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Abstract: The growing dependence of our society on increasingly complex software systems, makes software testing ever
more important and challenging. In many domains, such as healthcare and transportation, several independent
systems, forming a heterogeneous and distributed system of systems, are involved in the provisioning of end-
to-end services to users. However, existing testing techniques, namely in the model-based testing field, provide
little tool support for properly testing such systems. Hence, in this paper, we propose an approach and a toolset
architecture for automating the testing of end-to-end services in distributed and heterogeneous systems. The
tester interacts with a visual modeling frontend to describe key behavioral scenarios, invoke test generation
and execution, and visualize test results and coverage information back in the model. The visual modeling
notation is converted to a formal notation amenable for runtime interpretation in the backend. A distributed
test monitoring and control infrastructure is responsible for interacting with the components of the system
under test, as test driver, monitor and stub. At the core of the toolset, a test execution engine coordinates test
execution and checks the conformance of the observed execution trace with the expectations derived from the
visual model. A real world example from the Ambient Assisted Living domain is presented to illustrate the
approach.

1 INTRODUCTION

Due to the increasing ubiquity, complexity, critical-
ity and need for assurance of software based sys-
tems (Boehm, 2011), testing is a fundamental lifecy-
cle activity, with a huge economic impact if not per-
formed adequately (Tassey, 2002). Such trends, com-
bined with the needs for shorter delivery times and
reduced costs, demand for the continuous improve-
ment of software testing methods and tools, in order
to make testing activities more effective and efficient.

Nowadays software is not more like simple appli-
cations but has evolved to large and complex system
of systems (DoD, 2008). A system of systems con-
sists of a set of small independent systems that to-
gether form a new system. The system of systems
can be a combination of hardware components (sen-
sors, actuators, etc.) and software systems used to
create big systems or ecosystems that can offer mul-
tiple different services. Currently, systems of systems
capture a great interest from the software engineering
research community.

Testing these distributed and heterogeneous soft-

ware systems or systems of systems, running over
interconnected mobile and cloud based platforms, is
particularly important and challenging. Some of the
challenges are: the difficulty to test the system as a
whole due to the number and diversity of individual
components; the difficulty to coordinate and synchro-
nize the test participants and interactions, due to the
distributed nature of the system; the difficulty to test
the components individually, because of the depen-
dencies on other components.

An example of a distributed and heterogeneous
system is the Ambient Assisted Living (AAL) ecosys-
tem that was prototyped in the context of the na-
tionwide AAL4ALL project (AAL4ALL, 2015). The
AAL4ALL ecosystem comprises a set of interop-
erable AAL products and services (sensors, actua-
tors, mobile and web based applications and services,
middleware components, etc.), produced by different
manufacturers using different technologies and com-
munication protocols (web services, message queues,
etc.). To assure interoperability and the integrity of
the ecosystem, it was developed and piloted a testing
and certification methodology (Faria et al., 2014), en-



compassing the specification of ‘standard’ interfaces
and component categories, the specification of unit
(component) and integration test scenarios, and the
test implementation and execution on candidate com-
ponents by independent test labs. A major problem
faced during test implementation and execution was
related with test automation, due to the diversity of
component types and communication interfaces, the
distributed nature of the system, and the lack of sup-
port tools. Similar difficulties have been reported in
other domains, such as the railway domain (Torens
and Ebrecht, 2010). In fact, we found in the literature
limited tool support for automating the whole process
of specification-based testing of distributed and het-
erogeneous systems.

Hence, the main objective of this paper is to pro-
pose an approach and a toolset architecture to au-
tomate the whole process of model-based testing of
distributed and heterogeneous systems in a seamless
way, with a focus on integration testing, but support-
ing also unit (component) and system testing. As
compared to existing approaches, the proposed ap-
proach and architecture provide significant benefits
regarding efficiency and effectiveness: the only man-
ual activity required from the tester is the creation
(with tool support) of partial behavioral models of
the system under test (SUT), using feature-rich indus-
try standard notations (UML 2 sequence diagrams),
together with model-to-implementation mapping in-
formation, being all the needed runtime test compo-
nents provided by the toolset for different platforms
and technologies; the ability to test not only the inter-
actions of the SUT with the environment, but also the
interactions among components of the SUT, follow-
ing an adaptive test generation and execution strategy,
to improve fault detection and localization and cope
with non-determinism in the specification or the SUT.

