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This paper presents a generic framework to evaluate and compare the quality of the uncertainties provided by
probabilistic forecasts of power system state when used to perform security assessment for branch overloads.
Besides exploiting advanced univariate and multivariate metrics that are traditionally used in weather predic-
tion, the evaluation is complemented by assessing the benefits from exploiting probabilistic forecasts over the
current practices of using deterministic forecasts of the system operating conditions. Another important feature
of this framework is the provision of parameters tuning when applying flow probabilistic forecasts to perform

security assessment for branch overloads. The quality and scalability of this framework is demonstrated and
validated on recent historical data of the French transmission system. Although being developed to address
branch overload problems, with proper adaptations, this work can be extended to other power system security

problems.

1. Introduction

Online security assessment is a continuous decision-making problem
for power system operators. This involves checking ahead the impact of
plausible contingencies on system operational limits and then, condi-
tioned by the results of a risk-based assessment defined by the con-
tingencies probability and by the potential impacts of these con-
tingencies on the energy not supplied, operators decide on the
necessary actions to keep the system in a secure state [1,2]. Usually,
this analysis is performed over time horizons including two-days ahead,
one-day ahead and intraday operation, based on deterministic forecasts
of the grid state. However, these forecasts are nowadays being affected
by an increased amount of uncertainty [3,4], which in turn may impact
the forecasts of the disturbances’ severity. Major sources of un-
certainties in power systems operating conditions are the increased
penetration of intermittent renewable energy sources, the liberalization
of the electricity market, the arising opportunities of demand side

management and energy storage and, last but not least, the online
control actions taken by operators to ensure system security (like
changing the tap position of phase shifter transformers, topology
measures, generation rescheduling and re-dispatch).

In the last years, this rationale triggered several research works
aiming to include the uncertainty of system state forecasts, beyond the
traditional consideration of deterministic forecasts (i.e. point estima-
tion), in the algorithms of tools aimed to support operators in power
system security assessment [4-11]. In particular, the R&D iTesla pro-
ject', co-funded by the European Commission 7th Framework Program
(EC FP7), targeted the development of an online dynamic security
analysis platform for European-wide grid models, able to account for
uncertainties in security margin evaluation and to handle curative re-
medial actions to face contingencies. The iTesla security assessment
approach was successfully tested for overload situations on the French
network, as described in [9]. The presented results show that con-
sidering forecasted uncertainties is of the utmost importance, since
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from apparently secure deterministic forecasted network states, it is
possible to arise unsecure situations that need to be tackled in advance
by the system operator. In [6], probabilistic wind power predictions are
used to perform steady-state security assessment of the Portuguese
transmission system with fuzzy power flow. By comparing them with
the results provided by the ac deterministic power flow, the obtained
results demonstrate that uncertainty forecasts can reduce the percen-
tage of missed alarm violations detection at the cost of increasing false
alarm situations. In [12], an algorithm is presented to perform on-line
probabilistic transient stability assessment, claiming that probabilistic
assessment is capable of providing a more comprehensive, rational and
realistic measure of the system stability level. Although it is clear from
these works that the use of uncertainty forecasts provides benefits for
system security assessment, a methodology is missing to evaluate the
overall quality of the employed probabilistic forecasts.

Aiming to fill this gap, the current work describes a generic fra-
mework developed to evaluate and compare the quality of the un-
certainty provided by probabilistic forecasts of the power system state,
when used to perform security assessment for branch overloading.
Besides exploiting advanced univariate and multivariate metrics that
traditionally are used in weather prediction, the evaluation is com-
pleted by assessing the benefits of exploiting probabilistic forecasts over
the Transmission System Operator (TSO) current practices of using
deterministic forecasts of the system operating conditions. To the best
of authors’ knowledge, the proposed validation framework is new,
being of paramount importance in order to enable the electric power
industry to compare the performance among alternative probabilistic
uncertainty models, when used to perform security assessment of their
power system. The quality and scalability of this framework is illu-
strated and validated by presenting the obtained results for the French
transmission system. To this end, the proposed evaluation framework
was applied for alternative probabilistic uncertainty models that were
computed and used by an improved version of the advanced iTesla
security assessment platform. The validation framework was im-
plemented through the development of scripts written in the R pro-
gramming language [13]. These scripts are open source and available
on the iTesla Power System Tools (iPST) repository”. Some preliminary
results obtained with these scripts are described in [14]. The con-
tributions of the current paper are the overall description of the de-
veloped methodology, including an explanation and justification for all
the adopted steps of the methodology and describing, through the
analyzed case study, how to perform a proper interpretation of all the
results.

The general organization of the paper is as follows. First, Section 2
describes the univariate and multivariate metrics that are used to
evaluate and compare the quality of branch flow uncertainties when
provided by probabilistic forecasts. Then, Section 3 explains how the
methodology is extended to evaluate the benefits from exploiting these
uncertainties to assess security for the overload problem. Next, Section
4 presents the results obtained by applying the described validation
framework for the analyzed case study and, finally, Section 5 presents a
summary of the main conclusions obtained from this research.

