
Combining Static and Dynamic Analysis for the Reverse
Engineering of Web Applications

Carlos Eduardo Silva
Departamento de Informática/Universidade do

Minho & HASLab/INESC TEC
Braga, Portugal

cems@di.uminho.pt

José Creissac Campos
Departamento de Informática/Universidade do

Minho & HASLab/INESC TEC
Braga, Portugal

jose.campos@di.uminho.pt

ABSTRACT
Software has become so complex that it is increasingly hard
to have a complete understanding of how a particular system
will behave. Web applications, their user interfaces in particu-
lar, are built with a wide variety of technologies making them
particularly hard to debug and maintain. Reverse engineering
techniques, either through static analysis of the code or dy-
namic analysis of the running application, can be used to help
gain this understanding. Each type of technique has its limita-
tions. With static analysis it is difficult to have good coverage
of highly dynamic applications, while dynamic analysis faces
problems with guaranteeing that generated models fully cap-
ture the behavior of the system. This paper proposes a new
hybrid approach for the reverse engineering of web applica-
tions’ user interfaces. The approach combines dynamic an-
alyzes of the application at runtime, with static analyzes of
the source code of the event handlers found during interac-
tion. Information derived from the source code is both di-
rectly added to the generated models, and used to guide the
dynamic analysis.

Author Keywords
Static Analysis; Dynamic Analysis; Web applications.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
User Interfaces; D.2.7. Software Engineering: Distribution,
Maintenance, and Enhancement—Restructuring, reverse en-
gineering, and reengineering.

General Terms
Human Factors; Reliability.

INTRODUCTION
Reverse engineering techniques can be useful for both testing
and maintaining a software system [4]. For interactive com-
puting systems, reverse engineering can be used to extract
information about the structure of the user interface as well
as its behavior. This can be achieved either by looking at the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EICS’13, June 24–27, 2013, London, United Kingdom.
Copyright 2013 ACM 978-1-4503-2138-9/13/06...$15.00.

code (static analysis), or by analyzing the running application
(dynamic analysis).

Regarding web applications, static analysis faces problems
related to the highly dynamic nature of the user interfaces. In
many situations, the relation between user interface controls
and the corresponding event handlers is only defined at run-
time. Even the structure of the user interface might be defined
dynamically at runtime, with only a basic skeleton defined
statically in the code. Additionally, the diversity of technolo-
gies that are available to program such systems (both server-
side and client-side), makes it difficult to develop a generic
approach.

Dynamic analysis solves some of these issues by analyzing
the actual running systems. However, it faces problems of
its own. On the one hand, the behavior of the applications
depends on both the internal state of the interactive comput-
ing system, and on the inputs provided. There is the risk that
relevant parts of the user interface might be left unexplored.
On the other hand, what is observed is the behavior of the
application. The reasons for that behavior have to somehow
be inferred. In any case, using dynamic analysis alone, the
resulting model will likely be incomplete. It might miss rele-
vant aspects of the user interface, and it will be ambiguous re-
garding what conditions trigger which alternative behaviors.

In this paper we report on work that aims to develop an hybrid
approach to the reverse engineering of web applications. The
approach takes advantage of the fact that information about
the code behind a given user interface is available through the
browser. Using a dynamic reverse engineering approach, a
first model of the user interface is obtained. Then, by static
analysis of the event handlers attached to each user interface
control, relevant conditions over the input values in the user
interface are determined. This provides two benefits. It sup-
ports completing the model by determining which input val-
ues should be provided so that all user interface behaviors are
observed. It supports disambiguating the model by making
explicit the conditions that lead to each alternative behavior
of the user interface.

The paper is structured as follows: the next section provides
an overview of the state of the art of Reverse Engineering ap-
plied to interactive computing systems; after that, an example
application is described which will be used to illustrate the
approach; the following section analyses the application em-
phasizing the dynamic analysis’ shortcomings when attempt-
ing to reverse engineer its user interface; our proposal to solve

these problems is then presented; the paper concludes with a
discussion and conclusions on our approach.

STATE OF THE ART
As stated above, the two main approaches for Reverse Engi-
neering are: static analysis and dynamic analysis. When both
approaches are combined, we talk of hybrid analysis tech-
niques. This section presents a brief review on the use of
these techniques to reverse engineer user interfaces.

