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ABSTRACT
In time series analysis, Autoregressive Moving Average (ARMA) mod-
els play a central role. Because of the importance of parameter estima-
tion in ARMA modeling and since it is based on aggregate time series
so often, we analyze the effect of temporal aggregation on estimation
accuracy. We derive the relationships between the aggregate and the
basic parameters and compute the actual values of the former from
those of the latter in order to measure and compare their estimation
accuracy. We run a simulation experiment that shows that aggregation
seriously worsens estimation accuracy and that the impact increases
with the order of aggregation.

1. Introduction

In time series analysis, Autoregressive Moving Average (ARMA) processes play a central role
because they can describe a wide variety of time series in practice. Let us assume that the time
series Xt follows a stationary and invertible Autoregressive Moving Average model of order
(p, q) or ARMA(p, q):

φ(B)Xt = θ (B)at , (1)

where φ(B) = (1 − φ1B − · · · − φpBp) and θ (B) = (1 − θ1B − · · · − θqBq) are the autore-
gressive and the moving average operators, respectively, B is the backshift operator such that
BjXt = Xt− j and at is an independent white noise process, that is, a sequence of iid random
variables with zero mean and constant variance σ 2

a . We assume that the roots of φ(B) and
of θ (B) are all outside the unit circle, that these polynomials have no roots in common and
that φ(B) = ∏p

i=1(1 − δiB), where δ−1
i (i = 1, . . . , p) denote the roots of φ(B). If q = 0, (1)

becomes an ARMA(p, 0) or AR(p) model, called an Autoregressive model:

φ(B)Xt = at ⇔
p∏

i=1

(1 − δiB)Xt = at . (2)

If p = 0, (1) becomes an ARMA(0, q) or MA(q), called a moving average model:

Xt = θ (B)at . (3)
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Many time series available in practice are obtained through temporal aggregation, that is,
because of the process of data collection the only available observations are time series aggre-
gates. For example, the series commonly used in the analysis are monthly, quarterly, or annual
totals such as the Gross Domestic Product (GDP), investment, or rainfall amount. The effects
of temporal aggregation on (univariate and multivariate) ARMA models and their use have
been studied by several authors such as Amemiya and Wu (1972), Brewer (1973), Abraham
(1982), Ahsanullah and Wei (1984), Weiss (1984), Stram and Wei (1986), Wei (1978, 2006),
Drost (1994), Marcellino (1999), and Silvestrini and Veredas (2008). We first introduce the
definition of aggregate time series and some results that will be used later concerning tem-
poral aggregation. Suppose that the analyzed time series YT is the m-period nonoverlapping
aggregates of Xt defined by

YT =
mT∑

t=m(T−1)+1

Xt = (1 + B + · · · + Bm−1)XmT =
m−1∑
j=0

BjXmT , (4)

where m is fixed and is called the order of aggregation and T is the aggregate time unit. For
example, if Xt is a monthly time series and m = 3, then YT is a quarterly series. The time
series Xt and YT will be called the basic and the aggregate time series, respectively (note that
m = 1 is the situation of no aggregation, that is, the basic time series). Therefore, as expression
(4) shows, we are discussing temporal aggregation of flow variables (such as the GDP or the
rainfall amount), which is obtained through nonoverlapping sums of the basic series.

The derivation of the aggregate model is given in Stram andWei (1986) and in Wei (2006,
chap. 20). Assuming there are no hidden periodicities of orderm in the AR operator φ(B) of
(1), that is, assuming its roots are such that δmi = δmj if and only if δi = δ j (i, j = 1, . . . , p; i �=
j) and multiplying by

∏p
i=1

1− δmi Bm

1− δiB
(1 + B + · · · + Bm−1) in (1), we get

p∏
i=1

(1 − δmi B
m)(1 + B + · · · + Bm−1)Xt =

p∏
i=1

1 − δmi Bm

1 − δiB
(1 + B + · · · + Bm−1)θ (B)at

⇔
p∏

i=1

(1 − δmi B
m)(1 + B + · · · + Bm−1)Xt =

p∏
i=1

m−1∑
j=0

(δiB) j(1 + B + · · · + Bm−1)θ (B)at .

(5)

LettingWt = ∏p
i=1(1 − δmi Bm)(1 + B + · · · + Bm−1)Xt , and since the at are iid variables with

zero mean, it is easily seen that E(WmT ) = 0 and

Cov(WmT ,WmT+mK ) = E(WmTWmT+mK ) = 0 (6)

for K > [p+ 1 + q− p− 1
m ], where [z] denotes the integer part of z. Therefore, from (5) and

(6), the aggregate series YT defined in (4) follows a stationary and invertible ARMA(p,Q)

model:

�(B)YT = �(B)εT , (7)

where B is the backshift operator on the aggregate time unit T such that B jYT =
YT− j, �(B) = (1 − �1B − · · · − �pBp) = ∏p

i=1(1 − δmi B) and �(B) = (1 − �1B − · · · −
�QBQ) are the aggregate autoregressive and moving average operators, respectively, whose
roots are all outside the unit circle, Q ≤ [p+ 1 + q−p−1

m ] and εT is an independent white
noise process with zero mean and variance σ 2

ε . We note that the autoregressive order remains
unchanged by aggregation and that the roots of�(B) are themth powers of the roots of φ(B).
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However, as mentioned above, these results were based on the assumption that there are no
hidden periodicities in the AR operator of the basic model (1) but sometimes that assump-
tion may not be true, that is, δi �= δ j and δmi = δmj for some i, j, andm. In that case, both the
AR and the MA order of the aggregate model are reduced (details can be found in Stram and
Wei, 1986, and in Wei, 2006, chap. 20). Nevertheless, the assumption of no hidden periodic-
ity is enough for our purposes. The parameters �1, . . . , �p are functions of φ1, . . . , φp and
the parameters �1, . . . , �Q and σ 2

ε are functions of φ1, . . . , φp, θ1, . . . , θq and σ 2
a but these

functions are generally very complicated.
Estimation of the parameters in (1) and (7) is extremely important because it is required

for the use of ARMA models in practice and is based on the basic or on the aggregate time
series, respectively. Assuming normal distribution of the white noise process, the maximum
likelihood method is commonly used (Wei, 2006, chap. 7) and, denoting the vector of all the
parameters of a given model by η, the information loss in estimation caused by aggregation is
measured by τ (m) = 1 − det(Ia(η))/det(Ib(η)), where Ib(η) and Ia(η) are the information
matrices for the vector of all the parameters in the basic and in the aggregate models, respec-
tively, and det denotes the determinant of a matrix (Wei, 2006, chap. 20). However, since the
relationships between the parameters of models (1) and (7) are extremely complicated, as
mentioned above, the derivation of τ (m) is generally very difficult.

Because of the central role of estimation in ARMAmodeling and since it is based on aggre-
gate data so often, assessing the effect of temporal aggregation on ARMA estimates is very
important. Therefore, expressing the aggregate ARMA parameters as functions of those in
the basic model for the most commonly used models in practice enables us to compute the
actual values of the latter parameters from those of the former. With the parameter actual
values, we next compare the estimation accuracy for the basic and the aggregate time series
based on a simulation experiment, which shows how temporal aggregation can affect ARMA
modeling in applied analysis through its impact on parameter estimation. Being based on the
aggregate parameter actual values, such analysis has not been previously done (see the ref-
erences mentioned above). First, we derive the relationships between the parameters in the
aggregate and in the basic models in Section 2. Based on these relationships, we compute the
actual values of the aggregate parameters for several basic autoregressive models and con-
duct a simulation experiment to measure the impact of aggregation on estimation accuracy
in Section 3. Finally, concluding remarks are given and a reference to related issues is made
in Section 4. The proofs of the results shown are left to the Appendix.

2. Relationship between aggregate and basic parameters

We first derive the relationships between the parameters in the aggregate and in the basic
models, starting with autoregressive parameters.

2.1. Autoregressive parameters

Asmentioned above, the aggregate AR parameters depend exclusively on the basic AR param-
eters for any ARMA model. That relationship, based on the roots of the AR polynomial, is
given in Proposition 2.1.

