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ABSTRACT

�is work addresses the problem of selecting Tensor Factorization

algorithms for the Context-aware Filtering recommendation task

using a metalearning approach. �e most important challenge of

applying metalearning on new problems is the development of

useful measures able to characterize the data, i.e. metafeatures.

We propose an extensive and exhaustive set of metafeatures to

characterize Context-aware Filtering recommendation task. �ese

metafeatures take advantage of the tensor’s hierarchical structure

via slice operations. �e algorithm selection task is addressed as

a Label Ranking problem, which ranks the Tensor Factorization

algorithms according to their expected performance, rather than

simply selecting the algorithm that is expected to obtain the best

performance. A comprehensive experimental work is conducted

on both levels, baselevel and metalevel (Tensor Factorization and

Label Ranking, respectively). �e results show that the proposed

metafeatures lead to metamodels that tend to rank Tensor Factoriza-

tion algorithms accurately and that the selected algorithms present

high recommendation performance.

CCS CONCEPTS

•Information systems → Recommender systems; Data min-

ing; •Computing methodologies→ Machine learning;

KEYWORDS

Context-aware Filtering, Tensor Factorization, Metalearning, Algo-

rithm Selection, Label Ranking

1 INTRODUCTION

Recommender Systems (RSs) deal with the information overload

problem by recommending potentially interesting items to users [3].

Several recommendation strategies exist, including Collaborative

Filtering (CF) and Context aware Filtering (CAF). In this work, we

focus on CAF recommendations, more speci�cally regarding the

usage of Tensor Factorization (TF) algorithms.
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Despite the large amount of research dedicated to RS, there are

still several challenges that need to be addressed. One of them is

how to choose the best CAF algorithm(s) for a given dataset. �is

study investigates the use of a Metalearning (MtL) approach for

CAF algorithm selection. Although the area of algorithm selection

for RS has been growing [5, 9, 14, 16, 22, 29], to the best of our

knowledge, CAF algorithm selection has never been addressed.

MtL approaches to the algorithm selection problem consist of de-

scribing the datasets (i.e. tensors) with quantitative characteristics

(i.e. metafeatures) and the relative performance of a set of algo-

rithms. �is creates the so called metadata. Learning algorithms can

then be applied to this metadata to extract pa�erns and used them

for the selection of the best algorithm(s) for new datasets/problems.

MtL approaches are thus organized in base- and metalevels. In this

work, the baselevel refers to the CAF recommendation problem

using TF and the metalevel is related to the selection of the best

ranking of algorithm using Label Ranking (LR).

One of the main challenges of developing MtL approaches is

the design of the metafeatures. Metafeatures must 1) contain in-

formation about the data that a�ects the behavior of algorithms

and 2) be computationally e�cient [7]. Although MtL approaches

for CF algorithms have been published [5, 9, 14, 16, 22, 29], given

the di�erence in the structure of the data (matrices vs tensors), a

completely new set of metafeatures is required for CAF. Another

important issue addressed in this work is related to the type of MtL

task. O�en, MtL problems are addressed as classi�cation tasks. �is

means that, given a new problem, a single algorithm is selected.

However, it is well-known that this approach has important short-

comings, namely, when the selected algorithm fails, the user is le�

unsupported [7]. Hence, MtL for algorithm selection should be ad-

dressed as a LR task, in which the output is a ranking of candidate

algorithms [7]. �us, the most important contributions are:

• Label ranking approach to MtL: metamodels are cre-

ated using LR to predict a ranking of TF algorithms.

• Metafeatures for tensors designedusing a systematic

framework: tensors are described in an extensive and

exhaustive fashion by taking advantage of the tensor’s

hierarchical structure and slice operations.

• Interpretation of the metamodel: the importance of

the metafeatures in the performance of the metamodel for

selection of TF algorithms is analyzed.

�is document is organized as follows: Section 2 presents the

theoretical background on all areas involved in this work; Section 3

devotes itself to the proposal of metafeatures for tensors, while

Section 4 presents the experimental work undertaken at both the



base- and metalevels. �e results and their analysis are presented

in Section 5, while the conclusions are summarized in Section 6.

2 RELATED WORK

2.1 Recommender Systems

RSs a�empt to extract pa�erns from data, which have the potential

to explain and predict recommendations of new items. �ere are,

however, several di�erent strategies to make said recommendations.

�is work focuses on CF and its extension for CAF through TF.

