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Abstract—Several fault predictors were proposed in the con-
text of Spectrum-based Fault Localization approaches to rank
software components in order of suspiciousness of being the
root-cause of observed failures. Previous work has also shown
that some of the fault predictors (near-)optimally rank software
components, provided that there is one fault in the system.
Despite this, further work is being spent on creating more
complex, computationally expensive, model-based techniques that
can handle multiple-faulted scenarios accurately. However, our
hypothesis is that when software is being developed, bugs arise
one-at-a-time and therefore can be considered as single-faulted
scenarios. We describe an approach to mine repositories, find
bug-fixes, and catalog them according to the number of faults
they fix, to assess the prevalence of single-fault fixes. Our
empirical study using 279 open-source projects reveals that there
is a prevalence of single-fault fixes, with over 82% of all fixes
only eliminating one bug from the system, enabling the use of
simpler, (near-)optimal, fault predictors. Moreover, we draw on
the practical implications of our findings to influence and set
direction for future research.

I. INTRODUCTION

Spectrum-based fault localization is a popular approach to
efficiently and effectively debug software applications [1].
These techniques use per-test coverage information to correlate
component involvement to test outcomes (pass/fail) [2]. Over
the years, several authors have contributed to the maturity of
these techniques by studying the impact of different scoring
mechanisms, commonly referred to as fault predictors, in the
diagnostic accuracy [1], [3], [4], [5], [6], [7].

The O predictor proposed by Abreu et al. [8] and later cor-
roborated by Naish et al. [9], has been shown to be the optimal
heuristic for locating faults provided the system under analysis
contained only one fault [9]. However, in the eventuality of
the system containing multiple faults, the performance of O
is expected to degrade considerably, as it assumes that one
component must be responsible for all failing tests [8]. For this
reason, previous research has focused on scenarios of multiple
faults by either proposing less optimal fault predictors whose
performance does not degrade as severely in the presence of
multiple faults (e.g., the D∗ predictor [10]); by proposing more
intricate techniques, that are both computationally expensive
and dependent on a behavioral model of the system [8], [11]
or by clustering tests so that there are multiple single-faulted
subproblems that current fault predictors can handle [12], [13].
All these approaches add complexity to the debugging process.

However, what remains to be seen is how often such
multiple-bug scenarios actually happen in practice. Our hy-
pothesis is that more often than not programmers detect and fix
one bug at a time during development. This would mean that,
most often, developers are faced with single-faulted scenarios,
so the use of the optimal fault predictor O could be justified
given the prevalence of single-faults and thus we would be able
to provide optimal diagnostic reports to developers and also
make better use of tools and techniques that take diagnostic
reports as inputs, such as with program repair [14]. Also note
that our hypothesis does not state that the system is single-
faulted but rather that faults are mostly detected in isolation.

To assess that such single-fault fix prevalence actually
exists in practice, we describe a methodology that mines a
project’s code repository to find bug fixes and label them
as being single- or multiple-faulted. The repository miner
performs a reverse-chronological exploration of commits and
runs newer test suites against older versions of the program.
If a passing test-suite fails against an older, it means that the
code changes between the two versions (i.e., ∆) contain a fix.
If, on the other hand, there are compilation or runtime errors
while running tests (due to, e.g., a change in the interface
between components), then we consider ∆ as adding new
functionality — so there is no fix present. Our classifier will
then find if there is any component in ∆ that appears in
every affected test. If so, the fix is considered to be single-
faulted. Otherwise, the fix will be labeled as multiple-faulted.
Our methodology is similar to those of Böhme et al. [15],
Dallmeier et al. [16] and Sliwerski et al. [17], in that code
repositories are explored to isolate fixes.

We conducted a large-scale empirical study where we ana-
lyzed the repositories of 279 real, open-sourced Java projects,
catalogued every detected fix, and performed fault-localization
using 5 popular predictors. In total, 1375 fixes were found. Out
of all fixes, 1135 of them were single-faulted, thus yielding a
prevalence of 82.5%. Among single-faulted fixes we observed
that the O predictor has the best accuracy out of the tested
predictors, with the faulted component being placed at the top
of the diagnostic report in over 90% of all cases. Additionally,
we found that another predictor proposed in the literature [9]
(OP , a non-optimal variant of O) performed similarly to
O, while other predictors were less accurate. For multiple-
faulted fixes, the diagnostic performance of O decreased



drastically, making its fault localization reports unsuited for
analysis. Other predictors showed a less severe performance
degradation.

After analyzing the results, we have verified our hypothesis
that most failures developers face are due to only one (active)
bug, as there is a prevalence of single-fault fixes. However,
our results suggest that the optimal O predictor’s accuracy
deteriorates significantly in the presence of multiple faults.
On the upside, the OP fault predictor has shown comparable
performance to the optimal O in the case of single-faults, while
still producing usable results for diagnosing multiple-faults.

This paper’s contributions are:
• A methodology for finding fixes in a software repository

and labeling them as single- or multiple-faulted.
• Empirical evidence that single-faulted fixes correspond to

82.5% of all fixes in open-source Java projects.
• An assessment of the diagnostic performance of

spectrum-based fault predictors in single-faulted scenar-
ios. The optional O predictor, as well as OP , show a
degree of accuracy (with virtually no wasted effort) when
compared to other predictors.