Proposition 2.1. Let Xt be a basic time series that follows the stationary and invertible Autore-
gressive Moving Average model of order (p, q) or ARMA(p, q) given in (1), where φ(B) =∏p

i=1(1 − δiB) and δ−1
i (i = 1, . . . , p) are the roots of φ(B). The m-order aggregate time series
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YT , given in (4), follows the ARMA(p,Q)model (7), where�(B) = 1 − �1B − · · · − �pBp =∏p
i=1(1 − δmi B). Then, the autoregressive parameters of the ARMA model of YT , �1, . . . , �p,

are the following functions of δ1, . . . , δp:

�i = (−1)i−1
p−(i−1)∑
j1=1

p−(i−2)∑
j2= j1+1

· · ·
p∑

ji= ji−1+1

i∏
h=1

δmjh
i = 1, . . . , p. (8)

2.2. Moving average parameters

Since the above proposition shows the relationship between the aggregate autoregressive
parameters and the parameters of the basic ARMA model, it is also necessary to find the
corresponding relationship for the moving average parameters, which depends on the class of
the basic model. In this article, we consider basic autoregressive models only, leaving moving
average and autoregressive moving average models for future work.

Let the basic time series Xt follow the AR(p) model (2). Then, expression (5) becomes

Wt =
p∏

i=1

m−1∑
j=0

(δiB) j(1 + B + · · · + Bm−1)at (9)

and the aggregate model is an ARMA(p,Q1) where Q1 ≤ [p+ 1 − p+1
m ]. In order to find the

expressions of the parameters of the aggregate model as functions of those in the basic model,
Wt given in (9) is written in the powers of B as

Wt =
⎡
⎣

m−1∑
i=0

⎛
⎝1 +

i∑
j=1

p∑
h1=1

p∑
h2=h1

. . .

p∑
h j=h j−1

j∏
u=1

δhu

⎞
⎠Bi (10a)

+
(m−1)p∑
i=m

⎛
⎝

i∑
j=i−(m−1)

p∑
h1=1

p∑
h2=h1

. . .

p∑
h j=h j−1

j∏
u=1

δhu

⎞
⎠Bi (10b)

+
(m−1)(p+1)∑
i=(m−1)p+1

⎛
⎝

(m−1)p∑
j=i−(m−1)

p∑
h1=1

p∑
h2=h1

. . .

p∑
h j=h j−1

j∏
u=1

δhu

⎞
⎠Bi

⎤
⎦ at , (10c)

where, for i = m, . . . , (m − 1)(p+ 1) and j = m, . . . , (m − 1)p, the powers δrhu are such
that r = min( j,m − 1), that is, the largest possible power is δm−1

hu , since the right-hand side
of Eq. (9) involves only the powers δi, . . . , δ

m−1
i (i = 1, . . . , p). Let also Zt denote

Zj =
p∑

h1=1

p∑
h2=h1

. . .

p∑
h j=h j−1

j∏
u=1

δhu . (11)

We note that, if the upper limit of a sum is less than its lower limit, that sum does not exist.
Therefore, when p = 1, expression (10b) does not exist andWt is simply the sum of (10a) and
(10c). The determination of the moving average parameters of the aggregate model requires
Cov(WmT ,WmT+mK ) which is given in the next theorem.

Theorem 2.1. Let Xt be a basic time series that follows the Autoregressive model of order p or
AR(p) given in (2), Wt be defined in expressions (10a), (10b), and (10c) and Zj be given in
(11). Then, Cov(WmT ,WmT+mK ) = E(WmTWmT+mK ) for K = 1, 2, . . . is given in the following
expressions.
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6742 P. TELES AND P. S. A. SOUSA

If m = p
p−K ⇔ K = p− p

m (p > K), then

Cov(WmT ,WmT+mK ) =
(m−1)p−mK∑

i=0

⎡
⎣

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

i+m∑
j=i+1

Zj

⎞
⎠

⎤
⎦ σ 2

a

+
(m−1)p−m(K−1)−1∑
i=(m−1)p−mK+1

⎡
⎣

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

(m−1)p∑
j=i+m(K−1)+1

Zj

⎞
⎠

⎤
⎦ σ 2

a . (12)

If p
p−K < m <

p−1
p−(K+1) ⇔ p− 1 − p−1

m < K < p− p
m (p > K + 1), then

Cov(WmT ,WmT+mK ) =
(m−1)p−mK∑

i=0

⎡
⎣

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

i+m∑
j=i+1

Zj

⎞
⎠

⎤
⎦ σ 2

a

+
m−1∑

i=(m−1)p−mK+1

⎡
⎣

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

(m−1)p∑
j=i+m(K−1)+1

Zj

⎞
⎠

⎤
⎦ σ 2

a . (13)

If m = p−1
p−(K+1) ⇔ K = p− 1 − p−1

m (p > K + 1), then

Cov(WmT ,WmT+mK ) =
(m−1)p−mK∑

i=0

⎡
⎣

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

i+m∑
j=i+1

Zj

⎞
⎠

⎤
⎦ σ 2

a

+
(m−1)p−m(K−1)−1∑
i=(m−1)p−mK+1

⎡
⎣

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠
⎛
⎝

(m−1)p∑
j=i+m(K−1)+1

Zj

⎞
⎠

⎤
⎦σ 2

a . (14)

If m >
p−1

p−(K+1) ⇔ K < p− 1 − p−1
m (p > K + 1), then

Cov(WmT ,WmT+mK ) =
m−1∑
i=0

⎡
⎣

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

i+m∑
j=i+1

Zj

⎞
⎠

⎤
⎦ σ 2

a

+
(m−1)p−mK∑

i=m

⎡
⎣

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠

⎛
⎝

i+mK∑
j=i+m(K−1)+1

Zj

⎞
⎠

⎤
⎦ σ 2

a

+
(m−1)p−m(K−1)−1∑
i=(m−1)p−mK+1

⎡
⎣

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠
⎛
⎝

(m−1)p∑
j=i+m(K−1)+1

Zj

⎞
⎠

⎤
⎦σ 2

a . (15)

If m = p+1
p−(K−1) ⇔ K = p+ 1 − p+1

m (p > K − 1), then

Cov(WmT ,WmT+mK ) =
(m−1)p−m(K−1)−1∑

i=0

⎡
⎣

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

(m−1)p∑
j=i+(m−1)(p−1)+1

Zj

⎞
⎠

⎤
⎦σ 2

a

+
(m−1)p−m(K−1)−1∑

i=m

⎡
⎣

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠

⎛
⎝

(m−1)p∑
j=i+(m−1)(p−2)

Zj

⎞
⎠

⎤
⎦σ 2

a . (16)
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If p+1
p−(K−1) < m <

p−1
p−(K+1) ⇔ p− 1 − p−1

m < K < p+ 1 − p+1
m (p > K + 1), then

Cov(WmT ,WmT+mK ) =
(m−1)p−m(K−1)−1∑

i=m

⎡
⎣

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠
⎛
⎝

(m−1)p∑
j=i+(m−1)(p−2)

Zj

⎞
⎠

⎤
⎦σ 2

a . (17)

If p+1
p−(K−1) < m <

p
p−K ⇔ p− p

m < K < p+ 1 − p+1
m (p > K), then

Cov(WmT ,WmT+mK )=
(m−1)p−m(K−1)−1∑

i=0

⎡
⎣

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠
⎛
⎝

(m−1)p∑
j=i+(m−1)(p−1)+1

Zj

⎞
⎠

⎤
⎦σ 2

a . (18)

Cov(WmT ,WmT+mK ) = E(WmTWmT+mK ) = 0 for other K > 0.

Consequently, since the covariance is zero forK > p+ 1 − p+1
m ,WmT is anMA(Q) process

with Q = [p+ 1 − p+1
m ], confirming that the aggregate time series follows the ARMA(p,Q)

model (7). Based on the above results, it is now possible to find the parameter values of the
aggregate model from the values of the parameters of the basic model. However, since it is not
possible to determine a general expression for the moving average parameters as expression
(8) for the autoregressive parameters, we focus on basic AR(p) models with p = 1, 2, 3, the
most common in practice. The relationship between the aggregate and the basic white noise
variances is also derived.

... AR() models
When p = 1 in (2), the basic model is (1 − φ1B)Xt = at with δ1 = φ1 and (5) is

(
1 − δm1 B

m)
(1 + B + · · · + Bm−1)Xt =

m−1∑
j=0

(δ1B) j(1 + B + · · · + Bm−1)at . (19)

Consequently, from (10a), (10b), and (10c),Wt becomes

Wt =
⎡
⎣

m−1∑
i=0

⎛
⎝1 +

i∑
j=1

δ
j
1

⎞
⎠Bi +

2(m−1)∑
i=m

⎛
⎝

m−1∑
j=i−(m−1)

δ
j
1

⎞
⎠Bi

⎤
⎦ at .

