
GreenSource: a large-scale collection of Android
code, tests and energy metrics

Rui Rua1

HASLab/INESC TEC, Portugal
Universidade do Minho, Portugal

Braga, Portugal

rui.a.rua@inesctec.pt

Marco Couto2

HASLab/INESC TEC, Portugal
Universidade do Minho, Portugal

Braga, Portugal

marco.l.couto@inesctec.pt

João Saraiva3

HASLab/INESC TEC, Portugal
Universidade do Minho, Portugal

Braga, Portugal

saraiva@di.uminho.pt

Abstract—This paper presents the GreenSource infrastructure:
a large body of open source code, executable Android appli-
cations, and curated dataset containing energy code metrics.
The dataset contains energy metrics obtained by both static
analysing the applications’ source code and by executing them
with available test inputs. To automate the execution of the
applications we developed the AnaDroid tool which instruments
its code, compiles and executes it with test inputs in any Android
device, while collecting energy metrics. GreenSource includes
all Android applications included in the MUSE Java source
code repository, while AnaDroid implements all Android’s energy
greedy features described in the literature, GreenSource aims at
characterizing energy consumption in the Android ecosystem,
providing both Android developers and researchers a setting to
reason about energy efficient Android software development.

Index Terms—Energy Consumption, Android, Source Code
Metrics.

I. INTRODUCTION

ENERGY consumption has become a main concern for

software developers of non-wired/mobile devices. Such

devices have become powerful computing devices, with mul-

tiple and complex CPUs, offering more functionalities than

regular personal computers, such as GPS-based location, cam-

era, and activity sensors. While the applications rely on those

features, they also demand more from the devices’ batteries,

which are known to have limited capacities. Hence, developers

are now seeking help to learn more about energy-aware

development strategies [1], [2].

To address the developers demands, researchers started

developing tools and techniques to analyze the energy effi-

ciency of software components, such as data structures [3]–

[6], APIs [7], [8], source code patterns [9]–[12] and even

languages [13], [14]. Nevertheless, the validation of such tools

and techniques is not always performed over a large collec-

tion of software artifacts, hence theirs conclusions cannot be

completely generalized.

1 This work is financed by National Funds through the Portuguese funding
agency, FCT - Fundação para a Ciência e a Tecnologia within project:
UID/EEA/50014/2019.

2 Second author is also sponsored by FCT grant SFRH/BD/132485/2017.
3 This work is financed by the ERDF – European Regional Development

Fund through the Operational Programme for Competitiveness and Interna-
tionalisation – COMPETE 2020 Programme and by National Funds through
the Portuguese funding agency, FCT, within project POCI-01-0145-FEDER-
016718.

In order to provide a suitable setting for evaluating software

analysis and optimization techniques, software engineering

researchers have defined both benchmark infrastructures [15],

and large-scale open source code repositories [16]–[18], which

are freely available so that researchers can evaluate their

works. Even so, there is still a lack of benchmarking infrastruc-

tures and/or respositories that can be used to validate energy-

related works in Android ecosystem, which is by far the most

used OS for mobile devices, having in 2018 84,8% of the

world’s devices running its platform1.

This paper presents the GreenSource2 infrastructure: a large

body of open source Android applications tailored for energy

analysis and optimization. GreenSource consists of three main

components: (1) a large collection of open source, executable

Android applications, (2) a benchmarking framework, called

AnaDroid3 , to test such applications under different usage

scenarios and collect structural and energy-related metrics, and

(3) a large scale repository of metrics obtained from executing

the applications using AnaDroid.

Each application in GreenSource can be analyzed, opti-

mized, instrumented with energy measuring code, and exe-

cuted with the provided test scenarios. The metrics database

stores both static code metrics (e.g., which well-known energy-

greedy APIs [7] or patterns [10] it uses, or how many lines

of code it has, etc.), and dynamic metrics (i.e., obtained from

testing the applications, such as the total energy consumed,

or the resources/sensors usage. The context of each execution

is also stored in the database (e.g., mobile device, operating

system, number of running processes, etc.).