• An assessment of diagnostic performance in multiple-
fault scenarios. We show that O’s performance is es-
sentially random. For other predictors, there is still a
performance decrease, not as significant as O’s, especially
when trying to find the last faulty component in the
ranking.

To foster reproducibility, the repository miner for classify-
ing fixes is available at https://github.com/aperez/single-fault-
prevalence.

II. BACKGROUND & RELATED WORK

In this section, we establish definitions and basic assump-
tions held throughout this work. We also outline past research
on spectrum-based fault localization. We use the following
terminology defined by Avižienis et al. [18]:

Definition 1 (Failure). An event that occurs when delivered
service deviates from correct service.

Definition 2 (Error). A system state that may cause a failure.

Definition 3 (Fault). The cause of an error in the system.

We apply this terminology to software programs, where
faults correspond to defects/bugs in the program code. Failures
and errors are symptoms caused by faults in the program. The
purpose of fault localization is to pinpoint the root cause of
observed symptoms as to guide fixes.

A. Spectrum-based Analysis

Spectrum-based fault localization is an approach to pin-
pointing bugs in software programs [1], [3], [5], [19]. In
spectrum-based fault localization, the following is given: a
finite set C = {c1, c2, ..., cM} of M system components1; a

1A component can be any source code artifact of arbitrary granularity such
as a class, a method, a statement, or a branch [2].

finite set T = {t1, t2, ..., tN} of N system transactions, which
correspond to records of a system execution, such as, e.g., test
cases; the outcome of system transactions is encoded in the
error vector e = {e1, e2, ..., eN}, where ei = 1 if transaction
ti has failed and ei = 0 otherwise; and a N ×M coverage
matrix A, where Aij encodes the involvement of component
cj in transaction ti.

The pair (A, e) is commonly referred to as spectrum [2],
and is depicted in Figure 1. Several types of spectra exist.
The most commonly used is called hit-spectrum, where the
coverage matrix is encoded in terms of binary hit (1) and not
hit (0) flags, i.e., Aij = 1 if cj is involved in ti and Aij = 0
otherwise.

T c1 c2 · · · cM e
t1 A11 A12 · · · A1M e1
t2 A21 A22 · · · A2M e2
...

...
...

. . .
...

...
tN AN1 AN2 · · · ANM eN

Fig. 1: An example spectrum.

The pair (A, e) serves as input to the fault localization
technique. With this input, the next step in this coverage-
based technique consists of determining what columns of the
matrix A resemble the error vector e the most. For that, an
intermediate component frequency aggregator is computed:

npq(j) = |{i | Aij = p ∧ ei = q}| (1)

where npq(j) is the number of runs in which the component
j has been active during execution (p = 1) or not (p = 0),
and in which the runs failed (q = 1) or passed (q = 0). For
instance, n11(j) counts the number of times component j has
been involved (p = 1) in failing executions (q = 1), whereas
n10(j) counts the number of times component j has been
involved in passing executions.

We then calculate similarity to the error vector by means
of applying fault predictors to each component to produce a
score quantifying how likely it is to be faulty. Components are
then ranked according to such likelihood scores and reported
to the user.

B. Fault Predictors

Table I details fault predictors that are amongst the best
performing ones in related work [1]. All of these fault pre-
dictors will score a component j so that it informs the fault
localization technique on how to produce a ranked list of
components for user inspection.

A fault predictor named DStar (D∗) is reported by Wong et
al. [10] such that the likelihood of a component j being faulty
is: (1) proportional to the number of failed tests that cover it
(2) inversely proportional to the number of successful tests
that cover it; and (3) inversely proportional to the number of
failed tests that do not cover it. Wong et al.’s intuition is that
statement (1) and should carry a higher weight than statements
(2) and (3). Therefore, DStar provides a ∗ parameter — where



TABLE I: Fault predictor formulas.

Predictor Formula

D∗ [20], [10] n11(j)
∗

n01(j)+n10(j)

O [8], [9]

{
−1 if n01(j) > 0

n00(j) otherwise

OP [9] n11(j)− n10(j)
n10(j)+n00(j)+1

Ochiai [4] n11(j)√
n11(j)+n01(j)+

√
n11(j)+n10(j)

Tarantula [3]
n11(j)

n11(j)+n01(j)

n11(j)
n11(j)+n01(j)

+
n10(j)

n10(j)+n00(j)

∗ ≥ 1 — for changing the weight carried by n11(j) in the
formula’s numerator. In this paper, we use ∗ = 2, since [20]
claims that D2 is more effective as a fault predictor than other
similarity coefficients.

The O fault predictor is often called the optimal metric, but
it assumes that there is only one fault affecting the system [9].
Given only one bug, then its n01(j) should always be zero,
and therefore any component with a nonzero n01(j) is given
the lowest score. Since n11(j) + n01(j) equals the number of
failing runs, and n10(j)+n00(j) equals the number of passing
runs, there is only one degree of freedom left, expressed
by assigning n00(j) as the predictor’s value, with the aim
of minimizing n10(j). Assuming one bug in the system, O
was proven to be optimal by Naish et al. [9]. Note that this
optimality does not necessarily mean that it performs always
better than other predictors [21].

As an attempt to relax the assumptions from O, Naish et al.
also proposed the OP fault predictor, which does not assign
a negative score to every component j where n01(j) > 0
holds [9]. In contrast, OP scores components first based on
their involvement in failing transactions and second on their
involvement on passing transactions.

