Thus, the scaling equation can be
assembled as follows:

xi ¼ xj
7026

(6)

Appendix 1 provides a full overview of all attributes
together with the corresponding scaling information.

4.4. Weighting attributes

The number of combinations of allocating weights to
attributes is infinite and so are the outcomes of these par-
ticular matrices.

In this study, the authors propose a two-step
approach, each containing three sub-steps, to generate
result matrices. In the first step, equal weights are given
to the attributes at ‘risk level’ x-axis. In the second step,
the attribute severity is given full weight because the
authors evaluate it as the most important attribute at the
‘risk level’ x-axis. The following three sub-steps contain
setting full weight to each of the ‘causes and impacts’
y-axis. Thus, in each step three matrices are generated,
which yields six matrices in total.

Table 5. Extraction of scaling data.

Occurrences Severity Detection HHI1 HHI2 Customer complaints Scrap rate

Max 7026 4.67 10 0.13 0.68 1 1
Min 0 0 0 0.0038 0 0 0

Table 6. Strategies to set weights to generate results with the tracking and prioritisation tool.

Strategy vi wi Comments

1. Average weighting of ‘risk level’ x-axis

(a) vi ¼ 1
n ¼ 1

3 ð for n ¼ 3Þ w1 ¼ 1;w2 ¼ w3 ¼ 0 Identify NCs with average weighting of risk level x-axis and a high
concentration of NCs to machines

(b) vi ¼ 1
n ¼ 1

3 ð for n ¼ 3Þ
w1 ¼ 0;w2 ¼ 1;w3 ¼ 0

Identify NCs with average weighting of risk level x-axis and a high
numbers of customer complaints

(c) vi ¼ 1
n ¼ 1

3 ð for n ¼ 3Þ w1 ¼ w2 ¼ 0;w3 ¼ 1 Identify NCs with average weighting of risk level x-axis and a high scrap
rate

2. Maximum weighting of one attribute Severity
(a)

v1 ¼ 0;v2 ¼ 1;v3 ¼ 0
w1 ¼ 1;w2 ¼ w3 ¼ 0 Identify NCs that are severe and highly concentrated to machines

(b) v1 ¼ 0;v2 ¼ 1;v3 ¼ 0
w1 ¼ 0;w2 ¼ 1;w3 ¼ 0

Identify NCs that are severe and have a high number of customer
complaints

(c) v1 ¼ 0;v2 ¼ 1;v3 ¼ 0 w1 ¼ w2 ¼ 0;w3 ¼ 1 Identify NCs that are severe and have a high scrap rate

140 M. Donauer et al.



The proposed strategies to generate results are sum-
marised in Table 6. Each strategy presented has a spe-
cific setting of weights according to what is sought as
mentioned in the comments. The weights vi refer to the
attributes xi and wi to the yi attributes in Equations (3)
and (4).

The strategies presented above are proposed by the
authors but should not confine the user of the approach
to extract data differently. For instance, one could per-
form the same analysis for each of the remaining two

attributes of the y-axis as done in strategy 2a, 2b and 2c
in Table 6.

4.5. Matrix output – results and discussion

In this section, the results of the presented approach in
the context of the case study are presented. Herby, the
NCs are plotted in a 2 × 2 matrix on composed axis
ordinates with different weights and portrayed in
Figures 7–12.

Figure 7. Matrix result: all attributes of x-axis with average weights and full weight to concentration of NCs at y-axis.

Figure 8. Matrix result: all axes with average weights at x-axis and full weight to Complaints at y-axis.
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4.5.1. Average weighting of risk level axis

To begin obtaining results the first strategy of Table 6 is
followed and the weights of the risk level axis are
equally weighted. With equal weights at the ‘risk level’
axis graphs are generated with full weights of each attri-
bute at the ‘causes and impacts’ axis. This manner of
setting weights can be considered as a refined FMEA
selection. All NCs passing the score of 50 on the ‘risk
level’ axis are already selected by FMEA but need to
additionally achieve high scores on the ‘causes and
impacts’ axis. The results are presented in Figures 7–9.

Figure 7 shows a matrix result with average weights
of attributes at the ‘risk level’ axis and full weight of the
concentration attribute of ‘causes and effect’ axis. By
calibrating the weights in that manner one seeks to iden-
tify the NCs that are given priority according to the risk
level analysis and to the ones which occur concentrated
to individual machines. Consequently, they do qualify
for an efficient investigation of root cause analysis at the
corresponding machines. The outcome of this calibration
of weights results in identifying two NCs (NC33 and
NC34) in the critical area – the top right quarter. The

Figure 9. All axes with average weights at x-axis and full weight to scrap rate at y-axis.

Figure 10. Matrix result: maximum weights of x-axis attribute severity and y-axis concentration.
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two ‘to-be observed’ quarters are filled with some NCs
but the majority appears in the lower left quarter. Hence,
priority of further investigation of improving quality
should be given to NC33 and NC34. Complementary
analysis has to be done to identify root causes and to
introduce measurement for improvement.

