Computer Languages, Systems & Structures 44 (2015) 218-237

Contents lists available at ScienceDirect

COMPUTER
LANGUAGES

Computer Languages, Systems & Structures ’

journal homepage: www.elsevier.com/locate/cl

On the verification of architectural reconfigurations @CmsMark

Alejandro Sanchez *"*, Alexandre Madeira ", Luis S. Barbosa "

@ Universidad Nacional de San Luis, Ejército de los Andes 950, D5700HHW Argentina

> HASLab INESC TEC & Universidade do Minho, 4710-057 Portugal

ARTICLE INFO ABSTRACT

Article history: In a reconfigurable system, the response to contextual or internal change may trigger

Rece?ved 6 Feb{uary 2015 reconfiguration events which, on their turn, activate scripts that change the system's

g(e)cf/}VEdzgiéeWSEd form architecture at runtime. To be safe, however, such reconfigurations are expected to obey
ay

the fundamental principles originally specified by its architect. This paper introduces an
approach to ensure that such principles are observed along reconfigurations by verifying
them against concrete specifications in a suitable logic. Architectures, reconfiguration
Keywords: scripts, and principles are specified in ArcHEry, an architectural description language with
Architectural reconfiguration formal semantics. Principles are encoded as constraints, which become formulas of a two-
/I\\Argl;;tleglglir:l description language layer graded hybrid logic, where the upper layer restricts reconfigurations, and the lower
Graded hybrid logic ?ayer constrains the res.ulting configurations. Constraints are verified by translating them

into logic formulas, which are interpreted over models derived from Arctery specifications
of architectures and reconfigurations. Suitable notions of bisimulation and refinement, to
which the architect may resort to compare configurations, are given, and their relation-
ship with modal validity is discussed.

Accepted 10 July 2015
Available online 17 July 2015

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of dynamic architectural reconfiguration [1] is to maintain the quality level of a system as contextual or
internal conditions vary. This is primarily achieved through a combination of sensors, which somehow measure the system,
and actuators, i.e., scripts which modify the system's architecture under specified situations. Reconfigurations, however, may
disrupt the basic design principles, originally fixed by the architectural patterns in use. Therefore, a mechanism is required
to ensure that emerging reconfigurations conform to the design principles, regardless of how they take place.

This paper introduces an approach to provide such a mechanism. It focuses on reconfigurations that constitute undesired
sequences of change, or that lead to forbidden configurations. Design principles are specified as formulas in a modal logic,
and then are verified against models of reconfigurations. For this, we extend an architectural description language (ADL) [2]
called Archery [3,4], which is a domain specific language [5] used to animate, analyse and verify system's architectures. It is
organized as a core and a number of modules. The core is for modelling architectures in terms of architectural patterns, and
the modules are for specifying constraints and reconfiguration scripts. A constraint restricts either structure, behaviour or
possible reconfigurations of a system. Reconfiguration scripts are executed by a configuration manager when conditions,
specified as constraints, hold. The language semantics is given by a translation into a process algebra [3], for the behavioural
part, and by an encoding into bigraphical reactive systems [4], for the structural part. Constraints are translated into a modal

* Corresponding author.
E-mail addresses: asanchez@unsl.edu.ar (A. Sanchez), madeira@di.uminho.pt (A. Madeira), Isb@di.uminho.pt (L.S. Barbosa).

http://dx.doi.org/10.1016/j.c1.2015.07.001
1477-8424/© 2015 Elsevier Ltd. All rights reserved.

www.sciencedirect.com/science/journal/14778424
www.elsevier.com/locate/cl
http://dx.doi.org/10.1016/j.cl.2015.07.001
http://dx.doi.org/10.1016/j.cl.2015.07.001
http://dx.doi.org/10.1016/j.cl.2015.07.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.07.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.07.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.07.001&domain=pdf
mailto:asanchez@unsl.edu.ar
mailto:madeira@di.uminho.pt
mailto:lsb@di.uminho.pt
http://dx.doi.org/10.1016/j.cl.2015.07.001
http://dx.doi.org/10.1016/j.cl.2015.07.001

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218-237 219

phy nl

[Ipatl admO[]

patO patl
(] (]

phy2 nl

I B N n3

\ phy2 nl

Fig. 2. A nurse being substituted.

logic and are verified against models derived from architectural specifications [6-8]. We extend ArcHery's syntax and the
underlying mathematical framework to support models and properties of reconfigurations.

The underlying logic proposed here is a two-layer graded hybrid logic. As usual in modal logic, models are relational
structures over a state space (whose elements are called worlds, states, or points). Being hybrid, the logic is equipped with

220 A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218-237

both nominals and a reference operator. The former is a proposition that is only satisfied at the world it identifies. The latter
constrains a formula to hold at the world named by a specified nominal. Together they make possible to express, for
instance, that two worlds are identical, or that their relationship is irreflexive. Other features of the logic are its hierarchical
character [9], which enforce two layers of description, the use of graded modalities to describe the cardinality of relations,
and operations to select and iterate over a set of relations. Hierarchical formulas allow us to describe models organized into
layers of abstraction, which result from the common practice of refining a world into a more elaborated model. Data
parameters are also allowed in relations.

Notions of simulation and bisimulation are introduced for models of this logic. They provide refinement and equivalence
relations, respectively, in order to discuss whether a script can replace, or be interchanged, with another.

Global properties of the logic are studied. Reconfiguration scripts are said to be equivalent if, and only if, they satisfy the
same formulas. Preservation of modal equivalence by bisimilarity is proved, and a full Hennessy-Milner like theorem arises
for the non-graded fragment.

In this context, the contributions of the article are an ADL to define two-level constraints whose first level describes
reconfigurations and the second, the resulting configurations; the characterization of the associated logic as well as of
suitable notions of model bisimulation and refinement; a derivation of models from architectural specifications; and finally
a translation that takes constraints and yields a formula in the two-layer graded hybrid logic. Behavioural constraints and
triggers are not dealt here; the interested reader is referred to the first author forthcoming thesis [10].

The approach proposed here is illustrated with a fragment of the blood transfusion process, the architecture of a medical
procedure which is critical in the sense that it may involve risk to patients [11]. In particular, it requires ensuring blood
compatibility between the donor and the patient, since an incompatible transfusion can cause a reaction with fatal
consequences. A major source of these incidents is misidentification, which might occur at stages of the process that require
checking patient's identity, or handling material with patient identification data. Architectural principles are laid down to
prevent misidentification, and the approach is used to verify them.

Organization: After describing the blood transfusion example in Section 2, a background summary of the ArcHery lan-
guage is provided in Section 3, Section 4 presents the logic, introduces bisimulation and refinement relations, and studies
their properties. Section 5 introduces the derivation of models, the translation of constraints, and illustrates the approach
with the verification of some constraints from the example. Then Section 6 describes related work, and Section 7 sums up
and mentions ongoing and future work.

2. A blood transfusion process: avoiding misidentification

The example process starts after a blood transfusion is prescribed to a patient and ends when the patient is discharged.
The procedure is supported by a software system, accessed through mobile devices by the involved staff that includes a
physician, nurses, and the administration. It requires collecting a blood sample from the patient, establishing blood group
and factor, selecting suitable blood units, performing the actual transfusion, and monitoring the patient for a given period of
time. The patient is discharged when such period ends without any adverse reaction being observed. Fig. 1 depicts an
example configuration using an informal notation, in which white rectangles represent components, small grey rectangles,
ports, and arrows, interactions. It includes a patient (pat), a physician (phy), two nurses (n1 and n2), and the administration
(adm).

The staff, however, may change during the procedure. Nurses can enter (leave, resp.) the ward, and can be assigned
(unassigned, resp.) to (from, resp.) a blood transfusion patient. These changes must avoid configurations in which a
misidentification is more likely to occur, and proceed under the supervision of the administration.

Consider, for instance, the sequence of reconfigurations represented by the transition system on the left of Fig. 2 that
substitutes nurse n2 with n3. We focus on configurations cy, c3, ¢5, and c¢;, which are refined into (informal) architectural
diagrams on the right. Configuration co is similar to that described in Fig. 1. In configuration c3, a nurse (n3) has entered the
ward and checked in with administration, the latter represented by the two connections between n3 and adm. Then, nurse
n2 is unassigned from patient pat, which is represented in cs by the absence of connections between them. Subsequently,
nurse n3 is assigned to the patient and the result is shown in configuration c,. The sequence finalizes with nurse n2 leaving
the ward (removed from the configuration).