Ochiai, used in the context of fault localization by Abreu et
al. [4], evaluates how similar a coverage matrix column Aj is
from the error vector e [4]. It is a proxy for calculating the
cosine similarity between two N -dimensional vectors.

The Tarantula predictor was proposed by Jones et al. [3]
to assist fault localization using a visualization technique. The
intuition behind this predictor is that components that are used
often in failed executions, but seldom in passed executions, are
more likely to be the root cause of observed failures.

C. Fix Cardinality

We now present a definition for the terms fix, single-fault
fix and multiple-fault fix to be used throughout the paper.

Definition 4 (Fix). The set of source code modifications that,
when applied, eliminate a set of faults from the system.

Definition 5 (Single-Fault Fix). A fix that eliminates one fault
from the system.

Definition 6 (Multiple-Fault Fix). A fix that eliminates more
than one fault from the system.

To identify a fix as single-faulted, we check if all tests
affected by the change — i.e., that went from failing to
passing — share at least one component modified by the fix.
For that, we look at the minimal-cardinality hitting-set of tests
affected by the change. If there are hitting sets of cardinality
1, it means that at least one of the components modified by
the fix is active on every affected test. Note that even if there
are tests that cover multiple components (i.e., a system test)
affected by change, we are assuming that there also is at
least one test where the two unrelated components are not
run together — thus breaking the hitting set, making it of
cardinality > 1. Multiple-fault fixes are ones whose hitting-
sets are of size greater than one.

D. Diagnosing Multiple Faults
While there are many flavors of fault predictors for

spectrum-based fault localization — some of them described
in Section II-B — they all end up assigning a one-dimensional
score to each component j in the system. The fact is that these
per-component analyses abstract away relevant information to
properly score multiple-faulted subjects. This is also exacer-
bated in the O fault predictor, which is specifically designed
to assume that there is only one fault affecting the system.

While there are more intricate approaches to fault lo-
calization that are able to produce accurate multiple-fault
approaches, like model-based debugging [11] and spectrum-
based reasoning [8], this comes at a cost — such techniques
are computationally much more expensive and may require
some partial modeling of the system under analysis.

DiGiuseppe et al. [22], while studying the influence of mul-
tiple faults on spectrum-based fault localization techniques,
have actually found that at least some kinds of faults were
localizable regardless of the presence of other faults. The
authors state that, while the presence of more than one fault
added noise to the ranking, such noise did not adversely affect
the localizability of prominent types of faults.

To handle multiple faults, debugging in parallel was also
proposed [12], [13]. This technique clusters test cases so that
the resulting spectra each contain a different fault and therefore
can be diagnosed using spectrum-based fault localization.

However, what remains to be seen is whether developers
are actually faced with the task of having to diagnose and
fix multiple bugs at once. Our intuition is that bugs are
detected one-at-a-time when new fault-finding tests are added
to the system. As such, we argue that the bug clustering from
debugging in parallel approaches actually happens organically
over the course of software development. Note that this does
not mean that the system contains only one bug at a time, but
rather that fixes are single-faulted: aside from the fault being
fixed, all other faults in the system remain undetected.

III. RESEARCH QUESTIONS

In Section II we described several fault-localization predic-
tors and stated that, as they yield a uni-dimensional ranking of
fault likelihood, their accuracy might be impacted in multiple-
fault scenarios. However, our hypothesis is that such multiple-
faulted scenarios are not that frequent during development
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Fig. 2: Methodology for mining and classifying fixes.

because developers tend to fix faults soon after they are
detected. This work aims to assess the prevalence of single-
fault fixes in several real, open-source software projects.

Furthermore, for cases where multiple-faults are present
in a system, we aim to quantify what is the decrease in
diagnostic performance (if any) of using such fault-localization
techniques to debug the system.

This work aims to address the following research questions:

RQ1: How prevalent are single-fault fixes in open-source
projects?

RQ2: What is the effort to diagnose single-faults with
state-of-the-art fault predictors?

RQ3: What is the impact on diagnostic performance when
multiple-faults are considered?

RQ1 is concerned with the quantitative assessment of
single-fault fixes and how their pervasiveness compares to that
of multiple-fault fixes. In RQ2, we ask what is the diagnostic
efficiency of current fault-localization approaches — most
of which designed to pinpoint single-faults — when solely
considering single-faulted scenarios. In RQ3, we shift our
attention towards multiple-faulted scenarios, and ask what the
diagnostic performance of fault-localization techniques is for
these scenarios, with the aim of comparing against the single-
fault baseline.

IV. METHODOLOGY FOR FAULT CLASSIFICATION

This section details the methodology we followed for min-
ing a project’s repository, finding fixing commits, and labeling
them as either single- or multiple-fault fixes. A diagram
depicting the methodology is shown in Figure 2. Although
we motivate our approach by mentioning spectrum-based fault
localization, the methodology described in this section is
completely separate from any diagnostic process.

A. Mining Fixing Commits

We employ a methodology for fault classification that
involves access to the subject program’s code repository, to
enable the inspection of both the project’s commit history and

each commit tree (which represents the state of all checked-in
files at a particular commit). We start by analyzing the latest
commit in the default branch — which, in most workflows, is
the master branch — and iteratively explore parent commits.
This reverse-chronological exploration is able to handle most
workflows enabled by advanced version control systems, such
as branch merging, rebasing and commit cherry-picking.2

However, note that the use of history-rewrite features like
commit squashing3 may influence the outcome of the fault
cardinality classifier, as many commits are collapsed into one.

