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Abstract—This work presents a methodology to manage Electric 

Vehicles (EV) charging in quasi-real-time, considering the 

participation of EV aggregators in electricity markets and the 

technical restrictions of the electricity grid components, 

controlled through the distribution system operator. Two 

methodologies are presented to manage EV charging, one to be 

used by the EV aggregators and the other by the Distribution 

System Operators (DSO). The methodology developed for the 

aggregator has as main objective minimizing the deviation 

between the energy bought in the market and the energy 

consumed by EV. The methodology developed for the DSO 

allows it to manage the grid and solve operational problems that 

may appear by controlling EV charging. A method to generate a 

synthetic EV data set is used in this work, which provides 

information about the EV movement, periods when EV are 

parked, as well as their energy requirements. This data set is 

used afterwards to assess the performance of the algorithms 

developed to manage the EV charging in quasi-real-time. 

Index Terms—Aggregators, Electric Vehicles, Electricity 

Markets, Load Management, Quasi-Real-Time Management. 

I. INTRODUCTION 

The expected deployment of Electric Vehicles (EV) will 
considerably affect the way distribution grids will be managed 
and operated in the future. The extra amount of power they 
will demand from the grid will oblige Distribution System 
Operators (DSO) to understand the impacts resulting from EV 
connection to distribution grids. Several approaches to this 
problem have been presented lately in the literature.  

In [1, 2], the authors analyzed the changes in the load 
diagrams of distribution networks for increasing penetration of 
EV. Lopes et al., in [3], also studied the impacts of EV on 
distribution grids. The novelty introduced by these authors 
was the evaluation of the EV charging impact on the grid 
technical constraints, like voltages and branches’ congestion 
levels. Clement et al., in [4], analyzed the Plug-in Hybrid EV 
(PHEV) impacts on distribution grids’ power losses and 
voltage deviations. Although the methodologies proposed in 
papers [1-4] revealed to be interesting approaches to evaluate 
EV impacts, they do not provide an adequate method to 
determine the optimal EV charging schedules in quasi-real-
time. It should be noted that for the purpose of this work, the 
term “quasi-real-time” is used in the sense of monitoring the 

grid and managing EV in a short period of time, like 5 to 10 
minutes (or less, depending of the effectiveness of the 
communication infrastructure). 

Several other works have been developed with the main 
purpose of determining the optimal (or near optimal) EV 
charging schedules, [5-9]. However, some of these approaches 
are rather complex and time consuming, being impractical for 
online applications. 

This paper presents an innovative approach that uses a 
holistic methodology to manage the EV charging in 
distribution grids in quasi-real-time, taking into account the 
concerns of all the players involved in the process: the grids’ 
technical restrictions (DSO concern), the periods during which 
EV are parked (aggregators’ concern), the EV owners’ energy 
requests (EV owners’ concern) and the operational 
requirements of electricity markets. The development of this 
work involved the creation of two expeditious methodologies 
to be used by aggregators and DSO to manage the EV 
charging in quasi-real-time, which allow, respectively: 
minimizing the aggregators’ penalties for the deviations 
between the energy they bought in the markets and the energy 
sold to EV owners (imbalance settlement), thus contributing to 
increase the aggregators’ profit; and solving technical 
problems related with voltages outside the operational ranges 
and branches’ overloading that might appear in the grid. In 
order to assess the performance of these methodologies, a 
synthetic EV data set was used, which was created with an 
algorithm that uses a Markov chain to simulate the EV 
movement, as well as their power requirements.  

II. EV INTEGRATION FRAMEWORK FOR ISLAND POWER 

SYSTEMS 

Moving from a “fit-and-forget” policy to an active EV 
management context implies the creation of a suitable 
technical/commercial framework capable of dealing with the 
technical aspects of electricity grids and the markets operation. 