Several architectural principles are defined to prevent configurations in which a misidentification might occur. It is
requested that a physician and at least two nurses are assigned to each patient undergoing a blood transfusion. The
physician orders and monitors the procedure, one nurse leads it, and the other assists the former to prevent a
misidentification. Then, it must be kept invariant in every configuration that any patient must have (S1) a designated
physician; and (S2) at least two nurses assigned. Changes, on the other hand, must observe the following constraints: (R1)
upon entering a ward, a nurse must check-in with administration before receiving any patient assignment; (R2) a nurse
cannot be unassigned from a patient if less than two nurses are left assigned; and (R3) a nurse must have no assignments
before checking out with administration and leaving.

In the example, configuration cs does not satisfy S2. We use reconfiguration constraints to ensure that changes observe
these requirements, and avoid error-prone situations.

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218-237 221

Pat
Elem
ElemInt
Port

Var

Inst
ElemlInst
Patlnst
Body
Insts
Atts

Att
ArchInt
Ren
PortRef

3. The ArcHery language

3.1. Architectures

::= pattern TYPE Elem+ Const* end
= element TYPE ElemlInt Beh?
;.= interface Port+

= (inlout) (and|or|xor) IdList (:Domain)?;

Fig. 3. Syntax for patterns.

= VAR : TYPE = Inst ;
= (ElemlInst | Patlnst)
== TYPE (DataExprs?)
::= architecture TYPE Body Const* end
= Insts? Atts? Archint?
= instances Var+
= attachments Att+
= from PortRef to PortRef ;
= interface Ren-+
= PortRef as ID ;
== VAR.ID

Fig. 4. Syntax for instances.

The specification of an architecture comprises one or more (architectural) patterns, a main architecture, and data
specifications. A pattern defines (architectural) elements (components and connectors) and might have associated
constraints (see syntax in Fig. 3). For instance, pattern ward defines elements Patient, Physician, Nurse, and
Administration in Listing 1 to represent configurations that carry out blood transfusions.

Listing 1. Blood transfusion pattern.
1 pattern Ward()
element Patient ()
interface in xor phylI,
element Physician()
interface in xor patI;
element Nurse ()
interface in xor patI,
element Administration{()
interface in xor nurlI,
end

© 0 9 O s W N

-
o

nurl; out xor phyO, nurO;

out xor patoO;

admI; out xor patO, admO;

phyI; out xor nurO, phyO;

Each element includes an interface that contains one or more ports, each of which is defined by a polarity, a port type, and
a name. The polarity indicates how communication among attached ports flows, and can be either in or out. Ports are
synchronous: actually a suitable process algebra expression can be used to emulate any other port behaviour. The port type
indicates how many participants are necessary for a communication to take place, and can be either and, xor, or or. While
an and port requires all attached participants to synchronise, a xor port requires exactly one. In between, an interaction
with an or port requires at least one, but it may include any number of participants. For instance, the interface of
Administration defines xor ports patI and pato. An element can optionally include a behaviour: a set of actions, and a
set of process descriptions expressed in a subset of the mCRL2 process algebra. The sequel focuses on the structural
dimension and excludes such behavioural specifications.

222

Table 1

Reconfiguration operations.

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218-237

Name Syntax Description

Create variable v:T Creates variable v of type T

Destroy variable destroy (v) Destroys variable v

Create instance v=T() Creates an instance of type T and leaves it in v

Destroy instance clear (v) Destroys any instance in variable v

Attach attach(f,o,t, i) Attaches port o of instance in £ to port i of instance in t

Detach detach(f,o,t,1i) Removes attachment that goes from port o of instance in variable f to port i of instance in

variable t

Renames port p in variable v to g

Removes renaming g of architecture in variable v

Whatever is referred by variable s becomes referred by t; the reference to the contents of t is
lost, but its attachments and renamings remain

Moves variable v to the architecture in variable a

Add renaming
Remove renaming
Move instance

show (v,p,q)
hide (v, q)
imove (s, t)

Move variable vmove (v, a)

Instances — architectures and element instances — are defined according to the syntax in Fig. 4. They are stored in
variables that are defined by an identifier and a type that must match an element or pattern name. See, for instance, line 1 of
Listing 2. Allowed values are instances of a type (element or pattern), that do not necessarily need to match the variable's
own type.

Listing 2. A configuration for performing a blood transfusion.
1 w:Ward=architecture Ward()

2 dinstances

3 pat:Patient=Patient (); phy:Physician=Physician();

4 nl:Nurse=Nurse (); n2:Nurse=Nurse () ;

5 adm:Administration=Administration();

6 attachments

7 from pat.phy0O to phy.patI; from phy.patO to pat.phyI;
8 from nl.patO to pat.nurI; from pat.nurO to nl.patI;

9 from n2.pat0 to pat.nurIl; from pat.nurO to n2.patI;
10 from nl.admO to adm.nurI; from adm.nurO to nl.admI;

11 from n2.admO to adm.nurI; from adm.nurO to n2.admI;
12 end

An architecture describes the configuration a set of instances adopt. It contains a token that must match a pattern name,
a set of variables, an optional set of attachments, and an optional interface. The type of each variable in the set is limited to
an element in the pattern the architecture is instance of. An attachment indicates which output port communicates with
which input port; each includes port references to an output and to an input port. A port reference is an ordered pair of
identifiers: the first one matching a variable identifier, and the second matching a port of the variable's instance. For
instance, the attachments in the example configuration connect two nurses with a patient and the administration. The
architecture interface is a set of one or more port renamings. Each port renaming contains a port reference and a token with
the external name of the port. Ports not included in this set are not visible from the outside. An architecture can have
associated constraints, which are defined as described in Section 3.3.

3.2. Reconfigurations

Reconfiguration scripts are sequences of operations that affect the structure of architectures. Configuration managers
execute them when the associated triggering conditions are met. They also have the ability to stop, reconfigure, and restart
architectures from a given state.

Reconfiguration operations are devoted to the creation and removal of instances, attachments, renamings and variables,
as well as to the movement of instances. Table 1 shows name, format, and a brief description of them.

Scripts that change configurations by performing a blood transfusion are shown in Listing 3. Moving a Nurse (instance)
into a ward (configuration) represents allowing the nurse in. Attaching a Nurse to Administration materializes checking
the nurse in. Similarly, if the attachment is to a Patient, it represents assigning the nurse to the patient. These scripts are
triggered by constraints that describe behaviour the participants show.

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218-237 223

Const = SConst | BConst | RConst
SConst = structural constraint FDecl-+ end
RConst ::= reconfiguration constraint FDecl+ end

Fig. 5. Constraint types.

Listing 3. Reconfiguration scripts for nurse management.
1 script enter (w:Ward; n:Nurse) vmove (n,w); end
2 script leave (n:Nurse) vmove (n,root); end
3 script checkIn(n:Nurse;a:Administration)
4 attach (n, admO, a, nurI); attach(a,nurO,n,adml);
end
script checkOut (n:Nurse;a:Admininistration)
detach (n, admO, a, nurI); detach(a,nurO,n,adml);
end

ot

o N O

9 script assign(p:Patient, n:Nurse)

10 attach (n,patO, pat,nurl); attach(pat,nurO,n,patl);
11 end

12 script unassign(p:Patient, n:Nurse)

13 detach (n,pat0O,pat,nurl); detach (pat,nurO,n,patl);
14 end

For instance, the sequence of reconfigurations shown in Fig. 2 is the result of executing such scripts as follows:

enter (w,n3) lets nurse n3 in,

checkIn(n3,adm) checks n3 in (conf. c3),

unassign (pat,n2) unassigns nurse n2 from the patient (conf. cs),
assign(pat,n2) assigns n2 to the patient (conf. cs), and

leave (n2) lets nurse n2 out of the ward.

3.3. Constraints

The constraint language allows us to precisely describe design decisions by associating constraints to a pattern, or to a
pattern instance [7]. A constraint restricts design dimensions - structure, behaviour, or reconfigurations - through one or
more formula declarations (see Fig. 5).

The language for declaring formulas is defined generically. The actual languages are instances of it, obtained by making
constructs specific to the design dimension that is intended to be restricted. We present the generic language and instances
for specifying both (i) constraints over structure; and (ii) two-layer constraints whose upper and lower layers restrict
reconfigurations and obtained structures.

3.3.1. Two-layer generic formulas

A formula is interpreted from a local and internal point of view over a model 9t - a labelled graph whose nodes W are
called worlds. Each edge is labelled by a modal symbol M, taken from a set Mod. A modal symbol identifies an accessibility
relation RIM] in W x W, where an ordered pair (w;, w,) indicates that it is possible to access w, from w; through an edge
with label M. Formulas are interpreted at a specific world within 9. But note that in a two-layer model 9%, there is a model
I’ associated to each w in 9.