During our reverse-chronological analysis, we restore the
working tree of the commit currently being explored and run
the project’s test-suite. If it is a passing suite, the commit
is then considered as a fix candidate, and we advance to its
parent commit, restoring its working tree. After that we run
the fix candidate’s suite — hence why our analysis is reverse
chronological: so that the fixing commit’s test-suite is run
against an earlier commit. If the suite fails, we prompt the fault
cardinality classifier, described in Section IV-B, to run. If, on
the other hand, the suite passes, the commit’s own test-suite
is run to decide whether it should be the new fix candidate.
This process repeats until all commits are explored.

B. Classifying Fault Cardinality of a Fixing Commit

We now describe the methodology for classifying the fault
cardinality of any fixing commit discovered in Section IV-A.
At this stage we execute test-suites at each commit under
analysis and perform code coverage instrumentation. We have
selected method-level granularity for the instrumentation thus
methods are the units of our analysis. This way, fixes that
only encompass one method are classified as single-faulted.
Our classification methodology encompasses four steps:

1) Gathering Spectra: The first step in the fault classifi-
cation process is to run the fixed version’s test-suite against
both fixed and faulty programs and gather their hit-spectra with
methods as the component granularity. By faulty programs we
mean programs compiled from source code in which the fixing
set of commits was rolled back. When testing against the fixed
version, we ensure that every test is passing. Since tests pass in
the fixed version, we attribute any test failure observed when

2Cherry-picking refers to the act of applying the changes from a set of
commits to the current branch.

3Commit squashing is the act of merging together a series of commits so
they appear as one in the commit history.



testing the faulty program to the code changes between the
two versions under test.

Figure 3 depicts an example hit-spectrum generated by the
two test runs. Figure 3a shows the faulty version’s spectrum
and Figure 3b shows the fixed version’s counterpart. High-
lighted components denote elements from the ∆ set — the set
of components that were modified between the two versions
under test.

T c1 c2 c3 c4 c6 c7 c8 e
t1 1 1 0 0 1 0 0 pass
t2 0 1 1 0 1 1 0 fail
t3 0 0 0 1 0 0 1 pass
t4 1 0 1 0 0 1 0 fail

∆ ∆

(a) Faulty version.
T c1 c2 c3 c4 c6 c7 c8 e
t1 1 1 1 0 1 0 0 pass
t2 0 1 1 0 1 1 0 pass
t3 1 0 0 1 0 0 1 pass
t4 1 0 1 0 0 1 0 pass

∆ ∆

(b) Fixed version.

Fig. 3: Spectra gathered when running test-suite from the fixed
version. ∆ denotes components changed by the fixing commit.

Note that, for the suite to run against the faulty version,
the ∆ set must not include any interface changes. If, on the
other hand, there are compilation or runtime errors pertaining
to an interface change, ∆ is considered as containing changes
to functionality and thus is discarded from analysis.

2) Ambiguity Removal: After gathering the faulty version
of a spectrum, we perform an initial filtering step to remove
ambiguous components, so that only one component from
an ambiguity group is present. At the hit-spectrum level of
abstraction, components can form an ambiguity group (also
known as an equivalence class) if they always exhibit the same
execution behavior, so it is not possible to distinguish between
them. This inter-dependence means that these components will
always need to be inspected together. Therefore, if a bug
occurs in an ambiguity group, the group will be considered as
faulty. An example of this filtering step is depicted in Figure 4.
We consider that if any component in ambiguity group belongs
to ∆, then the ambiguity group also belongs to ∆. This is
so that the newly created ambiguity group component can be
considered in the next steps of the analysis.

3) Unchanged Code Removal: The faulty version’s spec-
trum shows test failures shows test failures not present in
the fixed spectrum (cf. Figure 3). Recall that the test-suite
is unchanged between the two versions, as described in our
step 1, so we can attribute the cause of the erroneous behavior
to a subset of components C ⊆ ∆ which is part of the code
modified between the two versions under test.4 All components
not in ∆ can therefore be safely exonerated from suspicion of

4This assumes test outcomes are deterministic.

T c1 c2 c3 c4 e
t1 1 1 0 0 pass
t2 0 1 1 0 fail
t3 0 0 0 1 pass
t4 1 0 1 0 fail

∆ ∆

Fig. 4: Ambiguity group filtering step. Components from Fig-
ure 3a that exhibit the same behavior are grouped and col-
lapsed into a single component.

containing the observed fault and are filtered out from the
analysis, as shown in Figure 5.

T c1 c3 e
t1 1 0 pass
t2 0 1 fail
t3 0 0 pass
t4 1 1 fail

Fig. 5: Filtered from Figure 4 components not involved in ∆.

4) Hitting Set & Classification: The last filtering step to
be performed is one that looks at failing tests from the faulty
spectrum — namely t2 and t4 from our example — and
keep them in the analysis. Passing tests — t1 and t3 — are
discarded, as they do not reveal information about the faulty
components.

The final, filtered spectrum, shown in Figure 6, is then
submitted to minimal hitting set analysis [23], [24] so that we
determine what (sets of) components are active on every failing
row of the hit-spectrum. These sets are known as diagnostic
candidates, since, when assumed faulty, can explain every
observed error in the system. Each diagnosis candidate — a
subset of all components — is valid if every failing test-
case involves at least one component from the candidate. A
candidate is minimal if removing any component from it makes
it no longer a hitting set. We are only interested in minimal
candidates, as they can subsume others of higher cardinality.