GreenSource provides a common ground for energy-aware

software analysis and development: one can execute an ap-

plication under a certain context, and the resulting metrics

can be compared with previously obtained ones, both in the

same or different contexts. This provides potentially interesting

data mining analysis, such as comparing energy efficiency

among different platform versions, devices, or even among

application’s versions. In addition, the full infrastructure was

developed to be extended with new applications and inputs,

1https://www.idc.com/promo/smartphone-market-share/os
2GreenSource support webpage: http://greenlab.di.uminho.pt/greensource
3AnaDroid’s source code: https://github.com/RRua/AnaDroid

176

2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)

2574-3864/19/$31.00 ©2019 IEEE
DOI 10.1109/MSR.2019.00035

new static and dynamic green metrics, testing devices, or even

energy profiling tools.

The main contributions of this paper are the three software

artifacts we have developed:

• The collection of testable Android applications, which at the

moment contains 609 projects;

• GreenSource, consisting of the combination of the metrics

database and a RESTFUL-based query engine to access the

data;

• The AnaDroid framework, which comprises the applications’

source code analysis, source code instrumentation and trans-

formation, and context-independent execution phases;

The remaining of this paper is organized as follows: Sec-

tion II contains a description of the tools and materials used

in our work; in Section III we explain the methodologies fol-

lowed to construct GreenSource and the information contained

in it; Section IV contains an explanation of the collected data,

how is it structured an how can it be accessed/used; Finally,

in Section V we present our conclusions and future work

directions.

II. MATERIAL AND TOOLS

In this section, we describe the different components used

to construct our GreenSource dataset. First, we explain how

we obtained our body of source code of executable Android

applications. Then, we explain the TrepnLib library, which

is used by AnaDroid to collect information regarding energy

consumption and resources usage of the tests. Then, we present

our framework AnaDroid, which is responsible for executing

the applications while obtaining both the source code and

green metrics for our dataset.

A. Data provenance

Collecting a significant number of Android applications

was deemed necessary to perform our study and build the

GreenSource repository. The goal was to gather the largest

possible number of real-world, open source, and executable

Android applications.

After a thorough research, we considered the MUSE repos-

itory [17], [18]: a very large collection of Java projects

obtained from different online platforms, such as GitHub or

GitLab. This repository has an associated database, which

contains information regarding the static structure of each of

its projects. Thus, in MUSE is possible to use such database to

filter projects with some properties, like for example projects

that have at least 50 different classes, or that at least one class

with a specific import statement.

To extract all Android applications from MUSE we define

a filter to select the projects that have at least a class with

imports from the Android API. Hence, we made sure that

we were only selecting Android applications. Then, we per-

formed a build check to determine which applications could

be successfully built and executed, resulting in a set of 609

executable applications.

B. Trepn and TrepnLib

In order to monitor the energy consumed by an application

execution we rely on the Trepn Profiler [19]: a software-

based artifact developed by the mobile device manufacturer

Qualcomm that works on Snapdragon chipset-based Android

devices. It is a monitoring tool which can be used to profile

hardware usage (e.g. GPS, WiFi, etc.), resources usage (e.g.

memory and CPU), and energy consumption of the whole

system in a given time interval. Moreover, Trepn reports accu-

rate measurements on Qualcomm-based Android devices [20].

Trepn needs to be explicitly started and stopped, and after

starting it collects profiling samples at a rate that can’t be

adjusted to less than 100 ms. In the same spirit as previous

works [21]–[23], we used Trepn to gather energy consumption

values for each execution of an application.

Trepn profiling mechanism can also be controlled by using

Java methods, which can easily be integrated in any Android

application’s source code, or via Android debugging tools

such as Android Debug Bridge (ADB). Thus, it is possible

to start and stop profiling exactly during the execution of

specific portions of code, such as methods, or during the

execution of an application. To support both test and method

based scenarios, we developed the Android Library TrepnLib.

This library provides an API that allows to instrument the

application source code with API calls, so that when executed

it profiles the instrumented Java class methods. To monitor

test execution scenarios, this library also provides functions to

start and stop the profiling process.

C. AnaDroid Framework

In order to analyse the GreenSource repository, we have

developed the AnaDroid tool. The AnaDroid workflow is

depicted in Figure 1.