2. Evaluation of flow uncertainty forecasts

The aim of this analysis is to measure the quality of probabilistic
uncertainty models in estimating the flows in transmission lines. With
this goal, the analyzed variables are the rms value of electric currents in
transmission lines (I, in A). Since the evaluation uses metrics that are
based on distance computations, in order to have equivalent measures
between variables, these are previously normalized by dividing them by
the line maximum allowable permanent limit (.4, in A) associated to a
single point in time (timestamp) of the evaluated time period. In fact,

2 https://github.com/itesla/ipst/tree/master/mcla-evaluation.
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although line limits may change over time due to weather conditions, in
this analysis a unique base value is mandatory for each variable since it
involves the computation of multi-temporal metrics. For each con-
sidered normalized electric current (I, in pu A of I,,4), a distinct sta-
tistical analysis is performed for the cases with opposite directions of
active power flow, since these two situations define very different op-
erating conditions in the power system.

In this evaluation, probabilistic forecasts are assumed to be formed
by a finite number of plausible future states (i.e. random vectors) in-
dependent and identically distributed like the ones generated by a
Monte Carlo approach. These forecasts are henceforth named ensembles.
Being the real observed behavior of a testing period provided by re-
corded snapshots (SN’s), the quality of probabilistic forecasts is checked
through the computation of advanced metrics widely used and tested in
weather prediction [15,16]. In the developed methodology, these me-
trics where adapted and explored for evaluating branch flow estima-
tions, namely by: (a) analyzing a distinct type of system condition — the
normalized electric currents in transmission lines associated with a
constant direction of active power flow (i.e. the previously described I
in pu A of I,.); (b) given special attention for underestimated flow
situations, since these are prone to provide missed alarm of overload
situations in case of branch flows closer to their limits. These applied
metrics are described next.

2.1. Univariate metrics

The goal of probabilistic forecasting is to maximize the sharpness of
the predictive distributions subjected to calibration [16]. Calibration is
the statistical consistency between the probabilistic forecasts and ob-
servations, diagnosing if they result from the same probability dis-
tribution function. Sharpness measures the concentration of the pre-
dictive distributions and, therefore, characterizes the uncertainty of
probabilistic forecasts by estimating the range of forecast errors.

2.1.1. Univariate rank histogram

The univariate rank histogram, also known as Talagrand diagram
[17], is a powerful tool for calibration check, since it summarizes the
rank position of the verified observations with respect to its ensemble
for a testing time period. An ensemble is assumed calibrated if the
verifying observation is equally likely to fall into any of the bins. As-
suming an ensemble with m members, for each timestamp the member
values are ordered and the position (i.e. the rank) of the SN in this
ordering is recorded. For instance, the rank will be 1 if the SN is below
all the ensemble members and will be m + 1 if the SN is above all the m
ensemble members. The height of each bin presents the relative number
of times when the verified observations fall in the associated rank po-
sition over the analyzed time period. For optimal result, each bin of the
rank histogram should have the same frequency of observations.
Therefore, the rank histogram measures how well the spread of the
ensembles represents the true uncertainty of the observations (SN’s)
and checks the bias of the ensembles. Fig. 1 illustrates some possible
shapes of the rank histogram as well as its interpretation for the ana-
lyzed variable (I, in pu A).

2.1.2. Discrepancy index (4)

Together with each rank histogram, a discrepancy index is calcu-
lated to measure the deviation from uniformity in the rank histogram,
named A index and given by Eq. (1):

A= Zﬂ:l Ifi — 1/(m + DI x (m + 1)/(2m) o

where f; is the observed relative frequency of each bin i. It computes the
sum of the deviations from uniformity between the m + 1 bins and the
optimal result for the relative frequency in each bin (i.e. 1/(m + 1)). By
knowing that the worst result leads to 2m/(m + 1), this sum is nor-
malized to obtain A€ [0,1]. Lower A values means that the bins are
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tendency to underestimate the flows

¥
Ml il oall]

a) underdispersed b) overdispersed c) ensembles d) best result
ensembles ensembles biased to the left

Fig. 1. Interpretation of rank histograms for branch flow estimation.

closer to represent frequencies associated with a perfectly reliable
forecast.

It is important to remark that the A index value measures the degree
of closeness of a Talagrand diagram to its ideal flat shape, without
distinguishing between ensemble bias and under/over dispersion,
therefore it does not replace the rank histogram.

Because a finite number of observations must be used, rank histo-
grams cannot be expected to be exactly flat. To overcome this, statis-
tical tests for “having a uniform histogram” can be applied, like the
ones described in [18]. However, these tests require care in inter-
pretation since they may lose power for a small number of observations
and may also fail to detect rank histograms that clearly display a pro-
blem (like U-shape or peaked rank histograms).