T c1 c3 e
t2 0 1 fail
t4 1 1 fail

Fig. 6: Spectrum depicting a single-fault after filtering passing
tests.

If the minimal hitting set of the filtered spectrum yields
solutions of cardinality 1, it means that there is at least
one component that is involved every fault-revealing test.
In Figure 6, component c3 is active in every test, so we
consider the fixing commit as being a single-fault fix.

Another example is depicted in Figure 7. In this filtered
spectrum, the set of components {c3, c5} has the minimal
cardinality so that it explains every test failure. The fact that
this spectrum’s hitting set contains candidates of cardinality
greater than 1 means that there is no one component that,
when modified, causes all tests to pass. This is true because



no component is active on every failing test. Therefore, in this
case, the fixing commit is labeled as a multiple-fault fix.

T c1 c3 c5 e
t2 0 1 0 fail
t4 1 1 0 fail
t5 0 0 1 fail

Fig. 7: Spectrum depicting a multiple-fault.

V. EMPIRICAL STUDY

To answer the research questions outlined in Section III, we
conducted a large scale empirical study a large scale involving
hundreds of open-source projects. The experiment entailed
mining their code repositories and finding fault-fixing commits
following the methodology described in Section IV. After-
ward, each pinpointed fault was diagnosed using the fault-
localization techniques described in Section II. This section
describes our experimental setup and reports our findings.

A. Experimental Setup

The subjects of our study are open-source software projects
originally gathered for a study on pull request distributed
development on Github [25]. It encompasses over 6,000
publicly available code repositories for projects written in
Java, Javascript, Python, Ruby and Scala. We have chosen
this dataset due to its breadth of subjects and the fact that
the vast majority of them contain test-cases — which are
a requirement for spectrum-based analyses. The dataset was,
however, filtered to fit the needs of our experiment. We have
applied the following project filtering schemes:

1) We only consider the dataset’s 1,288 Java projects.
Projects written in other languages were discarded due
to the fact that our tooling only handles Java source code
(1,288 subjects out of 6,001).

2) Non-Apache Maven projects were discarded. Maven is
a requisite for our analysis because we use one of its
plugins to instrument code at runtime to obtain a test
execution’s program spectra. We also ensure that the
mvn compile command terminates successfully and all
dependencies can be resolved (701 subjects out of 1,288).

3) Projects should contain tests, otherwise fault-localization
tools are unable to perform the analysis (279 subjects out
of 701).

Out of all projects from the dataset, we end up considering 279
Java projects as our subjects.5 On average, subject’s test-suites
were comprised of 596 tests.

The repository miner for classifying fixes as described
in Section IV is available at https://github.com/aperez/
single-fault-prevalence. The miner uses the Python library
GitPython6 to iterate throughout the repository’s history. Gath-
ering program spectra is done through the DDU Maven

5The full list of experimental subjects is available at https://github.com/
aperez/single-fault-prevalence.

6Available at https://pypi.python.org/pypi/GitPython.

plugin,7 a tool that calculates a diagnosability metric based
on program spectra [26]. The tool shares the same internals
for runtime instrumentation of Java programs as the GZoltar
fault-localization tool. Minimal hitting set computation from
the fault classifier is done using Abreu et al.’s Staccato
algorithm [23].

Spectrum-based fault localization is performed at the
method granularity. This is to match the ground truth generated
by the repository (i.e., which components are indeed faulty),
so that diagnostic effort measurements can be computed.

B. Metrics Used

To assess diagnostic performance, we resort to the effort
measurement (also known as wasted effort), commonly used in
fault-localization research [27]. Since fault-localization tech-
niques output a ranked list of components sorted by some
fault predictor score, effort measures the average number of
components to be inspected by following the ranked list until
the real faulty component is reached:

effort(j) =
|{si|si > sj}|+ |{sk|sk=sj}|

2

|C|
(2)

where sc is the fault predictor score for a component c. The
effort value is typically normalized by dividing the number
of components in a system. An effort value of 0 indicates an
ideal ranking where the faulty component is at the top and
therefore no spurious code inspections will occur. Conversely,
effort’s lower bound value is 1. It states that the entire system
will be inspected until the real fault is reached.

In the case of multiple-fault scenarios, the effort metric by
itself is insufficient to judge diagnostic efficiency [27]. This is
because more than one faulty component is scattered through-
out the ranked list produced by fault-localization techniques.
Given a set of k faulty components F = {f1, f2, · · · , fk}, to
better assess the diagnostic efficiency in these scenarios we
provide three measurements:

1) First-fault effort, which is the effort required to reach the
first faulty component:

min {effort(j)|j ∈ F} (3)

2) Average-fault effort, an average of efforts to reach all
faulty components:

{effort(j)|j ∈ F} (4)

3) Worst-fault effort, the effort required to reach the last
faulty component in the ranking:

max {effort(j)|j ∈ F} (5)

We also compare the performance of each multiple-fault
scenario to an artificially-crafted single-faulted equivalent. The
artificial scenario is a proxy for a spectrum that only contains
one component responsible for all erroneous behavior, aiding
us to compare and contrast the outcome of fault-localization
techniques between single- and multiple-fault versions of the