Therefore, since at is an independent white noise process,WmT follows anMA(1) process and,
from (7), the aggregate time seriesYT follows the ARMA(1, 1) model

(1 − �1B)YT = (1 − �1B)εT . (20)

Ahsanullah andWei (1984) provide the expressions of the parameters of the aggregate model
as functions of those in the basic model. We summarize those results next because they will
be useful for higher-order models. Since δ1 = φ1 and from Proposition 2.1, �1 = δm1 = φm

1 .
Concerning the moving average parameters, since at is an independent white noise process
with zero mean and variance Var(at ) = σ 2

a , E(W2T ) = 0 and we have

Cov(WmT ,WmT+m) = E(WmTWmT+m) =
⎡
⎣

m−2∑
i=0

⎛
⎝1 +

i∑
j=1

δ
j
1

⎞
⎠

⎛
⎝

m−1∑
j=i+1

δ
j
1

⎞
⎠

⎤
⎦ σ 2

a = β2σ
2
a

and Cov(WmT ,WmT+mK ) = 0 for K ≥ 2 which shows thatWmT is an MA(1) process, that is,
WmT = εT − �1εT−1. Consequently, Cov(WmT ,WmT+m) = −�1σ

2
ε = β2σ

2
a and, since εT and

at are both independent white noise processes, Var(εT ) = σ 2
ε is such that
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Var(WmT ) = (
1 + �2

1

)
σ 2

ε =
⎡
⎣

m−1∑
i=0

⎛
⎝1 +

i∑
j=1

δ
j
1

⎞
⎠

2

+
2(m−1)∑
i=m

⎛
⎝

m−1∑
j=i−(m−1)

δ
j
1

⎞
⎠

2⎤
⎦ σ 2

a = β1σ
2
a .

Thus, Var(WmT )/Cov(WmT ,WmT+m) = (1 + �2
1)σ

2
ε /(−�1σ

2
ε ) = β1σ

2
a /(β2σ

2
a ) = β3, say.

This expression leads to the quadratic equation

�2
1 + β3�1 + 1 = 0 (21)

and �1 is the root such that |�1| < 1. Furthermore, σ 2
ε = β1/(1 + �2

1)σ
2
a .

... AR() models
When p = 2 in (2), the basic model is (1 − φ1B − φ2B2)Xt = at ⇔ ∏2

i=1(1 − δiB)Xt = at
and (5) is

2∏
i=1

(
1 − δmi B

m)
(1 + B + · · · + Bm−1)Xt =

m−1∑
j=0

(δ1B) j
m−1∑
j=0

(δ2B) j(1 + B + · · · + Bm−1)at .

(22)
Therefore, sinceWt is given by (10a), (10b), and (10c) with p = 2,WmT follows an MA(Q)

process with Q = [3 − 3
m ]. Consequently, from (7), the aggregate time series YT follows

the ARMA(2,Q) model where �(B) = 1 − �1B − �2B2 = ∏2
i=1(1 − δmi B) with, from (8),

�1 = δm1 + δm2 and �2 = −δm1 δm2 . Since the order Q of the moving average operator depends
on the value ofm, its parameters will also depend on this value and it is necessary to consider
m = 2 separately to find these parameters using Theorem 2.1.

� m = 2
When m = 2, Q = 1 and �1, the moving average parameter in (7) is given in the next
proposition.

Proposition 2.2. Let Xt be a basic time series that follows the stationary Autoregres-
sive model of order 2 or AR(2) given in (2) with p = 2, where φ(B) = (1 − φ1B −
φ2B2) = ∏2

i=1(1 − δiB) and δ−1
i (i = 1, 2) are the roots of φ(B) with |δ−1

i | > 1. The
aggregate time series with aggregation orderm = 2 isYT = ∑1

j=0 B
jX2T = ∑2T

t=2(T−1)+1 Xt

that follows the ARMA(2, 1) model (7) with P = 2 and Q = 1, that is, (1 − �1B −
�2B2)YT = (1 − �1B)εT where (1 − �1B − �2B2) = ∏2

i=1(1 − δ2i B). Then, the mov-
ing average parameter �1 is the root of the quadratic equation �2

1 + β3�1 + 1 = 0 such
that |�1| < 1, where β3 = β1/β2 with β1 = [1 + (1 + δ1 + δ2)

2 + (δ1 + δ2 + δ1δ2)
2 +

(δ1δ2)
2] and β2 = [δ1 + δ2 + δ1δ2 + (1 + δ1 + δ2)δ1δ2]. Furthermore, the white noise

variance is Var(εT ) = σ 2
ε = β1σ

2
a /(1 + �2

1).

� m ≥ 3
Whenm ≥ 3,Q = 2 and �1 and �2, the moving average parameters in (7), are given in
the next proposition.

Proposition 2.3. Let Xt be a basic time series that follows the stationary Autoregressive
model of order 2 or AR(2) given in (2) with p = 2, where φ(B) = (1 − φ1B − φ2B2) =∏2

i=1(1 − δiB) δ−1
i (i = 1, 2) are the roots ofφ(B)with |δ−1

i | > 1. The aggregate time series
YT given in (4) with aggregation order m ≥ 3 follows the ARMA(2, 2) model (7) with
P = 2 and Q = 2, that is, (1 − �1B − �2B2)YT = (1 − �1B − �2B2)εT where (1 −
�1B − �2B2) = ∏2

i=1(1 − δ2i B). Then, the first moving average parameter �1 is a real
root of the quartic equations β2

4�
4
1 + 2β4�

3
1 + (1 + 2β2

4 + β4β5)�
2
1 + (2β4 + β5)�1 +

1 = 0 or β2
4�

4
1 + 2β4�

3
1 + (1 + 2β2

4 + β2
4β6)�

2
1 + (β6 + 2)β4�1 + 1 = 0 and the sec-

ond moving average parameter is �2 = β4�1/(β4�1 + 1) where the solutions retained
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have to be such that |�2| < 1, �2 − �1 < 1 and �2 + �1 < 1 with β4 = β3/β2, β5 =
β1/β2, β6 = β1/β3,

β1 =
m−1∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

2

+
2(m−1)∑
i=m

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠

2

+
3(m−1)∑

i=2(m−1)+1

⎛
⎝

2(m−1)∑
j=i−(m−1)

Zj

⎞
⎠

2

,

β2 =
m−2∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

i+m∑
j=i+1

Zj

⎞
⎠ +

⎛
⎝1 +

m−1∑
j=1

Zj

⎞
⎠

⎛
⎝

2(m−1)∑
j=m

Zj

⎞
⎠

+
2(m−1)−1∑

i=m

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠

⎛
⎝

2(m−1)∑
j=i+1

Zj

⎞
⎠ ,

β3 =
m−3∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

2(m−1)∑
j=i+m+1

Zj

⎞
⎠

and Zj is given in (11). Furthermore, the white noise variance is Var(εT ) = σ 2
ε =

β1σ
2
a /(1 + �2

1 + �2
2).

... AR() models
When p=3 in (2), the basic model is (1 − φ1B − φ2B2 − φ3B3)Xt =at ⇔

∏3
i=1(1 − δiB)Xt =

at and (5) is
∏3

i=1(1 − δmi Bm)(1 + B + · · · + Bm−1)Xt =
∏3

i=1
∑m−1

j=0 (δiB) j(1 + B + · · · +
Bm−1)at . Therefore, sinceWt is given by (10a), (10b), and (10c) with p = 3,WmT follows an
MA(Q) process with Q = [4 − 4

m ]. Consequently, from (7), the aggregate time series YT fol-
lows the ARMA(3,Q) model where �(B) = 1 − �1B − �2B2 − �3B3 = ∏3

i=1(1 − δmi B)

with, from (8), �1 = δm1 + δm2 + δm3 , �2 = −(δm1 δm2 + δm1 δm3 + δm2 δm3 ), and �3 = δm1 δm2 δm3 .
Since the order Q of the moving average operator depends on the value of m, its parame-
ters will also depend on this value and it is necessary to discuss the cases m = 2 and m = 3
separately to find these parameters using Theorem 2.1.

� m = 2
Whenm = 2,Q = 2 and �1 and �2, the moving average parameters in (7), are given in
the next proposition.