2.1.3. Frequency of observations falling outside the forecast

The number of situations where the SN falls outside the uncertainty
forecast defined by the ensemble can be obtained from the rank his-
togram, namely from the frequency of observations in bin 1 and m + 1.
However, these values do not remove the influence of outliers. To
eliminate this influence, the ensemble range of values is firstly defined
to be inside quantiles p and 1 — p (Q, and Q; _,, respectively). These
quantiles are calculated individually for each point in time, being
therefore named marginal quantiles [19]. Having this in mind, by
comparing the observed values with their marginal quantiles in the
multi-temporal analysis of each variable, the relative frequency is
computed for the following situations: (a) SN outside [Q,; Q; —,], which
for an optimal probabilistic uncertainty model should result in 2p; (b)
SN exceeding Q;_j, quantifying therefore underestimated flow situa-
tions.

2.1.4. Continuous Ranked Probability Score (CRPS)

The Continuous Ranked Probability Score (CRPS) can be used to
compare probabilistic forecasts of a scalar variable, using an omnibus
scoring function that simultaneously addresses calibration and sharp-
ness. In the specific case of forecasts formed by ensembles, the minimal
value of this metric aims to identify the model that maximizes ensemble
sharpness without deteriorating calibration, being calibration measured
by the distance between the observation and the ensemble [16].
Namely, for each timestamp, the CRPS formula in kernel score re-

presentation is given by Eq. (2):
1 m 11
CRPS = Z Zi:l Ixi - yI d EE

——
distance of the
SN to ensemble members

D 2y i !
X — X

i=1 Ldj=1 ! J
-

distance between
ensemble members

(2)

where y is the observed value (i.e. the SN) and x; is the value for
member i of the ensemble with m members. Considering the ensemble
empirical cumulative distribution, (2) is equivalent to the integral of
the squared heights of the shaded region that is illustrated in Fig. 2 for
three distinct situations [20]. Lower CRPS values are preferred since it
means that the ensembles present lower dispersion and, at the same
time, are mostly concentrated around the SN value (as illustrated in the
last situation of Fig. 2). The CRPS generalizes the mean absolute error.
In fact, it reduces to the mean absolute error if the forecast is de-
terministic. For the multi-temporal analysis, the mean value of the
CRPS metric is computed for each analyzed variable, here named CRPS.
This metric results from the combination of the following two metrics
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Fig. 2. Illustration of the CRPS: the integral of the squared heights in the shaded
region. For convenience, the presented figures shade the absolute values, not
the squared heights.

[21]: (2) dsnesensembie: mean of the Euclidean distance of the SN to en-
semble members; (b) stdensempie: Mean of the ensemble standard devia-
tion (measuring ensembles spread). The CRPS is useful to rank and
compare competing forecasting techniques, but not for the evaluation
of a single model since it does not provide a proper interpretation for
single evaluation.

2.1.5. Distance of observations falling outside the forecast

Besides the two earlier described distance metrics embraced by the
CRPS, it is also important to measure how distant the observed values
are when falling outside the ensemble. In particularly, security assess-
ment for branch overloads requires to evaluate the mean magnitude of
the obtained underestimated flows, because these may provoke missed
alarm of overload situations. Given that, and assuming that during
online operation the transmission line flows are estimated by the upper
value of their marginal quantiles (i.e. by Q; —p), the following metrics
(illustrated in Fig. 3) are also computed for the multi-temporal analysis
of each variable: (a) &(Qp): mean value of the distances between the SN
and quantile p only for situations where the SN does not reach this
quantile; (b) d(Q; - p) =d nderestimate: Mean value of underestimated dis-
tances, namely, of the distances between the SN and quantile 1 —p only
for situations where the SN exceeds this quantile.

2.1.6. Metrics time evolution

Beyond multi-temporal metrics, the time evolution of metrics is also
obtained. In fact, their visual inspection is valuable to provide a de-
tailed analysis of the multi-temporal calculated metrics, namely to de-
tect seasonal effects on model performance. In particular, the fan chart
[22], like the one illustrated in Fig. 4 for the flow in a transmission line,
has become a standard method to visualize forecasts with uncertainty.

2.2. Multivariate metrics

To evaluate the uncertainty quality for the complete network state
with a single metric, a multivariate scoring function is adopted. Since
the CRPS and the univariate rank histogram measure different aspects
of probabilistic forecasts calibration, a multivariate generalization is
performed for both metrics. In this work, we followed the multivariate
metrics proposed in [16] for ensemble predictions of surface winds
which are described next.

Q,

Qi1—p

Qp

Qi-p

I(pu) I(pu)

R
ensemble ensemble SN

d(Qp) d(Q1-p) = dunderestimate

Fig. 3. Graphical representation of distance metrics.
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Fig. 4. Illustration of a fan chart for the flow in a transmission line. Legend: SN:
observed value; DACF: determinist forecast; [Q(p); Q(1 — p)]: marginal forecast
intervals.