7Available at https://github.com/aperez/ddu-maven-plugin.



same problem. For that, we merge all faulted components
into one, as depicted in the example from Figures 8a and 8b.
Figure 8a shows a program spectrum with its two faults high-
lighted — i.e., components c1 and c3. Our merging strategy
creates a new spectrum (Figure 8b) with all faulty components
stripped and inserts a new component with the faulty compo-
nents’ coverage activity merged — this essentially amounts to
performing a bitwise or among all faulty components’ columns
from the original spectrum. This way, we can judge what was
the impact on diagnostic accuracy by measuring:

∆effort = effort− effortmerged (6)

∆effort values range from -1 to 1. A value of 1 means that
the diagnostic efficiency is minimal in the multiple-fault sce-
nario and maximal in its single-faulted equivalent. Conversely,
∆effort = -1 states that efficiency is maximal for the original
scenario and minimal for the single-faulted one. ∆effort = 0
means that both scenarios yield the same effort to diagnose.

T c1 c2 c3 c4 e
t1 0 1 1 0 pass
t2 1 0 0 0 fail
t3 0 1 0 1 pass
t4 0 0 1 0 fail

(a) Before faulty component merger.
T c2 c4 c1,3 e
t1 1 0 1 pass
t2 0 0 1 fail
t3 1 1 0 pass
t4 0 0 1 fail

(b) After faulty component merger.

Fig. 8: Multiple-fault components merge strategy.

In the eventuality of a spectrum’s minimal hitting set step
described in Section IV-B4 producing more than one minimal-
cardinality result, it means that the spectrum has more than one
fault candidate — i.e., there are multiple sets of components
that can independently explain failing tests. Figure 9 provides
an example scenario where the hitting set encompasses two
fault candidates of cardinality 1 — c1 and c3. At the spectrum
level of abstraction, one cannot distinguish the real fault
set among the minimal-cardinality elements of the hitting
set. To do so, one has to look at the source code from
the fixing commit that provides the ground truth — and in
most cases even then this is not enough, as one may need
domain knowledge about the problem that the program is
trying to solve to perform such code inspection. However,
from a spectrum-based fault localization perspective, the fact
is that any fault candidate could contain the fault. Since we are
interested in the general case, we average the fault predictor
values and effort scores for every scenario that has more than
one minimal-cardinality set able to explain all observed errors.
Note that this applies to both single-faulted and multiple-
faulted scenarios.

T c1 c2 c3 c4 e
t1 1 1 1 0 fail
t2 1 0 1 0 fail
t3 0 0 1 1 pass
t4 0 1 0 1 pass

Fig. 9: Spectrum with multiple minimal-cardinality hitting
sets.

C. Results

Out of the 279 subjects considered for evaluation, our
classifier found fixing commits in 72 of them. What this figure
tells us is not that 207 projects did not have any bug fixes,
but rather that test-suites, when run against older versions
of the code, do not produce any test-failure (although some
still produce runtime errors, which are discarded as discussed
in Section IV-B1). This means that no regressions are found
throughout the projects’ history. Also regarding these 207
projects, we can state that when developers find bugs in the
code, they either (1) do not create a test-case exercising such
a fault or (2) do not isolate their changes, adding code for
new functionality to the same commit, along with code for
new test-cases, causing it to no longer being labeled as a bug-
fixing commit.

Overall, 12,417 commits were inspected, resulting in 1375
detected fixes (11% of inspected commits). Out of the detected
fixes, 1135 of them (82.5%) were single-faulted, where one of
the components modified by the fixing commit is sufficient to
explain the faulty version’s failing tests.

The histogram and violin plot from Figure 10a illustrate
single-fault prevalence on different projects. For example,
the prevalence of single faults ranges from 80 to 90% for
15 projects. The vertical dashed line in the plot indicates
the median value of single-fault prevalence, 91.1%. Note
that more than half of all projects considered show single-
fault prevalence of 90% or more. Even considering the 25%
percentile, the prevalence figure amounts to 79.6%. These
prevalence results attest to the ubiquity of single-faults in
open-sourced projects. Figure 10b shows fault cardinality for
all detected fixes. It shows the quantity of fixes decaying
exponentially with the fault cardinality.

Revisiting the first research question:

RQ1: How prevalent are single-fault fixes in open-source
projects?

Answer: We observed that 1135 fixes out of 1375 have
eliminated a single fault from the system, yielding a single-
fault prevalence of 82.5%.

We now shift our attention to the fixes classified as single-
faulted to assess their diagnostic performance. For that, we
show Figure 11, which is a cumulative plot of the effort
required to detect the faults in our dataset when following
the ranking generated by each fault predictor. The dashed
vertical line represents an effort threshold of 0.05. We vi-
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Fig. 10: Quantitative analysis of detected fixes.

sually show this threshold because one should not assume
developers continue following the fault-localization ranking
at this point, particularly when considering large codebases.
This thresholding criterion is in agreement with the study by
Parnin et al. [28], where developers were found to abandon
the ranking if they inspected too many false positives; and the
work of Nguyen et al. in program repair [14], that uses the
predictor ranking as a set of clues to start the automated repair
process, and places an explicit time-bounded threshold in the
exploration of the ranking.