Proposition 2.4. Let Xt be a basic time series that follows the stationary Autoregressive
model of order 3 or AR(3) given in (2) with p=3,where φ(B)= (1−φ1B−φ2B2−φ3B3)=∏3

i=1(1 − δiB) and δ−1
i (i = 1, 2, 3) are the roots of φ(B) with |δ−1

i | > 1. The aggre-
gate time series YT given in (4) with aggregation order m = 2 follows the ARMA(3, 2)
model (7) with P = 3 and Q = 2, that is, (1 − �1B − �2B2 − �3B3)YT = (1 − �1B −
�2B2)εT where (1 − �1B − �2B2 − �3B3) = ∏3

i=1(1 − δ3i B). Then, the moving aver-
age parameters �1 and �2 and the white noise variance Var(εT ) = σ 2

ε are determined as
in Proposition 2.3 with

β1 =
1∑

i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

2

+
3∑

i=2

⎛
⎝

i∑
j=i−1

Zj

⎞
⎠

2

+ Z2
3,

β2 =
2∑
j=1

Zj + (1 + Z1)

⎛
⎝

3∑
j=2

Zj

⎞
⎠ +

⎛
⎝

2∑
j=1

Zj

⎞
⎠Z3,
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β3 = Z3

where Zj is given in (11).

� m = 3
Whenm = 3,Q = 2 and �1 and �2, the moving average parameters in (7), are given in
the next proposition.

Proposition 2.5. Let Xt be a basic time series that follows the stationary Autoregressive
model of order 3 or AR(3) given in (2) with p=3,where φ(B)= (1−φ1B−φ2B2−φ3B3)=∏3

i=1(1 − δiB) and δ−1
i (i = 1, 2, 3) are the roots of φ(B) with |δ−1

i | > 1. The aggre-
gate time series YT given in (4) with aggregation order m = 3 follows the ARMA(3, 2)
model (7) with P = 3 and Q = 2, that is, (1 − �1B − �2B2 − �3B3)YT = (1 − �1B −
�2B2)εT where (1 − �1B − �2B2 − �3B3) = ∏3

i=1(1 − δ3i B). Then, the moving aver-
age parameters �1 and �2 and the white noise variance Var(εT ) = σ 2

ε are determined as
in Proposition 2.3 with

β1=
2∑

i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

2

+
6∑

i=3

⎛
⎝

i∑
j=i−2

Zj

⎞
⎠

2

+
8∑

i=7

⎛
⎝

6∑
j=i−2

Zj

⎞
⎠

2

,

β2=
2∑

i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠
⎛
⎝

i+3∑
j=i+1

Zj

⎞
⎠+

⎛
⎝

3∑
j=1

Zj

⎞
⎠
⎛
⎝

6∑
j=4

Zj

⎞
⎠+

5∑
i=4

⎛
⎝

i∑
j=i−2

Zj

⎞
⎠
⎛
⎝

6∑
j=i+1

Zj

⎞
⎠,

β3=
6∑
j=4

Zj +
2∑

i=1

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

6∑
j=i+4

Zj

where Zj is given in (11).

� m ≥ 4
Whenm ≥ 4,Q = 3 and�1,�2 and�3, themoving average parameters in (7), are given
in the next proposition.

Proposition 2.6. Let Xt be a basic time series that follows the stationary Autoregres-
sive model of order 3 or AR(3) given in (2) with p=3, where φ(B)= (1−φ1B−φ2B2−
φ3B3) = ∏3

i=1(1 − δiB) and δ−1
i (i = 1, 2, 3) are the roots of φ(B) with |δ−1

i | > 1.
The aggregate time series YT given in (4) with aggregation order m ≥ 4 follows the
ARMA(3, 3) model (7) with P=3 and Q=3, that is, (1−�1B−�2B2−�3B3)YT = (1−
�1B−�2B2−�3B3)εT where (1 − �1B − �2B2 − �3B3) = ∏3

i=1(1 − δ3i B). Then,
the first moving average parameter �1 is a real root of the equations �2

1 + �2
2 +

�2
3 − β8�1(�2 − 1) − β8�2�3 + 1 = 0 or �2

1 + �2
2 + �2

3 − β9(�1�3 − �2) + 1 = 0
or �2

1 + �2
2 + �2

3 + β10�3 + 1 = 0, where the second moving average parameter �2

is a root of the equations β6�
2
2 + (β6�

2
1 + β5�1 + 1)�2 − (β6�

2
1 + β5�1) = 0 or

β5β7�
2
2 + (β5β7�

2
1 + β5�1 + 1)�2 − (β7�1 + 1)β5�1 = 0 or β6β7�

2
2 + (β6β7�

2
1 +

β6�1 + β7)�2 − (β7�1 + 1)β6�1 = 0 and the third moving average parameter �3

is �3 = [�2 − (1−�2)β5�1]/(�1 − β5�2) or �3 = [β6�1(1 − �2)]/(β6�2 + 1) or
�3 = β7�2/(β7�1 + 1) with β5 = β3/β2, β6 = β4/β2, β7 = β3/β2, β8 = β1/β2, β9 =
β1/β3, β10 = β1/β4,
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β1 =
m−1∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

2

+
3(m−1)∑
i=m

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠

2

+
4(m−1)∑

i=(m−1)p+1

⎛
⎝

3(m−1)∑
j=i−(m−1)

Zj

⎞
⎠

2

,

β2 =
m−1∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

i+m∑
j=i+1

Zj

⎞
⎠ +

2(m−1)−1∑
i=m

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠

⎛
⎝

i+m∑
j=i+1

Zj

⎞
⎠

+
3(m−1)−1∑
i=2(m−1)

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠

⎛
⎝

3(m−1)∑
j=i+1

Zj

⎞
⎠ ,

β3 =
m−3∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

i+2m∑
j=i+m+1

Zj

⎞
⎠ +

m−1∑
i=m−2

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

3(m−1)∑
j=i+m+1

Zj

⎞
⎠

+
2(m−2)∑
i=m

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠

⎛
⎝

3(m−1)∑
j=i+m+1

Zj

⎞
⎠ ,

β4 =
m−4∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

3(m−1)∑
j=i+2m+1

Zj

⎞
⎠

and Zj is given in (11). The solutions retained have to be such that the roots of the moving
average polynomial (1 − �1B − �2B2 − �3B3) are outside the unit circle. Furthermore,
the white noise variance is Var(εT ) = σ 2

ε = β1σ
2
a /(1 + �2

1 + �2
2 + �2

3).

3. Simulation experiment

In order to analyze the effects of temporal aggregation on parameter estimation, we con-
ducted a simulation experiment where 10,000 (basic) time series of 6,000 observations each
were generated from several stationary Autoregressive models with a zero mean, normal
white noise process. The simulated time series were subsequently aggregated with orders
m = 2, 3, 4, 6, 8, 12 and the basic models considered were the following: AR(1) with δ1 =
−0.99, −0.95, −0.9, −0.8, −0.6, −0.5, −0.2, 0.2, 0.5, 0.6, 0.8, 0.9, 0.95, 0.99 (recall that
δ1=φ1); AR(2) with (δ1, δ2) = (−0.8, −0.7), (−0.2, −0.5), (−0.5, −0.1), (−0.7, 0.3),
(−0.5, 0.6), (−0.2, 0.4), (−0.2, 0.7), (0.4, −0.7), (0.4, −0.9), (0.4, −0.95), (0.2, 0.3), (0.3
, 0.95), (0.5, 0.7), (0.7, 0.8) or (φ1, φ2) = (−1.5, −0.56), (−0.7, −0.1), (−0.6, −0.05),
(−0.4, 0.21), (0.1, 0.3), (0.2, 0.08), (0.5, 0.14), (−0.3, 0.28), (−0.5, 0.36), (−0.55, 0.38),
(0.5, −0.06), (1.25, −0.285), (1.2, −0.35), (1.5, −0.56) , respectively; AR(3) with (δ1,

δ2, δ3) = (−0.8, −0.65, 0.4), (−0.85, 0.3, 0.6), (0.4, −0.6, 0.8), (0.2, 0.5, 0.7), (0.3, 0.6,
0.5) or (φ1, φ2, φ3) = (−1.05, 0.06, 0.208), (0.05, 0.585, −0.153), (0.6, 0.4, −0.192),
(1.4, −0.59, 0.07), (1.4, −0.63, 0.09), respectively.

In every model, we considered σ 2
a = 0.5, 1, and 4 for the basic white noise variance.

The parameters of the above models were estimated from the simulated time series for the
different orders of aggregation and the estimation Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE) were computed as MAE = ∑10,000

v=1 |α − α̂v |/10,000 and
MAPE = (1/10,000)

∑10,000
v=1 |(α − α̂v )/α| × 100 for any parameter α and its estimates α̂v

(AR andMA parameters and the white noise variance). The aggregate parameter values were
computed from Proposition 2.1 for the AR parameters and each value of m and, for the MA
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Table . Estimation accuracy for AR(1)models.