Static Analysis
Static analysis performs a system’s analysis without execut-
ing it. This is achieved through the analysis of the source
code or the binaries of the system. Examples of static anal-
ysis tools usually involve targeting a specific language. For
instance, Bouillon et al. [3] reverse engineer simple HTML
pages; Staiger [15] is targeted at C/C++ applications that use
user interface libraries like Qt or TK; Guha et al. [6] use
static control flow analysis on JavaScript applications; Ko et
al. [7] use static analysis on JavaScript applications to search
for missing feedback in applications; Bellucci et al. [2] per-
form static analysis of HTML and CSS to support adaptation
of Web Applications across platforms, the approach addresses
architectural aspects keeping the same JavaScript between the
adaptations.

In an attempt to be more generic, and thus reduce the ef-
fort of changing the target application’s programming lan-
guage/framework, Silva et al. [14] separate the parser and
Abstract Syntax Tree (AST) analyzer from the rest of their
tool (GUIsurfer). This enables them to reverse engineer
Java/Swing and GWT applications, but also WxHaskell ap-
plications, with minimal adaptation to the tool.

When attempting to adapt the GUIsurfer approach to other
web based technologies [13], however, problems arose re-
lated to the highly dynamic nature of the code. For example,
the binding of event handlers to controls is, in many cases,
done at execution time only. Indeed, when considering in-
teractive applications, one of the main problems with static
analysis approaches is identifying the binding of event han-
dlers to user interface controls. The fact that there are many
different ways to perform this binding, makes it hard to deter-
mine such binding from a purely static analysis of the code.
In the case of web applications, this problem is exacerbated
by the dynamic nature of the code. Indeed, Mesbah et al. [10]
affirm that reverse engineering Ajax based on static analysis
is not feasible.

Dynamic Analysis
Dynamic analysis aims to obtain a model of a system from
observation of its runtime behavior. Several authors have
studied its applicability to interactive systems. Memon et al.
[9] describe an application called GUI Ripping which con-
sists of a dynamic process that traverses a Graphical User
Interface (GUI) by opening all its windows and extracting
all the widgets and their information. Amalfitano et al. [1]
use dynamic analysis to create Finite State Machines (FSMs)
from Rich Internet Applications (RIAs). Crawljax is a tool
that crawls Ajax based Web applications analyzing dynam-
ically state changes and creates a FSM [10]. Morgado et

al. [11] describe the ReGUI tool that automatically extracts
structural and behavioral information from a GUI, producing
a wide variety of views and formats of the data, thus enabling
different types of analysis.

While this type of approach solves the problem faced by static
analysis with dynamically generated user interfaces, it can
only observe the behavior of the interface, and has problems
with determining the logic behind that behavior, and with
guaranteeing that all relevant behavior has been observed.

Hybrid Approaches
Hybrid approaches try to take advantage of the best feature
of both static and dynamic analysis. For example, Systa [16]
gathers both dynamic views (using a customized JDK debug-
ger) and static views (parsing Java byte code), and afterwards
improves them by merging aspects from both types of views.
Li and Wohlstadter [8] describe an hybrid approach that en-
ables runtime maintenance of GUIs. This tool was developed
for Java/Swing applications and its focus is on supporting
changes to elements of the user interface at runtime, while
our focus is on creating models that describe the user inter-
face. This is also the goal of Gimblett and Thimbleby [5]
which discover a model of an interactive system by simulat-
ing user actions. Models created are directed graphs where
nodes represent system states and edges correspond to user
actions. The approach is dynamic but it also considers access
to application source code.

AN ILLUSTRATIVE EXAMPLE
In order to illustrate both the limitations of static and dynamic
approaches in the reverse engineering of web applications,
and our proposal for an hybrid approach, a small illustrative
example will be used. This is a contacts agenda application
enabling users to maintain a list of contacts.