Actual models are derived from specifications of architectures and their reconfigurations. The resulting graphs
correspond to a metamodel given by the dimension being restricted [12]. The two corresponding metamodels are presented
as a class diagram, and define the structure of such graphs. The diagrams present the types of nodes and how their instances
are related. Modal symbols (relation labels in the diagram) name relations between either constituents of an architecture, or
two configurations, where the second is obtained upon executing an operation to the first, in a reconfiguration sequence. In
the latter case, a syntax for the structure of symbols, which represent the execution of reconfiguration operations, is also
provided.

The language provides symbol terms symT to match symbols according to their structure. They are built upon atomic
symbols and filters. A filter is either a path identifying a configuration variable, a configuration variable type, a variable for

224 A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218-237

SymT == ASYM ([Filter (,Filter)*])?
Filter = Arg | ID

Arg = Path | CVAR | TYPE

Path = VAR (.Path)?

SymF == SymT | true | false | not SymF

| SymF and SymF | SymF or SymF
| exists CVAR(:TYPE)?.SymF | forall CVAR(:TYPE)?.SymF

Fig. 6. Symbol formulas.

FDecl = ID CPars? = F

CPars =~ (CVAR:TYPE (, CVAR:TYPE)*)

F = P | true | false
| not F|For F|FandF | Fimplies FF | F iff F
| [RelF] F | <RelF> F | [N,RelF] F | <N,RelF> F
| I|atlF |CVAR |at CVAR F
| exists CVAR(:TYPE)?.F" | forall CVAR(:TYPE)?.F
| mnest ID ACPars?

ACPars = ((Path | CVAR) (, (Path | CVAR))*)

RelF = SymF | RelF.RelF | RelF+RelF | RelF* | RelF+

Fig. 7. Formula declarations.

name
Act ame Name

prt ‘ .
} Port ‘<1—{ Renaming ‘
Variable [—— vref rend
act PortReference «~—
comp
Instance
att
‘ Attachment
ElementInstance ‘ ‘ PatternInstance }

ren

Fig. 8. Metamodel for architectures: structure.

configuration variables, or a port identifier. Actual atomic symbols and filter combinations depend on the language
instantiation.

Symbol formulas symF allow for selecting and operating upon sets of symbols, and binding variables in symbol terms (see
Fig. 6). A symbol formula can be either a symbol term, a constant, a negated symbol formula, a conjunction, a disjunction, or
a quantifier. Constants true and false represent the universe (Mod) and the empty sets, respectively. Negation,
conjunction and disjunction represent the corresponding set operations of complement, intersection and union. Quantifiers
bind configuration variables in filters. A type in a filter is a simplified version of an existential quantifier. The relations that a
SymF selects are called symF—relations.

Formula declarations consist of an identifier, optional configuration parameters, and a formula (see Fig. 7). Configuration
parameters are used to let pass identifiers of configuration variables to a formula.

A formula F is either a propositional formula, a modal formula, a graded modality formula, a hybrid formula, a quantifier,
or a nested formula. Propositional, modal, and graded formulas describe the model in terms of the underlying metamodel. A
proposition characterizes a feature in a given world. Modal and graded operators scan worlds according to accessibility
relations passed as a parameter in the form of a relation formula re1F.

Relation formulas combine relations. A relation formula re1F is either a symbol formula, a concatenation, a union, or an
iteration. A concatenation returns the composition of two relations, and a union their union. An iteration is the successive
concatenation of relations defined by a relation formula. There are two types: one that admits the absence of the relation,
and one that requires at least one occurrence of it.

In a modal formula, a possibly formula (rRe1F) F indicates that the present world is Re1F—related with another world
satisfying (formula) 7, whereas a necessarily formula [Re1F] F indicates that any relF—relationship from the present world
leads to a world satisfying F.

Similarly, graded modality formulas come in two flavours as well. An at least formula (n, Re1F)F that is satisfied at worlds
where F holds in at least n+1 RelF-related worlds, and an all but formula [n, Re1F] F that describes worlds where F holds
in all but at most n rRelF—related worlds.

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218-237 225

Configuration O Op

Fig. 9. Metamodel for reconfiguration scripts.

SymT vnew ([Arg])? // create variable

destroy ([Arg])? // destroy variable

inew ([Arg?(, TYPE)?])? // create instance
clear(|Arg])? // destroy instance
attach([Arg?(, ID)?(, Arg)?(, ID)?])? // attach
detach([Arg? (ID)?(, Arg)?(, ID)7]) // detach
show([Arg.()7(ID)?])? // detach

hide([Arg?(, ID)?])? // remove renaming
imove([Arg? , Arg)?])? // move instance
vmove([Arg?(, Arg)?])? // move variable

Fig. 10. Syntax for reconfiguration constraints.

Hybrid formulas are built of a nominal 1, which is satisfied if the current world is the unique world referenced by such 7,
and of a reference operator at I F, satisfied if at the world named by 1, F is.

A nested formula consists of an identifier, and actual configuration parameters, and describes nested models. The usage of
configuration parameters by nested constraints depends on the restricted dimension. Language instances vary in the
constructs they offer, as it is indicated on their introduction.

3.3.2. Structural constraints

Models for interpreting structural constraints are derived from architectures, according to the metamodel shown in
Fig. 8. Worlds are instances, ports, actions, variables, port references, attachments, names, and renamings. The relationships
among worlds conform the relations in function R, and their labels become plain atomic modal symbols ASYM. For
convenience, the extra symbols attd and evt are also included. The former identifies the relationship between two worlds
representing variables connected through an attachment. It is obtained as R[vref]’oR[strt]’oR[end]oR[vref], where R[s]°
denotes the converse of a relation. The latter is obtained as R[prt] U Rlact].

Propositions are classified as follows: (a) Naming propositions that hold when evaluated at a (world) w representing an
action or port with their name. They exist for each name used in actions and ports. (b) Meta-type propositions that hold
when w belongs to a specific participant set, e.g., PatternInstance. (c) Emptiness proposition (namely Empty) that holds
when w is a variable with no associated instance. (d) Type propositions that test if w is an instance or a variable of a type in
the specification. For example, the Ward pattern generates propositions Ward, Physician, Patient, Nurse, and
Administration.

Each variable in an architectural specification defines a nominal in the set Nom. Each nominal holds exactly at the world
that represents the corresponding variable. In addition, they are also included in a subset Nompypg, depending on the
variable's type. Variables and parameters in formulas are bound to nominals.

Structural constraints that specify requirements S1 and S2 are shown in Listing 4. In both cases, a parameter p receives a
nominal referencing (a world that represents) a patient. The first constraint requires the specific patient to have an attached
physician. It uses a reference operator that holds if the rest of the constraint holds at the patient. This happens when a
physician is attached to the patient in the configuration, which is indicated with a possibly operator for the relation that
attachments in configurations give rise to. The second constraint requires the patient to have at least two nurses assigned.
The at least operator is used in this case to indicate that a number of nurses, greater than one, are expected to be attached to
the patient.

Listing 4. Nurses per patient.

1 structural constraint designatedPhysician(p:Patient)=
2 at p <attd> Physician; end

3 structural constraint enoughNurses (p:Patient)=

4 at p <1,attd> Nurse; end

3.3.3. Specifying reconfiguration constraints

Interpretation models for reconfiguration constraints have two layers. Each world represents a configuration and has an
associated model for interpreting nested structural constraints. Relationships represent reconfiguration operations.

The metamodel for reconfigurations consists of a single type and a reflexive relation (see Fig. 9). The type represents
configurations that an architecture may adopt, and the reflexive relation stands for a family of relations among
configurations. An ordered pair of configurations is in one of such relations whenever a reconfiguration operation leads

226 A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218-237

from the first to the second configuration. Relation labels vary according to the operation and to its parameters. Then, worlds
and symbols of the model correspond to configurations and reconfiguration operations, respectively.

Reconfiguration constraints exclude nominals, and redefine symbol terms to yield symbols that represent actual
reconfiguration operations. Symbol terms consist of an operation name and filters, according to the syntax shown in Fig. 10,
allowing us to match operation invocations (see Table 1).

The reconfiguration constraint in Listing 5 specifies restriction R1 that ensures that a nurse first checks-in and then receives
patient assignments. Assume the initial configuration in Listing 2, and a nurse in a variable n3. A sequence of script executions
will not satisfy the constraint if it allows the nurse in, and assigns the nurse to a patient, without checking the nurse in.