CF recommendations are based on the premise that a user will

probably like the items favored by a similar user. CF employs the

feedback from each individual user to recommend items to similar

users [50]. Such feedback is represented in a rating matrix, a data

structure which is described as RU×I , representing a set of users U,

where u ∈ {1, ...,N } and a set of items I, where i ∈ {1, ...,M}. Each

element of this matrix (Rui ) is the feedback provided by user u for

item i . �e recommendations are typically achieved via Nearest

Neighbor [12, 37] or Matrix Factorization techniques [25, 31].

CAF is an extension of CF that uses additional information, for

instance time or location, to increase the accuracy of the recommen-

dations [2, 6]. �e motivation lies in the premise that the contextual

dimensions contains additional useful information to the informa-

tion in the user and item dimensions in CF. For instance, taking

into account the time of the day, the recommendation may capture

the di�erence in music styles a user listens to at work and at home.

�ere are several ways to incorporate contextual information in

RS [4], but we focus on the combination of CF and CAF.

Using context in recommendations requires a change in para-

digm. �e relationship R : User × Item → Ratinд, is now repre-

sented as R : User × Item × Context → Ratinд, where User and

Item refer to the user and item domains and Context is related to

the contextual domain [4]. �is change in paradigm is essential to

understand why tensors are the ideal data structure for CAF: in the

same way the CF paradigm required a matrix (i.e. bidimensional

array or 2-order tensor) to hold the feedback values, the most natu-

ral representation for the newer paradigm is a 3-order tensor (i.e.

multidimensional array).

2.2 Tensor Factorization

�e �rst step for TF is tensor decomposition. �is refers to the the

way the original tensor is modeled in an intermediary step before

the application of the factorization algorithm. �e twomost popular

decomposition methods are CANDECOMP/PARAFAC (CP) [8, 18]

and Tucker [45]. Despite the existence of other methods [24], we

focus only on these since these are the only ones used in CAF.

�e CP decomposition factorizes a tensor into a sum of com-

ponent rank-one tensors (see Figure 1). Being a rank-one tensor

means it can be wri�en as the outer product of N vectors, i.e.

X = a(1) ◦ a(2) ◦ ... ◦ a(N ), where ◦ represents the outer product.

�e CP decomposition of a third-order tensor X ∈ RI×J×K is [24]:

X ≈

R
∑

r=1

ar ◦ br ◦ cr (1)

where R is a positive integer and ar ∈ RI , br ∈ RJ and cr ∈ RK .

�e Tucker decomposition transforms a tensor into a core ten-

sor multiplied by a matrix along each mode [24]. �erefore, the

decomposition of a tensor X ∈ RI×J×K (see Figure 2) is:

X ≈ G ×1 A ×2 B ×3 C =

P
∑

p=1

Q
∑

q=1

R
∑

r=1

дpqrap ◦ bq ◦ cr (2)

where A ∈ RI×P , B ∈ RJ×Q and C ∈ RK×R are the factor matrices

and G ∈ RP×Q×R is the core tensor. �e operator ×N refers to the

N -mode product between the tensor and a matrix.

Figure 1: CP decomposition [24].

Figure 2: Tucker decomposition [24].

Di�erent decompositions require di�erent algorithms to perform

the factorization. While CP is typically approached using Alternat-

ing Least Squares (ALS), Tucker decomposition takes advantage of

Higher Order Singular Value Decomposition (HOSVD) [24].

2.3 Context aware Filtering with Tensors

CAF using TF has been widely used in the context of RS. �e �rst

approaches to apply TF to RS used a HOSVD algorithm and Tucker

decomposition, but with di�erent contextual dimensions: time [23]

and semantic tags [42, 43]. Recent papers shi�ed towards the usage

of implicit feedback and to replace Tucker by CP decompositions.

While some focused the optimization of Mean Average Precision

as the loss function [39], others have adapted ALS to perform the

factorization [21] and even proposed Bayesian Probabilistic ap-

proaches to model the factorization [49]. Some works look at the

problem in non-conventional ways: either by applying Factoriza-

tion Machines instead of TF algorithms [34] or by changing the

tensor to a so called Contextual Operating Tensor [28].

2.4 Metalearning

Metalearning (MtL) is concerned with relating characteristics of the

data with the behavior of algorithms [46]. It has been extensively

used for algorithm selection [27, 33, 35, 36, 41]. �e algorithm

selection task can be viewed as a learning problem itself, by casting

it as a predictive task. For such, it uses a metadataset, where each

meta-example corresponds to a dataset. For each meta-example,



the predictive features are characteristics (metafeatures) extracted

from the corresponding dataset and the targets are the performance

(metalabels) of algorithms when applied to the dataset [7].