The rest of the paper is organized as follows: Sec-
tion 2 describes the state of the art. Section 3 presents
an overview of the proposed approach and test pro-
cess. Section 4 introduces the toolset architecture.
Section 5 concludes the paper and points out future
work. A running example from the AAL domain is
used to illustrate the approach presented.

2 STATE OF THE ART

We analyze in this section work in areas most closely
related with specification-based (model-based) test-
ing of distributed and heterogeneous systems.

2.1 Model-based testing

Model based testing (MBT) techniques and tools have
attracted increasing interest from academia and in-
dustry (Utting and Legeard, 2007), because of their
potential to increase the effectiveness and efficiency
of the test process, by means of the automatic gen-
eration of test cases (test sequences, input test data,
and expected outputs) from behavioral models of the
system under test (SUT). However, MBT approaches
found in the literature suffer from several limitations
(Dias Neto et al., 2007). The most common limitation
is the lack of integrated support for the whole test pro-
cess. This is a big obstacle for the adoption of these
approaches by industry, because of the effort required
to create or adapt tools to implement some parts of the
test process. Other common problems with existing
MBT approaches are the difficulty to avoid the explo-
sion of the number of test cases generated (in the first
stages of the test automation process) and the diffi-
culty to bridge the gap between the model and the im-
plementation (in the last stages of test automation pro-
cess, namely in the conversion of abstract test cases
to concrete test cases). In recent MBT approaches
(Moreira and Paiva, 2014; Faria and Paiva, 2014), re-
searchers try to overcome the first problem (test case
explosion) by the usage of behavioral models focus-
ing on specific scenarios or patterns, and the second
problem (test case concretization) by providing test
concretization and execution mechanisms that require
simple mapping information from the user.

2.2 Model-based testing approaches
using UML sequence diagrams

Being a feature-rich industry standard, UML 2 se-
quence diagrams (SD) are particularly well suited for
supporting scenario-based MBT approaches. With
the features introduced in UML 2, parameterized se-
quence diagrams (SD) can be used to model both sim-
ple and complex behavioral scenarios, with control
flow variants, temporal constraints, and conformance
control operators. Although some works exist to de-
rive test scenarios (partial behavioral specifications)
from state machine based behavioral models (full be-
havioral specifications), the construction of partial be-
havioral specifications (SDs or natural language coun-
terparts) seems more accessible for industrial adop-
tion than the construction of full behavioral specifi-
cations. For that reason, we privilege the usage of
UML SDs (irrespective of whether they are created
from scratch by the user or generated automatically
from other behavioral models).

In the literature it can be found some test automa-



tion approaches based on UML SDs, but those ap-
proaches fall short for the testing of distributed and
heterogeneous systems.

Of particular relevance in the context of this pa-
per is the UML Checker toolset developed in recent
work of the authors (Faria, 2014; Faria and Paiva,
2014), with several advantages over other approaches,
namely regarding the level of support of UML 2 fea-
tures. The toolset supports the conformance testing
of standalone object-oriented applications against test
scenarios specified by means of so called test-ready
SDs. Test-ready SDs are first translated to a form
of extended Petri Nets (Event-Driven Colored Petri
Nets) for efficient incremental conformance check-
ing, with a limited support for parallelism and con-
currency. Besides external interactions with users and
client applications, internal interactions between ob-
jects in the system are also monitored using Aspect-
Oriented Programming (AOP) techniques (Kiczales
et al., 1997), and checked against the ones specified
in the model. The testing of distributed systems is
not supported, but some of the techniques developed
have the potential to be reused for the testing of dis-
tributed and heterogeneous systems, where, instead of
modeling and testing interactions between objects in
a standalone application, one is interested in model-
ing and testing interactions between components in a
distributed system.