The entry point is the application project (i.e., source code

and assets). It starts by analyzing the source code to compute

static (green) code metrics, such as the APIs used by methods

and classes, number of declared variables, arguments, among

others. Then it instruments the source code to include the nec-

essary TrepnLib instructions to monitor energy consumption at

runtime.

After the code is fully instrumented, AnaDroid builds the

application and generates the corresponding APK file, which is

used to install the application on a connected Android device.

Once the installation finishes, AnaDroid runs a series of usage

scenarios over the application and collects the results for

them, storing them in the GreenSource green metric database,

described in the next section.

D. GreenSource Backend

The GreenSource repository contains an backend API,

which main task is to store the information collected for each

tested application in a relational database (which simplified

schema is depicted in Figure 24), and allow access to it. It is

accessible through a web server that provides RESTful API,

4The complete database schema is available here: https://bit.ly/2tafvdM.

177

Fig. 1. AnaDroid execution phases

providing a uniform form of communication that allow CRUD

operations through HTTP requests.

Fig. 2. GreenSource main entities/relationships

The contained database is populated every time AnaDroid
executes tests over an application. The database structure

was inspired by the SourcererDB [24], a previous works that

presented an approach to store metrics and relations between

Java source code elements and It has been carefully designed

to be expandable for future refinements and expansions. For

instance, every test result (i.e., an entry in the TestResults
table) is always associated to an application, a device on which

is executed, and to a test description (i.e., an entry in the Tests
table), which has an associated testing tool/framework and

a profiler. This way, our infrastructure considers extensions

to support different testing frameworks, devices and energy

profilers, as well as new application and test metrics.

III. METHODOLOGY

As stated before, to collect the data contained in our dataset

we used AnaDroid to test the collected applications with

different scenarios and store it in the GreenSource repository.

In this section, we explain in detail the conditions under which

the applications where tested, how we developed the tests,

and how we ensured that the testing conditions were equally

maintained for every application.

In GreenSource we can also collect the energy consumption

of the application in a real usage of a mobile device. In fact,

the context where the application executes on test input is

stored in our dataset: processes running, brightness levels,

networks traffics, etc. This allows us to reason about energy

consumption in different devices and settings.

A. Experimental Setup

The tests conducted for every application were all performed

in the same factory-reseted Nexus 5 device. The brightness

level of such device was always in the lowest possible value,

to ensure that the consumption not related to the computational

effort of the application under test was reduced to the min-

imum. During each test execution, we ensured that only the

application under test, Trepn and the OS-related applications

were installed.

To exercise the applications, we designed 20 usage scenarios

using the Android Application Exerciser Monkey [25]. We

chose this tool because it is, to the best of our knowledge, the

only one capable of automatically test any application without

knowing its context, which is a necessary characteristic since

we aimed at testing a large set of applications. Moreover, it

was already proven that Monkey achieves the better compro-

mise between coverage and setup effort [26], [27].

B. Experimental Procedure

Although our infrastructure is capable of monitoring energy

at the method level, for the purpose of creating an uniform

dataset and provide it as a contribution to this work, we

focused on monitoring energy at the test level. To ensure the

maximum possible coverage of the tests, after running the pre-

defined set of 20 tests, we check the method coverage and see

if it is greater or equal than 60%. If it is, we stop the test

procedure and store the results. If not, we use a new set of

30 tests to execute the application, and we execute them one

after another until we reach 60% method coverage or we run

out of tests. This procedure is depicted in Algorithm 1

Before executing each test, our framework first opens the

application, starts the Trepn profiling service, waits 5 seconds

and then runs the usage scenario using the Monkey events.

When Monkey finishes, it stops Trepn, waits 5 more seconds

to cool-down the device, and stores the results.

for (app : projects builded) do
grantAppPermissions(app);
i = 0;
while i ≤ 20 ‖ (i ≤ 50 && coverage ≤ 60%) do

startProfiling();
getDeviceSystemState();
runTest(app, i);
getDeviceSystemState();
stopProfiling();
cleanAppCache(app);
pullResults();
i++;

end
sendResults();

end
Algorithm 1: Test Execution Procedure

IV. DATA DESCRIPTION

The process of running AnaDroid with a wide range of

applications in a mobile device is a time consuming process.

This process is influenced by both the performance of the

development machine, the Android device on which the in-

puts are executed, and the complexity of the tested inputs.