One of the main challenges in MtL is to de�ne which are the

metafeatures that e�ectively describe how strongly a datasetmatches

the bias of each algorithm [7]. �e MtL literature divides the

metafeatures into three main groups [7, 38, 46]:

• statistical and/or information-theoretical measures (obtain

numerical data descriptors using standard formulas);

• landmarking-based properties (performance measures ob-

tained from the fast application of algorithms to the datasets);

• model-based characteristics (extraction of properties from

fast/simpli�ed models induced from the datasets).

As far as we know, there is no prior work on the algorithm se-

lection for tensors in CAF. �ere are, however, a few approaches

to select CF algorithms [5, 9, 14, 16, 22, 29], which we use as guide-

lines. Speci�cally, we inspire ourselves on the statistical and/or

information-theoretical measures used in the related work to de-

scribe the tensor. However, we must point out the signi�cant gap

in di�culty between these two tasks: while in CF one only looks

towards describing a matrix, in CAF a much more complex struc-

ture is tackled: the tensor. �is requires a completely novel and

more complex approach. To organize the metafeatures in a more

interpretable way, we use a framework [32], described next.

2.5 Systematic metafeatures framework

�e systematic metafeatures framework [32] requires three main

elements: objects o, functions f and post-functions p f . �e process

applies each function to each object and, a�erwards, each post-

function to that outcome in order to generate a single metafeature

value. �us, this framework is represented as: {o}.{ f }.{p f }. An

example is the average sum of ratings for all users.

One important property of this framework is its recursiveness.

If one poses the problem in this way, then the outcome of an inner

level (IL) application of the framework can be used as the result of

an outer level (OL) function. �is means that the generic description

{o}.{ f }.{p f } can be transformed into:

{OL-o}.{OL-f }.{OL-p f } =

{OL-o}.
[

{IL-o}.{IL-f }.{IL-p f }
]

.{OL-p f }
(3)

3 METAFEATURES FOR TENSORS

3.1 Tensor basics

Consider a third-order tensor T ∈ RU×I×C with the dimensions

U , I and C , referring speci�cally to the User, Item and Context

dimensions [24]. �e dimensions can be characterized as a sequence

of ordered and independent elements: U = (ux )
L
x=1, I = (iy )

M
y=1

and C = (cz )
N
z=1, with L, M and N are the maximum number of

users, items and contexts, respectively.

Note that by considering only the dimensionsU and I , one refers

to the CF data structure, i.e. the rating matrix. �e contextual

dimension C is appended to the tensor, hence enabling another

equally important decision factor for the recommendation problem.

Each dimension is related to one another in an orthogonal basis,

meaning that any point in this data structure is simultaneously

mapped on all dimensions. �is enables multi-dimensional rela-

tionships, which motivate the usage of TF algorithms in CAF [2].

3.2 Tensor slices

In a tensor, data can be queried in several perspectives and with

di�erent levels of detail. By selecting speci�c values on one or more

dimensions, one obtains di�erent data structures which contain

di�erent pa�erns. �e operation that allows the retrieval of such

data structures is known as slice operation [24]. In the context of

this work, there are two well de�ned slice operations, which we

name vector-level and matrix-level. �e results of such operations

are vectors or matrices of ratings, respectively. �e slice operations

are formalized in Equations 4 and 5 for the matrix and vector-levels,

respectively. When an element is not provided, it is represented

as �. Considering user u, item i and context c , the di�erent slice

operations can be formalized as:

SLICE(T ,u,�,�) =

M
⋃

y=1

N
⋃

z=1

T[u,iy,cz ] ∈ R
I×C

SLICE(T ,�, i,�) =

L
⋃

x=1

N
⋃

z=1

T[ux ,i,cz ] ∈ R
U×C

SLICE(T ,�,�, c) =

L
⋃

x=1

M
⋃

y=1

T[ux ,iy,c] ∈ R
U×I

(4)

SLICE(T ,u, i,�) =

N
⋃

z=1

T[u,i,cz ] ∈ R
C

SLICE(T ,u,�, c) =

M
⋃

y=1

T[u,iy,c] ∈ R
I

SLICE(T ,�, i, c) =

L
⋃

x=1

T[ux ,i,c] ∈ R
U

(5)

A representation of the slice operations is shown in Figure 3.

Notice that while in Figure 3a, only a speci�c user ux is provided,

in Figure 3b, an user ux and an item iy are both speci�ed. In the

�rst case, the result is a matrix, while the second is a vector.

(a) Matrix-level. (b) Vector-level.