0.3004

0.250

Electric Current [pu of I,,,,]

2.2.1. Multivariate rank histogram

The multivariate rank histogram is a generalization of the earlier
described Talagrand diagram. Namely, the same interpretation is ap-
plied for calibration check (as illustrated in Fig. 1) and a discrepancy A
index is also computed to measure the deviation from uniformity, as
described in (1).

For rank computation of each verified multivariate observation we
consider: (a) vector y with dimension d and containing the SN operating
conditions that take values in R; (b) the ensemble with m members {x;,
..., Xm}, where each member x; is also a vector taking values in RY. First,
all the vectors (i.e. the SN and the ensemble members) are pre-ranked
using a multivariable procedure: each vector is checked to see if any
other vector lies in the hypercube below itself. If none exists, then the
corresponding pre-rank is 1. Otherwise, the pre-rank will be the number
of vectors contained in the hypercube including itself. Then, the rank
position of the SN will be set by counting the number of vectors having
a smaller pre-rank. Pre-rank ties between the SN and other vectors are
solved at random.

2.2.2. Energy Score (ES)
The Energy Score (ES) is a multivariate generalization of the CRPS
described in (2). Namely, for each timestamp, its formula is given by:

1 m 11 m m
BS=— 3 =yl =S 20 2 Ik = xll

distance between
ensemble members

—
distance of the
SN to ensemble members

3)

where ||.|| denotes the Euclidean norm and y and x; have the meaning
also considered for the multivariate rank histogram. For the multi-
temporal analysis, the mean value of the ES is computed, here named
ES. The ES metric results from the combination of the following two
metrics: (2) dgy-sens.: mean distance of the SN to ensemble members; (b)

dens.i<-ens,j- mean distance between ensemble members.

3. Evaluation of uncertainty forecasts in assessing security for the
overload problem

The ultimate goal of the evaluated probabilistic uncertainty models
is to perform security assessment for the overload problem. Therefore,
the quality evaluation of each model is only completed after assessing
the benefits of exploiting the uncertainty provided by the probabilistic
forecasts over the TSO current practices of using deterministic forecasts
(DF) of the system operating conditions, when used to perform security
assessment for branch overloads. As demonstrated in [6] with fuzzy
power flows, using the uncertainty from forecasts can reduce the per-
centage of missed alarm (MA) violations detection at the cost of in-
creasing false alarm (FA) situations. The idea of the developed eva-
luation methodology is precisely to check this situation for probabilistic
power flows and, if this is true, to measure the obtained trade-off of FA
increase for each 1% decrease in MA when compared to deterministic
power flows. Another contribution of this trade-off analysis is the
provision of a proper parameters tuning when using the probabilistic
forecasts to perform security assessment for branch overloads.

In order to compute this trade-off, the true security classification
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provided by the observed flows (i.e. by Isn(t)) for a testing period is
compared with the classifications provided by the deterministic and
probabilistic forecasts. Then, the following situations are identified for
each flow and also for the transmission system (with a distinct analysis
for deterministic and probabilistic forecasts): (a) a true unsecure si-
tuation wrongly classified secure, i.e. a MA (missed alarm); (b) a true
secure situation wrongly classified unsecure, i.e. a FA (false alarm). The
bootstrap method [23] is applied to provide confidence intervals de-
scribing the uncertainty for the calculated relative frequencies of MA
and FA. Besides, to complement the trade-off results, the computation
of more detailed metrics is performed, namely to: (a) provide inter-
pretation for the computed multi-temporal classification errors; (b)
evaluate the feasibility of system operators to tackle the forecasted
MVA overload situations. This proposed trade-off approach is detailed
next.

3.1. Analyzed variables

Like in the methodology described in Section 2, the examined
variables are the rms value of electric currents in transmission lines (I,
in A). However, since now the computed metrics mainly aim to check if
the steady-state flows in each transmission line are not exceeding the
maximum permanent limit associated to each specific timestamp
(Ihax(t), in A), a variable normalization is not mandatory. Besides, no
distinct analysis is performed for flows with opposite directions of ac-
tive power.

3.2. Security classification

For each timestamp, each observed flow (Isy(t)) is assumed over-
loaded if exceeding its associated I,,.,(t) value.

A security margin (SM) is assumed for deterministic forecasting (i.e.
for Ipr(t)). Namely, an overload is identified if Ipp(t)-(1 + SM) exceeds
Lhax(t). The adoption of this approach was inspired by the market
procedures described in [24], where a flow reliability margin (named
FRM) is assumed for each critical branch flow to reduce the transmis-
sion line available capacity margin (i.e. the difference between the
deterministic forecasted flows in the line and its load limit), aiming to
take into account the uncertainties involved in the branch flow fore-
casting process. The approach described in [24] adopts a constant flow
margin (FRM) for each branch flow, resulting from the computation of a
multi-period quantile of the branch flow historical forecasted errors for
a testing period. In contrast, in the proposed SM approach, the adopted
flow margin (Ipg(t)-SM) is a function of the branch flow deterministic
forecast (i.e. of Ipp(t)), providing therefore a sharper model for the
uncertainty of determinist forecasts.