178

Currently, the framework successfully produced results for a

total of 4377 different test scenarios, executed over a total of

222 Android applications. We were able to gather 281811
metrics values regarding source code elements and tests (i.e.,

static and dynamic metrics), divided according to their type:

39375 test metrics, 241128 method metrics, and 1308 class

metrics. We present the list of metrics considered so far in

Table I.

The nature of the obtained results allows to visualize and

draw comparisons on applications according to the executed

inputs. We replicated the execution of the same test inputs,

with the same sequence of UI-events generated for every

application. The main entities and relations of the database

schema4 designed for storing this results is represented by the

diagram in figure 2.

Each execution of a test correspond to a new entry in the

TestResults table. In this table we describe the attributes of the

performed tests, as well as the state of the device before and

after the test execution. This information is needed to fully

characterize the testing conditions, and to evaluate if there

were any major differences before/after the test that could

be influencing the results (e.g., the resources usage). Table II

contains a concrete example of such information calculated for

test number 583, while Table III shows the metrics calculated

for such test.

We are constantly increasing the number of metrics gath-

ered from the analysis performed with the execution of the

AnaDroid framework over the set of applications. The metrics

considered so far are related to invoked source code portions

(application, class or methods) and to the executed tests. We

are targeting difficult objectives as identify the factors that

have impact on the energy consumption of Android Applica-

tions. Thus, we are contributing with as many consumption-

related metrics as possible.

Metric Description Type Metric Description Type

AndroidAPI APIs used from Android SDK M TotalTime Elapsed time T
JavaAPI APIs used from Java SDK M TotalEnergy Total energy consumed T
ExternalAPI Other APIs M TotalCoverage Total method coverage T
WifiState If Wifi was used T/M Coverage method coverage M
MobileDataState If Mobile data was used T/M CC Cyclomatic Complexity M
ScreenState If Screen was used T/M LoC Lines of Code M
BatteryStatus Percentage of battery T/M NrArgs Number of Arguments M
AVGWifiRSSILevel Average Level of RSSI T/M AvgCPULoad Average CPU Load T/M
MaxWifiRSSILevel Average Level of RSSI T/M MaxCPULoad Max CPU Load T/M
BluetoothState If Bluetooth was used T/M BatteryCharging If battery was charging T/M
AVGGpuFrequency Average GPU frequency T/M AvgMemory Avg Memory Used T/M
CpuLoadNormalized Norm. CPU Load (all cores) T/M MaxMemory Max Memory Used T/M
GpsState If GPS was used T/M Time Elapsed Time M
TotalTime Elapsed time T NrClasses Number of Classes A
TotalEnergy Total energy consumed T NrDeclaredVars Nr of Declared Variables M/C

TABLE I
STATIC AND DYNAMIC METRICS CONSIDERED, DIVIDED BY SCOPE: TEST

(T), METHOD (M), AND APPLICATION (A).

The information contained in the GreenSource open-access

repository can be accessed through the Restful API provided

by the backend. In the GreenSource online support page, we

provide the detailed description of the API and the information

exchanged between requests. As an example, if we want to

query the list of metrics obtained for a Java method named

”initializeLogging”, the HTTP request to obtain such list

should be done as follows:

http://greensource.di.uminho.pt/methods/metrics
/?method_name=initializeLogging

Attribute Description Value

test id test identifier 583
timestamp timestamp 2019-02-02T18:04:53
test seed test seed for generating events with monkey 40201
description description ””
profiler profiler tool used trepn
init mem (B) memory allocated at the beginning of test 1069323264
end mem (B) memory allocated at the end of test 1066083328
init cpu free (%) % of free CPU at the beginning of the test 10.6
end cpu free (%) % of free CPU at the end of the test 10.06
nr processes running number of processes running before the test 32
nr processes running number of processes running after the test 32
api level API level of device 23
android version Android Version of device 6.0.1
device serial nr device serial number 066b51bd005cae0e

TABLE II
EXAMPLE OF AN ENTRY OF THE TESTRESULTS TABLE

Metric Value

Coverage 43 %
Time 4.926 s
Energy 8.324 J
Max CPU Load 44 %
AVG CPU load 23.93 %
GPU frequency 1.307 MHz
Max memory 1611064 B
Avg Memory 1579181.94 B
Avg Wifi RSSI Level -65 dBm

TABLE III
METRICS VALUES OBTAINED FROM EXECUTING TEST 583

The table III provides a example of some of the metrics that

we are gathering from the execution of the tests. The metrics

provided in table are correspondent to the test presented in

table II.