Figure 3: Slice operations.

3.3 Metafeatures overview

We now provide an overview of the application of the systematic

metafeatures framework (Section 2.5) in terms of objects, func-

tions and post-functions for CAF. �e speci�c details about the

metafeatures proposed are given in the following sections.



3.3.1 Objects. Recall that the framework applies functions to a

set of objects. �erefore, it is essential to identify suitable objects.

An obvious choice of object is the tensor itself. However, since

there are few known descriptors for the data structure as whole,

one must look beyond. We assume that the vectors and matrices

obtained with slice operations (section 3.2) have potential to a�ect

the baselevel algorithm performance. If such assumption is true,

then descriptors of these data structures have potential to positively

impact the algorithm selection problem. Here, these metafeatures

are complemented with global tensor characteristics, such as the

Frobenius norm, in order to understand their importance.

�e tensor is hierarchically organized in terms of slice operations,

as it is described in Figure 4. �ree di�erent granularity levels are

presented: tensor, matrix and vector. To access the matrix-level

data, one �xes one of the dimensions according to a speci�c element.

However, one can also go a granularity level deeper, by providing

one additional element of another dimension, reaching the vector-

level. It is also possible to go even further, reaching the speci�c

rating. However, this level can be discarded since it cannot be

considered a suitable metafeature. By de�nition, a metafeature

is an unique descriptor, representing an aggregated characteristic

of a dataset [7]. Since MtL requires several datasets, each with

di�erent amounts of users, items and contexts, the metafeatures

extracted must be aggregated to create a unique feature which can

be extracted in all tensors. �us, it does not make sense to compute

metafeatures based on single values.

Figure 4: Tensor’s structure in terms of slice operations.

Another important aspect of this work is the investigation of

relationships among objects and their impact for the selection of

algorithms. Hence, besides describing the tensor in several facets,

we also a�empt to assess the relationships among objects belonging

to the same level of slice operations. �is approach makes our

proposal of metafeatures for CAF a much more di�cult problem

than it is found in CF [5, 9, 14, 16, 22, 29].

3.3.2 Functions. Following the systematic metafeatures frame-

work, we know that the functions depend on the objects used.

Considering the objects studied can be vectors, matrices and the

tensor itself, then the task becomes non-trivial. Two properties

were identi�ed: the adaptability to the objects and the di�erentia-

tion between functions that describe a single object or comparisons

of objects. �e requirements for the di�erent levels in terms of

these properties are discussed in Sections 3.4, 3.5 and 3.6.

An important issue concerning our proposal of metafeatures

for tensors is that all vectors/matrices to be characterized contain

ratings, independently of the type of slice operation employed. �is

means that since they all share the same data characteristics, one

can take advantage of the same functions. �is is not true in other

MtL scenarios, such as classi�cation and regression [7, 26].

3.3.3 Post-functions. �e post-functions to be used must aggre-

gate the result of the application of a function to a set of objects.

�is means that ideally one should use a large set of statistical

properties to describe such outcome. However, due to the combina-

torial nature of the framework, this contributes to an explosion of

metafeatures to be extracted. Hence, we typically use 3 measures,

i.e. one measure for each of the essential elements of univariate

analysis: central tendency, dispersion and shape.

3.3.4 Outline. �e di�erent metafeatures, organized by level,

are described next. �e vector-level looks towards describing all the

di�erent vectors in a tensor through univariate analysis, yielding

structural, statistical and information-theoretical properties. �ese

metafeatures test the assumption that if tensors have di�erent pat-

terns regarding the vectors of one or more dimensions, then the

best algorithms will also be di�erent. �e matrix-level focuses on

describing all the matrices in the tensor through structural and al-

gebraic properties and applies multivariate analysis on the vectors

which compose its dimensions. �e motivation for these metafea-

tures lies in testing the assumption that the matrices structure and

the relationships among its vectors are informative for the selection

of algorithms. �is allows to assess whether descriptors of objects

or descriptors of interactions among objects hold higher informa-

tive power. Lastly, the tensor level extracts structural and algebraic

tensor properties and applies multivariate analysis to assess the re-

lationships among its matrices. �e motivation for the �rst is clear:

here, we test whether generic tensor descriptors hold informative

value which overcomes those of the metafeatures extracted via the

remaining slice operations. �e second follows the approach also

used in the matrix-level.

3.4 Vector-level metafeatures

�e vector-level is reached by speci�c slice operations. We refer to

SLICE(T ,u, i,�), SLICE(T ,u,�, c) and SLICE(T ,�, i, c) as UI, UC

and IC vectors, respectively. �ese are the di�erent classes of

objects for this metafeatures level.

