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Abstract Determining the frequency of small subgraphs

is an important graph mining primitive. One major

class of algorithms for this task is based upon the enu-

meration of all sets of k connected nodes. These are
known as network-centric algorithms. FaSE is a ex-

act algorithm for subgraph counting that contrasted

with its past approaches by performing the isomor-
phism tests while doing the enumeration, encapsulat-

ing the topological information in a g-trie and thus

largely reducing the number of required isomorphism
tests. Our goal with this paper is to expand this ap-

proach by providing an approximate algorithm, which

we called Rand-FaSE. It uses an unbiased sampling es-

timator for the number of subgraphs of each type, al-
lowing an user to trade some accuracy for even faster

execution times. We tested our algorithm on a set of

representative complex networks, comparing it with the
exact alternative, FaSE. We also do an extensive analy-

sis by studying its accuracy and speed gains against pre-

vious sampling approaches. With all of this, we believe
FaSE and Rand-FaSE pave the way for faster network-

centric census algorithms.
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1 Introduction

A large variety of real systems can be seen as a com-

plex network, with graphs appearing as an ubiquitous
abstract representation, serving as the base model for

multitude of applications (Costa et al 2011). Is there-

fore only natural that graph mining has been receiv-

ing increasing attention in the past years. One way of
studying networks is to search for interesting groups of

nodes. These groups may have a relatively large size, as

is the case with community detection (Fortunato 2010).
However, they can also be of smaller sizes, like it is the

case on network motifs discovery (Milo et al 2002) or

graphlet based metrics (Pržulj 2010).

These methodologies have been applied with suc-
cess to a wide range of real systems, such as in the

social networks domain, where motifs have been used,

for instance, to characterize and classify co-authorship
networks (Choobdar et al 2012a) or wikipedia edition

networks (Wu et al 2011). Likewise, graphlets have been

used to provide a complete characterization of social

networks, allowing the selection of an adequate graph
model (Janssen et al 2012). These methodologies have

also been successfully applied to other domains, such

as biological networks (Sporns and Kötter 2004; Albert
and Albert 2004), engineering systems like electronic

circuits (Itzkovitz et al 2005) and also on software ar-

chitecture (Valverde and Solé 2005).

Computing the frequencies of subgraphs in the net-
work being analyzed is also known as performing a sub-

graph census, and plays a central role in most of these

methods. For example, a network motif is defined as a

statistically significant subgraph, which means that its
frequency in the original network is much higher than

in similar randoms ones (Milo et al 2002). Thus, this

method requires a subgraph census for the original net-
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work, but also for an ensemble of randomized networks

(Ribeiro et al 2009). However, calculating the frequency
of a subgraph is a computationally hard task since it

is closely related to the classic subgraph isomorphism

problem, which is known to be NP-Complete (Cook
1971). The execution time of any algorithm that cal-

culates this is bounded by the amount of subgraphs be-

ing enumerated and this number grows exponentially.
Thus, the applicability is limited to relatively small sub-

graph sizes. By decreasing the execution time, we are

effectively pushing the limits on which a subgraph cen-

sus computation is feasible. And even increasing by one
node the size of the subgraphs being searched, new in-

sight into a network can be gained because patterns

previously unknown may emerge.

We can divide the previous algorithms for this prob-

lem into three main groups related to their conceptual

approach. Network-Centric algorithms, like the one we
present in this work, ESU (Wernicke 2006) or Kavosh

(Kashani et al 2009), compute the frequency of all pos-

sible k-sized subgraphs in the original network. By con-
trast, Subgraph-Centric algorithms, such as the one by

Grochow and Kellis (2007), search for one single specific

subgraph. Finally, the Set-Centric approach of g-tries
(Ribeiro and Silva 2014b) is conceptually in the middle,

allowing for computing the frequency of a customized

set of subgraphs.

In this work we aim at improving the network-centric

approach, and thus our algorithm requires as its input

a network and a subgraph size k. Note that for the pro-
posed task subgraph-centric methods would still be able

to do the full enumeration, albeit they would need to

search individually for all possible k-sized subgraphs.