It is immediately apparent that the O fault predictor has
the highest diagnostic efficiency, with over 90% of faults
being at the top of their respective rankings (since their low
effort value). OP also fares comparably to O, diagnosing over
80% of faults with virtually zero wasted effort. In fact, at
the exploration threshold, O and OP manage to detect 95.2%
and 92.5% respectively, attesting to their accuracy. Other fault
predictors fare worse compared to both O and OP . In fact, at
the effort = 0.05 threshold highlighted in the vertical dashed
line, other fault predictors’ detection rate ranges from 57.2%
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Fig. 11: Diagnostic effort throughout single-fault scenarios.
Values at threshold – D2: 57.2%, O: 95.2%, OP : 92.5%,
Ochiai: 70.6%, Tarantula: 79.5%.

to 79.5% of total faults.
Revisiting the second research question:

RQ2: What is the effort to diagnose single-faults with
state-of-the-art fault predictors?

Answer: We show diagnostic for several fault predictors. One
that fared consistently well was the O metric, with a fault
detection rate amounting to over 90% while having virtually
zero wasted effort.

Lastly, we look at multiple-fault scenarios. It is worth
reminding the reader that a single effort measurement is
insufficient to accurately portray diagnostic efficiency for
multiple-faulted spectra. The effort metric measures the num-
ber of inspections required until the fault is reached. However,
the erroneous behavior spans more than one component in
these multiple-faulted scenarios. Hence, we introduce in Sec-
tion V-A the notion of first-fault, average-fault and worst-fault
efforts. Figures 12a to 12c plot such metrics for multiple-
faulted scenarios.

From the outset, we can notice that first-fault, average-
fault and worst-fault efforts for the O fault predictor are very
different from the remaining predictors. O detects a very low
amount of components at low effort, an then there is a sudden
jump in detection rate at effort’s halfway point. In fact, this is
to be expected, since according to O’s definition, it attributes
a score of −1 to every component in which n01 > 0. In other
words, any component that is not active in every failing test,
is given a negative score. However, in multiple-fault scenarios,
there is rarely ever a faulty component active in all failing tests,
meaning that according to O most components in the system
will be scored with the same value, at which point locating
the fault becomes essentially a random task. The other metrics
produce fairly high fault-detection rates at low effort values to
reach at least one of the faulty components (i.e., considering
the first-fault effort), with D2, OP and Ochiai having over 70%
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(a) First-fault. Values at threshold – D2: 79.6%, O: 3.5%, OP : 72.6%,
Ochiai: 75.2%, Tarantula: 58.4%.
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(b) Average-fault. Values at threshold – D2: 46.9%, O: 0%, OP : 36.3%,
Ochiai: 41.5%, Tarantula: 44.2%.
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(c) Worst-fault. Values at threshold – D2: 39.8%, O: 0%, OP : 33.6%,
Ochiai: 36.2%, Tarantula: 39.5%.

Fig. 12: Diagnostic effort throughout multiple-fault scenarios.

detection rate at our effort = 0.05 threshold. As to be expected,
the detection rate decreases from the first-fault to the average-
fault and from the average-fault to the worst-fault. Considering
worst-fault effort (i.e., the effort required to pinpoint all faults
in the system), detection rates range from 33.6% using OP to
39.8% using D2.

TABLE II: Metric medians and statistical tests.

Median Median Median Wilcoxon
Value Effort ∆Effort Signed-rank

Z = 3059.0D2 1.00 0.02 0.00
p-value = 0.885

Z = 0.0
O -1.00 0.50 0.50

p-value = 4.07×10−20
Z = 604.5

OP 3.01 0.03 0.02
p-value = 2.85×10−13

Z = 1046.0
Ochiai 0.56 0.02 -0.02

p-value = 6.06×10−09
Z = 2351.0

Fi
rs

t
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t

Tarantula 0.99 0.02 -0.02
p-value = 3.64×10−02

Z = 2183.0
D2 0.96 0.05 0.04

p-value = 2.95×10−03
Z = 0.0

O -1.00 0.50 0.50
p-value = 2.78×10−20

Z = 0.0
OP 2.50 0.07 0.07

p-value = 2.78×10−20
Z = 2901.0Ochiai 0.42 0.05 0.00

p-value = 0.651
Z = 2656.0

Av
er

ag
e-

Fa
ul

t

Tarantula 0.92 0.05 0.00
p-value = 0.105

Z = 2070.0
D2 0.17 0.08 0.06

p-value = 9.79×10−04
Z = 0.0

O -1.00 0.50 0.50
p-value = 2.78×10−20

Z = 0.0
OP 1.03 0.10 0.09

p-value = 2.78×10−20
Z = 1914.0

Ochiai 0.26 0.07 0.03
p-value = 1.05×10−03

Z = 1950.0

W
or

st
-F

au
lt

Tarantula 0.85 0.07 0.03
p-value = 2.72×10−04

Table II provides some additional information about the
multiple-faulted scenarios. The table shows, for each fault
predictor, its median value, median effort, and median
∆effort — used for comparing against an equivalent single-
faulted scenario, as described in Section V-A. A statistical
test we performed but omitted from the table due to space
constraints was the was the Shapiro-Wilk test for normality
of effort data. The results tell us that the distributions are not
normal, with confidence of 99%. That allowed us to perform
a Wilcoxon signed-rank test to compare with the artificially-
crafted equivalent single-faulted scenario, whose results are
seen in the last column of Table II.