�e functions considered at this level can be categorized ac-

cording to the properties they represent: structural, statistical and

information-theoretical. Structural properties represent the over-

all dimensions of the vector. We use size and vector sparsity.

Statistical properties characterize the distribution of the ratings.

Since this level is concerned with vectors, the metafeatures use

functions from univariate analysis [44]. Here, several well de�ned

functions exist: central tendency (mean, mode andmedian), dis-

persion (variance, maximum, minimum, �rst quartile, third

quartile and standard deviation) and shape (skewness and kur-

tosis). Lastly, one information-theoretical property is used to assess

the information within a speci�c vector: entropy.



�e post-functions used are: mean, standard deviation and

skewness. �is creates 126 metafeatures at the vector-level, which

can be summarized as:

{UI, UC and IC vectors}.{structural, statistical and

information-theoretical properties}.{post-functions}
(6)

3.5 Matrix-level metafeatures

�ematrix-level slice operations SLICE(T ,u,�,�), SLICE(T ,�, i,�)

and SLICE(T ,�,�, c), are referred to here as IC,UC andUImatri-

ces, respectively. Recall the metafeatures in this level are organized

into matrix descriptors and descriptors of the pairwise comparison

of the matrix vectors. �ese are explained next.

3.5.1 Matrix metafeatures. To describe a matrix, structural and

algebraic properties can be extracted. Such structural properties

are number of rows, number of columns, number of ratings,

matrix sparsity and the ratio of rows over columns. In terms

of algebraic properties, only the norm can be used for non-square

matrices. �is limits severely the amount and diversity of properties

to extract. To obtain additional properties it is possible to transform

the matrix into a squared one, using, for instance, similarity or

correlation matrices. �en, properties such as trace, determinant

and eigenvalues can be used [19].

Other techniques can also be employed at this stage, such as Ma-

trix Factorization and clustering. �ese can a�erwards be described

through a wide range of properties, such as the properties of the fac-

torized matrices or the number and size of clusters found. However,

a high computational is expected to compute these metafeatures,

which makes them unsuitable for algorithm selection purposes.

�e post-functions used at this level are: mean, standard de-

viation and skewness. Note that 3 properties (number of rows,

columns and ratio of rows over columns) are the same for all slices

of the same dimension. �erefore, these are not aggregated. �e 36

metafeatures produced follow this notation:

{UI, UC and IC matrices}.{structural and

algebraic properties}.{post-functions or �}
(7)

3.5.2 Vector pairwise comparison. �ese metafeatures describe

the relationships among matrix dimensions based on the vectors it

contains. �e same vectors were already analyzed independently at

the vector-level (Section 3.4). Such relationships are assessed using

bivariate analysis techniques which do not require dependent vari-

ables, since the data used in CAF does not have this property [44].

�ese pairwise comparisons can be classi�ed as intra or inter-

dimensional: while the �rst focus on comparing, for instance two

vectors of users, the other compares a user vector with a context

or item vector. �is di�erentiation is required since the nature of

the information each of these vectors represents is di�erent (e.g.

the ratings of a single user concerning many items vs the ratings

of many users concerning a single item).

Intra-dimensional pairwise comparisons always deal with vec-

tors of the same size. �is allows more options in terms of functions

to be used. We focus on statistical (correlation) and information-

theoretical (mutual information) properties for these problems.

On the other hand, since inter-dimensional pairwise comparisons

must deal with vectors of di�erent sizes, the functions used are

distances between distributions. In this case, one information-

theoretical property is obtained via the Jensen–Shannon diver-

gence. �e post-functions are: mean, standard deviation and

skewness. �is yields 15 metafeatures, represented as follows:

{rows, columns}.{correlation, mutual inform.}.{post-functions}

{rows/columns}.{Jensen–Shannon divergence}.{post-functions}

(8)

�ese metafeatures are computed for all matrices, yielding a very

large number of metafeatures, which depends on the size of the

dimensions. Since the size of dimensions varies across problem

instances, this means that it is not possible to characterize all of

them with a vector of metafeatures of the same size. For instance,

if we consider all the UI matrices of two tensors, we cannot create

assume the amount of features extracted will be the same, since

the dimensions can be di�erent. �us, the framework is applied

once more, where the objects are IC, UC and UI matrices and the

functions are the outcome of the comparison between vectors. �e

post-functions used are: mean, standard deviation and skew-

ness. �e resulting 135 metafeatures follow this notation:

{UI, UC and IC matrices}.{pairwise comparisons}.{post-functions}

(9)

3.6 Tensor-level metafeatures

Lastly, we describe the tensor-level metafeatures. �ese are split

into those that describe the tensor as a whole and those that are

based on pairwise comparisons between its constituent matrices.