Listing 5. No assignment before check-in.
1 reconfiguration constraint noAssignBeforeChkIn =
2 forall n:Nurse.
3 [truex.inew[n,_].!attach[n,_,Administration,_]=*.
4 attach[n,_,Patient,_] false; end

Reconfiguration constraint in Listing 6 specifies R2. It ensures that any sequence of scripts that unassigns a nurse leaves
enough assigned. Again, assume that a sequence of scripts are triggered replacing nurse n2 with nurse n3 in the initial
configuration, such as in Fig. 2. Since the sequence executes the unassignmet first, it fails to satisfy the constraint, because it
leaves the patient with only nurse n1 assigned. Note that the nested constraint only checks the situation of the patient
whom nurse has been unassigned.

Listing 6. All unassigments leave enough nurses assigned to patients.
1 reconfiguration constraint safeUnassign =
2 forall p:Patient.
3 [truex.detach(p,_,Nurse,_)] nest enoughNurses(p); end

Reconfiguration constraint in Listing 7 checks restriction R3, which ensures that any checkout takes place if the nurse has
no patient assigned. It fails if, for instance, in a reconfiguration sequence such as the one in Fig. 2, nurse n2 is checked out
without unassigning the patient first.

Listing 7. No assignments before checking-out.
1 reconfiguration constraint safeCheckout =
forall n:Nurse.
[truex.detach (n,_,Administration,_)]
nest noAssignment (n); end
structural constraint noAssignment (n:Nurse) =
at n not <attd> Patient; end

o Ut e W N

Under some circumstances it is interesting to relax structural constraints during the execution of a sequence of scripts, as long as
they hold in the final configuration. For instance, when a patient enters, it may initially not have a physician and nurses assigned to
him. The constraint in Listing 8 establishes that properties S1 and S2 must hold whenever a sequence of scripts cannot progress.

Listing 8. Patients safe configurations.
1 reconfiguration constraint infinite patientsSafe =
2 forall p:Patient.
3 [truex] (<true>false implies
4 nest (designatedPhysician (p) and enoughNurses (p)));

4. A two-layer graded hybrid logic
4.1. Syntax
Underlying the semantics of architectural descriptions and reconfigurations in ArcHery, is a powerful logic enabling the

description of two-layer models, the reference to possible states (i.e. configurations) as well as to relations between them
and their cardinality. As usual, such relations are denoted by modal symbols.

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218-237 227

Formulas are called state formulas and are built upon regular formulas that define strings of modal symbols, which in
turn are taken from sets given by symbol formulas. Their designation comes from their interpretation as (the) sets of states
(in which they hold).

Symbol formulas, on the other hand, are interpreted as sets of modal symbols, and built as described in Definition 1.
Modal symbols may take a data expression as a parameter, which is either a variable v or a function f with data expressions
e,...,e as parameters. Symbol formulas represent sets as follows: an atomic modal symbol m is a singleton set {m}; the
symbol T is the set Sym of all atomic modal symbols in the model; the negation —a is the complement of the set given by a;
the conjunction a A @ is the intersection of the sets given by & and «’; an atomic modal symbol with a data parameter m(e)
is the singleton set {m(a)}, where a is the value obtained upon evaluating e; and the universal quantifier Vv.D.a is the union
of the sets obtained upon replacing v with each possible a in the set given by a.

Definition 1 (Symbol formulas). Let DVar and Func be disjoint sets of variables and function symbols, respectively. The set
Exp of data expressions is recursively defined by

ex > Vi | fr(ex,....e0)

for ke {0,1} where v, e DVar, has a type Dy, and f; e Func;, has type Dy x ... x D, —Dy. Let Sym be a set of atomic modal
symbols. The set MForm of symbol formulas is recursively defined, for k € {0, 1}, by

ag > M| Tyl =ay | ag Aoy | mye) | YvDy.oy
where my, e Sym,.0

For simplicity, a single data parameter is used in formulas. Multiple data parameters are obtained through projections of
a composite data sort. At each level, the following operators are given by abbreviation:

1 ==T, ava=—(—ar-a), 3IFvDa=-VvD.—a.

Regular formulas are defined according to the grammar in Definition 2. At both levels, their constructs are concatenation
(B.B), sum (+f) and iteration (5*), which are interpreted as relational composition, union and transitive reflexive closure,
respectively. Additionally, the transitive closure 8+ is given by 3.5*.

Definition 2 (Regular formulas). The set RForm of regular formulas is recursively defined by
B> il PP B+Pr) Pi
for ke {0,1} where oy € MForm.o

State formulas are formed according to the grammar in Definition 3. At both levels, a formula is either a nominal (i), a
proposition (p), a negation (—¢), a conjunction (¢ A @), a possibility (($)¢), a graded possibility ((n, f)¢), or local reference
(@i@) to a state I. State formulas describe two-layer models by allowing basic constructs ¢ at level 0.

Definition 3 (State formulas). A signature is an n-family of disjoint, possibly empty, sets of symbols A = (Propy, Nomy) . (0.1;-
The set SForm(A) of state formulas is recursively defined as

®o > @8 Lio | o |~ | o A o | (Blo @ | (0. BYo @ | @iy
and

@8 > py i 1B @1 1 (.1 @1 | @iy
@3 1|1 1=@1 1@ A @1 1 {1 @1 1 (0.1 @1 | @i, 94

where py, e Prop,, and i, e Nom,, for k e {0, 1}.0
Additionally, at both levels, the following constructs are defined by abbreviation:

=-T, @1V Q3 =—(—@1 A —Q3)
P12 Pr="P1V Py, P1oOPr=P12>Pr APy Py
Plo==P)~p, —npro=npl-¢

4.2. Semantics

Definition 4 (2-layer model). A 2-layer model 9 € Model(4) is a tuple M = (M) c 10.1) = Wi, Qi, Ri, Vidk < 10.1) Tecursively
defined as follows:

® (Wike 01, are disjoint sets;
® (Qu. . are predicates with Qo = Wy and Q; = Wy x Wy such that

Wi = {wr: 3Iwg e Wo.Qo(Wo) A Q1(Wo, W1)};

228 A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218-237

® (Ri: Mody— Qi x Qe 01y is a pair of functions; and

® (V™ V™), . 0.1, are pairs of functions:

o VP Propy —P(Wo) and VE™P: Prop; x Qo —P(W;), and
o V§°™: Nomg— Wy and Vi°™: Nom; - W;.

A 2-layer model 9t is said to be hierarchical if
Rislp = {(Wo, Wp): R[s]; (Wo, 1), (Wp, wy)) for some w;y and wj)
for any s e Mod,. A hybrid model M = (W,R,V) is a tuple where W = Wj, R=R, and V =V,.0

Let us fix the following notation: expression m[d—r] denotes a map w’ in which n'(d") = m(d’) for all d’ # d and w/'(d)=r
otherwise; supp(m) denotes the set of values mapped by m and is called its support.

Definition 5 (Satisfaction). Let D denote the set of values of a variable v of type D, and let v = ()i 0.1 be a pair of data
environments. The value of a data expression is given by a pair of interpretation functions ([[y, : EXp— Dy)kc 0,1; 8iven by

(Vi Jko, 2 00Vi), [frlCrs - € i, 2 Frll e Liens s [k Jin)s

parametric on a data environment vy: DVar, — D, that assigns a value to a variable, and such that var(e,) < supp(vi), where
var(ey) denotes the variables occurring in an expression ey.
The interpretation of a symbol formula is given by a pair of functions ([], : MForm—Mody), (0.1, defined inductively as
[mu(er) [o, £ (Mi([e] o)) [Tk]k, £ Mody
[—ak iy, 2 Mod\ [1o, [A M Do, 2 [Jiw, N [Dy,
[YVviD-ot Dy, & N [y
a:Dy

where v} = v[val.
The interpretation of a regular formula is given by a pair of functions (Il ll,, : RForm— Rely), . 0.1, defined inductively as
follows:
lally,, 2 {(w,w):(w,w) e R[s] for some s e [l
Hﬂk./)’;(I i, £ Hﬂkllk,uko\\ﬂ;(\\,wk
1Bk+Piclliw, £ 181w, U 1 Byl
1 ko, 2 11,

where Rely is the set of all relations in Qi x Qy, I3l ©llB; Ik, is a concatenation, and | ﬁl\;nk is a transitive reflexive
closure.