Figure 1 shows a subset of the frames of the application. We
are specifically focusing on the ”Find” functionality of the
application (on the left side of Figure 1) which allows a user
to search for contacts in his/her contact list. As illustrated
in the figure, clicking the ”Search” button can lead to three
different frames. Two of them are warnings, stating no text
was entered or no contact was found. The third one is the
main window with the found contacts selected. The results
will depend on the list of contacts of the user, the text entered
in the textbox and the state of the two checkboxes for ”Match
Case” and ”Whole Words”. The other two buttons (”Cancel”
and ”Show”) are currently not being considered for simplifi-
cation.

The ”Search” button has an event handler which triggers the
search function, presented in JavaScript in Figure 2. The
function starts by analyzing if there is any text in the input-
Box, and in case there is not, it creates an alert with the text
”No text entered”. If there is text, the findContacts function
is invoked with three parameters: the text input by the user,
and the states of the matchCase (mC) and wholeWords (wW)
checkboxes (note that this function can be defined in the client
or the server). Afterwards, the function checks if there was
any result returned from that function. In case there was a
result, it updates the contacts list, and closes the frame. The

Figure 1. Subset of the frames of the Contacts Agenda applications

1 function search(){
2 fInput=document.getElementById(”fInput”).value;
3 if(fInput!=””){
4 var mC = document.getElementById(”mC”).checked;
5 var wW = document.getElementById(”wW”).checked;
6 var res = −1;
7 res = findContacts(fInput, mC, wW);
8 if(res>−1){
9 contactsListUpdate(res);

10 findExit();
11 }
12 else {
13 customAlert(”No contact found!”);
14 }
15 }
16 else {
17 customAlert(”No text entered!”)
18 }
19 }

Figure 2. Search function

user is thus returned to the mainForm frame (depicted in the
top left of Figure 1). Otherwise, an alert is raised with the text
”No contact Found”.

ANALYSIS
The contacts application is an Ajax application, thus using
both HTML, CSS and JavaScript to code the client side and,
in this particular case, PHP to code the server side. Therefore,
a purely static analysis would have to take into consideration
these four languages in order to get some sound results. Not
only is that a problem, but we also need to take into considera-
tion the highly dynamic possibilities of JavaScript, as already
discussed.

Analyzing the application in a purely dynamic analysis,
solves the problems above. On the one hand, we do not have
to deal with all the different technologies that might be used
to develop web applications. On the other hand, we are able
to observe the effect of the event handlers at runtime regard-
less of how they are registered. Using this type of approach
we are able to identify the different states of the interface, but
the question remains of how to infer which conditions govern
the different behaviors of the application.

As an example, we built a state machine of our application
using a dynamic analysis tool (Crawljax). Figure 3 presents
a manually enhanced version of the resulting finite state ma-
chine. For readability purposes states have been decorated
with the names of the corresponding frames, and state tran-

Figure 3. State Diagram based on a model extracted with Crawljax

sitions with the names of the controls (in this case, buttons)
responsible for causing them. While this information is not
present on the original diagram generated by the tool, that
diagram can be interactively explored and such information
obtained.

Only a subset of the state machine is important for this analy-
sis: the find frame (S2), the mainform frame (S1) and the ”No
contact found” alert (S3). Other frames (and corresponding
states) of the application are not further discussed for sim-
plification purposes. The model suffers from a number of
shortcomings that we will discuss below.

Model disambiguation problems
When interacting with the application, and as can be seen in
Figure 1, clicking on the Search button can lead us to a num-
ber of different frames. Through dynamic analysis we were
able to (at least partially) identify this situation. As depicted
in Figure 3, we were able to determine that we can go from
S2 (the Find frame) to either S1 (the Main frame) or S3 (an
Alert Frame).

Figure 4. State diagram with buttons information

Figure 4 depicts a subset of the overall state machine with

only the states relevant to our analysis present, and the choice
points more clearly identified. The problem is that, while the
state diagram shows that when we click the Search button
two possible next takes can be reached (S1 and S3), it says
nothing about what conditions determine the behavior of the
interface. In practice the model that is generated is ambiguous
and needs further work.

It should be noted that while we could think of analyzing
the inputs used in each case to infer the missing conditions,
we could still have the same inputs going to different states,
depending on what the state of the system (i.e. the current
contacts list). A possible solution can be explored of using
machine learning as seen in [12]. However such methods in-
volve previous background knowledge including the encod-
ing of the patterns for the disambiguation. Our proposal is
to disambiguate the models through the static analysis of the
events that trigger new states in the application.