Figure 8 presents a matrix result with average
weights of attributes at the ‘risk level’ axis and full
weight of the complaints attribute of ‘causes and effect’
axis. By calibrating the weights in that manner one seeks
to identify the NCs that are given priority according to

the risk level analysis and which are complaint about
most by customers. Identified NCs would consequently
qualify for further root cause analysis and improvement
to reduce the number of customer complaints. The out-
come of this calibration of weights, results in no identifi-
cation of NCs in the critical area – the top right quarter.
The two ‘to-be observed’ quarters are filled with some
NCs but the great majority appears in the lower left
quarter. Hence, no immediate priority of further investi-
gation of improving quality can be identified in this
calibration of weights.

Figure 11. Matrix result: maximum weights of x-axis attribute severity and y-axis complaints.

Figure 12. Matrix result: maximum weights of x-axis attribute severity and y-axis scrap rate.
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Figure 9 presents a matrix result with average
weights of attributes at the ‘risk level’ axis and full
weight of the scrap rate attribute of ‘causes and effect’
axis. By calibrating the weights in that manner one seeks
to identify the NCs that are given priority according to
the risk level analysis and which have a high scrap rate.
Eliminating the root causes of those NCs in following
improvement projects would reduce the number of scrap,
which entails an increase of profit through additional
generated sales and reduced failure costs. The outcome
of this calibration of weights results in identifying four
NCs in the critical area – priority of further investigation
should be given to NC 12, NC30, NC 33 and NC34.
The two ‘to-be observed’ quarters are filled with some
NCs but the majority appears in the lower left quarter.

4.5.2. Maximum weighting of two attributes

After retrieving results as described in the previous sec-
tion, the second step allocates maximum weights to one
attribute of each ordinate axis. The attribute at the ‘risk
level’ axis – severity – is held steady while results are
generated by altering the maximum weight setting
among each one of the three attributes at the ‘causes and
impacts’ axis.

Results of the matrices are portrayed in Figures 10–12.
The calibration of maximum weight setting to sever-

ity and concentration is depicted in Figure 10. The
severe NCs that occur highly concentrated to individual
production machines are identified. By focusing on the
prioritised ones and identifying eliminating root causes
one can reduce the number of occurrences of severe
NCs, which reduces the risk of delivering undetected
severe NCs to customers. The outcome of this weight
calibration, results in identifying five NCs in the critical
area – the top right quarter to which priority of further
investigation should be given (NC 19, NC20, NC 23,
NC33 and NC34).

The calibration of maximum weight setting to sever-
ity and complaints is portrayed in Figure 11. The severe
NCs, about which customers complain a lot, are identi-
fied. Focusing on the prioritised ones and identifying
eliminating root causes one can reduce the number of
severe NCs, with high customer complaints. The out-
come of this weight calibration, results in the identifica-
tion of no NC in the critical area – the top right quarter.
Hence, no immediate priority to specific NCs of further
investigation in improving quality identified in this
calibration of weights needs to be given.

The outcome of the calibration of maximum weight
setting to severity and scrap rate is presented in
Figure 12. The severe NCs that are scrapped on a high
number are identified. Focusing on the prioritised ones
and eliminating root causes can contribute to the reduc-
tion of the number of severe NCs, which are highly T
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scrapped. The identified NCs, to which priority of further
investigation of improving quality should be given, are
NC 12, NC 17, NC 18, NC23, NC 25, NC30, NC32,
NC33 and NC34.

In addition to the identified NCs located in the
critical area of Figures 7–12 other NCs may qualify for
further selection as well. If resources are available, NCs
in the to-be observed areas (lower right and upper left
corner) can be selected additionally for further investiga-
tion and improvement.

Table 7 summarises the NCs found in the critical
areas of the graphs from Figure 7–12. For each strategy
with its corresponding setting of weights of attributes,
the NC type found in the critical area is listed.

In a structured manner, critical NCs can be identified
upon weighted multi-attributes and prioritised for being
selected for future improvement projects. The different
strategies for setting weights may lead to different
prioritisation results. If the user is determined about set-
ting the weight the result is explicit. If not, different
weighting strategies should be applied and results
analysed to foster the informed decision-making. For
example, one possible strategy can be to select the NCs
that are prevalently prioritised by the different strategies
of setting weights. In this application case these are,
according to Table 7, NC 33 and NC 34.

4.6. Complementing presentation of NC profile figures

In addition to the result presentation in the form of
matrices, the authors suggest to perform a particular
analysis for some selected NCs. This is done by firstly,
defining generic profiles of NCs in shapes and interpret-
ing what the shape denotes. Secondly, the real NC shape
profiles are compared with the generic shape profiles.
With the proposed visualisation it is possible to immedi-
ately understand the overall performance of an NC
according the different attributes.

Some generic profiles of NCs are depicted in
Figure 13. Each figure presents the six attributes from
the application case in Section 4.1 in the shape of a

Figure 13. Typification of NCs profiles. (a) High occurrence, high customer complaints and poor detection efficiency; (b) high sever-
ity and low score on all remaining attribute and great detection rate (c) high severity, highly concentrated, high scrap rate and great
detection rate with low score on all other attributes and (d) high severity, poor detection, highly concentrated and high scrap rate.