V. CONCLUSIONS

The existence of a large body of open source code and

executable Android applications presents a tremendous oppor-

tunity for green software research. In fact, we provide the

full GreenSource infrastructure and curated datasets for other

researchers to use. Moreover, we developed the AnaDroid
tool to automate the process of running the applications with

the provided usage scenarios, to instrument the source code

with energy measurements calls, and to collect all green code

metrics. These metrics include all Android’s energy greedy

features published in the literature. Currently, GreenSource
includes 609 different Android applications.

In order to increase the magnitude of the representativeness,

we intend to steadily increase this set by extracting more

applications from open source repositories. So far we have

collected 281811 metrics produced by running AnaDroid in

222 applications with 4377 different inputs. This dataset is

constantly being updated with more content.

We expect to soon have a dataset that characterize energy

consumption on the Android ecosystem and relates such

consumption to the source code of the applications. Our

infrastructure can be easily extended with new applications,

test inputs, and green metrics. This dataset will allow us

and other researchers to answer questions such as: Which

Android features have more impact on the energy consumption

of an application? How different devices influence energy

consumption of the source code? How is energy consumption

affected by software and operating system evolution?

179

REFERENCES

[1] G. Pinto, F. Castor, and Y. D. Liu, “Mining questions about
software energy consumption,” in Proceedings of the 11th Working
Conference on Mining Software Repositories, ser. MSR 2014. New
York, NY, USA: ACM, 2014, pp. 22–31. [Online]. Available:
http://doi.acm.org/10.1145/2597073.2597110

[2] R. Pereira, M. Couto, F. Ribeiro, R. Rua, and J. Saraiva, “Energyware
analysis,” CEUR Workshop Proceedings, vol. 2217, 2018.

[3] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle,
“Energy profiles of java collections classes,” in Proceedings of the 38th
International Conference on Software Engineering. ACM, 2016, pp.
225–236.

[4] R. Pereira, P. Simão, J. Cunha, and J. Saraiva, “jstanley: Placing a
green thumb on java collections,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ser. ASE
2018. ACM, 2018, pp. 856–859.

[5] G. Pinto, K. Liu, F. Castor, and Y. D. Liu, “A comprehensive study
on the energy efficiency of java’s thread-safe collections,” in 2016
IEEE International Conference on Software Maintenance and Evolution,
ICSME 2016, Raleigh, NC, USA, October 2-7, 2016, 2016, pp. 20–31.

[6] R. Pereira, M. Couto, J. Saraiva, J. Cunha, and J. P. Fernandes,
“The influence of the java collection framework on overall energy
consumption,” in Proceedings of the 5th International Workshop on
Green and Sustainable Software, ser. GREENS ’16. ACM, 2016, pp.
15–21.

[7] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage
patterns in android apps: An empirical study,” in Proceedings of
the 11th Working Conference on Mining Software Repositories, ser.
MSR 2014. New York, NY, USA: ACM, 2014, pp. 2–11. [Online].
Available: http://doi.acm.org/10.1145/2597073.2597085

[8] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-
grained power modeling for smartphones using system call tracing,”
in Proceedings of the Sixth Conference on Computer Systems, ser.
EuroSys ’11. New York, NY, USA: ACM, 2011, pp. 153–168.
[Online]. Available: http://doi.acm.org/10.1145/1966445.1966460

[9] L. Cruz and R. Abreu, “Using automatic refactoring to improve energy
efficiency of android apps,” CoRR, vol. abs/1803.05889, 2018. [Online].
Available: http://arxiv.org/abs/1803.05889

[10] ——, “Performance-based guidelines for energy efficient mobile appli-
cations,” in 2017 IEEE/ACM 4th International Conference on Mobile
Software Engineering and Systems (MOBILESoft), May 2017, pp. 46–
57.