Input space definition problems
Another aspect that becomes clear in Figure 4 is that one
frame is missing from the model. In this case the ”no text
entered” alert was not found through dynamic analysis. This
happened due to the test cases used during the dynamic ex-
ploration. A more thorough analysis, with more execution
traces, would be needed to have found it.

Indeed, a common difficulty in dynamic analysis is choosing
the inputs that should be used to explore the application. Nor-
mally, fully automatic dynamic approaches use random input
generators or machine learning to define the inputs. Semi-
automatic approaches usually rely on the tool’s user to as-
certain possible input values that are interesting for their in-
tended analysis. In any case, unless knowledge about the ap-
plication can be obtained and used, it is not possible to be
sure that all relevant path in the behavior of the system have
been covered.

Our proposal is to identify relevant input values by analyzing
the conditions present in the event handlers associated with
user actions.

PROPOSAL
As stated, in order to solve the two problems identified above,
we propose to include an element of static analysis in the
dynamic exploration of the user interface, thus creating an
hybrid approach. Through dynamic analysis we are able to
identify the event handlers that are associated with each user
interface control. By analyzing the source code of the event
handlers that trigger the state changes in the application, we
are able to add more information to the dynamic exploration
process, thus solving the disambiguation problem.

Hence, the process consists of a dynamic crawler that, for
each identified frame, performs static analysis using a process
which can be defined as follows:

1. Identify the user interface controls of the frame.

2. Discover which event handlers are associated with the con-
trols.

Figure 5. Abstract Syntax Tree for the Search function

3. Analyze the conditions of the discovered event handlers to
determine if all behaviors have been analyzed.

4. Set up additional test cases as needed.

Identifying the user interface controls is something already
done by a typical dynamic analysis tool. The event handlers
can then be easily identified. Since this is done at runtime,
we avoid the problems associated with the dynamic binding
of event handlers. Note that although this example only uses
synchronous calls to the application logic, asynchronous calls
(cf. Ajax) can also be dealt with since we have access to the
asynchronous request handler. Then, for each handler func-
tion, we create an Abstract Syntax Tree (AST) that represents
it. Using the AST we analyze the conditions of the event han-
dlers. Two type of variables are relevant. Variables whose
value is obtained from input controls (input variables), and
variables whose value is obtained from functions of the ap-
plications’ logic (synthesized variables).

Enough test cases must be generated that all possible behav-
iors of the handler (branches of the AST) are executed. Re-
garding input values, this is achieved by identifying which
input values must be used during the dynamic exploration.
Regarding synthesized variables, determining what input val-
ues will cause the application layer to generate appropriate
synthesized values is in most cases not easily achieved. This
will be discussed below.

A simplified version of the AST for the search function is de-
picted on Figure 5. Analyzing it, we can see that it starts by
assigning the variable findInput from the DOM. Afterwards
we get a condition that tests if the variable is an empty string
or not. Since this variable is directly associated with an in-
put control we can manipulate, we add test cases for both an
empty and an non empty string to the execution traces. And
since in the automatic test we had not tested the empty string,
we are able to to find a state that was not previously discov-
ered. We called the new state SY, which is an alert of ”No

text entered”.

The next condition is related to a variable named res. Unlike
the previous analysis, here the variable is not associated with
a control we might manipulate but with the findContacts(...)
function. Hence, it is a synthesized variable. We know that
two different states can potentially be reached depending on
the value of res, as the variable is used in a condition that
changes the event flow. In order to fully test the behavior
of the system we must, thus, find a way to establish which
branch leads to which state (in this case S1 or S3, but note
that the dynamic analysis could have not yet found all the
possible states, as illustrated above), and that depends on the
value of the synthesized variable.

Three alternative solutions can be considered:

1. We can use a debugger to analyze the values of the variable.
For instance, in JavaScript we are able see the variables’
values at each point using tools like Firebug. Despite being
the simplest solution, we have a problem in that our execu-
tion traces might not cover all possible behaviors (e.g., if
a contact is never found, we will never have the res vari-
able positive and will never observe that, in that case the
flow goes to S3). Moreover, using a third party debugger
to inspect the variables would turn the approach to a semi-
automatic process.