For probabilistic forecasting, assuming that transmission line flows
are estimated by the upper value of their marginal quantiles (by Q;_,),
an overload situation is identified if Q;_, exceeds Iq(t). With this
approach, the adopted flow margin (Q; —p-Ips(t)) is a function of the
branch flow deterministic and probabilistic forecasts.

For each instant in time, the transmission system is assumed un-
secure if at least one transmission line flow presents overload problems.

3.3. Trade-off analysis

The purpose of the trade-off analysis is to: (a) check if probabilistic
forecasts can reduce the transmission system MA rate provided by de-
terministic forecasts (i.e. by Ip(t) with alternative values of SM); (b) if
this is true, to identify the cutoff value (of 1—p) for probabilistic
forecasts being able to decrease the last described MA rate without an
excessive increase of FA situations.

In this trade-off analysis, the number of transmission system MA and
FA situations is obtained for a testing period. This procedure is repeated
for: (a) the traditionally used deterministic forecasts (i.e. for Ipg(t) with
SM = 0); (b) deterministic forecasts with alternative SM values; (c)
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probabilistic forecasts with alternative 1 —p values. For each computed
relative frequency of MA and FA, its uncertainty is characterized by
applying the bootstrap method with the following approach: (a)
random sampling with replacement (by assuming no seasonality de-
pendency in the time series of classification errors for each flow); (b)
with the studentized bootstrap [23] to infer confidence intervals for the
percentage of MA or FA (i.e. for parameter 6 of the bootstrap method).
In this approach, an extra challenge lies on the estimation of segy; (the
standard error for each sample i, in a total of B bootstrap samples, being
B selected by the user). This was addressed by considering that the
percentage of MA (or FA) in a time series sample is seen as the mean
value of a binary sample, where values equal to 1 represent the time-
stamps where a MA (or FA) occurred. For these cases, a good estimator
of seq; is provided by the quotient sg/</n, where so; and n are the
standard deviation and size of the i-th sample, respectively.

3.4. Computation of detailed metrics

To detect seasonal effects for the computed multi-temporal classi-
fication errors, the time evolution of these classification errors is also
obtained. This is complemented by the visualization of fan charts for
the flows presenting overload problems.

To evaluate the feasibility of system operators to tackle the fore-
casted overload situations, the transmission lines with forecasted
overload problems are identified and the overloads severity for these
lines is characterized with location and dispersion metrics. Besides, an
overall overload severity metric is computed for the multi-temporal
analysis of the transmission system. Namely, assuming that: (a) over-
load situations detected online by the system operator will provoke the
setting of re-dispatch actions; (b) the amount of re-dispatched MW is
similar to the total amount of detected MVA overload situations; the
following metric is computed to estimate the amount of required MW
re-dispatch to solve forecasted overload situations for the analyzed test
period:

re — dispatch = Z Z (overload;(t)- Unf)-\/§ /1000

'TT; “4)
where for each analyzed timestamp t:
{overloadf(t )= Ip(t )— Ima,(f(t) (f Ir(t )> Imaxf(t))
overload;(t )= 0 (otherwise) (5)

and f refers to each analyzed flow in transmission lines; I is the line flow
forecast (rms value of electric current, in A); I,q is the line maximum
permanent limit (in A); Un is the line phase to phase nominal voltage
(in kV).

4. Case study

The quality and scalability of the proposed validation framework is
here illustrated on recent historical data of the French transmission
system. All the results were obtained through the scripts written in the
R programming language that are available in the iPST repository.

4.1. Network data

In the used network model, the boundary nodes of the French
transmission system to lower voltage levels (20 kV and below) are as-
sumed to be connected to fictitious loads. Foreign grids are represented
by equivalents. The stochastic variables comprise the active and re-
active power injection of loads and renewable energy sources, totaling
thousands of variables (around 8000). The used historical data include
Day-Ahead Congestion Forecasts (DACF’s) for deterministic forecasts
and SN files for the observed network states. In this study, the DACF’s
were previously modified by assuming the topology of the SN’s with the
injections of the forecasts. This procedure eliminated the topological
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discrepancies between DACF and SN network states from the analysis: a
major source of inconsistency between SN’s and DACF’s of the French
transmission system that was not treated by the evaluated probabilistic
uncertainty models. To avoid insufficient statistical data, a minimum
number of 100 timestamps was assumed to include each variable in the
analysis. In all the studies, probabilistic forecasts are formed by en-
sembles with 50 members (including the DACF).