[11] D. Li, Y. Lyu, J. Gui, and W. G. J. Halfond, “Automated energy
optimization of http requests for mobile applications,” in Proceedings of
the 38th International Conference on Software Engineering, ser. ICSE
’16. ACM, 2016, pp. 249–260.

[12] D. Li and W. G. J. Halfond, “An investigation into energy-saving
programming practices for android smartphone app development,”
in Proceedings of the 3rd International Workshop on Green and
Sustainable Software, ser. GREENS 2014. New York, NY, USA:
ACM, 2014, pp. 46–53. [Online]. Available: http://doi.acm.org/10.1145/
2593743.2593750

[13] M. Couto, R. Pereira, F. Ribeiro, R. Rua, and J. Saraiva, “Towards a
green ranking for programming languages,” in Proceedings of the 21st
Brazilian Symposium on Programming Languages, ser. SBLP 2017.
New York, NY, USA: ACM, 2017, pp. 7:1–7:8. [Online]. Available:
http://doi.acm.org/10.1145/3125374.3125382

[14] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes,
and J. Saraiva, “Energy efficiency across programming languages: How
do energy, time, and memory relate?” in Proceedings of the 10th ACM
SIGPLAN International Conference on Software Language Engineering,
ser. SLE 2017. ACM, 2017, pp. 256–267.

[15] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann,
“The dacapo benchmarks: Java benchmarking development and analy-
sis,” in Proceedings of the 21st Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems, Languages, and Applications,
ser. OOPSLA ’06. ACM, 2006, pp. 169–190.

[16] J. Ossher, S. Bajracharya, E. Linstead, P. Baldi, and C. Lopes, “Sourcer-
erdb: An aggregated repository of statically analyzed and cross-linked

open source java projects,” in 2009 6th IEEE International Working
Conference on Mining Software Repositories, May 2009, pp. 183–186.

[17] ——. (2018, December) Uci source code data sets. [Online]. Available:
https://www.ics.uci.edu/∼lopes/datasets/

[18] C. V. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani,
and J. Vitek, “Déjàvu: A map of code duplicates on github,” Proc.
ACM Program. Lang., vol. 1, no. OOPSLA, pp. 84:1–84:28, Oct. 2017.
[Online]. Available: http://doi.acm.org/10.1145/3133908

[19] Q. Inc. (2015) Trepn profiler. https://developer.qualcomm.com/software/
trepn-power-profiler.

[20] M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, and S. Tarkoma,
“Modeling, profiling, and debugging the energy consumption of mobile
devices,” ACM Comput. Surv., vol. 48, no. 3, pp. 39:1–39:40, 2015.

[21] R. Jabbarvand, A. Sadeghi, J. Garcia, S. Malek, and P. Ammann,
“Ecodroid: An approach for energy-based ranking of android apps,” in
Proc. of 4th Int. Workshop on Green and Sustainable Software, ser.
GREENS ’15. IEEE Press, 2015, pp. 8–14.

[22] N. Hegde, E. L. Melanson, and E. Sazonov, “Development of a real
time activity monitoring android application utilizing smartstep,” in
Proceedings of the 2016 IEEE 38th Annual International Conference
of the Engineering in Medicine and Biology Society (EMBC), 2016, pp.
1886–1889.

[23] Y. Hu, J. Yan, D. Yan, Q. Lu, and J. Yan, “Lightweight energy
consumption analysis and prediction for android applications,” Science
of Computer Programming, 2017.

[24] S. Bajracharya, J. Ossher, and C. Lopes, “Sourcerer: An infrastructure
for large-scale collection and analysis of open-source code,” Science of
Computer Programming, vol. 79, pp. 241 – 259, 2014, experimental
Software and Toolkits (EST 4): A special issue of the Workshop on
Academic Software Development Tools and Techniques (WASDeTT-
3 2010). [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S016764231200072X

[25] Google, “Ui/application exerciser monkey,” https://developer.android.
com/studio/test/monkey, 2019.

[26] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input gen-
eration for android: Are we there yet? (e),” in Proceedings of the
2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), ser. ASE ’15. IEEE Computer Society, 2015, pp.
429–440.

[27] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for android applications,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, ser. ISSTA 2016. ACM,
2016, pp. 94–105.

180