A. Control Structure to Manage EV in Quasi-Real-Time 

Under this new framework, when operating the grid in 
normal conditions, EV will be managed and controlled by a 
new entity – the aggregator – whose main functionality will be 
grouping EV, according to their owners’ willingness, to 
exploit business opportunities in the markets [5]. If EV would 
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enter the market individually their visibility would be small 
and due to their stochastic behavior their participation in the 
market would be impossible. Yet, if an aggregator exists, then 
the services potentially provided by EV would be more 
significant and the confidence on its availability much higher.  

Nevertheless, even considering the EV aggregators’ 
activities, a still high degree of uncertainty will exist related to 
when and where EV will charge. Due to these uncertainties 
and assuming that grids will evolve towards a decentralized 
generation paradigm, the existence of a grid monitoring 
structure, such as the one developed for micro-grids and multi-
micro-grids, will be required. This structure will be controlled 
by the DSO and should be capable of acting over EV charging 
in abnormal operating conditions, i.e. when the grid is being 
operated near its technical limits, or in emergency operating 
modes, e.g. islanded operation. This system should follow a 
hierarchical structure, from a central Distribution Management 
System (DMS) down to specific EV controllers [5].  

It is important to stress that the aggregator should always 
take into account the EV owners’ requests, which should 
provide information about the energy required and connection 
period via, for instance, the smart metering infrastructure [5]. 
The aggregator should have a hierarchical structure similar to 
the grid control system used by the DSO, as described in [5], 
to be capable of communicating and managing the EV 
charging in quasi-real-time. Both technical and market layers 
will require an advanced communication infrastructure to 
enable information exchange between all the involved players. 

B. Charging Levels Considered 

There are several types of EV charging solutions being 
currently adopted, [10], which involve distinct power levels: 
Level 1 – Around 3 kW charging power that can be obtained 
through common domestic outlets; Level 2 – 10-20 kW that 
can only be obtained through dedicated charging outlet and 
wiring; and Level 3 – More than 40 kW that can only be 
obtained through dedicated charging outlet and wiring and 
using a dedicated off-board charger for DC fast charging. The 
charging type commonly classified as slow refers to level 1, 
while the fast charging refers to level 3. Level 2 is an 
intermediary charging level. All the three levels were 
considered in this work, being assumed that slow charging 
corresponds to level 1 – LV connections, while fast charging 
includes level 2 and 3 – Medium Voltage (MV) connections. 

C. Charging Schemes Considered 

Depending on the type of application, EV controllability 
may vary and, therefore, several control schemes may be 
adopted. In the solutions involving fast charging (level 2 or 3), 
a full charge might take less than 1 h [10]. Due to the urgent 
needs from the user of these types of services, especially level 
3 clients, no controllability is envisaged. On the other hand, 
depending on the EV battery State-of-Charge (SOC) and 
capacity, full charge solutions involving level 1 might take up 
to 12 h [10]. Within this charging alternative, it is assumed 
that EV owners can choose between a set of three charging 
options: two passive or non-controlled (dumb charging and 
multiple tariff) and one active or controlled (smart charging).  

In the dumb charging, the EV owners are free to connect 
and charge their EV when they want and the charging starts 
automatically after the EV being plugged-in [5]. As in the 
previous approach, the dual tariff policy assumes that EV 
owners are free to charge their vehicles. Yet, electricity cost is 
assumed not to be constant during the day, existing some 
periods when its cost is lower [5], which may lead EV drivers 
to prefer charging during these periods. The smart charging 
envisions an active management system where there exists a 
hierarchical control structure headed by the SO, as referred in 
section II A, which is used to control the EV charging rates.  