Likewise, set-centric methods would need to receive as
input the same set of all possible k-sized subgraphs, re-

gardless of having no guarantees that all possible sub-

graph types will appear on the network being analyzed.
Network-centric methods can be summarized through

two major steps: enumeration of connected sets of k

nodes and isomorphism tests to determine to which sub-
graph type each enumerated set belongs to. Past classi-

cal approaches do this independently: the enumeration

part gives origin to sets of k nodes and afterward each

one of this sets is inputted into an isomorphism compu-
tation (typically by calculating a canonical labeling) so

that the correspondent subgraph type frequency can be

incremented. This means that the number of performed
isomorphism tests is equal to the number of occurrences

of subgraphs, even though the actual number of existent

subgraph types is generally much smaller.

This paper extends the work done in Paredes and

Ribeiro (2013), where we presented the FaSE algorithm,

a network-centric approach that aims precisely at re-

ducing this very redundancy of performing one isomor-

phism test per subgraph occurrence. Instead of post-
poning this calculation step, we consider it while doing

the enumeration by storing it in a customized version of

a g-trie, a tree-like data structure that works as a prefix
tree of graphs, so as to take advantage of the underlying

structure of the graphs being enumerated. Whenever a

new node is selected to be added to the enumerating set
we either create a new edge on the g-trie or try to fol-

low an existing one that corresponds to a topologically

equivalent graph, where equivalence here is defined by

an intermediate set of classes given by the way we label
each subgraph type (a process we called LS-Labeling).

A path from the root node to any node in the tree cor-

responds to a different node permutation of a certain
graph type (something that is given by our labeling al-

gorithm). In order to know the true subgraph type of

each occurrence, we compute a canonical labeling for
each leaf in the g-trie. By doing so we are able to only

compute one isomorphism test per leaf and thus avoid

repeating this calculation for two subgraphs that have

the same node permutation and are equivalent on our g-
trie. Note that as we have shown, the number of leafs is

proportional to the number of isomorphism classes and

is usually very small compared with the total number
of subgraphs. All in all, we end up getting an internal

subgraph representation that looks out for the topology

and common substructures of the enumerated graphs,
which allows for further improvements based on this

information.

In this paper we also expand upon our previous
description of FaSE, by further explaining its behav-

ior. Moreover, we introduce an approximation approach

that samples the search space to estimate the exact
value of the frequency of present subgraph types. This

classic trade of accuracy for speed technique has been

applied in the past, since many real world networks are
of large scale and thus it is unfeasible to perform an

exhaustive full enumeration. Most previous approaches

work in a similar fashion by sampling a fraction of all

enumerating subgraphs (Kashtan et al 2004; Omidi et al
2009; Wernicke 2006). Our sampling works by consider-

ing the enumeration as a recursion tree (which is possi-

ble due to the way we enforce this process) and by only
exploring certain branches with a predefined probabil-

ity. We end up with an unbiased sample that we use to

estimate the real frequency of all subgraph types. This
results in an algorithm that is able to achieve higher

values of subgraphs sampled per second and thus ob-

tain the same accuracy of the previous network-centric

approaches, but doing so in far lesser time.

To confirm this, we tested our approach on a set of

both representative real world simple directed and undi-
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rected complex networks with varied topological fea-

tures. We compared our results with two base network-
centric approaches. For completeness we included the

results obtained for the exact approach that were al-

ready presented in Paredes and Ribeiro (2013). Fur-
thermore, we test the approximate approach by com-

paring it with the exact approach and with previous ap-

proaches, to showcase its behavior speed-wise, accuracy-
wise and convergence-wise. We show that we obtain

considerable speedups in both exact and approximate

approaches, being roughly an order of magnitude faster

than past methods which compute an isomorphism test
per subgraph occurrence. The source code of the pre-

liminary version of our algorithm is available at

http://www.dcc.fc.up.pt/gtries/fase/.

The remainder of this paper is organized as follows:

Section 2 defines the problem being solved and further
describes some of the past approaches that are more

relevant to our current work. Section 3 describes in de-

tail our proposed exact methodology. Section 4 explores
our approximate approach. Section 5 shows our exper-

imental results. Section 6 concludes the paper and also

gives some directions for future work.