δ1 m

.       

�1 value . . . . . . .
MAE . . . . . . .
MAPE . . . . . . 

�1 value −. −. −. −. −. −.
MAE . . . . . .
MAPE . . . . . .

σ
ε

value . . . . . . .
MAE . . . . . . .
MAPE . . . . . . .

parameters, from (21) for the basic AR(1) model and each value ofm, from Propositions 2.2
(m = 2) and 2.3 (m ≥ 3) for the basic AR(2) model and from Propositions 2.4 (m = 2), 2.5
(m = 3), and 2.6 (m ≥ 4) for the basic AR(3) model. This procedure enabled us to measure
the actual effect of temporal aggregation on estimation accuracy, which has not been previ-
ously done. Since different equations were derived to find the MA parameter values for the
basic AR(2) model with m ≥ 3 and AR(3) with m ≥ 4 in Propositions 2.3 and 2.6, respec-
tively, the solutions obtained from those equations were computed and compared, being all
equal according to the results in the propositions.

Tables 1, 2, and 3 display the simulation results and the parameter actual values for
the basic models AR(1) with δ1 = 0.5, AR(2) with (δ1, δ2) = (0.5, 0.7), and AR(3) with
(δ1, δ2, δ3) = (0.3, 0.6, 0.5), respectively, and for σ 2

a = 1 (recall thatm = 1 denotes the basic
time series). To save space, we only show these results as examples and the complete tables are
in http://www.fep.up.pt/docentes/paulus/Supp_Material_CiSSC2016.pdf. We conclude the
following.

For the basic time series, estimation of the AR parameters and the white noise standard
deviation is usually accurate or even very accurate as shown by the estimation errors.

For aggregate series and concerning the ARMA parameters, the error is very large most of
the times and is often extremely large, showing a very strong negative impact of aggregation

Table . Estimation accuracy for AR(2)models.

δ1 δ2 m

. .       

�1 value . . . . . . .
MAE . . . . . . .
MAPE . . . . . . .

�2 value −. −. −. −. −. −. −3.4 × 10−6

MAE . . . . . . .
MAPE . . . . .  8.1 × 106

�1 value −. −. −. −. −. −.
MAE . . . . . .
MAPE . . . . . .

�2 value −. −. −. −. −.
MAE . . . . .
MAPE . . . . 

σ
ε

value . . . . . . .
MAE . . . . . . .
MAPE . . . . . . .
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Table . Estimation accuracy for AR(3)models.

δ1 δ2 δ3 m

. . .       

�1 value . . . . . . .
MAE . . . . . . .
MAPE . . . . . . .

�2 value −. −. −. −. −. −6.7×10−5 −5.3×10−7

MAE . . . . . . .
MAPE . . . . . 7.8×105 9.4×107

�3 value . . . 6.6×10−5 5.3×10−7 4.3×10−9 2.8×10−13

MAE . . . . . . .
MAPE . . .  1.9×107 3.7×109 12.4×1013

�1 value −. −. −. −. −. −.
MAE . . . . . .
MAPE . . . . . .

�2 value −. −. −. −. −. −.
MAE . . . . . .
MAPE . . . .  

�3 value −1.1×10−5 −2.4×10−6 −2.4×10−7 −1.5×10−9

MAE . . . .
MAPE 15.9×105 7.0×106 8.1×107 24.4×109

σ
ε

value . . . . . . .
MAE . . . . . . .
MAPE . . . . . . .

even for low orders of aggregation. Even form = 2, the lowest order, theMAE, and theMAPE
aremuch larger than for the basic series. The error generally increases with the order of aggre-
gation, often achieving extremely large values for the highest values ofm, and is larger for the
smaller (in absolute value) basic parameter values. For any given value ofm and for the three
values of the white noise standard deviation considered, the percentage errors are very close,
which means that this standard deviation has only a very weak effect on the estimation accu-
racy of the ARMA parameters. The effect of aggregation is stronger for the AR(2) and AR(3)
models, but it is not possible to clearly rank them because their accuracy does not dominate
the other even though, concerning the moving average parameters, the latter appears to lead
to larger errors. Therefore, the impact increases with the model order and consequently with
the number of parameters, which can be generalized to higher-order processes. These results
agree with the conclusion inWei (2006, chap. 20) concerning the increasing information loss
in estimation τ (m) with the order of aggregation but, as mentioned above, τ (m) is usually
very difficult to compute.

Concerning the white noise standard deviation, the error is also larger for aggregate series
and increases with the order of aggregation, but the impact is much weaker than for ARMA
parameters, since the error is always low for any value of m and any model. Therefore, the
estimation accuracy of this parameter is affected by the order of aggregation only and not by
the model or the parameter values, nor even by the standard deviation itself.

Moreover, the values displayed in the tables show that the aggregate ARMA parameters
decrease in absolute value as the order of aggregation increases, reflecting the fact that they
tend to 0 asm → ∞. This result is straightforward for AR parameters because, since |δi| < 1
(i = 1, . . . , p) in (2), then |δmi | → 0 asm → ∞ and therefore |�i| → 0 in (7). For a general
stationary ARMA(p, q) model, Tiao (1972) shows that, as m → ∞, the limiting aggregate
model is a white noise process, which means that the ARMA parameters tend to 0. Conse-
quently, fitting an ARMA model with aggregate time series can easily be misleading about
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6750 P. TELES AND P. S. A. SOUSA

its order, that is, about the correct p and Q values in (7), because a parameter value close to
zero is likely to result in a nonsignificant estimate, leading to the wrong model identification.
However, we did not take such problem into account and considered the appropriate orders in
the aggregate models because our purpose was to show the impact of aggregation on parame-
ter estimation only, without any further effects.We then conclude that, in applied analysis, the
impact of aggregation can be extremely serious because it can lead to large errors in parameter
estimates and even to model identification failure.

4. Concluding remarks

We analyzed how temporal aggregation affects estimation accuracy of ARMAmodels, partic-
ularly focusing on AR models. To this purpose, we started by deriving the aggregate autore-
gressive parameters for any basic ARMA model and the aggregate moving average parame-
ters and white noise standard deviation for the most commonly used basic ARmodels. These
expressions allowed the computation of the aggregate parameter actual values from those in
the basic model, making it possible to measure and compare their estimation accuracy. With
that purpose, we conducted a simulation experiment which showed that the effect of aggrega-
tion on the estimation accuracy of both AR and MA parameters is very strong and increases
with the order of aggregation. On the contrary, that impact on the white noise standard devi-
ation is much weaker, even though it is still relevant and also grows with the order of aggre-
gation. Therefore, estimation accuracy can be low for aggregate time series, that is, aggregate
parameter estimates are subject to large estimation errors (in absolute value), which can have
serious negative consequences on the use of ARMAmodels, namely, on model identification,
inference, and forecasting.

We considered (basic) autoregressive models only, but this problem also arises for mov-
ing average and mixed autoregressive moving average models. The impact of aggregation on
forecasting accuracy is also particularly important (Hotta and Neto, 1993; Koreisha and Fang,
2004; Lütkepohl, 2009, e.g.) and should also be analyzed for the most commonly used models
in practice. This analysis is currently under way but it will be reported later for reasons of
space. Furthermore, the basic AR models considered are all stationary, but many time series
are nonstationary, that is, the autoregressive polynomial has at least a unit root. Nevertheless,
our conclusions will generally be valid for nonstationary data since, as shown by Wei (2006,
chap. 20), the integration order of the basic model, that is, the number of differences required
to remove nonstationarity (or the number of those unit roots), remains unchanged by aggre-
gation. The parameter values of the aggregate model also depend on that order and their
expressions as functions of the basic parameters will be more complicated but that will not
change the consequences of aggregation on estimation accuracy and will worsen its impact.
Therefore, we may conclude that, both for stationary and nonstationary time series, tempo-
ral aggregation negatively affects the estimation accuracy of ARMA parameters with a very
strong impact.