Figure 14. Shape profile of NC 23.
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hexagon. Each attribute is allocated at one corner of
the hexagon and the range of the rating is scaled
between zero and one hundred with zero being the
lowest and originating from the centre. The authors
assume that NCs with different values in each attribute
will result in different shapes. From those shapes it is
possible to accumulate information about the profile of
the NCs.

The shape in Figure 13(a) with maximum values at
the attributes occurrence, detection and customer com-
plaints is similar to a three-spike-star shape. An NC of
this shape occurs frequently, is very hard to detect and
customers do complain about it. The NC that occurs are
not very concentrated which makes it difficult to identify
the root cause at single machines. Fortunately, the NC is
not sever and a possible threat for customers. The scrap
rate is low, which makes the NC recoverable without
high scrapping expenses.

The shape in Figure 13(b) has a maximum value of
the attribute severity. An NC of that shape is very severe
but easily detectable. In addition to that it rarely occurs
and is not very concentrated to individual machines.
Thus, there are only few complaints due to low occur-
rence and a sound detection.

An NC profile of the shape in Figure 13(c) is very
severe, hardly detectable and occurs rarely. Scrap rate
is high and the NC occurs very concentrated at indi-
vidual machines with few customer complaints. There
is a high incentive to improve quality of an NC with
such a profile because improvement reduces scrap,
which is directly correlated to an improvement in
profit. Furthermore, the NC occurs very concentrated to
individual machines and the root cause may be quickly
identified.

An NC with the shape of Figure 13(d) is very severe
and barely detectable. It rarely occurs and is very
concentrated to individual machines. Every time it is
detected it is scrapped. Fortunately, complaints are low
but the potential image loss of an undetected NC at the
customer is beyond price. The root cause of NC of this
profile may be easily identified at individual machines.
Reducing scrap is rewarded with profit improvement.

Another benefit is reducing the likelihood of delivering
severe NCs to customers.

After setting some generic NC profiles one can
match the shapes with all identified NCs to quickly iden-
tify NCs with such profiles. The authors detected NCs
that match a generic profile as one can see in Figures 14
and 15. The shape mostly matches with the one outlined
in Figure 13(c) and the interpretation can be done as
previously described.

Figure 15(a) and (b) depict the shape profile of NC
33 and NC 34, which are also the NCs prevalently iden-
tified by the strategies in Section 4.5.1 and 4.5.2. The
shapes have similarities with the generic profile shape of
Figure 13(d). While NC 33 is less severe it is barely
detectable and customer complaints are captured. It has a
very low frequency of occurrences but appears very con-
centrated to single machines. Every time it does appear
it is scrapped. NC34 is very severe but detectable. It
appears very rarely, not as concentrated as NC 33 and is
occasionally recoverable instead of being scrapped.

5. Conclusion

On the path of striving for increasing customer satisfac-
tion, TQM is a versatile companion. Successfully proven
tools and techniques are great levers to improve quality.
But, different industries with different products and pro-
cesses are of different natures targeted to serve different
customer needs. Thus, generic tools and techniques do
often not cope and new solutions must be tailored. This
is especially true for a complex product in mass produc-
tion with high customer needs, massive data availability
and 100% final inspection. If the nonconforming quality
level is composed of numerous individual NCs, it is of
importance to identify the most critical ones for future
improvement projects.

The NC Tracking and Prioritisation Matrix approach
can be viewed as a contribution to TQM. The approach
serves a clear function: prioritising NCs by selective
tracking to identify the most interesting ones for future
improvement projects. Hereby, the user must firstly
define and group relevant attributes. For those attributes

Figure 15. (a) Shape profile of NC 33; (b) shape profile of NC 34.
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data must be gathered, treated and scaled. By setting
weights to the individual attributes, one can level the
importance given to the attributes depending on one’s
preferences. In addition to the methodology, an applica-
tion case from the automotive industry is provided. Its
results could demonstrate the identification of critical
NCs among a numerous set. As attributes, elements of
FMEA and other quality relevant data were chosen. Dif-
ferent weight setting strategies resulted in different iden-
tified NCs of which some were prevalently showing.

Strong points of the method are its great visualisation
and modular composition of attributes. The 2 × 2 matrix
eases the presentation of results for highlighting the
importance and for engaging management in order to set
basis of a successful improvement project. The approach
is highly flexible because the priorities given can be chan-
ged to retrieve different results. The NCs are changing
their positions within the matrix and based on their weigh-
tings the areas ‘critical’, ‘to be observed’ and ‘controlled’
are filled with different NCs and are imposing themselves
or not for future improvement projects. Furthermore, the
multi-attributes on each axis can be easily composed
differently if more attributes are identified as relevant or
existing ones assessed to be not contributing anymore.

Future research could be directed towards identifying
the validity of the approach in different environments
other than the one described in the application case of
this paper. Additionally, improving the effectiveness of
the approach from the perspective of the user can be
investigated. For instance one must consider updating
the input of attributes or redoing the evaluation of quali-
tative data over time. Also worth considering is the inte-
gration to the IT system of a company to comfortably
treat and input quantitative data.
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