2. We can use code injection to change the event handler so
that it generates predefined values. In the case of the exam-
ple, for example, this will be a new function that is exactly
the same as the Search function depicted in Figure 2 but
has another line after line 7 setting the res value so that
each of the conditional flows is executed. Hence, in one
execution trace we would have assigned res to a random
negative value and on the other to a random positive value.
This approach has the problem that changing the event han-
dler’s result might have unexpected effects in the applica-
tion.

3. If we have access to the source code on the server side, we
are able to perform the instrumentation as in the previous
approach but in this case in the actual source code of the
applications, thus changing the actual application code and
not having to worry about problems with having changed
the event handler. Besides requiring access to the server
side code, a further problem with this approach is that af-
ter changing the source code, we would have to rerun the
application for the instrumentation to be applied.

Since we want to keep our analysis as dynamic as possible
we have opted to implement the second choice of dynami-
cally changing the event handlers to functions with the in-
strumented code.

Returning to the example, after analysis of both conditions
it was then feasible to build a more detailed state diagram,
like the one presented in Figure 6, where we can see which
conditions were responsible to trigger which state transitions.

We can summarize the whole process as follows:

1. Use a dynamic approach to start creating the state diagram

Figure 6. Complete state diagram for the Search function

2. For each state analyze the interaction widgets for the cor-
responding listeners

3. For each listener create an AST of the corresponding func-
tion

4. Analyze the method conditions:

(a) Analysis which variables are used in the conditions
(b) From those variables discover which ones are input

variables (that we can control during dynamic explo-
ration) and which are synthesized variables.

(c) For input variables test conditions by testing the dif-
ferent input possibilities in the application. If test
cases were missing create new test cases.

(d) For synthesized variables alter the listener in runtime
to a new function with instrumented code testing the
conditions.

5. The final states are compared according to the DOM

6. Perform conditions pruning to eliminate conditions where
all alternatives lead to the same state (a case that did not
appear in our example, but might nevertheless happen in
practice).

With such a process we are able to build state diagrams that
represent the behavior of Web applications GUIs with more
detail such as the one depicted in Figure 6. The added detail
shows why interactions with the same widgets can lead to
different states.

DISCUSSION
When comparing our analysis to other approaches to reverse
engineer Web Applications we believe that we can cover more
applications than previous static analysis work on Ajax Web
applications such as in Guha et al. [6] and Ko et al. [7]. More-
over, we can add more detail to dynamic analysis approaches
of Web applications as we see in Amalfitano et al. [1] and
Mesbah et al. [10].

In terms of hybrid approaches the most similar to our ap-
proach is Systa’s [16]. The main differences are that while

Systa’s approach enables a static analysis of the application
both before, during and after the dynamic analysis, our ap-
proach is done only during the dynamic analysis. Moreover,
Systa’s approach implies a full static analysis of the applica-
tion. While that may be feasible on Java, it is not in Web
applications since not only are the client side part based on
a wide variety of different frameworks, we may also not
have access to the server side of those applications. Li and
Wohlstadter’s approach [8] has a different focus which aims
to use static analysis to propagate the changes made on the
dynamic view, thus mapping widgets with code. Gimblett
and Thimbleby’s approach [5] is based on a semi-automatic
process and hence not directly comparable. Finally, compar-
ing our work with that of Morgado et al. [12] which use ma-
chine learning to perform disambiguation of the models, an
hybrid approach has the advantage of not requiring previous
background knowledge of the application and its domain.

A tool that automates the proposed approach is currently be-
ing developed. The tool uses Selenium to interact with the
web application under analysis, and is able to differentiate,
at each point, between visible and non-visible widgets, since
only visible widgets are relevant for the analysis. Further-
more, the tool is able to extract a JavaScript AST for each of
the event handlers registered in the widgets. This information
will then be used to guide the reverse engineering process as
proposed above.