Let 9t be a 2-layer model. The satisfaction of state formulas w.r.t. a data environment v is given by a pair of relations
(F ke 01) defined as follows:

Mo, v, Wo = o go’{ iff My, 09, Wy = 140’1’ and Q;(wg,w;) for some w; e W, 1)
My, v, Wi = B ifF Wy = VO™ (i))
Mo, v, Wo =0 P iff Wo € VEP(pg) 3)
My, 01, Wy =1 p; iff wye V’;”’p(phwo) and Q;(wp, wy) (4)
My, 0, Wi = | @ A @ 1T Dy, o, Wi = ko and Niy, vy, Wy = @, 5)
My, o, Wy = =, iff it is false that My, v, Wy = @, (6)

My, 0, Wi = g (Pl 1T M, v, Vi b= oy
for some v, e W,,re {0, ..., k}

such that ((wo, ..., Wi), (Vo, ..., V) € | Bll g, 7

sJﬁk, v, Wi = (n,ﬁ)kqok iff n< [{Vie: My, Vg, Vi = @y
for some v, e W;,re {0, ..., k}
such that ((wo, ..., W), (Vo, ..., Vi) € | Bll i, }| (8)

Mg, 0, Wi = @i, @) I My, v, VO™ (i) = 1oy C)

for ke {0,1}, and each w; e W;,r € {0, ..., k} with Qg (wy, ..., w;).0

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218-237 229
4.3. Bisimulation and invariance

Bisimulation offers a basic, actually quite strong, form of equivalence between models of the logic proposed in this
section, and consequently between ArcHery configurations. This section introduces suitable notions of bisimulation and
refinement and explores their relationship with logical satisfaction. This leads to a Hennessy-Milner like theorem of broad
relevance. We start by recalling what a bisimulation is in the standard (one layer) hybrid modal logic:

Definition 6 (Bisimulation). Let M= (W,R,V) and 9 =(W',R,V’) be two hybrid models over the same signature. A
bisimulation between 9 and M consists of a relation

Z=W x W
such that

(Nom) for any i e Nom, V(i) Z V'(i),

and for any we W and w' e W/,
wZw

implies that

(Atoms) for any o € Prop U NOM, w € V(o) iff w e V'(0);
(n-Zig) for any positive n, for each m e Sym and for any n distinct v e W, k€0, ..., n such (w, v;) e Rim], there are n distinct
v, e W', kel,...n, such that (W, v}) e R[m] with v, Z v, for any keO,...,n.
(n-Zag) for any positive n, for each m e Sym and for any n distinct v, e W', k€0, ..., n such (W', v}) e R[m], there are n distinct
vie W, kel,...,n, such that (w,vy) e Rim] with v; Z v, for any k€O, ...,n.

Definition 7 (Hierarchical bisimulation). A hierarchical bisimulation between two hierarchical models M=
(Wi, Q. Ri, Vidk e 101y and I = (Wi, Q4. Ry, Vidk < (0.1) consists of a family of relations (Zy = Qx x Q)i . (0.1)» Such that

® for any ke {0, 1}, Z is a bisimulation,
® for any wp, w; such that wy Zp wy,
(i) and for each w; such that and Q;(wp, w,) there is a w} such that
(Wo, W1)Z1(Wp, Wi) (10

(ii) and each wj such that and Q) (wy, w}) there is a wy such that (10)

The following result establishes bisimulation invariance with respect to the proposed logic.

Theorem 1. Let Z be a bisimulation between the hierarchical models M = (W, Qx, Ry, Vik c 0.1y and M = (W, Q1 R, Vidk < 0.1
and we W,w' e W' two states such that (wo, w1)Z;(wWy, w)). Then, for any data environment v and for any formula ¢, we have
that

Ny, 01, W =1 lff ‘.Dt’l,U],Wl] =1

Proof. We start observing that, since both Z; and Z, are bisimulations, the invariance of 0-sentences across Zo and the
invariance of 1-sentences across Z;, with the exception of sentences %, can be proved as in the standard hybrid modal logic
with graded modalities (e.g. [13,14]), by induction over the structure of the sentences. The preservation of the latter comes
as follows:

EIR],Dl,Wl =]qﬂ?
= {defn. of =}

My, vg, W = O(pl]’ for some w; such that Q(wg, wy)
= {step %}

My, vg, Wy = o¢pf for some w, such that Q) (wp, w))
= {defn. of =}

My, 01, W, =108

For step x note that items (i) and (ii) in Definition 7 assure the existence of w;eW; and wj e W} such that
(Wo, w1)Z1(wg, wy). Hence, the equivalence is justified by the invariance result for of hybrid logics with graded modalities.o

230 A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218-237

The existence of a Hennessy-Milner like theorems for the logic is now discussed. For this, let us consider that a
hierarchical model 9t is image-finite when each of its outer and inner accessibility relations are image-finite, i.e., for each
we W, and m e Sym,, the sets {w': (w,w’) e Rlm];}, k € {0, 1}, are finite.

Actually, for any two image-finite models 9 and 9 and for any we W and w' € W’ we can prove the equivalence of
statements:

(l) EUI],Wlizl(p iff gﬁa,w&'z](ﬂ

(ii) There is a bisimulation Z = W x W’ between 9t and 9%'.

whenever ¢ is free graded modalities. To discuss under which conditions the implication (i) = (ii) (i.e. the converse of
Theorem 1) holds, let us consider the relation Mt;, w; = 1¢ iff M, W) =19

Z:={(w,W)e W x W’\S)Jh,w1 =1 iff M, ,W/l =19}

Clearly Z satisfies the (Nom) and (Atoms) conditions in the definition of bisimulation. Let u, e W, k=1, ...,n such that
(w,uy) € Rim] for any k=1, ...,n. Suppose also that there are not n distinct uj, e W’, k=1, ...,n, such that (W', u}) € R[m] and
uy Z uy,. By hypothesis, we [(n,m)T Jy,. By (i), this entails w’ e [{n,m)T]y ,. Therefore, we conclude that u; Z uj does not
hold. Hence, there is at least a formula y, such that uy € [y]y, and uy¢ [y [y - Restricting the modalities to the non-
graded case, the verification of (ZIG) comes from observing that w e [(m)\/xc 1,...m W J ., l€ads to a contradiction (because
w e [{MVieq,..mWklaw, and u & [y]y). However, in the graded case, we cannot find any formula (n,m)® to achieve
such kind of contradiction.

Finally we observe that the recent work [15] presents a description logic with graded modalities that is endowed with a
bisimulation notion satisfying a Henessy-Milner property. Its ZIG-ZAG correspondence, however, is established by a
bijective relation, which is a very strong condition in view of our purposes.

4.4. Refinement

We introduce, in this section, a property preserving relation between hierarchical models.

Definition 8. Let Mt = (W,R, V) and ' = (W', R, V') be two hybrid models over the same signature. A simulation between 9
and M consists of a relation S= W x W’ such that

(Nom) for any i e Nom, V(i) Z V'(i),
and for any we W and w' e W', w Zw’ implies that :

(Atoms) for any o € Prop U NOM, if w e V(o) then w € V'(0);
(n-Zig) for any positive n, for each m e Sym and for any n distinct v, e W, ke 0, ...,n such (w, v) € Rim], there are n distinct
v, e W', kel,...n, such that (w,v)) e R[m] with v, Sv, for any k€O, ...,n.

Definition 9 (Hierarchical refinement). A hierarchical refinement between two hierarchical models 9t = (W, Q. R, Vidk e 0.1
and M = (W}, Qp, Ry, Vik < 0.1, consists of a family of relations (Sy = Qx x Q)i c 0.1}» Such that

® for any k e {0, 1}, Si is a simulation,
® for any wp, wy such that wg Sp wg, and for each wy such that and Q,(wp, w;) there is a w} such that (wp, w1)S1(wp, w)).

Next theorem establishes the preservation of properties over across. The proof is omitted since it can be directly derived
from the one of Theorem 1. Note however that, since the refinement relation just imposes the directional preservation of the
propositions and atomic formulas, the preservation of negation, and consequently of boxes, is lost. Hence,

Theorem 2. let S be a refinement relation between the hierarchical models Mt= Wy, Qy,Ri,Vi)kc01y and
M =W, Qs R, Vidkc 0.1y and we W, w’' e W' two states such that (wo, w1)Z1(wgy, w}). Then, for any data environment v and
for any formula ¢ without diamonds and negations, we have that

Ny, 01, W1 E 1@ lmplles ‘Jﬁ/],vl,er =1@.
5. Verifying hierarchical constraints
Verifying a constraint over a specification requires deriving an interpretation model 9t and then translating the

constraint into the corresponding logic. The derivation of interpretation models for structural constraints is detailed in
Appendix A. On the other hand, the derivation of two-layer models can be found in [10],

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218-237

hlds
vref

Ws

ELN

prt | \prt

pref

comp comp

wo
V.BT
bt
hlds

att
comp

pref

hlds

wr

ELN

vref vref

Wo3 prt /| prt
PR

pref

w3
P,O,patO

231

Wy wia
P,0,patO PIpatl

Wio w11
PInurl| | P,OnurO

Fig. 11. Partial model for the initial configuration.