Other examples of test automation approaches
based on UML SDs are the SCENTOR tool, targeting
e-business EJB applications (Wittevrongel and Mau-
rer, 2001), the MDA-based approach of (Javed et al.,
2007), and the IBM Rational Rhapsody TestCon-
ductor AddOn (IBM, 2013), targeting real time em-
bedded applications. A comparison of the strengths
and weaknesses of these approaches can be found in
(Faria and Paiva, 2014).

2.3 Test automation for distributed
systems

Although we didn’t find in the literature MBT ap-
proaches supporting in an integrated fashion the
whole test automation process for distributed systems,
we found several works supporting parts of the pro-
cess, that can help in the construction of an integrated
approach and toolset. The most relevant ones are
mentioned next.

An additional difficulty in applying MBT tech-
niques for distributed systems is that their distributed
nature imposes theoretical limitations on the confor-
mance faults that can be detected by the test com-
ponents, depending on the test architecture used (Hi-
erons et al., 2011; Hierons, 2014); finding a test archi-

tecture that simultaneously maximizes the fault detec-
tion capability and minimizes the overhead and delays
caused by test coordination is still an open problem.
Existent MBT approaches for distributed systems also
lack the support for: internal interaction monitoring
(between the SUT components), to improve fault de-
tection and localization; adaptive (online) test gener-
ation strategies, to cope with non-determinism in the
specification or the SUT (Hierons, 2014); feature-rich
industry standard notations such as UML SDs.

Regarding test concretization and execution for
distributed and heterogeneous systems, we found
in the literature several reference architectures and
frameworks that can be adapted for building a fully
integrated test automation solution: test architectures
for testing distributed systems proposed by (Ulrich
and König, 1999); the STAF software testing automa-
tion framework, that can be used for coordinating
distributed test components running on multiple plat-
forms (STAF, 2014); the RemoteTest framework for
testing distributed systems, which design was pro-
posed in (Torens and Ebrecht, 2010); the FiLM run-
time monitoring tool for distributed systems (Zhang
et al., 2009); the DiCE approach for continuously and
automatically exploring and checking the behavior
of federated and heterogeneous distributed systems,
which design was proposed in (Canini et al., 2011);
the hybrid SUT test monitoring framework proposed
in (Hierons, 2014).

3 APPROACH AND PROCESS

Our main objective is the development of an approach
and a toolset to automate the whole process of model-
based testing of distributed and heterogeneous sys-
tems in a seamless way, with a focus on integration
testing, but supporting also unit (component) and sys-
tem testing. The only manual activity (to be per-
formed with tool support) should be the creation of
the input model of the SUT.

To that end, our approach is based on the follow-
ing main ideas:
• the adoption of different ‘frontend’ and ‘back-

end’ modeling notations, with an automatic trans-
lation of the input behavioral models created by
the user in an accessible ‘frontend’ notation (using
industry standards such as UML (OMG, 2011)),
to a formal ‘backend’ notation amenable for in-
cremental execution at runtime (such as extended
Petri Nets as in our previous work for object-
oriented systems (Faria and Paiva, 2014));

• the adoption of an online and adaptive test strat-
egy, where the next test input depends on the se-
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Figure 1: Dataflow view of the proposed test process.

quence of events that has been observed so far and
the resulting execution state of the formal backend
model, to allow for non-determinism in either the
specification or the SUT (Hierons, 2014);

• the automatic mapping of test results (coverage
and errors) to the ‘frontend’ modeling layer.

Figure 1 depicts the main activities and artifacts
of the proposed test process based on the above ideas.
The main activities are described in the next subsec-
tions and illustrated with a running example.

3.1 Visual modeling

The behavioral model is created using an appropriate
UML profile (OMG, 2011)(Gross, 2005) and an ex-
isting modeling tool. We advocate the usage of UML
2 SDs, with a few restrictions and extensions, because
they are well suited for describing and visualizing the
interactions that occur between the components and
actors of a distributed system. UML deployment di-
agrams can also be used to describe the distributed
structure of the SUT. Mapping information between

the model and the implementation, needed for test ex-
ecution (such as the actual location of each compo-
nent under test), may also be attached to the model
with tagged values.