Given that the effort data is not normally distributed and
that each observation is paired, we use the non-parametrical
statistical hypothesis test Wilcoxon signed-rank. Our null-
hypothesis is that the median difference between the two
observations (i.e., ∆effort) is zero. We show the resulting Z
statistic and p-value. With 99% confidence, we can refute the
null-hypothesis in all scenarios but D2 first-fault, Tarantula
first-fault, Ochiai average-fault and Tarantula average-fault. In
these cases, the effort values are comparable to their single-
faulted counterparts. In cases where the null-hypothesis is
refuted, only one yielded a negative ∆effort — Ochiai first-
fault — meaning that finding the first component out of
the multiple components that comprise the fault was faster
than finding the merged single-faulted component. All in all,
we can say that, except for the O metric where ∆effort has
a big magnitude, the effort measurements are comparable



to their single-faulted counterparts when we consider the
effort required to find one fault in the ranking. Diagnostic
performance decreases when considering the effort required
to find all faults in the system.

Revisiting the third research question:

RQ3: What is the impact on diagnostic performance when
multiple-faults are considered?

Answer: With the exception of the O fault predictor, which
performs with random accuracy, the first-fault effort measure-
ments of other fault predictors are comparable to the diagnostic
effort for single-faulted equivalent scenarios. To diagnose all
faults in a system, the fault predictors’ accuracy decreases.
Aside from O, the performance of other predictors when faced
with multiple-fault scenarios is similar.

VI. DISCUSSION

We discuss the practical implications of our findings, as well
as outline the potential threats to their validity.

A. Practical Implications

Practical implications of this study are:
• We argue that our experimental results suggest a method-

ology to be followed when developers face failing test
cases. As we have shown that there is a high likelihood
that there is only one bug detected by failing tests, devel-
opers can try to find the fault by inspecting the ranking
generated by the OP fault predictor, since it produces
near-optimal scores in the event of single-faults while still
being usable in multiple-faulted scenarios (unlike O).

• Results suggest that closely monitoring the system as it
develops (through, for instance, a continuous integration
platform) and attempting to locate faults as soon as
failures emerge will yield debugging tasks that require
less wasted effort. This is because the likelihood of the
fix being single-faulted is high when compared to only
dealing with debugging tasks once there is a significant
number of failing tests.

• Further research is needed to find whether there is a
fault predictor that is closer to showing optimal accuracy
when diagnosing multiple faults, exhibiting a ∆effort that
approaches zero for worst-fault scenarios.

• Effective automatic fault localization paves the way to
other automatic techniques, such as automated program
repair. Our experimental results yields insight into which
technique will work best in practice. In particular, the
prevalence of single-fault fixes suggest that the OP fault
predictor will yield near-optimal rankings as input to
automatic repair techniques, while still providing some
guidance in the event of multiple faults.

B. Threats to Validity

The main threat to validity of this study is related to external
validity. When choosing the projects for our study, our aim

was to opt for projects that resemble a general large-sized
application being worked on by several people. To reduce
selection bias and facilitate the comparison of our results, we
decided to use the real-world scenarios described in the dataset
gathered by Gousios et al. [25].

A potential threat to construct validity relates to our defi-
nition of what constitutes single-faulted and multiple-faulted
fixes. Another threat to construct validity is our assumption
that any interface change is result of a change in requirements
and not the consequence of a fix. Lastly, we point out that
history-rewrite features of modern version control systems can
influence the outcome of the fault cardinality classifier. It can
be the case that many single-faulted fixing commits collapsed
into one large commit that is responsible for fixing multiple-
faults by means of commit squashing.

The main threat to internal validity lies in the complexity
of several of the tools used in our experiments, most notably
our code instrumentation tool to retrieve spectra information.

VII. CONCLUSION

We study the prevalence of single-fault fixes in open-source
Java projects, motivated by the fact that fault predictors (used
by spectrum-based fault-localization approaches) can perform
optimally in the event of a system being single-faulted. Our
hypothesis is that while a software application can have many
dormant bugs, these bugs are detected (and fixed) individually,
thus constituting single-faulted events.

We describe an approach for mining software repositories
in search for fixes — source code modifications that eliminate
faults from the system — and for classifying said fixes ac-
cording to the number of bugs they eliminate. The motivation
behind creating such methodology is to study how debugging
actually happens in practice and whether there is prevalence
of single-fault fixes throughout the development of software.

We conducted an experiment with hundreds of open-source
Java projects, mining their repositories and cataloguing the
identified fixes. Overall, we have found 1375 fixes in over
70 projects. Out of all fixes, 82.5% were single-faulted
(i.e., only eliminate one bug from the system), indicating
that single-faults are indeed prevalent among fixes. We have
found that, for the detected single-faults, fault predictors O
and OP manage to achieve high diagnostic accuracy. For
the remaining, multiple-faulted scenarios, average-fault and
worst-fault diagnostic accuracy decayed slightly using most
fault predictors. A glaring exception is with the O predictor
that, because it assumes systems are single-faulted, yields an
essentially random diagnostic performance.

Our experimental results suggest that using the OP predictor
is a sound methodology since it produces near-optimal results
for diagnosing single-faults, while still achieving usable per-
formance in multiple-faulted scenarios.

For future work, we aim to expand the scope of our
analysis to cover other fault localization methodologies besides
spectrum-based fault localization, such as mutant-based fault
localization [29], [30], delta debugging [31] and model-based
debugging [32], among others.
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