While the former do not require slice operations, the la�er use them

to obtain the matrices to be used in the calculations.

3.6.1 Tensor metafeatures. �e tensor, which is the object to

be processed in the metafeatures framework at this level, can be

described by several structural properties: number of users, num-

ber of items, number of contexts, number of ratings, ten-

sor sparsity, proportion of users over items, proportions of

users over contexts and proportions of items over contexts.

An algebraic operation, the Frobenius norm, is also used.

Similarly to Section 3.5.1, other techniques can also be used at

this level. �e usage of, for instance, multilinear PCA and clustering

may extract other types of metafeatures representing di�erent types

of pa�erns that a�ect the behavior of algorithms. However, the

computational cost of these methods make them unsuitable for the

algorithm selection problem. Unlike all other metafeatures, these

output a single value and, thus, do not require the use of post-

functions. �erefore, a total of 9 metafeatures can be formulated:

{tensor}.{structural and algebraic properties}.� (10)

3.6.2 Matrix pairwise comparison. �e pairwise comparison of

matrices uses slice operations to generate three types of objects:

UI, UC and IC matrices. Although we can distinguish the intra

and inter-dimensional comparisons of matrices (i.e. comparing

matrices of the same or di�erent nature), as before, we use the same

function: correlation. We obtain the correlation between matrices

by calculating the correlation between rows of one matrix and



columns of another. �e result is a matrix of correlation coe�cients.

�erefore, the only requirements is that the number of rows of the

�rst matrix matches the number of columns of the second one. Due

to the nature of the tensor, all matrices have at least one dimension

in common. Hence, it is always possible to apply the correlations

to any pair of matrices retrieved from the tensor, even if it may be

necessary to transpose one or both matrices. Unlike the previous

cases, where the same post-functions have been repeated, here we

extract only the maximum value for each pairwise comparison.

�e rationale lies in the assumption that only high dependency

ma�ers, unlike the previous examples where an overall perspective

is essential. �e formalization of all 6 metafeatures is:

{UI, UC and IC matrices}.{correlation}.{maximum}

{UI/UC, UI/IC and UC/IC matrices}.{correlation}.{maximum}

(11)

Also as in the case of matrix-level metafeatures, the �nal set of

metafeatures is obtained by applying the framework to the interme-

diate results. In this case, the object is the tensor and the function

consists of the results of the comparison between matrices. In this

case, we obtain a vector of maximum correlations for intra and

inter-dimensional comparisons. �e results are aggregated using

mean, standard deviation and skewness. �e formalization of

these 18 metafeatures is:

{tensor}.{pairwise comparisons}.{post-functions} (12)

4 ALGORITHM SELECTION FOR TF

4.1 Baselevel experimental setup

�e baselevel is characterized by the datasets, algorithms, evalu-

ation protocol and evaluation measures. �e datasets need to be

built in such a way that they can be encapsulated in a tensor. Since

we are unaware of public datasets speci�cally for this purpose,

we chose to adapt CF datasets. Hence, we searched the available

datasets for a common dimension, which could be used as context.

We found that the temporal dimension ��ed this criteria, since

most datasets have the timestamp of the feedback event.

Dimensionsmust be nominal variables and, since time is a contin-

uous variable, we discretized it. �e temporal dimension is divided

into a prede�ned number of bins and each rating event is assigned

to the respective bin. �e contextual dimension can therefore be

described as the sequence of bins. �e number of bins used for

dimension C are {2, 3, 4, 5, 10, 20, 30, 50, 100}. Other measurement

units could be used, such as day or hour, but we decided to use

an approach which could be easily replicated across datasets and

that enabled us to have �xed length for the contextual dimension.

A total of 34 CF datasets are used from the following domains:

Amazon Reviews [30], ConcertTweets [1], MovieLens [17], Movi-

eTweetings [13], Tripadvisor [48] and Yelp [51]. With di�erent

binning parameters, this yields 306 datasets.