To illustrate the approach, we use a real world ex-
ample from the AAL4ALL project, related with a fall
detection and alert service. As illustrated in Figure 2,
this service involves the interaction between different
heterogeneous components running in different hard-
ware nodes in different physical locations, as well as
three users.

Figure 2: UML deployment diagram of a fall detection sce-
nario.

A behavioral model for a typical fall detection sce-
nario is shown in Figure 3. In this scenario, a care
receiver has a smartphone that has installed a fall de-
tection application. When this person falls, the ap-
plication detects the fall using the smartphone’s ac-
celerometer and provides the user a message which
indicates that it has detected a drop giving the pos-
sibility for the user to confirm whether he/she needs
help. If the user responds that he/she does not need
help (the fall was slight, or it was just the smartphone
that fell to the ground), the application does not per-
form any action; however, if the user confirms that
needs help or does not respond within 5 seconds (use-
ful if the person became unconscious due to the fall),
the application raises two actions in parallel. On the
one hand, it makes a call to a previously clearcut num-
ber to contact a health care provider (in this case can
be a formal or informal caregiver); on the other hand,
it sends the fall occurrence for a Personal Assistance
Record database and sends a message to a portal that



Figure 3: UML sequence diagram representing the interactions of the fall detection scenario. The diagram is already painted
after a failed test execution in which the fall detection application didn’t send an emergency call.

is used by a caregiver (e.g. a doctor or nurse) that
is responsible for monitoring this care receiver. The
last two actions are performed through a central com-
ponent of the ecosystem called AALMQ (AAL Mes-
sage Queue), which allows incoming messages to be
forwarded to multiple subscribers, according to the
publish-subscribe pattern (Gamma et al., 1994). To
facilitate the representation of a request for input from
the user with a timeout and a default response, we use
the special syntax request(confirm fall, {yes, no}, yes,
5 sec), where the first argument identifies the mes-
sage, the second argument is the set of valid answers,
the third is the default answer in case of timeout, and
the last argument is the timeout time.

3.2 Visual to formal model translation

For the formal runtime model, we advocate the us-
age of Event-Driven Colored Petri Nets – a sort of
extended Petri Nets proposed in our previous work
for testing object-oriented systems (Faria and Paiva,
2014), with the addition of time constraints as found
in Timed Petri Nets. We call the resulting Petri Nets
Timed Event-Driven Colored Petri Nets, or TEDCPN
for short. Petri Nets are well suited for describing in
a rigorous and machine processable way the behavior
of distributed and concurrent systems, usually requir-

ing fewer places than the number of states of equiv-
alent finite state machines. Translation rules from
UML 2 SDs to Event-Driven Colored Petri Nets have
been defined in (Faria and Paiva, 2014). Rules for
translating time and duration constraints in SDs to
time constraints in the resulting Petri Net can also be
defined.

Figure 4 shows the TEDCPN derived from the SD
of Figure 3, according to the rules described in (Faria
and Paiva, 2014) and additional rules for translating
time constraints.

The generated TEDCPN is partitioned into a set
of fragments corresponding to the participants in the
source SD. Each fragment describes the behavior lo-
cal to each participant and the communication with
other participants via boundary places.

Transitions may be optionally labeled with an
event, a guard (with braces) and a time interval (with
square brackets). Events correspond to the sending
or receiving of messages in the source SD. Guards
correspond to the conditions of conditional interac-
tion fragments in the source SD. Time intervals cor-
respond to duration and time constraints in the source
SD. A transition can only fire when there is at least
one token in each input place, the event (if defined)
has occurred, the guard (if defined) holds, and the
time elapsed since the transition became enabled (i.e.,
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since there is a token in each input place) lies within
the time interval (if defined).

Incoming and outgoing arcs of a transition may be
labeled with a pattern matching expression describing
the value (token) to be taken from the source place or
put in the target place, respectively, being 1 the de-
fault. For example, in Figure 4 the transition labeled
“?answer(x)” has an input arc labeled “x”, where “x”
represents a local variable of the transition. The tran-
sition can only fire if the value of the token in the
source place is the same as the value of the argument
of the event. Then, the value of “x” is placed in the
target place.