Reconfiguration constraints become formulas of a 2-layer modal logic. Translations differ on how variables are treated. In
structural constraints, variables are bound to nominals. Then, the meaning of forall x: TYPEID is the conjunction of
formulas at x F [x/i], for each i e Nomyq1vpeip, Where [x/i] denotes the substitution of x by i in F. Dually, the meaning of
exists x: TYPEID F is a disjunction of formulas at x F [x/i], for each i e Nomypgp. Note that in reconfiguration constraints,
variables become data variables. The types that a pattern defines become data sorts, configuration variables become values
of such sorts, and ports become values of a port data sort. Appendix B provides the precise definition of the translations.

To illustrate our approach, we verify now the constraint safeUnassign (in Listing 6) over the sequence of script
executions that replaces a nurse, shown in Fig. 2.

First, it is shown that the initial configuration satisfies the nested structural constraint enoughNurses (see Listing 4).
The result of translating the ArcHery specification of the initial configuration into an interpretation model is shown in Fig. 11.
It is partial since instances of administration and physician are omitted. In addition, names (see the metamodel) and their
relationships are also dropped. Each node in the graph represents a world and includes an identifier in the first line; the
satisfied propositions in the second line; and the satisfied nominals in the third line. A short code is used for the
propositions that depend on the pattern: N (Nurse) and Pat (Patient). A short symbol is used to avoid using the longer
symbols of propositions: V (Variable), PI (PatternInstance), EI (Elementinstance), P (Port), I (In), O (Out), A (Attachment), R
(Renaming), PR (PortReference), Act (Action), and N (Name).

The resulting model is simplified into the model shown in Fig. 12(a), by considering the relation attd, which is the only
one present in the formula. It does not show worlds representing instances in variables, ports, and attachments.

The nested constraint is translated into formula

@pat (1, attd) Nurse.

with the parameter bound to pat, the unique patient in the initial configuration. Its verification proceeds as follows:

@pat (1, attd) Nurse
= {by (4)}
@pat (1, attd){w,, wy}
= {by (8)}
@pat {ws}
= {by (9)}
w

The formula is satisfied by the initial configuration.
In contrast, configuration cs in Fig. 2 does not. Nurse n2 was unassigned before assigning n3. The derived model is shown
in Fig. 12(b) and the verification is as follows:

@pat (1, attd) Nurse
= {by (4)}

@pat (1, attd){w,, Wy, Ws}
= {by (8)}

232 A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218-237

b

attd attd
Fig. 12. Partial models. (a) Initial configuration. (b) Configuration upon unassignment.
@pat @
= {by (9)}
6]

The model for the sequence of script executions, which is referred as subs0 in the sequel, is partially shown in Fig. 13. Its
first level consists of the primitives that result from the execution of subs0, and it shows the nested models for the initial
configuration cq and for the configuration upon the unassignment of the nurse cs.

The translation of the reconfiguration constraint safeUnassign, shown in Listing 6, yields formula

[T *.detach(pat, nurO, n2, patl)] y(pat),

where y stands for the formula of constraint enoughNurses. The symbol term is replaced by the only symbol that matches
the criteria within the necessity operator. Likewise, the parameter of the nested constraint is fixed to the unique variable of
type Patient in the successive configurations. The formula is verified as follows:

[T *.detach(pat, nurO, n2, patl)] y(pat)
= {by [Blg =—(p)~¢}
—(T *.detach(pat, nurO, n2, patl)) —y(pat)
= {by (1)}
—(T *.detach(pat, nurO, n2, patl)) —(W\{cs})
= {by (6)}
—(T*.detach(pat, nurO, n2, patl)) {cs}
= (by (7) and (B.f") = (B)(B))
—(T*) {cq}
={by (7) and (B.f) = (#)(f') four times}
—{co}
= {set complement}
W\ {co}

Since the result excludes the initial configuration, reconfigurations subs0 fail to satisfy the constraint. On the other hand,
the reconfigurations in Fig. 14(a), subs1 in the sequel, satisfy it, as they assign the patient to n3 before unassigning n2.
Reconfigurations subsO and subs1 are not bisimilar, and none of them are refinement of the other.

Consider now reconfiguration subs2 in Fig. 14(b). It proceeds as subs1, but offers an optional sequence of operations that
the configuration manager can perform. Nurse n4 is let in, and checked in by such additional operations. Reconfigurations
subs2 and subs1 are not bisimilar, but subs2 is a refinement of subs1. The relation that satisfies Definition 9 contains pairs
(¢,) where ¢; and ¢j are in the interpretation models of subs1 and subs2, respectively, and j e {0...10}. Since subs2 is a
refinement of subs1, Theorem 2 can be applied to avoid verifying constraints already valid in subs1. However, since the
constraint we are studying includes diamonds, it is out of the scope of such a theorem, and the verification on subs?2 is still
required.

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218-237 233

vmove(n3,w

comp

attach(n3,admO,adm,nurl

attach(adm,nurO,n3,adml

detach(n2,patO,pat,nurl

attd attd

)
)
)
)
detach(pat,nurO,n2,patl)
attach(n3,patO,pat,nurl)
attach(pat,nurO,n3,patl)
detach(n2,admO,adm,nurl)
)

detach(adm,nurO n2,adml

vmove(n2,root)

attd

vmove(n3,w
attach(n3,admO,adm,nurl
attach(adm,nurO,n3,adml
attach(n3,patO,pat,nurl
attach(pat,nurO,n3,patl
detach(n2,patO,pat,nurl
detach(pat,nurO,n2,patl
detach(n2,admO,adm,nurl
detach(adm,nurO,n2,adml

)
)
)
)
)
)
)
)
)
)

vmove(n2,root

Fig. 14. Correct reconfigurations. (a) Nurse substitution (subs1). (b) Substitution and optional check in (subs2).

6. Related work

An architectural description language ADL provides a number of typical abstractions to model software architectures.
Reference 2] identifies components, connectors, and configurations as essential elements in such a description. In addition,
the concept of architectural pattern (or style) [16,17] facilitates the development of specifications since it allows abstracting
recurring forms. ACME [18], Darwin [19-21], Wright [22,23], and ADR [24] are among the languages that support these
abstractions.

ADLs with formal semantics provide a sound foundation for the tool-supported development of dynamically
reconfigurable architectural models. It is possible to distinguish among languages precisely defined upon process algebras
and graphical theories [25]. While Darwin [19] and Wright [23] are examples of the former, ADR [24] combines both.
ARrcHERY [4] models the behavioural part of software architectures with process algebras [26], and the structural part with
bigraphical reactive systems [27].

These languages represent and analyse dynamic reconfigurable architectures in different ways [19,23,28]. They enforce
architectural principles in a pattern either by construction or by restriction. The former requires defining pattern-specific

234 A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218-237

reconfiguration operations that can only produce correct configurations according to design principles [29]. Then, design
decisions are left implicit in these operations. ADR [24] uses this mechanism. The latter approach requires the explicit
specification of constraints that prevent generic (re)configuration operations leading to incorrect configurations. ARCHE-
Ry follows this approach. ADLs Darwin [20] and ACME [30] also follow this approach by providing a translation into the Alloy
language [31], which is based on a first-order relational logic and is supported by a bounded model checker implemented
upon a SAT solver.

The approach proposed in this paper has connections to the one documented in [32], which is based on a layered
approach for addressing dynamic reconfiguration. It includes a layer where properties about configurations are specified
using first order logic, a layer where reconfiguration events can be related to configuration properties, another one that
restricts the way configuration properties appear in traces, and, finally, a layer that describes valid combinations of
reconfiguration events and traces of configurations, specified in a linear temporal logic.

An ADL for reasoning about behavioural constraints, expressed in a combination of first order and temporal logic, in the
presence of dynamic reconfiguration is proposed in [33]. The concept of an architectural reconfiguration contract [34]
relates the behaviour of a system and its dynamic reconfigurations. It establishes at which states a configuration can be
replaced by another one, and the states at which the new configuration can be safely left. ArcHERY's support for this concept
is part of ongoing work.