In terms of TF, this work dwells with CP decomposition (CPD)

with several factorization algorithms: CPD, CPD ALS, CPD NLS,

CPD RBS and CPD MINF. �e di�erence between the algorithms

lies in theway the optimization process is performed. �eCPD ALS,

CPD MINF, CPD NLS and CPD RBS algorithms are optimization-

based and use alternating least squares, nonlinear unconstrained

optimization, nonlinear least squares and randomized block sam-

pling, respectively. �e default version, CPD, is a high-level al-

gorithm which automatically computes an initialization and uses

this as a starting point for one or more optimization steps. �e

implementations from TensorLab [47] was used. In addition, we

implemented a baseline algorithm which is an adaptation of the

MostPopular version from the CF framework MyMediaLite [15]

applied to tensors. �e algorithm works by sorting the item ratings

for a given user and context to provide the recommendations. �is

is considered a baseline, since no factorization is involved.

�e chosen evaluation protocol is 10-fold cross-validation. �e

folds are created by spli�ing the entire dataset of 4-tuples (user,

item, context, rating) into ten di�erent groups. A�erwards, each

of the nine possible combinations of groups are used to build the

tensor and the remaining one to use in the evaluation stage. Since

the recommendation follows a Top-N approach [20], the evalua-

tion measures used are Normalized Discounted Cumulative Gain

(NDCG), Mean Average Precision (MAP), Mean Reciprocal Rank

(MRR) and Area Under the Curve (AUC). While the �rst three are

devoted to ranking accuracy, AUC assesses classi�cation accuracy.

4.2 Metalevel experimental setup

�e results obtained at the baselevel, as described in the previous

section, are used to create a ranking of the algorithms for each

dataset. �is ranking is the metatarget (i.e. the dependent variable

at the metalevel). Given that baselevel algorithms are evaluated

according to multiple measures, a metatarget is generated for each

measure. �us, we have, in fact, multiple metalearning problems,

one for each metatarget. �e metafeatures for each dataset are also

computed, according to the description in Section 3. �e values of

the metafeatures are the independent variables of the metadata.

Since the goal is to predict a ranking of algorithms, the met-

alearning problem is addressed as a LR task. �e algorithms used

at the metalevel (i.e. meta-algorithms) are: kNN and Naive Bayes

(NB) [40], Ranking Tree (RT) [10] and the baseline average rank-

ing (AVG). �e accuracy of the predicted rankings is measured by

computing their correlation to the target ranking, as is usual in LR.

�e correlation measure used here is Kendall’s Tau coe�cient. �e

metalevel performance is estimated using 10-fold cross-validation.

5 RESULTS AND DISCUSSION

5.1 Metalevel evaluation

�e results for the performance of themeta-algorithms in all metatar-

gets in terms of Kendall’s Tau coe�cient are presented in Figure 5.

�e results show:

• kNN andNB are always the best andworstmeta-algorithms.

RT beats the baseline only in NDCG and MAP.

• AUC is the metatarget with the worst overall performance,

yielding the worst overall correlations coe�cients. �e

performance in NDCG, MAP and MRRmetatargets is fairly

similar and high, except for the RT meta-algorithm.

• Since kNN is always above the baseline, one can state

that our MtL approach is able to predict the rankings of



algorithms. �e results are specially important considering

the high correlations for the baseline in 3 metatargets.
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Figure 5: Metalevel evaluation for all meta-algorithms.

To assess whether these results are statistically signi�cant, we

use Critical Di�erence (CD) diagrams [11]. �ese diagrams rank

several methods based on their performance on several datasets.

Here, it is applied to the folds of the 10-fold cross validation proce-

dure used on all 4 metatargets. �e diagram ranks the algorithms

and connects those with di�erences that are not signi�cantly dif-

ferent (i.e. less than the critical di�erence, CD). �e results are

shown in Figure 6 and validate the observations made regarding

the meta-algorithms: kNN is be�er than the baseline and NB; NB is

the worst algorithm by far and RT’s unstable behavior makes it not

statistical signi�cantly di�erent than both kNN and the baseline.

1 2 3 4

CD

KNN

RT

AVG

NB

Figure 6: CD diagram for ranking of metamodels.

Based on these results, we further analyzed the behavior of the

kNN algorithm. Figure 7 shows Kendall’s tau coe�cient for k ∈

{1, .., 10} neighbors, separately for the NDCG and AUCmetatargets.

�e baseline is presented in each �gure as a horizontal line. Since

the results for MRR and MAP are similar to those for NDCG, we do

not include them here.

One observes that metamodels beat the baseline for k > 1. �is

shows the robustness of this algorithm for our problem of algorithm

selection. However, while for NDCG the performance is fairly

constant, in AUC we observe that the performance improves with

k . Such variations are dictated by the ranking of algorithms used

for training the metamodels, since the metafeatures are the same.