III. QUASI-REAL-TIME MANAGEMENT OF EV CHARGING 

A. Aggregators´ Management 

The main objective of the proposed methodology is to 
define which smart charging adherents should charge at each 
time step, in order to minimize the deviations between the 
energy bought in the market by the aggregators and the energy 
consumed by EV. It should be stressed that it was assumed 
that the power charging rate for level 1, for smart charging 
adherents, could be controlled between 0 and 3 kW. To 
achieve the intended objective, it is required to find a set of n 
load values, being n the number of smart charging adherents, 
which can be defined as optimal in the sense that they allow 
minimizing the deviations referred above. This problem can 
be formulated as an optimization problem, as shown next. 
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where: 

·  – represents the “flexible EV1” index; 

·  – represents the time index; 

·  – is the nr. of “flexible EV” under the aggregator control; 

·  – represents the average power during ½ h, in kW, related 
with the energy bought in the day-ahead market by the aggregator 
for time period between  and ; 

;  

·  – is the “inflexible EV2” load, in kW, in time step ;  

·  – is the power absorbed by “flexible EV” , in kW, in time 

step ; the  are the decision variables of the optimization 
problem; they can assume continuous values in the interval ;  

·  – represents the time step at which a given “flexible EV” 
disconnects from the grid; 

·  – are the EV  battery SOC, in percentage, in time step ;  

·  – represents the battery SOC required by the owner of EV 
, in percentage, in time step ;  

·  – represents the battery capacity, in kWh, of EV ;  

·  – represents the efficiency of the EV charging process. 

Equation (2) is used to assure that the EV battery SOC, 
required by the EV owners at the moment of disconnection, is 
possible to attain when considering a maximum charging rate 
of 3 kW. Equation (3) assures that only charging rates 
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2 “Inflexible EV” are the EV whose owners adhered to the dumb charging 

or multiple tariff schemes. 



between  kW will be attributed to “flexible EV”, as it was 
assumed that a “flexible EV” is a smart charging adherent that 
charges either in a residential or industrial area at level 1. 
Equations (4) and (5) are used to guarantee that the required 
battery SOC and battery SOC in the time step  are always 
within the interval %. Equation (6) assures that the 
time of disconnection always takes place after time step . 

The objective of this optimization problem is then to 
minimize the sum of the absolute value of the deviations

3
. It is 

a linear optimization problem, which is suitable for quasi-real-
time applications since it is very fast to solve and does not 
require any type of forecasted data. It is only needed to know, 
for the current time step ( ), the energy bought by the 
aggregators, the power consumed by the “inflexible EV”, the 
moment of disconnection of the “flexible EV” that are 
plugged-in and the energy required by their owners during the 
connection period. At this stage grid restrictions are not 
limiting EV charging, since the problem is being dealt only 
taking into account the market operation. 

B. DSO Management 

After defining which “flexible EV” should charge and with 
which charging rate at each time step, the grid operating 
conditions should be analyzed to detect eventual technical 
problems that may appear. If operational restrictions are 
violated, the DSO needs to define the amount of load that is 
required to decrease to bring voltages and branches’ ratings 
again to the allowable limits and to define which of the 
“flexible EV” should decrease their charging rates in order to 
attain the desired load reduction.  

A procedure to tackle these problems was developed, 
which is capable of tackling simultaneously multiple low 
voltage and lines overloading problems, whether these 
problems occur in separate or in the same feeder of a given 
network. Despite only providing near-optimal results, it allows 
rapidly identifying solutions to solve technical problems in the 
network (by changing EV load) with very satisfactory results. 
This approach is based in a heuristic with two stages: 

1) In the first stage all the load data is gathered and, 
having knowledge of the network technical characteristics and 
topology, a power flow is run to evaluate its operating 
conditions. Then, a list of problematic buses is identified and 
these buses are sequentially analyzed. A given bus is flagged 

as problematic if it has a voltage value below  or if it is 
located in the upstream end of a branch with a rating above 

. For each problematic bus, the feeder that contains the 
bus under analysis is selected and the amount of load that is 
required to decrease in each of the feeder’s buses is calculated. 
This calculation is performed iteratively, by decreasing in 
steps of a fixed value, in this case assumed to be 10%, the 
existing EV load in each of the feeder’s buses. Yet, it should 
be noted that a different load step decrease can be adopted. 