4.2. Evaluated uncertainty models

The evaluated probabilistic uncertainty models were generated by
an upgraded version of the advanced security assessment platform that
was created in the iTesla project [9]. The platform builds a model for
the forecast errors of the stochastic variables conditioned to their ex-
pected values (deterministic forecasts). This task is carried out by a
Monte Carlo Like Approach (MCLA) module fully described in [25] and
available in the iPST repository®. An overview of the used uncertainty
models is described next.

4.2.1. The “original” uncertainty model

In an offline workflow, the raw data (snapshots and deterministic
forecasts of the stochastic variables) are pre-treated and clustered by
the k-means clustering technique. After applying the Principal
Component Analysis (PCA) for dimensionality reduction, and a pair
copula decomposition with C-vines to simulate higher order de-
pendencies among Principal Components (PC), the PC’s are sampled
and back-projected onto the original variable space, getting the un-
conditioned samples of snapshots (SN) and forecasts (FO). In the online
platform, these samples are conditioned to the specific forecast power
system state using a conditional sampling based on Nataf transforma-
tion, as detailed in [25].

4.2.2. The “adapted” uncertainty model

Applying the conditional sampling techniques in the online en-
vironment has highlighted two issues [26]: (1) the occurrence of
overfitting of the conditioning technique (i.e. the consistency of con-
ditioned forecast intervals with observations depends a lot on the spe-
cific set of historical data used to build the uncertainty model); (2) the
original variables may be multimodal, with a non-Gaussian probability
distribution, which reduces the consistency of the conditioned samples
— extracted using Nataf transformation — with actual observations.
Therefore, as detailed in [26], an “adapted” uncertainty model was
developed by performing some upgrades to the earlier described “ori-
ginal” uncertainty model, to increase the algorithm prediction cap-
ability at the expense of the spread of the relevant samples, namely by:

(1) reducing the complexity of the covariance matrices used in the
Nataf transformation;

(2) sampling separately the multimodal and the unimodal variables.
The pair (SN, FO) of each multimodal injection is fitted using a
Gaussian mixture with the lowest AIC (Akaike Information
Criterion), while the unimodal variable set is treated as a whole
with the Nataf transformation-based conditional sampling method,
thus neglecting correlations between multimodal and unimodal
variables, and among multimodal variables.

4.3. Evaluation of the “original” uncertainty model

In order to measure the quality of the “original” uncertainty model
in estimating the flows in transmission lines, this model was trained by
the offline workflow referred in Section 4.2 with the French historical
data from February to March 2017 (with 890 hourly timestamps, being
the others unavailable). This model was then used by the MCLA (also

3 https://github.com/itesla/ipst/tree/master/mcla.
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Fig. 5. Rank histograms for “flow A” and “B” with the A index value.

referred in Section 4.2), to estimate the uncertainty of pre-contingency
power flows from February to April 2017 (1354 timestamps). Finally,
these probabilistic forecasts were used to compute the univariate me-
trics earlier described in Section 2.1 to evaluate the quality of flow
uncertainty forecasts for all the 380kV French lines (for 695 lines
providing 1241 flow variables). For this analysis, the ensembles range
of values was defined by marginal quantiles Qg os and Qq.os (i.e. by
setting p = 0.05). The training period was here intentionally included
with the purpose of having a large amount of timestamps to illustrate
the quality of the proposed metrics. The most relevant results are de-
scribed next.

Fig. 5 presents the obtained rank histogram for two analyzed flows
(i.e. two electric currents associated with a constant direction of active
power flow). The rank histogram for “flow A” reveals that the en-
sembles characterizing the uncertainty for this flow are underdispersed
and biased to the left (i.e. with tendency to underestimate the flows),
presenting a large A index of 0.4. The rank histogram for “flow B” is
much more calibrated (i.e. with more consistency between the position
of the observed values and the ensemble members), having a smaller A
index of 0.12. These behaviors can be confirmed by the fan charts
presented in Fig. 6. This example illustrates how well the A index ac-
curately summarizes the quality of the rank histogram.

The scatter plots of Fig. 7 present the obtained values of univariate
metrics for all the analyzed flows. As expected, the first scatter plot
describes a strong relationship between the quality of the rank histo-
gram (summarized by A index) and the relative frequency of SN’s falling
outside the ensemble. It also shows that the aspects of calibration
measured by the rank histogram differs a lot between transmission
lines, going from a good result with A = 0.1 to the worst possible result
of A=1

The second plot indicates that no relevant relationship exists be-
tween the quality of the rank histogram and distance metrics (here il-
lustrated for dgy-.ensembie; the mean Euclidean distance of the SN to
ensemble members). On the contrary, the third plot describes a strong
relationship between CRPS and distance metrics (as expected from
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Fig. 6. Fan chart for “flow A” and “B” at week 15 of 2017.
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Fig. 7. Univariate metrics for the “original” uncertainty model.