1.1 Related Work

In the network-centric realm, the two main base algo-

rithms are ESU (Wernicke 2006) and Kavosh (Kashani

et al 2009). Even though they are conceptually simi-
lar, since they both work by iterating through all K-

subgraph occurrences incrementally and in the end per-

form isomorphism tests, they use two underlying differ-
ent approaches. Although their execution times are usu-

ally pretty close, past tests show that Kavosh performs

slightly better on average. An improvement over these
approaches is the very recent QuateXelero algorithm

(Khakabimamaghani et al 2013). It avoids having to do

one isomorphism test per occurrence by storing the un-

derlying topology of the subgraphs being enumerated in
a quaternary tree. A contemporaneous algorithm with

a similar methodology is our own work, FaSE (Paredes

and Ribeiro 2013), which is the base algorithm for this
paper’s work. FaSE differs from QuateXelero because

it uses a different underlying topological structure, the

g-trie. Also, we supply a sampling version of FaSE, ca-
pable of providing faster approximate results while the

current QuateXelero implementation only provides ex-

act results. A different improvement approach is fol-

lowed by NetMODE (Li et al 2012), that considers only
very small subgraph sizes and either caches the results

of isomorphism tests or builds a customized isomor-

phism test or a particular subgraph size. Our work dif-

fers because we aim at a more complete generality, with

no rigid restrictions on the subgraphs size.

Regarding subgraph-centric approaches the work of

Grochow and Kellis (2007) stands out. It works by tak-

ing a single subgraph type and computing its frequency

on the input network by breaking symmetries. We would
like to point out that this approach is conceptually dif-

ferent from the one taken in this work, since a full sub-

graph census would require a separate computation per
subgraph and pre-generated set of subgraphs.

As for the set-centric approach, the state-of-the-

art is the usage of g-tries (Ribeiro and Silva 2014b), a

work previously developed by us. Like in the subgraph-
centric approach, this algorithm makes use of symme-

try breaking conditions to enumerate not one, but a

set of subgraphs. Note that the data-structure used in

this work is similar to these g-tries (and that is why
we used the same name). However, our work does not

use symmetry conditions and is network-centric in its

natures, thus does not requiring a pre-generated set of
subgraphs to search for.

Another possible assumption is to only consider cer-

tain types of graphs and thus explore specific combi-

natorial features of that graph type, as was done in
Marcus and Shavitt (2010). Our work differs from both

this and the pre-calculation approach since it aims at

generalness and applicability in all types of graphs.

For approximate approaches, one of the first to ap-

pear was Kashtan et al (2004), an algorithm that pro-
vided a biased estimator by doing a random walk on

the network. To correct the bias it calculated the prob-

ability to sample each subgraph and used it to weight
each sampled subgraph. As an extension of the ESU al-

gorithm there exists Rand-ESU (Wernicke 2006), which

works by placing probabilities in each level of the enu-
meration, thus giving an unbiased estimator for the

number of subgraphs of each isomorphism class, simi-

larly to what was done on this work. Another extension

of an exact method are Rand-gtries (Ribeiro and Silva
2010), which work in a similar fashion to Rand-Esu. A

more recent approach is given by GUISE (Bhuiyan et al

2012), which works by using a Markov Chain Monte
Carlo sampling method. However, it is also more spe-

cialized on a more specific census, namely undirected

subgraphs of sizes 3 to 5. Our work differs because right
from the start we aim towards total generalization and

we support both directed and undirected networks of

any size for which we have enough memory to store

the subgraph classes. Finally, we should note that as in
the exact algorithms, there are approximate approaches

that are geared only towards certain subgraph types

and try to exploit specific properties of those types. For
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instance, Fascia (Slota and Madduri 2013) provides an

approximate count of non-induced tree-like subgraphs.

2 Preliminaries

2.1 Terminology and Notation

To ensure consistency in the terminology throughout

the paper, we will review the used notation. A graph G

is composed of a set of vertices V (G) and a set of edges
E(G), represented by pairs (a, b) : a, b ∈ V (G). We

define the size of G, denoted by |V (G)|, as the number

of vertices and we assume that all vertices are assigned

consecutive integers from 0 to |V (G)|−1. Furthermore,
for two vertices u and v of a graph G, we write u > v to

denote that the label of vertex u is larger than the label

of vertex v. A graph with size k is denoted as a k-graph.
A graph G is called undirected if ∀u, v ∈ V (G), (u, v) ∈

E(G)↔ (v, u) ∈ E(G) and directed otherwise.