Appendix: Proofs

Proof of Proposition 2.1. The autoregressive polynomial in the aggregate model (7) can be
expanded in the powers of B as

�(B) = 1 − �1B − · · · − �pBp =
p∏

i=1

(
1 − δmi B

) = 1 −
p∑

j1=1

δmj1B +
p−1∑
j1=1

p∑
j2= j1+1

δmj1δ
m
j2B2
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−
p−2∑
j1=1

p−1∑
j2= j1+1

p∑
j3= j2+1

δmj1δ
m
j2δ

m
j3B3 +

p−3∑
j1=1

p−2∑
j2= j1+1

p−1∑
j3= j2+1

p∑
j4= j3+1

δmj1δ
m
j2δ

m
j3δ

m
j4B4 − · · ·

+ (−1)p−1
2∑

j1=1

3∑
j2= j1+1

· · ·
p∑

jp−1= jp−2+1

δmj1 . . . δmjp−1
Bp−1 + (−1)pδm1 . . . δmp Bp

= 1 +
p∑

i=1

(−1)i
p−(i−1)∑
j1=1

p−(i−2)∑
j2= j1+1

. . .

p∑
ji= ji−1+1

i∏
h=1

δmjh
Bi.

Thus, result (8) is obtained by equating the powers of B on both sides of this expression. �

Proof of Theorem 2.1. Since at is an independent white noise process with zero mean and
variance Var(at ) = E(a2t ) = σ 2

a , using (10a), (10b), and (10c), we obtain, forK = 0, 1, 2, . . . ,

E

⎡
⎣

m−1∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠BiamT

m−1∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠BiamT+mK

⎤
⎦

=
m−1∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠E

(
BiamT

) m−1∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠E

(
BiamT+mK

) = 0. (A.1)

E

⎡
⎣

m−1∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠BiamT

(m−1)p∑
i=m

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠BiamT+mK

⎤
⎦

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m−1)p−mK∑
i=0

⎡
⎣

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

i+m∑
j=i+1

Zj

⎞
⎠

⎤
⎦ σ 2

a if

−m + 1 ≤ −mp+ p+ mK ≤ 0 ⇔ p
p− K

≤ m ≤ p− 1
p− (K + 1)

with p > K + 1

(A.2)

m−1∑
i=0

⎡
⎣

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

i+m∑
j=i+1

Zj

⎞
⎠

⎤
⎦ σ 2

a if

−m + 1 > −mp+ p+ mK ⇔ m >
p− 1

p− (K + 1)
with p > K + 1 (A.3)

0 if − mp+ p+ mK > 0. (A.4)

Note that if −m + 1 ≤ −mp+ p+ mK ≤ 0 ⇔ p− 1
p− (K+1) ≤ m ≤ p

p−K with p < K, then m ≤
0, or if −m + 1 > −mp+ p+ mK ⇔ m <

p−1
p−(K+1) with p < K + 1, then m ≤ 0, which is

impossible. Therefore, these conditions are not valid to determine the covariance.
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E

⎡
⎣

m−1∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠BiamT

(m−1)(p+1)∑
i=(m−1)p+1

⎛
⎝

(m−1)p∑
j=i−(m−1)

Zj

⎞
⎠BiamT+mK

⎤
⎦

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m−1)p−m(K−1)−1∑
i=(m−1)p−mK+1

⎡
⎣

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

(m−1)p∑
j=i+m(K−1)+1

Zj

⎞
⎠

⎤
⎦ σ 2

a if

−m + 1 < −mp+ p+ mK ≤ 0 and − m + 1 ≤ −mp+ p+ m(K − 1) + 1

⇔ p
p− K

≤ m <
p− 1

p− (K + 1)
with p > K + 1 andm ≤ p

p− K
with p > K

⇒ m = p
p− K

with p > K (A.5)

m−1∑
i=(m−1)p−mK+1

⎡
⎣

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

(m−1)p∑
j=i+m(K−1)+1

Zj

⎞
⎠

⎤
⎦ σ 2

a if

−m + 1 < −mp+ p+ mK ≤ 0 and − m + 1 > −mp+ p+ m(K − 1) + 1

⇔ p
p− K

≤ m <
p− 1

p− (K + 1)
with p > K + 1 andm >

p
p− K

with p > K

⇒ p
p− K

< m <
p− 1

p− (K + 1)
with p > K + 1 (A.6)

(m−1)p−(K−1)m−1∑
i=0

⎡
⎣

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

(m−1)p∑
j=i+(m−1)(p−1)+1

Zj

⎞
⎠

⎤
⎦ σ 2

a if

−mp+ p+ mK > 0 and − m + 1 < −mp+ p+ m(K − 1) + 1 ≤ 0

⇔ m <
p

p− K
with p > K and

p+ 1
p− (K − 1)

≤ m <
p

p− K
with p > K

⇒ p+ 1
p− (K − 1)

≤ m <
p

p− K
with p > K (A.7)

0 if − mp+ p+ m(K − 1)m + 1 > 0. (A.8)

Note that −mp+ p+ mK > 0 ⇔ m <
p

p−K and −m + 1 ≥ −mp+ p+ m(K − 1) + 1 ⇔
m ≥ p

p−K with p > K, which is impossible. Therefore, these conditions are not valid to deter-
mine the covariance.

E

⎡
⎣

(m−1)p∑
i=m

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠BiamT

m−1∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠BiamT+mK

⎤
⎦ = 0. (A.9)

E

⎡
⎣

(m−1)p∑
i=m

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠BiamT

(m−1)p∑
i=m

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠BiamT+mK

⎤
⎦
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m−1)p−mK∑
i=m

⎡
⎣

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠

⎛
⎝

i+mK∑
j=i+m(K−1)+1

Zj

⎞
⎠

⎤
⎦ σ 2

a if

−m + 1 > −mp+ p+ mK ⇔ m >
p− 1

p− (K + 1)
with p > K + 1 (A.10)

0 if − m + 1 ≤ −mp+ p+ mK

⇔ m ≤ p− 1
p− (K + 1)

with p > K + 1 orm ≥ p− 1
p− (K + 1)

with p < K + 1.

(A.11)

Note that if−m + 1 > −mp+ p+ mK ⇔ m <
p−1

p−(K+1) with p < K + 1, thenm ≤ 0 which
is impossible. Therefore, this condition is not valid to determine the covariance.

E

⎡
⎣

(m−1)p∑
i=m

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠BiamT

(m−1)(p+1)∑
i=(m−1)p+1

⎛
⎝

(m−1)p∑
j=i−(m−1)

Zj

⎞
⎠BiamT+mK

⎤
⎦

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m−1)p−m(K−1)−1∑
i=(m−1)p−mK+1

⎡
⎣

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠

⎛
⎝

(m−1)p∑
j=i+m(K−1)+1

Zj

⎞
⎠

⎤
⎦ σ 2

a if

−m + 1 ≥ −mp+ p+ mK ⇔ m ≥ p− 1
p− (K + 1)

with p > K + 1 (A.12)

(m−1)p−m(K−1)−1∑
i=m

⎡
⎣

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠ 0

⎛
⎝

(m−1)p∑
j=i+(m−1)(p−2)

Zj

⎞
⎠

⎤
⎦ σ 2

a if

−m + 1 < −mp+ p+ mK and − mp+ p+ m(K − 1) + 1 ≤ 0

⇔ p+ 1
p− (K − 1)

≤ m <
p− 1

p− (K + 1)
with p > K + 1 (A.13)

0 if − mp+ p+ m(K − 1) + 1 > 0. (A.14)

Note that if −m + 1 ≥ −mp+ p+ mK ⇔ m ≤ p−1
p−(K+1) with p < K + 1, then m ≤ 0, or if

−m + 1 < −mp+ p+ mK with p < K + 1 and −mp+ p+ m(K − 1) + 1 ≤ 0 with p <

K − 1, then m ≤ 0, which is impossible. Therefore, these conditions are not valid to deter-
mine the covariance.