7. Conclusions and future work

This paper proposes the use of hierarchical constraints to ensure that architectural reconfigurations on a system proceed
as expected. Resulting configurations respect system's architectural principles, as inherited from the specific architectural
pattern adopted or originally fixed by the software architect. The ArcHery language is used to specify architectures,
reconfigurations and constraints. Translations into a two-layer graded hybrid logic are presented, which enable the formal
verification of constraints. The approach is illustrated with the verification of architectural principles that must be respected
by (re)configurations of a service architecture for the blood transfusion procedure.

7.1. Future and ongoing work

Ongoing work is concerned with the specification of nested behavioural constraints, the usage of constraints for
triggering reconfiguration scripts, and the provision of tool-support for a fragment of the language that excludes nesting, i.e.,
constraints that can be translated into a graded hybrid logic. Future work, on the other hand, includes the study of tool-
support for the whole constraint language, and the development of a comprehensive case study in the context of electronic
government.

Acknowledgements

This work is funded by ERDF - European Regional Development Fund through the COMPETE Programme (operational
programme for competitiveness) and by National Funds through FCT, the Portuguese Foundation for Science and
Technology, within project FCOMP-01-0124-FEDER-028923. The second author is also supported by the FCT grant SFRH/
BPD/103004/2014.

Appendix A. Deriving models for structural constraints

As a convention, the expression m[I=u] denotes m[l~m(l) U u] if u is a set, and m[l~m(l) U {u}] otherwise.

Definition 10 (Model derivation for structural constraints). Let W: Part —W be a function that yields a world that represents
a participant in an architecture, where Part = VarwEleminst wPatInst wAtt wPortRef wRen wld wAct, let Models be the set of
models for 9is, and let N: TYPE —P(Nom) be a map that yields, for a type defined by a pattern, the nominals representing
variables of such type in a given architecture. The derivation is given by a function Z: Var x W x Models x N' —Models x N/
which is inductively defined as follows:
Z(v=(id type inst), w,,(W,R,V),N)
= Z(inst,w;, (W U {wy, w;}, R[hlds=(wy, wy)], V[V=w,][typeswy)),
N[type=id]), where w, = W(v) and w; = W(inst)
Z(inst = (type ports acts), w;, (W, R, V),N)
= ZI(ports acts, w;, (W, R, V[typezw;][EIzw;]), V)
Z(port = (id dir ptype) ports acts, w;, (W, R, V),N)
= Z(ports acts, w;, (W U {Wport, Wig},
R[prtj(wis Wport)][namej(wport, Wid)],
V[P:ﬁwport][dirjwp01‘t][id3Wport][ptype3Wport][N3Wid])a N)

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218-237

where wporr = W(port) and wig = W(id)
Z([] acts,w;, (W, R, V),N) =Z(acts, w;, (W, R, V), N)
Z(act =id acts,w;, (W, R,V),N)
= I(B.CtS, wi, (W U {Wact, Wid}, R[aCt:;(Wia Wact)][name:;(wacta Wid)],
VIAct3Wa[IN=Wg)), N), where wye = W(act)
(1 wi, (W, R,V),N) = ((W,R,V),N)
Z(inst = (type vs atts rens), w;, (W, R, V),N)
=TI (vs atts rens, w;, (W, R, V[typezw;][PIzw;]), V)
Z(v vs atts rens, w;, (W, R, V),N)
=T (vs atts rens, w;, (W', R'[- =2(W;, wy)], V),)
where (W', R,V),N')=Z(v,wy,(W,R,V),N)
Z([] atts rens, w;, (W, R, V), N) = Z(atts rens, w;, (W, R, V),N)
Z(att = ((vo, port,), (v¢, port,)) atts rens, w;, (W, R, V), N)
=Z(atts rens, w;, (W U {Watt, Wpr,, WpR, },
R[Att=(W;, Wart)[StTE=(Ware, Wer,)l[€Nd = (Watt, WpR,)]
[vref={(wpg,, Wy,), (WpR,, Wy,)}]
[pref={(wpg,, Whort,)> (WPR, » Wport,)}],
VIASWa][PR={WpR, , Wer, 1), V)
where wye = W(att), wpr, = W((Vo, Port,)) and wpg, = W((V¢, port;))
Z([]rens,w;,(W,R,V),N)=Z(rens,w;,(W,R,V),N)
Z(ren = ((v, port), id) rens, w;, (W, R, V), N)
=Z(rens,w;,(W U {Wren, Wpr, Wiq},
R[ren=(Wj, Wren)l[rend=(Wren, Wpr)]
[vref=(Weg, wy)l[pref=(Wer, Wport)]
[Prt=(w;, Wren)l[Name=(Wren, Wiqg)l,
V[R=Wren[PREWpR][INSWig][id=3 Wren]), V)
where Wyepn = W(ren) and wpg = W((V, port))
Z(L wi, (W, R, V),N) = (W, R, V),)P

Appendix B. Translating constraints

235

The translation of a set of constraints yields a formula map that returns, for a given identifier, the corresponding
constraint translated into a modal formula. The function in Definition 11 takes a structural constraint and a formula
environment and yields a new formula environment that includes the translation of the constraint. A notational convention
adopted to present the translation is to consider terminals and non-terminals of the syntax as sets. For instance, f € F is used

to indicate that expression f is built according to non-terminal F.

Definition 11 (Translation: structural constraints). Let f be a formula map with type FM = ID — SForm. Given f{, a structural
constraint in SConst is translated into a state formula of the graded hybrid logic by function 7s:SConst x FM—FM

inductively defined as
Ts(fd fds,) = f[lid—Fs(f, T s(fds,)]
where fd e FDecl, fds € FDecl*, id e ID, f € F, and Fs: F x FM — SForm is defined as

Fs(true,f)) =T
Fs(false,)) = L
Fs(p,N=p

Fs(not f,) = —Fs(f, f)

Fs(f or g, f) =Fs(f,) v Fs(g,)

Fs(f and g,) =Fs(f,) A Fs(g, 1)

Fs(f implies g, f) = Fs(f, f) - Fs(g,)
Fs(f iff g,) =Fs(f,) —Fs(g, 7

Fs([r] f,) = [Rs(D)]o Fs(f,7)

Fs([n, 1]f,) = [n, Rs(D)]o Fs(f,)
Fs((n)f,) = (Rs(1))o Fs(f, 1)

Fs((n, 0)f,) = (n,Rs(1))o Fs(f, 1)

Fs(id a;...an,) = f(id)[f1...fn/a1...an]

236 A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218-237

Fs(i,f) =i

Fs@ti,f)=@;

Fs(cvar, f) = cvar

Fs(at cvar, f) = @cvar

Fs(exists cvartype.f,)= \/ @; Fs(f,)[cvar/i]

i e Nomyype
Fs(exists cvar.f,f)= \ @; Fs(f,D[cvar/i]
ie Nom
Fs(forall cvartypef,f)= A @; Fs(f, Dlcvar/i]
i e Nomyype
Fs(forall cvarf,f)= A @; Fs(f, cvar/i]
ie Nom

where p is a proposition, g e F, r e RelF, n e N, a;...a, are actual parameters, fy...f, are formal parameters, i e Nom, cvar is a
variable, type is a type defined by a pattern, and with function Rs: RelF — RForm inductively defined as

Rs(s) =Ms(s), Rs(ry.r2) =Rs(r1).Rs(r2)
Rs(r1 4+12) =Rs(r1) +Rs(r2), Rs(r*) =Rg(r)*
Rs(r*)=Rs(n)*

with s e SymF, 11,15 € RelF, and Ms: SymF — MForm is defined as

Ms(m)=m, Ms(not s)=— Ms(s)
Ms(true) = T, Mg(false)= L
Ms(sy and sp) = Ms(S1) A Ms(s2), Ms(sy or s3) = Ms(s1) v Ms(sz)

for m an atomic modal symbol, and s, s; € SymF.o

Definition 12 (Translation: reconfiguration constraints). Given a formula map f{, a reconfiguration constraint in RConst is
translated into a state formula of the 2-layer graded hybrid logic by functions

Tg: RConst x FM —-FM, Fg:F x FM — SForm,
Rg: RelF — RForm, and Mg: SymF — MForm.

The clauses of Ti coincide with the clauses of Ts. The clauses of F; coincide with the clauses of Fs with the exceptions as
follows: clauses that translate hybrid features, which are elided; clauses that translate quantifiers, which are replaced by
clauses

Fr(exists cvartype.f,) = 3 cvartype Fr(f, 1)
Fr(exists cvar.f,{) = 3 cvar Fr(f, 1)
Fr(forall cvartype.f,f) =V cvartype.Fg(f, 1)
Fr(forall cvar.f,f) = v cvar.Fg(f, f);

and an added clause for translating nested constraints
Fr(nest id, {) = j(id).