For testing purposes, the events in the runtime
model are marked as observable (default) or control-
lable. Controllable events (underlined) are to be in-
jected by the test harness (playing the role of a test
driver, simulating an actor) when the corresponding
transition becomes enabled. Controllable events cor-
respond to the sending of messages from actors in the
source SD. All other events are observable, i.e., they
are to be monitored by the test harness. For example,
when the TEDCPN of the example starts execution
(i.e., a token is put in the start place), the initial un-
labeled transition is executed and a token is placed
in the initial place of each fragment. At that point,
the only transition enabled is the one labeled with the

“!fall signal” controllable event, so the test harness
will inject that event (simulating the user) and test ex-
ecution proceeds.

This mechanism provides a unified framework
with monitoring, testing and simulation capabilities.
In one extreme case, all events in the model may be
marked as observable, in which case the test system
acts as a runtime monitoring and verification system.
In the other extreme case, all events in the model may
be marked as controllable, in which case the test sys-
tem acts as a simulation system. This also allows, the
usage of the same model with different markings of
observable and controllable events for integration and
unit testing.

3.3 Test generation and execution

3.3.1 Test generation

Using the UML 2 interaction operators, a single SD,
and hence the TEDCPN derived from it, may describe
multiple control flow variants, that require multiple
test cases for being properly exercised.

In the running example, from the reading of the
set of interactions represented in Figure 3, one eas-
ily realizes that there are three test paths to be exer-
cised (with at least one test case for each test path).



The first test path (TP1) is the case where the care re-
ceiver responds negatively to the application and the
application doesn’t trigger any action. The second
test path (TP2) is the situation where the user con-
firms to the application that he/she needs help and af-
ter that the application triggers the actions. The last
test path (TP3) corresponds to the situation where the
user doesn’t answer within the defined time limit and
the application triggers the remaining actions auto-
matically. If one wants also to exercise the boundary
values of allowed response time (close to 0 and close
to 5 seconds), then two test cases can be considered
for each of the test paths TP1 and TP2, resulting in a
total of 5 test cases.

Equivalently, in order to exercise all nodes, edges
and boundary values in the TEDCPN, several test
cases are needed. In the example, one could exercise
the two outgoing paths after the “?conf fall” event,
the two possible values of variable “x” in the “!an-
swer(x)” event, and the two boundary values of the
“[0, 5 sec]” interval, in a total of 5 test cases.

In general, the required test cases can be gener-
ated using an offline strategy (with separate genera-
tion and execution phases) or an online test strategy
(with intermixed generation and execution phases)
(Utting et al., 2012). In an offline strategy, the test
cases are determined by a static analysis of the model,
assuming the SUT behaves deterministically. But that
is not often the case, so we prefer an online, adaptive,
strategy, in which the next test action is decided based
on the current execution state. Whenever multiple al-
ternatives can be taken by the test harness in an exe-
cution state, the test harness must choose one of the
alternatives and keep track of unexplored alternatives
(i.e., model coverage information) to be exercised in
subsequent test repetitions.

3.3.2 Test execution

Test execution involves the simultaneous execution
of: (i) the set of components under test (CUTs); (ii)
the formal runtime model (TEDCPN), dictating the
possible test inputs and the expected outputs from the
CUTs in each step of test execution; (iii) a local test
component for each CUT, running in the same node
of the CUT, able to perform the roles of test driver
(i.e., send test inputs to the CUT, simulating an actor)
and test monitor (i.e., monitor all the messages sent or
received by the CUT).

The collection of monitored events (message
sending and receiving events) forms an execution
trace. Testing succeeds if the observed execution
trace conforms to the formal behavioral model, in the
sense that it belongs to the (possibly infinite) set of
valid traces defined by the model.

Conformance checking is performed incremen-
tally as follows: (i) initially, the execution of the TED-
CPN is started by placing a token in the start place
and firing transitions until a quiescent state is reached
(a state where no transition can fire); (ii) each time a
quiescent state is reached having an enabled transition
labeled with a controllable event, the test harness it-
self generates the event (i.e., the message specified in
the event is sent to the target CUT by the appropriate
test driver) and the execution status of the TEDCPN
is advanced to a new quiescent state; (iii) each time
an observable event is monitored (by a test monitor),
the execution state of the TEDCPN is advanced until
a new quiescent state is reached; (iv) the two previous
steps are repeated until the final state of the TEDCPN
is reached (i.e., a token is placed in the final place),
in which case test execution succeeds, or until a state
is reached in which there is no controllable event en-
abled and no observable event has been monitored for
a defined wait time, in which case test execution fails.
The latter situation is illustrated in Figure 4. Depend-
ing on the conformance semantics chosen, the obser-
vation of an unexpected event may also be considered
a conformance error.