2) In the second stage, the “flexible EV” that should 
reduce their charging rates are selected, in order to decrease 

                                                           
3 There are two types of deviations: positive and negative. In this work, it 

is assumed that positive deviations are referred to the situations where the 

energy bough by the aggregators is higher than the EV consumption, whereas 

negative deviations are referred to the opposite situation. 

the amount of power calculated in the first stage. As this 
methodology was developed for MV and LV networks, 
considering three-phase balanced operation, the loads 
resulting from the EV batteries charging were modeled as 
three-phase balanced loads. Thus, all the “flexible EV” 
charging downstream a feeder that contains problematic buses 
are eligible to reduce their charging rates. Yet, only “flexible 
EV” that are capable of effectively contributing to solve the 
grid problems identified before are selected (this depends of 
their location in the grid). 

It should be noted that in a first phase this heuristic process 
only reduces the charging rates of “flexible EV”. Yet, when 
low voltage and lines overloading problems are so severe that 
the emergency operating state is triggered, this heuristic 
reduces the charging rates of all the EV located in the 
problematic areas of the grid, disregarding if they are “flexible 
EV” or “inflexible EV. 

For MV network studies, the EV charging at level 1 are 
assumed to be connected to one of the LV grids that are 
downstream the MV grid. Yet, as in this simulation the MV 
grids were modeled until the MV/LV substation, the loads of 
the EV that are connected to a given LV grid are grouped and 
represented as a single load in the respective MV bus of the 
substation. When charging at levels 2 or 3, EV are assumed to 
be directly connected to the MV grid and thus their load will 
be allocated to the respective MV bus.   

It should be mentioned that the two problems referred 
above, low voltage and lines overloading, could be solved 
using an Optimal Power Flow (OPF)-like method for 
distribution networks. However, as the resolution of this type 
of problems is usually very time-consuming, [11], the 
expeditious approach presented in this section was chosen 
over the OPF-like option since the latter is rather impractical 
for online applications, [12]. 

IV. GENERATION OF THE SYNTHETIC EV DATA SET 

The first step to generate the synthetic EV data set was to 
individually characterize all the EV assumed to be enclosed in 
a MV network used as case study (further details about the 
case study are provided in section V). After, it was simulated 
the movement of the EV fleet during one week, according to 
common traffic patterns (data from a region in the north of 
Portugal [13] was used). Having the EV movement defined, 
their power requirements were computed and the data 
obtained was used in the case study of section V. 

A. Characterization of the EV Fleet 

Each EV was initially characterized in terms of battery 
capacity, charging power, energy consumption and battery 
SOC in the beginning of the simulation ( ). These values 
were defined according to truncated Gaussian probability 
density functions, whose average, standard deviation, 
maximum and minimum values are presented in Table I. The 
maximum and minimum values allowed of the referred 
functions were introduced in order to avoid having unrealistic 
values for these variables when making the draw for each EV. 
While the initial battery SOC values were assumed for the 
purpose of this work, the remaining values were gathered from 
the information made available by 42 different EV 



manufacturers. It was assumed that the global efficiency of the 
overall charging process was 90%. 

TABLE I.  TRUNCATED GAUSSIAN DISTRIBUTIONS FOR EV 

CHARACTERIZATION 

 Average Std. dev. Max. Min. 

Battery capacity (kWh) 24.73 17.19 85.00 5.00 

Slow charging power (kW) 3.54 1.48 10.00 2.00 

Energy consumption (kWh/km) 0.18 0.12 0.85 0.09 

Initial battery SOC (%) 75.00 25.00 95.00 25.00 

A driver behavior was also assigned initially to each EV. 
The possible behaviors considered in this paper were obtained 
from a survey made within the framework of the MERGE 
project [10]. The results revealed that there are three major 
types of behaviors regarding EV charging: EV charge at the 
end of the day (57%), EV charge only when it needs (23%) 
and EV charge whenever possible (20%). For the drivers who 
charge their EV only when it needs, it was assumed that the 
battery SOC that triggers the need for charging was 40%. 