E

⎡
⎣

(m−1)(p+1)∑
i=(m−1)p+1

⎛
⎝

(m−1)p∑
j=i−(m−1)

Zj

⎞
⎠BiamT

m−1∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠BiamT+mK

⎤
⎦ = 0. (A.15)

E

⎡
⎣

(m−1)(p+1)∑
i=(m−1)p+1

⎛
⎝

(m−1)p∑
j=i−(m−1)

Zj

⎞
⎠BiamT

(m−1)p∑
i=m

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠BiamT+mK

⎤
⎦ = 0. (A.16)

E

⎡
⎣

(m−1)(p+1)∑
i=(m−1)p+1

⎛
⎝

(m−1)p∑
j=i−(m−1)

Zj

⎞
⎠BiamT

(m−1)(p+1)∑
i=(m−1)p+1

⎛
⎝

(m−1)p∑
j=i−(m−1)

Zj

⎞
⎠BiamT+mK

⎤
⎦ = 0. (A.17)
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6754 P. TELES AND P. S. A. SOUSA

Then, joining expressions (A.2) and (A.5), we obtain expression (12); expressions (A.2)
and (A.6) lead to (13); expressions (A.2) and (A.12) lead to (14); expressions (A.3), (A.10),
and (A.12) lead to (15); expressions (A.7) and (A.13) lead to (16); expression (A.13) is (17);
finally, expression (A.7) is (18). For all other values of K > 0, Cov(WmT ,WmT+mK ) = 0. �

Proof of Proposition 2.2. Since p = 2 in (2) and m = 2, from (10a), (10b), and (10c) we
obtainW2T = [1 + (1+δ1+δ2)B + (δ1 + δ2 + δ1δ2)B2 + δ1δ2B3]a2T . Since at is an indepen-
dent white noise process with zero mean and variance Var(at ) = σ 2

a , E(W2T ) = 0 and we can
easily determine the autocovariance function ofW2T , which is

Cov(W2T ,W2T+2K ) = E(W2TW2T+2K )

=

⎧⎪⎪⎨
⎪⎪⎩

[1 + (1 + δ1 + δ2)
2 + (δ1 + δ2 + δ1δ2)

2 + (δ1δ2)
2]σ 2

a = β1σ
2
a K = 0

[δ1 + δ2 + δ1δ2 + (1 + δ1 + δ2)δ1δ2] σ 2
a = β2σ

2
a K = 1

0 K ≥ 2.

(A.18)

Thus, W2T is an MA(1) process, W2T = εT − �1εT−1. Consequently, Cov(W2T ,W2T+2)

= −�1σ
2
ε and Var(W2T ) = (1 + �2

1)σ
2
ε . Therefore, from expression (A.18), we have

Var(W2T )/Cov(W2T ,W2T+2)= (1 + �2
1)σ

2
ε /(−�1σ

2
ε )=β1σ

2
a /(β2σ

2
a ) = β3, say. Then, �1 is

the root of the quadratic equation �2
1 + β3�1 + 1 = 0 such that |�1| < 1. Furthermore,

Var(W2T ) = (1 + �2
1)σ

2
ε = β1σ

2
a ⇔ σ 2

ε = β1/(1 + �2
1)σ

2
a . �

Proof of Proposition 2.3. We have p = 2 in (2), (10a), (10b), and (10c) and, since at is an
independent white noise process with zero mean and variance Var(at ) = σ 2

a , E(WmT ) = 0
and the autocovariance function ofWmT (withm ≥ 3) is

Cov(WmT ,WmT+mK ) = E(WmTWmT+mK )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣

m−1∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

2

+
2(m−1)∑
i=m

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠

2

+
3(m−1)∑

i=2(m−1)+1

⎛
⎝

2(m−1)∑
j=i−(m−1)

Zj

⎞
⎠

2⎤
⎦ σ 2

a = β1σ
2
a K = 0

⎡
⎣

m−2∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

i+m∑
j=i+1

Zj

⎞
⎠ +

⎛
⎝1 +

m−1∑
j=1

Zj

⎞
⎠

⎛
⎝

2(m−1)∑
j=m

Zj

⎞
⎠

+
2(m−1)−1∑

i=m

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠

⎛
⎝

2(m−1)∑
j=i+1

Zj

⎞
⎠

⎤
⎦ σ 2

a = β2σ
2
a K = 1

m−3∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

2(m−1)∑
j=i+m+1

Zj

⎞
⎠ σ 2

a = β3σ
2
a K = 2

0 K ≥ 3.
(A.19)
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Thus,WmT is an MA(2) process, that is,WmT = εT − �1εT−1 − �2εT−2 and consequently

Cov(WmT ,WmT+mK ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 + �2

1 + �2
2

)
σ 2

ε K = 0
(−�1 + �1�2) σ 2

ε K = 1
−�2σ

2
ε K = 2

0 K ≥ 3.

(A.20)

Therefore, from expression (A.19), we have Cov(WmT ,WmT+2m)/Cov(WmT ,WmT+m)

=−�2σ
2
ε /[(−�1 + �1�2)σ

2
ε ] = β3σ

2
a /(β2σ

2
a ) = β4, say. Consequently,

−�2

−�1 + �1�2
= β4 ⇔ �2 = β4�1

β4�1 + 1
. (A.21)

Furthermore, Var(WmT )/Cov(WmT ,WmT+m) = (1 + �2
1 + �2

2)σ
2
ε /[(−�1 + �1�2)σ

2
ε ] =

β1σ
2
a /(β2σ

2
a ) = β5, say. Thus, (1 + �2

1 + �2
2)/(−�1 + �1�2) = β5 ⇔ β2

4�
4
1 + 2β4�

3
1 +

(1 + 2β2
4 + β4β5)�

2
1 + (2β4 + β5)�1 + 1 = 0, using (A.21). Moreover, we also have

Var(WmT )/Cov(WmT ,WmT+2m) = (1 + �2
1 + �2

2)σ
2
ε /(−�2σ

2
ε ) = β1σ

2
a /(β3σ

2
a ) = β6, say.

Consequently, (1 + �2
1 + �2

2)/(−�2)=β6⇔β2
4�

4
1 + 2β4�

3
1 + (1+2β2

4 +β2
4β6)�

2
1 + (β6+

2)β4�1 +1 = 0 using (A.21). We then conclude that there may be more than one solution
for �1 (and consequently for �2) but the solutions retained have to be such that |�2| < 1,
�2 − �1 < 1 and �2 + �1 < 1 to ensure invertibility of the aggregate model. Furthermore,
Var(WmT ) = (1 + �2

1 + �2
2)σ

2
ε = β1σ

2
a ⇔ σ 2

ε = β1σ
2
a /(1 + �2

1 + �2
2). �

Proof of Proposition 2.4. Wehave p = 3 in (2) and, from (10a), (10b), and (10c) withm = 2,
since at is an independent white noise process with zero mean and variance Var(at ) = σ 2

a ,
E(W2T ) = 0 and the autocovariance function ofW2T is

Cov (W2T ,W2T+2K ) = E (W2TW2T+2K )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣

1∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

2

+
3∑

i=2

⎛
⎝

i∑
j=i−1

Zj

⎞
⎠

2

+ Z2
3

⎤
⎦ σ 2

a = β1σ
2
a K = 0

⎡
⎣

2∑
j=1

Zj + (1 + Z1)

⎛
⎝

3∑
j=2

Zj

⎞
⎠ +

⎛
⎝

2∑
j=1

Zj

⎞
⎠Z3

⎤
⎦ σ 2

a = β2σ
2
a K = 1

Z3σ
2
a = β3σ

2
a K = 2

0 K ≥ 3.

(A.22)

Thus, W2T is an MA(2) process, that is, W2T = εT − �1εT−1 − �2εT−2 and consequently
Cov (W2T ,W2T+2K ) is given by (A.20) in Proposition 2.3. Therefore,�1,�2, and σ 2

ε are deter-
mined as in that proposition with β1, β2, and β3 given by (A.22). �

Proof of Proposition 2.5. Wehave p = 3 in (2) and, from (10a), (10b), and (10c) withm = 3,
since at is an independent white noise process with zero mean and variance Var(at ) = σ 2

a ,
E (W3T ) = 0 and the autocovariance function ofW3T is
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6756 P. TELES AND P. S. A. SOUSA

Cov (W3T ,W3T+3K ) = E (W3TW3T+3K )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣

2∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

2

+
6∑

i=3

⎛
⎝

i∑
j=i−2

Zj

⎞
⎠

2

+
8∑

i=7

⎛
⎝

6∑
j=i−2

Zj

⎞
⎠

2⎤
⎦ σ 2

a = β1σ
2
a K = 0

⎡
⎣

2∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

i+3∑
j=i+1

Zj

⎞
⎠ +

⎛
⎝

3∑
j=1

Zj

⎞
⎠

⎛
⎝

6∑
j=4

Zj

⎞
⎠

+
5∑

i=4

⎛
⎝

i∑
j=i−2

Zj

⎞
⎠

⎛
⎝

6∑
j=i+1

Zj

⎞
⎠

⎤
⎦ σ 2

a β2σ
2
a K = 1

⎡
⎣

6∑
j=4

Zj +
2∑

i=1

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

6∑
j=i+4

Zj

⎞
⎠

⎤
⎦ σ 2

a β3σ
2
a K = 2

0 K ≥ 3.

(A.23)