To minimize communication overheads, the TED-
CPN can itself be executed in a distributed fashion,
by executing each fragment of the ‘global’ TEDCPN
(describing the behavior local to one participant and
the communication with other participants via bound-
ary places) by a local test component. Communica-
tion between the distributed test components is only
needed when tokens have to be exchanged via bound-
ary places.

When a final (success or failure) state is reached,
the Test Diagnosis and Reporting activity is responsi-
ble to analyze the execution state of the TEDCPN and
the collected execution trace, and produce meaningful
error information.

Model coverage information is also collected dur-
ing test execution, to guide the selection of test inputs
and the decision about when to stop test execution, as
follows: when it is reached a quiescent state of the
TEDCPN with multiple controllable events enabled
leading to different execution paths, the test harness
shall generate an event that leads to a previously un-
explored path; when a final state of the TEDCPN is
reached, test execution is restarted if there are still un-
explored (but reachable) paths.

3.4 Test results mapping

At the end of test execution it is important to reflect
the test results back in the visual behavioral model
created by the user. As an example, the marking



shown in the net of Figure 4 corresponds to the fi-
nal state of a failed test execution in which the Fall
Detection App didn’t send an emergency call. By a
simple analysis of this final state (and traceability in-
formation between the source SD and the TEDCPN),
it is possible to point out to the tester which messages
in the source SD were covered and what was the cause
of test failure (missing ”emergency call” message), as
shown in Figure 3.

4 TOOLSET ARCHITECTURE

Figure 5 depicts a layered architecture of a toolset for
supporting the test process and approach described in
the previous section, promoting reuse and extensibil-
ity.

At the bottom layer in Figure 5, the SUT is com-
posed by a set of components under test (CUT), ex-
ecuting potentially in different nodes (OMG, 2011).
The CUT interact with each other (usually asyn-
chronously) and with the environment (users or ex-
ternal systems) through well defined interfaces at
defined interaction points or ports (Hierons, 2014;
Gross, 2005).

The three layers of the toolset are described in the
following sections.
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Figure 5: Toolset architecture.

4.1 Visual modeling environment

At the top layer, we have a visual modeling environ-
ment, where the tester can create a visual behavioral
model of the SUT, invoke test generation and execu-
tion, and visualize test results and coverage informa-
tion back in the model.

This layer also includes a translation tool to auto-
matically translate the visual behavioral models cre-
ated by the user into the formal notation accepted by
the test execution manager in the next layer, and a
mapping tool to translate back the test results (cover-
age and error information) to annotations in the visual
model.

The model transformations can be implemented
using existing MDA technologies and tools (Völter
et al., 2013).

4.2 Test execution engine

At the next layer, the test execution engine is the core
engine of the toolset. It comprises a model execution
& conformance checking engine, responsible for in-
crementally checking the conformance of observed
execution traces in the SUT against the formal run-
time model derived from the previous layer, and a test
execution manager, responsible for initiating test ex-
ecution (using the services of the next layer), forward
execution events (received from the next layer) to the
model execution & conformance checking engine, de-
cide next actions to be performed by the local test
driving and monitoring components in the next layer
of the system, and produce test results and diagnosis
information for the layer above.

The model execution & conformance checking
engine can be implemented by adapting existing Petri
net engines, such as CPN Tools (Jensen et al., 2007).

4.3 Distributed test monitoring and
control infrastructure

We adopt a hybrid test monitoring approach as pro-
posed in (Hierons, 2014), combining a centralized
‘tester’ and a local ‘tester’ at each port (component
interaction point) of the SUT, that was shown to lead
to more effective testing than a purely centralized
approach (where a centralized tester interacts asyn-
chronously with the ports of the SUT) or a purely dis-
tributed approach (where multiple independent dis-
tributed testers interact synchronously with the ports
of the SUT).