B. Simulation of the EV Movement 

The movement of the EV during the period of a week was 
simulated using a discrete-state, discrete-time Markov chain, 
as described in [14], to define the states of all the EV for each 
time step (with 30 minutes duration). It was assumed that, at 
every unit of time, each EV can be in one of the following 
states: in movement or parked in residential / commercial / 
industrial area. After defining the EV states for each time 
instant, a network bus location was attributed to parked EV, 
according to a probability distribution proportional to the load 
installed in each bus. For the EV in movement, a procedure 
was developed to account their energy consumption and the 
respective reduction in the battery SOC, as defined in [14]. At 
each time instant, the battery SOC is updated according to the 
energy spent travelling or absorbed from the grid. It was 
assumed that EV parked in residential and industrial areas 
charge at 3 kW (level 1), in commercial areas at 12 kW (level 
2) and in fast charging stations at 40 kW (level 3). When an 
EV is parked, the decision to plug it in for charging, or not, is 
made taking into account its driver behavior and current SOC. 

C. Output Data 

The methodology described in sections IV A and IV B 
allows obtaining, for the period of one week, the following 
data: the periods during which EV are plugged-in and 
available to charge, the network bus to which EV are plugged-
in, the EV power absorbed in each 30 min interval, the EV 
battery SOC evolution and the EV travelled distances. 

V. CASE STUDY 

Figure 1 shows the single line diagram of the MV grid 
from a rural area (15 kV) used as test case in this research. It is 
composed by residential, industrial and commercial areas, thus 
allowing tracking each EV while commuting to and from 
work and to and from leisure activities. The power factor 
assumed for the conventional load is 0.96, whereas the 
specified voltage in the feeding point is 1.05 p.u.. There is a 
total of 7035 conventional cars enclosed in the geographical 
area covered by this grid and it was assumed that only one fast 
charging station exists, located in a robust area of the grid (bus 
231), not prone to technical limits violations. The network has 
309 buses, from which 115 have loads connected. The peak 

load is 7.3 MW (without EV consumption) and the energy 
consumption during a typical week is 789 MWh. 

In order to perform the simulations, a typical weekly load 
diagram for this network was used. This diagram (dark grey 
area of Figure 4) was obtained by aggregating the load 
diagrams of the different types of consumers within the 
network. Regarding the studies performed, three simulations 
were run, considering: all EV as smart charging adherents (to 
evaluate the performance of the approach developed for the 
EV charging management performed by the aggregators) and 
all EV as dumb charging and multiple tariff

4
 adherents (to 

evaluate the performance of the approach developed for the 
EV charging management performed by the DSO). For these 
studies, an EV integration level of 25% was considered 
(meaning that 1759 EV were considered to exist in this area). 
In each simulation performed two situations are evaluated: the 
presence and absence of the grid monitoring performed by the 
DSO. While in the former the DSO might reduce the EV load 
to avoid the violation of the grid components’ technical limits, 
in the latter it is assumed that the DSO never interferes with 
the EV charging. These two situations were evaluated for 
comparison purposes, with the objective of analyzing the 
influence that the DSO might have over the EV charging. 

 
Figure 1.  Single line diagram of the network. 

VI. RESULTS 

A. Mobility Patterns and EV Availability 

The journeys distribution during a week and a weekend 
day (Friday and Saturday) for the dumb charging, multiple 
tariff and aggregators’ smart charging are presented in Figure 
2. The curves for the three charging strategies follow the same 
trend. This is, in fact, an expected result, as the same 
assumptions were used to simulate the EV movement in all the 
scenarios addressed (the discrete-time, discrete-state Markov 
chain described in section IV B). During the week day 
(Friday), three peaks are clearly noticeable in the figure, two 
most likely related with household – work commuting (around 
8h and 18h), and the third, slightly after noon, probably related 
with people leaving their working places to have lunch 
somewhere else. In the weekend day (Saturday), probably due 
to the absence of the household – work commuting, the 
journeys are more distributed during the day. 