Function Ry coincides with function Rs. The clauses of function My coincide with the clauses of Mg with the addition of a
clause for translating structured symbols in Fig. 10 matching reconfiguration operations as follows:

MR (m[a;...ax], /) = m(ay...ap).

where me ASYM and a; e Filter.o
References

[1] Medvidovic N. Adls and dynamic architecture changes. In: Joint proceedings of the second international software architecture workshop (ISAW-2) and
international workshop on multiple perspectives in software development (Viewpoints '96) on SIGSOFT '96 workshops. New York, NY, USA: ACM
Press; 1996. p. 24-7.

[2] Medvidovic N, Taylor R. A classification and comparison framework for software architecture description languages. IEEE Trans Softw Eng 2000;26(1):
70-93.

[3] Sanchez A, Barbosa LS, Riesco D. A language for behavioural modelling of architectural patterns. In: Proceedings of the third workshop on behavioural
modelling, BM-FA '11. New York, NY, USA: ACM; 2011. p. 17-24.

[4] Sanchez A, Barbosa LS, Riesco D. Bigraphical modelling of architectural patterns, In: The eighth international symposium on formal aspects of
component software, FACS 2011, Oslo, Norway, September 14-16, 2011, Revised selected papers, Lecture notes in computer science, vol. 7253. Berlin,
Heidelberg: Springer; 2012. p. 313-30.

[5] van Deursen A, Klint P, Visser]J. Domain-specific languages: an annotated bibliography. SIGPLAN Not. 2000;35(6):26-36.

[6] Sanchez A, Barbosa LS, Riesco D. Verifying bigraphical models of architectural reconfigurations. In: The seventh international symposium on
theoretical aspects of software engineering, TASE 2013, 1-3 July 2013, Birmingham, UK. USA: IEEE Computer Society; 2013. p. 135-8.

http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref2
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref2
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref5

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218-237 237

[7] Sanchez A, Barbosa LS, Riesco D. Specifying structural constraints of architectural patterns in the archery language. In: Simos TE, Tsitouras C, editors.
Proceedings of the international conference on numerical analysis and applied mathematics 2014 (ICNAAM-2014), vol. 1648, AIP proceedings; 2015. p.
310008(1)-(5).

[8] Sanchez A, Barbosa LS, Madeira A. Modelling and verifying smell-free architectures with the archery language. In: Canal C, Idani A, editors. Software
engineering and formal methods, Lecture notes in computer science, vol. 8938. Switzerland: Springer International Publishing; 2015. p. 147-63.

[9] Madeira A, Martins MA, Barbosa LS, Hennicker R. Refinement in hybridised institutions. Form Asp Comput 2015;27(2):375-95.

[10] Sanchez A. A calculus of architectural patterns (to appear) [Ph.D. thesis], Universidad Nacional de San Luis; 2015.

[11] Services UKB. Handbook of transfusion medicine. 5th edition. United Kingdom: The Stationery Office; 2013.

[12] Mellor SJ, Kendall S, Uhl A, Weise D. MDA distilled. Redwood City, CA, USA: Addison Wesley Longman Publishing Co., Inc.; 2004.

[13] van der Hoek W. On the semantics of graded modalities.] Appl Non-Class Logics 1992;2(1).

[14] Areces C, Blackburn P, Marx M. Hybrid logics: characterization, interpolation and complexity.] Symb Log 2001;66(3):977-1010.

[15] Divroodi AR, Nguyen LA. On bisimulations for description logics. Inf Sci 2015;295:465-93.

[16] Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M. Pattern-oriented software architecture volume 1: a system of patterns, 1st edition. England:
Wiley; 1996.

[17] Shaw M, Garlan D. Software architecture: perspectives on an emerging discipline.USA: Prentice Hall; 1996.

[18] Garlan D, Monroe R, Wile D. ACME: an architecture description interchange language. In: Proceedings of the 1997 conference of the centre for
advanced studies on collaborative research, CASCON '97. IBM Press; 1997. p. 169-83.

[19] Magee J, Kramer J. Dynamic structure in software architectures. In: Proceedings of the fourth ACM SIGSOFT symposium on foundations of software
engineering, SIGSOFT '96. New York, NY, USA: ACM; 1996. p. 3-14.

[20] Georgiadis I, Magee], Kramer]. Self-organising software architectures for distributed systems. In: Proceedings of the first workshop on self-healing
systems, WOSS '02. New York, NY, USA: ACM; 2002. p. 33-8.

[21] Kramer J, Magee], Uchitel S. Software architecture modeling and analysis: a rigorous approach. In: Bernardo M, Inverardi P, editors. Formal methods
for software architectures, Lecture notes in computer science, vol. 2804. Berlin, Heidelberg: Springer; 2003. p. 44-51.

[22] Allen R, Garlan D. A formal basis for architectural connection. ACM Trans Softw Eng Methodol 1997;6(3):213-49.

[23] Allen R, Douence R, Garlan D. Specifying and analyzing dynamic software architectures. In: Astesiano E, editor. Fundamental approaches to software
engineering, Lecture notes in computer science, vol. 1382. Berlin, Heidelberg: Springer; 1998. p. 21-37.

[24] Bruni R, Lluch Lafuente A, Montanari U, Tuosto E. Style based architectural reconfigurations. Bull Eur Assoc Theor Comput Sci 2008;94:161-80.

[25] Bradbury]S, Cordy JR, Dingel], Wermelinger M. A survey of self-management in dynamic software architecture specifications. In: Proceedings of the
first ACM SIGSOFT workshop on self-managed systems, WOSS '04. New York, NY, USA: ACM; 2004. p. 28-33.

[26] Groote JF, Mathijssen A, Reniers M, Usenko Y, van Weerdenburg M. The formal specification language . In: Methods for modelling software systems:
Dagstuhl seminar 06351; 2007.

[27] Milner R. Bigraphical reactive systems. In: Larsen KG, Nielsen M, editors. CONCUR, Lecture notes in computer science, vol. 2154. Berlin, Heidelberg,
Germany: Springer; 2001. p. 16-35.

[28] Medvidovic N, Rosenblum DS, Redmiles DF, Robbins JE. Modeling software architectures in the unified modeling language. ACM Trans Softw Eng
Methodol 2002;11(1):2-57.

[29] Le Métayer D. Describing software architecture styles using graph grammars. IEEE Trans Softw Eng 1998;24:521-33.

[30] Kim JS, Garlan D. Analyzing architectural styles with alloy. In: Proceedings of the ISSTA 2006 workshop on role of software architecture for testing and
analysis, ROSATEA '06. New York, NY, USA: ACM; 2006. p. 70-80.

[31] Jackson D. Alloy: a lightweight object modelling notation. ACM Trans Softw Eng Methodol 2002;11(2):256-90.

[32] Dormoy], Kouchnarenko O, Lanoix A. Using temporal logic for dynamic reconfigurations of components. In: Barbosa LS, Lumpe M, editors. Formal
aspects of component software—the seventh international workshop, FACS 2010, Guimardes, Portugal, October 14-16, 2010, Revised selected papers,
Lecture notes in computer science, vol. 6921. Berlin, Heidelberg, Germany: Springer; 2010. p. 200-17.

[33] Aguirre N, Maibaum TSE. A temporal logic approach to the specification of reconfigurable component-based systems. In: The 17th IEEE international
conference on automated software engineering (ASE 2002), 23-27 September 2002, Edinburgh, Scotland, UK; 2002. p. 271-4.

[34] Canal C, Camara J, Salaiin G. Structural reconfiguration of systems under behavioral adaptation. Sci Comput Program 2012;78(1):46-64.

http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref8
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref8
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref9
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref11
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref12
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref14
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref15
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref17
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref21
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref21
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref22
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref23
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref23
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref24
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref27
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref27
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref28
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref28
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref29
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref31
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref34

	On the verification of architectural reconfigurations
	Introduction
	A blood transfusion process: avoiding misidentification
	The Archerylanguage
	Architectures
	Reconfigurations
	Constraints
	Two-layer generic formulas
	Structural constraints
	Specifying reconfiguration constraints

	A two-layer graded hybrid logic
	Syntax
	Semantics
	Bisimulation and invariance
	Refinement

	Verifying hierarchical constraints
	Related work
	Conclusions and future work
	Future and ongoing work

	Acknowledgements
	Deriving models for structural constraints
	Translating constraints
	References