A subgraph Gk of a graph G is a k-graph where

V (Gk) ⊆ V (G) and E(Gk) ⊆ E(G). This subgraph is
induced iff ∀u, v ∈ V (Gk) : (u, v) ∈ E(G) ↔ (u, v) ∈

E(Gk) and is called connected if all vertex pair are con-

nected by a sequence of edges. The neighborhood of a
vertex v ∈ V (G) is defined as N(v) = {u : (u, v) ∈

E(G)∨(v, u) ∈ E(G)} and similarly we define the neigh-

borhood of a subgraph Gk of G, denoted as N(Gk), as
the set of all of the neighbors of vertices in V (Gk) not

included in Gk. The exclusive neighborhood of a vertex

v in a graph G relative to a subgraph Gk is defined as:

Nexc = {u : u ∈ N(v) ∧ u /∈ N(Gk) ∧ u /∈ Gk}.

Two graphs G and H are said isomorphic, denoted

as G ∼ H, if there is a bijection φ between V (G)

and V (H) such that ∀u, v ∈ V (G) : (u, v) ∈ E(G) ↔
(φ(u), φ(v)) ∈ E(H). It is clear that the isomorphism

relation is an equivalence relation and so we call each

equivalence class isomorphism class. For a particular

k-subgraph, Gk, of a graph G, we denote the set of all
subgraphs of G that belong to the same isomorphism

class of Gk by S(Gk, G) and we call frequency to the

number of subgraphs of G that belong to that class and
denote it as: F (Gk, G) = |S(Gk, G)|.

For a subgraph Gk of a graph G, an estimator of the

value of F (Gk, G) is denoted as F̂ (Gk, G). It is called

unbiased if its expected value, denoted as E(F̂ (Gk, G)),
is equal to F (Gk, G) and biased if not.

2.2 Problem Definition

We will now define more precisely the problem we are
trying to solve:

Definition 1 (Subgraph Census Problem) Given an

integer k and a graph G, determine the frequency of all

connected induced k-subgraphs of G. Two occurrences

of a subgraph are considered different if they have at

least one node that they do not share.

It is important to notice that we are only concerned

with subgraphs that are both connected and induced.

Note also how we distinguish occurrences. Other fre-
quency concepts do exist and have been tested (Schreiber

and Schwobbermeyer 2004), but here we use the stan-

dard definition. This has direct implications on the num-
ber of existing subgraphs, with no downward closure

on the frequencies, since a subgraph may appear more

times than a subgraph contained in it. Figure 1 exem-
plifies a subgraph census for k = 3 a graph G with five

nodes.

Fig. 1: An example 3-subgraph census.

2.3 Base Network-Centric Enumeration Algorithms

In this section we will discuss in some detail the pre-

vious enumeration approaches that are more relevant

to this work, namely the ESU and Kavosh algorithms,
which constitute the two core network-centric enumera-

tion algorithms that are inclusively used by other meth-

ods. For instance, QuateXelero uses ESU as the under-

lying enumeration algorithm, while NetMODE resorts to
Kavosh. Furthermore, we will discuss how the ESU al-

gorithm is used as an approximate algorithm in the

Rand-ESU approach (Kavosh has not been extended to
a sampling version).

2.3.1 ESU

The ESU algorithm works by enumerating all k-subgraphs

of a network and in the end performing an isomorphism

test per enumerated occurrence. The enumeration step
is thus the most important one and the breakthrough

it brought was the ability to enumerate all occurrence

once and only once.

It keeps two vertex sets, which we will call VS and
VE . The former represents the subgraph being currently

enumerated and since we are enumerating induced sub-

graphs, we only require a vertex list. The latter is a
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list of vertices that neighbor any vertex in the current

subgraph and can be added to the subgraph being enu-
merated, that is VS .