CONCLUSION
Developing an understanding of an implemented web appli-
cation is a complex task which can be aided by reverse engi-
neering techniques. In this paper we have discussed the short-
comings of traditional reverse engineering techniques when
applied to web applications. An approach to integrate static
and analysis techniques has been presented, and illustrated
with an example. By mixing the two techniques we are able
to explore the best of dynamic analysis, while incorporating
knowledge about the code into the models. This has enabled
us to construct a more complete model of the user interface.

ACKNOWLEDGMENTS
This work is funded by ERDF - European Regional De-
velopment Fund through the COMPETE Programme (op-
erational programme for competitiveness) and by National
Funds through the FCT - Fundação para a Ciência e a Tec-
nologia (Portuguese Foundation for Science and Technology)
within project FCOMP-01-0124-FEDER-015095. Carlos Ed-
uardo Silva is further funded by the Portuguese Government
through FCT, grant SFRH/BD/71136/2010.

REFERENCES
1. Amalfitano, D., Fasolino, A. R., and Tramontana, P.

Reverse Engineering Finite State Machines from Rich
Internet Applications. In Proc. 15th WCRE, IEEE
Computer Society (2008), 69–73.

2. Bellucci, F., Ghiani, G., Paternò, F., and Porta, C.
Automatic reverse engineering of interactive dynamic

web applications to support adaptation across platforms.
In Proc. IUI ’12, ACM Press (2012), 217–226.

3. Bouillon, L., Limbourg, Q., Vanderdonckt, J., and
Mirchotte, B. Reverse engineering of web pages based
on derivations and transformations. In Proc. LA-Web
’05, IEEE Computer Society (2005), 3–.

4. Eilam, E. Reversing: Secrets of Reverse Engineering.
Wiley, 2005.

5. Gimblett, A., and Thimbleby, H. User Interface Model
Discovery : Towards a Generic Approach. In Proc. EICS
’10, ACM Press (2010), 145–154.

6. Guha, A., Krishnamurthi, S., and Jim, T. Using static
analysis for Ajax intrusion detection. In Proc. 18th
WWW ’09, ACM, Ed., ACM Press (2009), 561–570.

7. Ko, A. J., and Zhang, X. Feedlack detects missing
feedback in web applications. In Proc. CHI ’11, ACM
Press (2011), 2177–2186.

8. Li, P., and Wohlstadter, E. View-based maintenance of
graphical user interfaces. In Proc. 7th AOSD ’08, ACM
Press (2008), 156–167.

9. Memon, A., Banerjee, I., and Nagarajan, A. GUI
ripping: reverse engineering of graphical user interfaces
for testing. In Proc. 10th WCRE ’03, IEEE Computer
Society (2003), 260–269.

10. Mesbah, A., Bozdag, E., and van Deursen, A. Crawling
AJAX by Inferring User Interface State Changes. In
Proc. ICWE ’08, IEEE Computer Society (2008),
122–134.

11. Morgado, I. C., Paiva, A. C. R., and Faria, J. a. P.
Dynamic Reverse Engineering of Graphical User
Interfaces. International Journal On Advances in
Software 5, 3 (2012), 224–236.

12. Morgado, I. C., Paiva, A. C. R., Faria, J. P., and
Camacho, R. GUI reverse engineering with machine
learning. In Proc. RAISE ’12, IEEE Computer Society
(2012), 27–31.

13. Silva, C. E. Reverse engineering of rich internet
applications. Master’s thesis, Escola de Engenharia,
Universidade do Minho, 2009.

14. Silva, J. C., Silva, C. E., Gonçalo, R., Saraiva, J., and
Campos, J. C. The GUISurfer tool: towards a language
independent approach to reverse engineering GUI code.
In Proc. EICS ’10, ACM Press (2010), 181–186.

15. Staiger, S. Static Analysis of Programs with Graphical
User Interface. In Proc. CSMR ’07, IEEE Computer
Society (2007), 252–264.

16. Systa, T. On the relationships between static and
dynamic models in reverse engineering Java software. In
Proc. 6th WCRE 1999, IEEE Computer Society (1999),
304–313.

	Introduction
	State of the Art
	Static Analysis
	Dynamic Analysis
	Hybrid Approaches

	An Illustrative Example
	Analysis
	Model disambiguation problems
	Input space definition problems

	Proposal
	Discussion
	Conclusion
	Acknowledgments
	REFERENCES