Hence, the Distributed Test Monitoring and Con-
trol Infrastructure comprises a set of local test driv-
ing and monitoring (LTDM) components, each com-



municating (possibly synchronously) with a compo-
nent under test (CUT), performing the roles of test
monitor, driver and stub; and a test communication
manager (TCM) component, that (asynchronously)
dispatches control orders (coming from the previous
layer) to the LTDMs and aggregates monitoring infor-
mation from the LTDMs (to be passed to the previous
layer).

During test execution, the TEDCPN may be ex-
ecuted in a centralized or a distributed mode, de-
pending on the processing capabilities that can be
put in the LTDM components. In centralized mode,
the LTDM components just monitor all observable
events of interest and send them to the central TEM;
they also inject controllable events when requested
from the central TEM. In distributed mode, a copy
of each fragment (up to boundary places) is sent to
the respective LTDM component for local execution.
When there is the need to send a token to a bound-
ary place, the LTDM sends the token to the central
TEM, which subsequently dispatches it to the con-
sumer LTDM. Because of possible delays in the com-
munication of tokens through boundary places, the
LTDM components must be prepared to tentatively
accept observable events before receiving enabling to-
kens in boundary places.

This infrastructure may be implemented by adapt-
ing and extending existing test frameworks for dis-
tributed systems, such as the ones described in Sec-
tion 2.3.

Different LTDM components will be implemented
for different platforms and technologies under test,
such as WCF (Windows Communication Founda-
tion), Java EE (Java Platform, Enterprise Edition),
Android, etc. However, a LTDM component imple-
mented for a given technology will be reused without
change to monitor and control any component under
test that uses that technology. For example, in our pre-
vious work for automating the scenario-based testing
of standalone applications written in Java, we devel-
oped a runtime test library able to trace and manipu-
late the execution of any Java application, using AOP
(aspect-oriented programming) instrumentation tech-
niques with load-time weaving. In the case of a dis-
tributed Java application, we would need to deploy
a copy of that library (or, more precisely, a modi-
fied library, to handle communication) together with
each Java component under test. In the case of a dis-
tributed system implemented using other technologies
(with different technologies for different components
in case of heterogeneous systems), similar test mon-
itoring components suitable for the technologies in-
volved will have to be deployed.

5 CONCLUSIONS

In this paper, it was presented a novel approach and
process for automated scenario-based testing of dis-
tributed and heterogeneous systems. It was also pre-
sented the architecture of a toolset able to support and
automate the proposed test process. Based in a mul-
tilayer architecture and using a hybrid test monitor-
ing approach combining a centralized ‘tester’ and a
local ‘tester’ this toolset promotes reuse and extensi-
bility. In the approach proposed, the tester interacts
with a visual modeling front-end to describe key be-
havioral scenarios of the SUT using UML sequence
diagrams, invoke test generation and execution, and
visualize test results and coverage information back
in the model using a color scheme (see Figure 3). In-
ternally, the visual modeling notation is converted to
a formal notation amenable for runtime interpretation
(see Figure 4) in the back-end. A distributed test mon-
itoring and control infrastructure is responsible for in-
teracting with the components of the SUT, under the
roles of test driver, monitor and stub. At the core of
the toolset, a test execution engine coordinates test ex-
ecution and checks the conformance of the observed
execution trace with the expectations derived from the
visual model. For better understanding the approach
and toolset architecture proposed, a real world exam-
ple from the AAL domain was presented along the
paper.

As future work we will implement a toolset fol-
lowing the architecture (represented in Figure 5) and
working principles presented in this paper, taking ad-
vantage of previous work for automating the integra-
tion testing of standalone object-oriented systems. To
experimentally assess the benefits of the approach and
toolset, industrial level case studies will be conducted,
with at least one in the AAL domain.

With such a toolset, we expect to significantly
reduce the cost of testing distributed and heteroge-
neous systems, from the standpoint of time, resources
and expertise required, as compared to existing ap-
proaches.
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