Thus, W3T is an MA(2) process, that is, W3T = εT − �1εT−1 − �2εT−2 and consequently
Cov (W3T ,W3T+3K ) is given by (A.20) in Proposition 2.3. Therefore,�1,�2, and σ 2

ε are deter-
mined as in that proposition with β1, β2, and β3 given by (A.23). �

Proof of Proposition 2.6. We have p = 3 in (2), (10a), (10b), and (10c) and, since at is an
independent white noise process with zero mean and variance Var(at ) = σ 2

a , E(WmT ) = 0
and the autocovariance function ofWmT (withm ≥ 4) is

Cov(WmT ,WmT+mK ) = E(WmTWmT+mK )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣

m−1∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

2

+
3(m−1)∑
i=m

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠

2

+
4(m−1)∑

i=(m−1)p+1

⎛
⎝

3(m−1)∑
j=i−(m−1)

Zj

⎞
⎠

2⎤
⎦ σ 2

a = β1σ
2
a K = 0

⎡
⎣

m−1∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

i+m∑
j=i+1

Zj

⎞
⎠ +

2(m−1)−1∑
i=m

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠

⎛
⎝

i+m∑
j=i+1

Zj

⎞
⎠

+
3(m−1)−1∑
i=2(m−1)

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠

⎛
⎝

3(m−1)∑
j=i+1

Zj

⎞
⎠

⎤
⎦ σ 2

a = β2σ
2
a K = 1

⎡
⎣

m−3∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

i+2m∑
j=i+m+1

Zj

⎞
⎠ +

m−1∑
i=m−2

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

3(m−1)∑
j=i+m+1

Zj

⎞
⎠

+
2(m−2)∑
i=m

⎛
⎝

i∑
j=i−(m−1)

Zj

⎞
⎠

⎛
⎝

3(m−1)∑
j=i+m+1

Zj

⎞
⎠

⎤
⎦ σ 2

a = β3σ
2
a K = 2

⎡
⎣

m−4∑
i=0

⎛
⎝1 +

i∑
j=1

Zj

⎞
⎠

⎛
⎝

3(m−1)∑
j=i+2m+1

Zj

⎞
⎠

⎤
⎦ σ 2

a = β4σ
2
a K = 3

0 K ≥ 4.

(A.24)
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Thus,WmT is an MA(3) process, that is,WmT = εT − �1εT−1 − �2εT−2 − �3εT−3 and con-
sequently

Cov(WmT ,WmT+mK ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
1 + �2

1 + �2
2 + �2

3

)
σ 2

ε K = 0

(−�1 + �1�2 + �2�3) σ 2
ε K = 1

(−�2 + �1�3) σ 2
ε K = 2

−�3σ
2
ε K = 3

0 K ≥ 4.

(A.25)

Therefore, from (A.24), we have Cov(WmT , WmT+2m)/Cov(WmT , WmT+m) = (−�2 +
�1�3)σ

2
ε /[(−�1 + �1�2 + �2�3)σ

2
ε ] = β3σ

2
a /(β2σ

2
a ) = β5, say. Consequently,

−�2 + �1�3

−�1 + �1�2 + �2�3
= β5 ⇔ �3 = �2 − (1 − �2)β5�1

�1 − β5�2
(A.26)

which expresses �3 as a function of �1 and �2. Moreover, from (A.24), we
also have Cov(WmT ,WmT+3m)/Cov(WmT ,WmT+m)=−�3σ

2
ε /[(−�1 + �1�2 + �2�3)σ

2
ε ]=

β4σ
2
a /(β2σ

2
a ) = β6, say. Thus,

−�3

−�1 + �1�2 + �2�3
= β6 ⇔ �3 = β6�1 (1 − �2)

β6�2 + 1
, (A.27)

which provides an alternative expression for �3. Furthermore, from (A.24), we also
have Cov(WmT ,WmT+3m)/Cov(WmT ,WmT+2m)=−�3σ

2
ε/[(−�2 + �1�3)σ

2
ε ]=β4σ

2
a/(β3σ

2
a )

= β7, say. Consequently,

−�3

−�2 + �1�3
= β7 ⇔ �3 = β7�2

β7�1 + 1
, (A.28)

which provides another alternative expression for �3. Therefore, from (A.26) and (A.27), we
have

�2−(1−�2)β5�1

�1−β5�2
= β6�1(1−�2)

β6�2+1
⇔ β6�

2
2 + (β6�

2
1+β5�1+1)�2 − (β6�

2
1+β5�1)= 0

⇒ �2 = −(β6�
2
1 + β5�1 + 1) ± √

(β6�
2
1 + β5�1 + 1)2 + 4β6(β6�

2
1 + β5�1)

2β6
. (A.29)

Using this solution in (A.26) or (A.27), �3 may be written as a function of �1 only. Alterna-
tively, from (A.26) and (A.28), we have

�2−(1−�2)β5�1

�1−β5�2
= β7�2

β7�1+1
⇔ β5β7�

2
2 + (β5β7�

2
1+β5�1+1)�2 − (β7�1+1)β5�1=0

⇒ �2 = −(β5β7�
2
1 + β5�1 + 1) ± √

(β5β7�
2
1 + β5�1 + 1)2 + 4β5β7(β7�1 + 1)β5�1

2β5β7
.

(A.30)

Using this solution in (A.26) or (A.28), �3 may again be written as a function of �1 only.
Alternatively, from (A.27) and (A.28), we have

β6�1(1−�2)

β6�2+1
= β7�2

β7�1+1
⇔ β6β7�

2
2+(β6β7�

2
1+β6�1+β7)�2−(β7�1+1)β6�1=0

⇒�2 = −(β6β7�
2
1 + β6�1 + β7) ± √

(β6β7�
2
1 + β6�1 + β7)2 + 4β6β7(β7�1 + 1)β6�1

2β6β7
. (A.31)
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Using this solution in (A.27) or (A.28), �3 may again be written as a function of
�1 only. Furthermore, Var(WmT )/Cov(WmT ,WmT+m)= (1 + �2

1 + �2
2 + �2

3)σ
2
ε /[(−�1 +

�1�2 + �2�3)σ
2
ε ]= β1σ

2
a /(β2σ

2
a ) = β8, say. Thus,

1 + �2
1 + �2

2 + �2
3

−�1 + �1�2 + �2�3
= β8 ⇔ �2

1 + �2
2 + �2

3 − β8�1(�2 − 1) − β8�2�3 + 1 = 0,

(A.32)
whichwill lead to possible solutions for�1, writing�3 and�2 as functions of�1 from (A.26),
(A.27) or (A.28) and (A.29), (A.30) or (A.31), respectively. Then, �3 and �2 are computed
from these expressions. Moreover, we also have Var(WmT ) /Cov(WmT , WmT+2m) = (1 +
�2

1 + �2
2 + �2

3)σ
2
ε /[(−�2 + �1�3)σ

2
ε )] = β1σ

2
a /(β3σ

2
a ) = β9, say. Consequently,

1 + �2
1 + �2

2 + �2
3

−�2 + �1�3
= β9 ⇔ �2

1 + �2
2 + �2

3 − β9(�1�3 − �2) + 1 = 0, (A.33)

which provides an alternative equation to find �1, writing again �3 and �2 as functions
of �1 from (A.26), (A.27), or (A.28), and (A.29), (A.30), or (A.31), respectively. Further-
more, we also have Var(WmT )/Cov(WmT ,WmT+3m) = (1 + �2

1 + �2
2 + �2

3)σ
2
ε /(−�3σ

2
ε )=

β1σ
2
a /(β4σ

2
a ) = β10, say. Therefore,

1 + �2
1 + �2

2 + �2
3

−�3
= β10 ⇔ �2

1 + �2
2 + �2

3 + β10�3 + 1 = 0, (A.34)

which provides another alternative equation to find �1 similarly to (A.32) and (A.33). To
ensure invertibility of the aggregatemodel, the solutions retained have to be such that the roots
of the moving average polynomial (1 − �1B − �2B2 − �3B3) are outside the unit circle,
that is, |Bi| > 1 (i = 1, 2, 3). Finally, Var(WmT ) = (1 + �2

1 + �2
2 + �2

3)σ
2
ε = β1σ

2
a ⇔ σ 2

ε =
β1σ

2
a /(1 + �2

1 + �2
2 + �2

3). We note that it is not possible to find analytical solutions for �1

in the above nonlinear equations (A.32), (A.33), or (A.34) and consequently they have to be
solved numerically. �
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