�is means that the ranking variations in AUC are greater than in

NDCG, which makes it a more di�cult problem.
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Figure 7: Metalevel evaluation for kNN.

5.2 Baselevel impact

�e previous section shows that we can predict the ranking of

the algorithms with good accuracy. �e question now is whether

the use of the algorithms recommended by the metamodel will

achieve good baselevel performance. �e idea of this evaluation

is to simulate di�erent thresholds regarding the number of TF al-

gorithms executed following the ranking order, and to assess the

corresponding baselevel performance [7]. A metamodel outper-

forms the baseline if the performance in a speci�c threshold is

be�er than the one obtained by average rankings. �is mechanism

also includes an oracle, which knows beforehand which will be the

absolute best algorithm for any case. �erefore, this will create the

maximum bound that cannot be beaten (horizontal lines).

Figure 8 presents the baselevel impact for the NDCG and AUC

metatargets. Once again, the results for MRR and MAP are not

presented as they show the same behavior as NDCG. In both cases

is it possible to see that the algorithms recommended by kNN and

RT are be�er than those provided by the baseline recommendation



for the top-two algorithms in the predicted rankings. �is behavior

shows that despite RT not performing well in terms of metalevel

evaluation for the AUC andMRRmetatargets, the recommendations

still yield gains in terms of baselevel performance, on average.

Another interesting observation concerns NB: while for NDCG

the performance is worse than the baseline, for AUC it is be�er.

Recalling that thismetamodel performed badly in terms ofmetalevel

evaluation, it is surprising to see this behaviour. Once again, this

points to the higher di�culty of solving the algorithm selection

problem using LR for the AUC metatarget.
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Figure 8: Baselevel impact.

5.3 Importance of metafeatures

Since there is no standard procedure for assessing variable impor-

tance in LR, this work uses a simple heuristic approach to address

this issue. Using all the metatargets, RT metamodels were trained.

Next, the frequency of metafeatures used on those models were

computed and ranked. Due to space restrictions, we only summa-

rize the results:

• Most metafeatures are vector pairwise comparisons in na-

ture. Furthermore, their position in the ranking is well

established at the top, i.e. 22 out of 24 top metafeatures.

�is con�rms our hypothesis that the characteristics of

components of the matrices a�ect the performance of the

CAF methods.

• All other types of metafeatures hold low importance for

the problem of algorithm selection. �e vector, matrix

pairwise comparisons and matrix metafeatures correspond

respectively to 6, 2 and 1 of the best metafeatures. �is

shows the need for future work at these levels.

• More importantly, the metafeatures used to describe the

tensor as a whole are not available in the top metafeatures.

�is, alongside the positive results in both metalevel per-

formance and baselevel impact, validates our approach to

use slice operations to create metafeatures for tensors.

• �e most represented objects are the UI, IC and UC ma-

trices, respectively with 14, 12 and 7 metafeatures. �is

is obviously a�ected by the fact that they are the most

frequent type of metafeatures, i.e. the vector pairwise com-

parison. One notices that IC matrices are represented in 7

out of the top 8 metafeatures.

• �e most in�uential functions are mutual information, cor-

relation and Shannon divergence. �ere is no clear pa�erns

that distinguishes them, although mutual information is

present in 4 of the top 5 metafeatures.

6 CONCLUSIONS AND FUTUREWORK

�is work presents the �rst known approach for algorithm selec-

tion for Tensor Factorization algorithms. We follow a Metalearning

approach which, given the di�erence in the nature of the data used

in these algorithms in comparison to other algorithm selection

tasks previously addressed with metalearning, implies the develop-

ment of completely new metafeatures to characterize problems. We,

thus, propose an extensive and exhaustive set of metafeatures. �e

metafeatures use slice operations to describe the tensors at several

levels of granularity and perspectives. �e merits of the proposed

approach were validated in a large scale experimental setup. �e

results have shown that kNN models are capable of solving the

problem with statistical signi�cantly be�er performance than the

baseline for all metatargets. In terms of baselevel impact, the models

also perform generally be�er than the baseline. Furthermore, vec-

tor pairwise comparison metafeatures have established themselves

as the most in�uential, con�rming our hypothesis that these com-

ponents of the data contain useful information to understand the

behavior of TF algorithms. Future work can take several directions:

to study contextual dimensions beyond time, include specially de-

signed Tensor Factorization algorithms for Context aware Filtering,

study the hyperparameter selection problem, improve and analyze

the metafeatures proposed by using more advanced techniques and

extend the amount and nature of evaluation measures used in the

base- and metalevels.
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