CRPS definition). Finally, the last plot indicates that the rank histogram
has no relevant relationship with CRPS. By knowing that these two
metrics evaluate two distinct aspects of probabilistic forecasts calibra-
tion, the obtained results illustrate that to obtain a clear picture of the
quality of probabilistic forecasts, we must combine the evaluation
provided by the rank histogram and the CRPS metrics, complemented
by each associated metrics.

For the specific tested case, the distance metric dgyensembie SUZEESES
higher calibration than the one associated to the rank histogram. In
Fig. 6, this is also visible in the fan chart of “flow A”. By identifying the
flows with the highest A values (i.e. worst rank histograms), the least
calibrated transmission lines were detected to be evacuation lines of
conventional power plants, suggesting that their flow probabilistic
forecasts may be improved by including the unscheduled operating
conditions of conventional power plants in the uncertainty model.

4.4. Comparing uncertainty models

Aiming to compare the “adapted” and “original” uncertainty models
(both characterized in Section 4.2), each model was trained with the
French historical data from February to March 2017. Both models were
then used by the online MCLA to estimate the uncertainty of pre-con-
tingency flows in all the 380kV French lines for April 2017 (for the
available 464 hourly timestamps). Here, it is necessary to remark that,
in order to increase the accuracy of the comparison, more months
should be used for the testing set besides April 2017. This was not
performed due to limitations of data availability. Finally, the univariate
and multivariate metrics described in Section 2 were computed as-
suming that ensembles range of values is defined by Qg o5 and Qg_gs.

The most relevant results obtained with univariate metrics are
presented in Fig. 8, showing the statistical difference between the
“adapted” and “original” model metrics values for each analyzed flow
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Fig. 8. Comparing uncertainty models using univariate metrics.

in transmission lines. Since the best result aims to minimize all the
metrics, in the scatter plots of Fig. 8, a negative value means that the
metric is being improved by the “adapted” approach (and vice-versa).
The first plot of Fig. 8 indicates that, for most of the flows, the quality of
the uncertainty model was improved (from the “original” to the
“adapted” approach) in reducing the number of observed flows falling
outside the uncertainty forecast. From the second plot, it is visible that
this improvement was obtained at the expense of increasing the en-
sembles spread (measured by stdensempie) and the distance between the
observed values in the SN’s and the ensemble members (measured by
&SNeensemble)-

The obtained results with multivariate metrics are presented in
Fig. 9, where the relevant conclusions are similar to the ones obtained
with the univariate metrics. In particular, in Fig. 9 we can see that the
calibration aspects measured by the rank histogram are improved in the
“adapted” model (from A index values and by visual inspection of the
rank histograms), at the cost of deteriorating the calibration aspects
evaluated by the energy score (from the values of ES, dsye.ens and
&em_ieem,j). This test case illustrates the discriminative capabilities of
the used multivariate metrics.

4.5. Evaluation of the “adapted” uncertainty model in assessing security for
the overload problem

In order to evaluate the benefits from exploiting the “adapted”
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Fig. 9. Comparing uncertainty models using multivariate metrics.
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trade-off: 3.33

Fig. 10. Trade-off analysis for “contingency 1”. Legend: (1 + SM) DACF: results
provided by deterministic forecasting with a SM security margin; Q; _,: results
provided by probabilistic forecasting with a 1 — p marginal quantile; trade-
off = (FA increase)/(MA decrease).

probabilistic uncertainty model to assess security for the overload
problem, the trade-off methodology described in Section 3 was applied
for two severe N-2 contingencies. One, here named “contingency 1”,
impacts an electric peninsula with very low level of conventional gen-
eration in the analyzed time period and, therefore, provides a test case
adapted to the capability limits of the used uncertainty model. The
other situation, named “contingency 2”, has major impacts on the se-
curity of transmission lines close to cross border flows. Since cross
border flows (modeled as fictitious loads) were not included on the set
of stochastic variables of the uncertainty model, a worse uncertainty
characterization is expected for “contingency 2”. In this analysis, the
“adapted” uncertainty model was trained with historical data from
January to February 2018. This model was then used, by the MCLA, to
estimate the uncertainty of post-contingency flows in all the 380 kV and
225kV French lines (around 1000 lines leading to 4000 flows) for
March 2018 (with 701 available hourly timestamps). Finally, these
results were used to compute the metrics described in Section 3, namely
to produce the trade-off analyses presented in Figs. 10 and 11 for
“contingency 1” and “2”, respectively.