In order to provide some insights about the places where 
the EV stay parked during the day, the number of EV parked 
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policy currently implemented in Portugal: 22h to 8h. More information can 

be found in: http://www.edpsu.pt/pt/particulares/tarifasehorarios/ (in 

Portuguese). 
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in residential, commercial and industrial areas is presented in 
Figure 3. In what regards residential areas, as expected, there 
is a large number of EV parked during the night period, both 
on the week and on the weekend day. During the day, the 
number of EV parked in these areas is considerably lower 
during the week than during the weekend, probably due to the 
fact of most of the people not working during the weekend. 
The results are quite different for commercial and industrial 
areas, where the number of EV parked reaches the highest 
values during the day, both on week and weekend day. Still, 
while the number of EV parked in commercial areas reaches 
almost the same maximum value during all the days of the 
week, the number of EV parked in industrial areas is 
considerably lower during the weekend than during the week. 

 
Figure 2.  Journeys distribution during a week and a weekend day. 

 

 
Figure 3.  EV state. 

B. Changes in Load Diagrams 

Figures 4, 5 and 6 show the load diagrams changes for the 
scenarios simulated, assuming an EV integration of 25%. 

As shown in Figure 4, with the dumb charging, the EV 
tend to charge mostly at the end of the day. The amount of 
power requested by the EV provokes a very large increase in 
the peak load, leading to the violation of the technical limits of 
several grid components. In order to avoid these violations, the 
DSO would have to override the aggregators’ control signals 
and reduce 25.7 MWh of the energy demanded by EV during 
the week (black areas in Figure 4). The load reduction is 
calculated with the heuristic described in section III B

5
.  

Figure 5 shows the changes in the load diagram for the 
multiple tariff. The EV only charge at level 1 (slow charging) 
between 22h and 8h, which is the period of time when the 
energy prices are lower. For this reason, there is a high 
number of EV connecting to the grid for charging at 22h and 
the amount of power requested provokes the violation of the 
technical limits of some grid components. In order to avoid 
these violations, the DSO would have to reduce 21.1 MWh of 
the energy demanded by EV during the week (black areas in 

                                                           
5 This heuristic was coded in Python programming language, whereas the 

power flows were run in the PSS/E software. 

Figure 5). Again, this value was obtained using the heuristic 
described in section III B. The remaining EV load that appears 
outside the period 22h – 8h, is due to EV charging at level 2  
(commercial areas) and 3  (fast charging station). 

 
Figure 4.  Load diagram in the dumb charging scenario. 

 

 
Figure 5.  Load diagram in the multiple tariff (22h – 8h) scenario. 

 

 
Figure 6.  Load diagram in the smart charging scenario. 

In what regards the smart charging, it was assumed the 
existence of aggregators, which are responsible for the EV 
charging management in normal operating conditions. Seeking 
to maximize their profit, the aggregators will try to buy energy 
in the periods when its price is lower and manage the “flexible 
EV” charging accordingly. For illustration purposes, it was 
assumed that the energy bought by the aggregators 
corresponds to the “valley filling” curve represented by the 
black line in Figure 6. In the following day, if deviations 
between the energy bought (“valley filling” curve) and the 
energy consumed by EV are registered, the aggregators will be 
penalized in the imbalance settlement. Thus, the maximization 
of the aggregators profit cannot disregard the minimization of 
the referred deviations. The light grey area in Figure 6, 
referred to as aggregators’ smart charging, shows the results 
obtained with the “flexible EV” charging management 
performed by the aggregators. The “flexible EV” charging 
management was performed according to the optimization 
problem described in section III A

6
. As no technical violations 

were detected in the smart charging scenario, no EV load 
reduction was requested by the DSO, meaning that the DSO 
does not interfere with the aggregators’ profit in this case. 