These figures include a plot presenting the impacts, on the relative
rate of MA and FA for the French EHV/HV transmission system, of using
alternative cutoff values (of 1 —p) on the probabilistic forecasts used for
the testing period (March 2018). For comparative purposes, the plot
also presents the misclassification results obtained from the tradition-
ally used deterministic forecasts (DACF with SM = 0) and with DACF’s
with alternative SM values. A 95% confidence level is assumed for the
bootstrap confidence intervals (presented on the magnitude of the cross
lines in the plots and on CLinf and CLsup values in the tables). A
maximum value of 20% load was assumed for the DACF’s security
margin (i.e. a maximum of SM = 0.2 pu). The plot in Fig. 10 shows that,
at a 95% confidence level, for “contingency 1” there is no SM value that
enables deterministic forecasting to decrease the MA rate provided by
the traditionally used DACF’s (with SM = 0). On the contrary, this is
achieved by probabilistic forecasting if using a proper quantile value,
namely a minimum of Qpg. This presents an added value of using
probabilistic forecasts over deterministic forecasts. In particular, as
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Fig. 11. Trade-off analysis for “contingency 2”.

described in the table of Fig. 10, if one uses probabilistic forecasts with
Qo.s, false alarms only increase by 3.3% for each 1% decrease in missed
alarms. The table in Fig. 10 also presents the obtained values of re-
dispatch from (4), namely, the estimate amount of required MW re-
dispatch to solve the forecasted overload situations for the analyzed test
period (with 701 hourly timestamps). For “contingency 1”, we can see
that these re-dispatch requirements are increased if probabilistic fore-
casts are used (from 586 GW to 764 GW). However, this gives around
1.1 GW of required re-dispatch for each analyzed timestamp, which is
in fact feasible for the French power system. Besides, most of the
overloads appear in transmission lines which flows can be controlled by
phase-shift transformers. Therefore, these results show that using the
“adapted” uncertainty model for flow security assessment of “con-
tingency 1” will create forecasted MVA situations that can be tackled by
system operators. Therefore, starting to use this probabilistic un-
certainty model over the traditionally used deterministic forecasts for
flow security assessment of “contingency 1” is a choice of the TSO,
according to their adopted risk criteria.

The obtained results for “contingency 2” leads to a different con-
clusion about the use of this probabilistic uncertainty model. In fact, as
presented in Fig. 11, deterministic forecasts show to provide the best
trade-off between MA and FA classification errors. In particular, if
probabilistic forecasts with Qo are adopted instead of the traditionally
used deterministic forecasts, the MA rate decreases (at a 95% con-
fidence level) with the following trade-off: for each 1% decrease in
missed alarms, false alarms increase by around 3.89%. However, a
better trade-off of 1.75% is obtained by using deterministic forecasts
with SM = 0.11. These results indicate that the used probabilistic un-
certainty model still requires some improvements, to increase the ac-
curacy of flow branch forecast for “contingency 2”. This conclusion is
supported by the plot presented in Fig. 12.

Fig. 12 presents a plot with the values obtained for the main uni-
variate metrics (described in Section 2) to measure the quality of the
“adapted” uncertainty model, when used to estimate pre-contingency
flows for the transmission lines that most contribute for the
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Fig. 12. Univariate metrics for the “adapted” probabilistic uncertainty model
(variables: pre-contingency flows of the transmission lines that most contribute
for the misclassification errors of the analyzed contingency; testing period:
March 2018).

misclassification errors of “contingency 1” and of “contingency 2”,
during March 2018. From this plot, it is evident that the flow un-
certainty forecasts of the transmission lines associated with “con-
tingency 1” are clearly the most calibrated ones.

5. Conclusions

In this work a generic framework methodology is proposed to
evaluate and compare the quality of the uncertainties provided by
probabilistic forecasts of the power system state, when used to perform
security assessment for branch overloads. Besides evaluating the quality
of the generated branch flow uncertainties with advanced univariate
and multivariate metrics that traditionally are used in weather pre-
diction, the evaluation is completed by assessing the benefits from ex-
ploiting probabilistic forecasts over the TSO current practices of using
deterministic forecasts of the system operating conditions.

Another important feature of the proposed framework is the tuning
of the marginal quantiles that provide the best misclassification errors
trade-off, when using probabilistic forecasts to perform security as-
sessment for branch overloads.

The quality and scalability of the proposed evaluation framework is
illustrated on recent historical data of the French transmission system.
In particular, it is shown that in order to obtain a clear picture of the
quality of probabilistic forecasts, the evaluations provided by the uni-
variate rank histogram and the CRPS (Continuous Ranked Probability
Score) advanced metrics must be combined. The obtained results also
illustrate how the interpretability of these advanced metrics can be
complemented by using simpler associated univariate metrics. Besides,
the presented case study also shows the discriminative capabilities of
the used multivariate metrics, namely of the multivariate rank histo-
gram and of the ES (Energy Score). Furthermore, the added value of
using probabilistic forecasts over deterministic forecasts is demon-
strated for a severe “N-2” contingency situation.

The proposed validation framework was implemented through the
development of open source scripts written in the R programming
language that are available on the iPST repository. Although being
developed to address branch overload problems, this work with proper
adaptations can be extended to other power system security problems.
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