C. Deviations from the Energy Bought by the Aggregators 

The deviations between the energy bought in the markets 
by the aggregators (black line) and the energy consumed by 

                                                           
6 This linear optimization problem was solved using the simplex method 

available in the LINGO 13.0 software. More information can be found in: 
http://www.lindo.com/index.php?option=com_content&view=article&id=2&Itemid=10 
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the EV (blue line), in the aggregators’ smart charging, are 
shown in Figure 7 (red line). When the energy bought by the 
aggregators is higher than the EV consumption, it means that 
no further “flexible EV” are available for charging and thus 
the aggregator will have an energy surplus that should be sold 
in the intraday market. Conversely, when the EV consumption 
is higher than the energy bought, it means that the availability 
restrictions imposed by some of the “flexible EV” exhausted 
the possibility of the aggregator postpone further their 
charging. Thus they will start charging immediately. In these 
situations the aggregator will have an energy deficit that can 
be compensated by buying extra energy in the intraday 
market. It should be noted that these deviations would 
probably be greatly reduced if adequate forecasting techniques 
were used to determine the “flexible EV” availability. 

 
Figure 7.  Energy deviations. 

D. Voltage Profiles 

In order to assess the worst voltage conditions that an EV 
integration level of 25% might lead to, the highest peak load 
registered during the simulations performed for each scenario 
was analyzed, and the corresponding voltage values were 
plotted in Figure 8. The extra power demanded by EV 
provokes a significant voltage drop along the grid, namely 
during the periods when the demand is higher, that, as Figure 
8 shows, violate by far the lower limit of 0.90 p.u. in the dumb 
charging and multiple tariff (22h – 8h) scenarios. These are 
the violations that trigger the emergency operating state and 
that obliges the DSO to curtail some of the EV load. After 
running the DSO grid management algorithm and reducing the 
EV load required, the voltages obtained were restored to 
normal values. The voltage drop is greatly reduced with the 
smart charging, where no violations were detected. The 
voltage profile for the peak load in the scenario without EV is 
also presented in Figure 8, for comparison purposes, as well as 
the reference voltage level stipulated by EN 50160 [15]. 

 
Figure 8.  Voltage profiles during the peak hour. 

VII. CONCLUSION 

The approach proposed in this work for the aggregator 
proved to be an efficient method to minimize the deviation 
between the energy bought in the market and the energy 
consumed by EV. Even so, some deviations were recorded in 
the case study analyzed, which would oblige the aggregator 
buying or selling the extra energy in the intraday market in 
order to avoid high penalizations in the imbalance settlement. 
Nonetheless, these deviations would probably be greatly 

reduced if adequate forecasting techniques were used to 
determine the “flexible EV” availability. The approach 
proposed for the DSO also proved to be very efficient, since it 
allowed performing the grid monitoring and managing the EV 
charging in order to solve all the voltage problems detected.  

Both methodologies are suitable for quasi-real-time 
applications since they are capable of defining optimal (in the 
case of the aggregator management presented in section III A) 
or near-optimal (in the case of the DSO management 
presented in section III B) EV charging schedules in a very 
short period of time. The time needed to run the algorithms in 
a 3.16 GHz Intel Core 2 Duo CPU with 4.00 GB RAM, for the 
current case (grid with 309 buses and 1759 EV), was always 
lower than one minute for the 336 time steps analyzed. 

For the DSO, the algorithm presented in section III B can 
be used as a tool to: detect the grid components that are 
subject to the more demanding operating conditions and that 
might need to be upgraded; monitor the grid and evaluate its 
operating conditions; and manage EV charging in quasi-real-
time to mitigate voltage or line overloading problems. The 
algorithm of section III A can also be very helpful for 
aggregators, as it allows: defining the optimal bids for the day-
ahead markets; and managing EV charging in quasi-real-time 
with the purpose of minimizing the deviations between the 
energy bought in the market and the energy consumed by EV. 
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