Initially, it sets VS = {v} for each vertex v in the in-

put network G and VE = N(v). Then, for each vertex u
in VE , it removes it from VE and makes VS = VS ∪{u},

effectively adding it to the subgraph being enumerated

and VE = VE ∪ {u ∈ Nexc(u, VS) : u > v} (where v

is the original vertex to be added to VS as stated in
the beginning of the paragraph). The Nexc here makes

sure we only grow the list of possibilities with vertices

not already in VS and the condition u > v is used
to break symmetries, consequently preventing any sub-

graph from being found twice. This process is done sev-

eral times until VS has K elements, which means VS

contains a single occurrence of a K-subgraph.

Since ESU works recursively in a set incrementation

fashion, it creates an implicit recursion search tree. In

each node we consider a certain VS and VE representing
the partially (or fully if it is a K-subgraph) enumerated

subgraph. Note that this feature that ESU displays of in-

crementing a set of vertices will be very important for
our own algorithm in the next section. Figure 2 exem-

plifies this implicit enumeration tree for a 3-subgraph

census.

Fig. 2: An example induced ESU search tree leading to
eight different 3-subgraphs ocurrences.

After the enumeration, the third-party nauty (McKay

2012) algorithm is used for isomorphism testing, so that

each occurrence is attributed to the correct isomor-
phism class and the respective frequency is increment.

2.3.2 Kavosh

Like ESU, the core idea of the Kavosh is to find all sub-

graphs that include a particular vertex, then remove

that vertex and continue from there iteratively. It dif-

fers however because it builds an implicit tree rooted
at the chosen vertex (with tree children being network

neighbor vertices), and then generates all combinations

with the desired number of nodes. For instance, if we

are searching for 3-subgraphs, and considering that at

the tree root level we can only have one vertex, we could
have the combinations with pattern 1-2 (one vertex at

root level 0, two vertices at level 1) or with pattern 1-

1-1 (one vertex at root level 0, one at level 1 and one at
level 2). In an analogous way, 4-subgraphs would lead to

patterns 1-1-1-1, 1-1-2, 1-2-1 and 1-3. Figure 3 exempli-

fies this combinatorical search, by showing all patterns
emerging from a single root node.

Fig. 3: Kavosh combinatorical search tree starting on

node 0 leads to five different 3-subgraphs occurrences.

The combinations are done using a revolving door

algorithm (Kreher and Stinson 1999) and as in ESU

the isomorphism detection is done using nauty (McKay

2012)

2.3.3 Rand-ESU

The approximate version of ESU is very similar to the

exact one. The idea behind it is very similar to the

one we will present on Section 4 since the underlying
structure of both algorithms is very similar.

For each level of the enumeration tree, the algorithm

places a probability of descending, meaning it will only

go on exploring that branch with that particular prob-
ability. This results in only a fraction of all subgraphs

occurrences being enumerated, where each occurrence

is sampled with the same probability (we will address
and prove this later). Thus, it is possible to have an un-

biased estimator for the number of occurrences in each

isomorphism class.

3 Exact Subgraph Census

Our proposal to address the subgraph census problem

was presented in (Paredes and Ribeiro 2013). We tried

to explore the underlying structure of networks to de-

crease the amount of computation needed to classify
each occurrence in its isomorphism class. The idea is

to separate all occurrences in intermediate classes that

have two important properties: they can be calculated
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quickly and each occurrence in the same intermediate

class is in the same isomorphism class. Following the
complete enumeration of the subgraphs in the network

it is only necessary to compare a single representative

subgraph per intermediate class, hence decreasing the
number of isomorphism tests required.

To accomplish that, our algorithm, FaSE (from FAst

Subgraph Enumeration), is composed of two processes,

closely integrated with each other: enumeration and en-

capsulation. The former pertains to the fundamental
process of actually finding each individual occurrence of

a subgraph in the original network. This is required to

be done by an incremental growth of a connected set of
vertices. The encapsulation process is where the isomor-

phism classes are obtained by storing the topological

features of the subgraph. Whenever a vertex is added
to the current set of enumerated vertices, we generate a

label that describes the relation of the newly added ver-

tex to the already added ones. This corresponds to the

partitioning in intermediate classes mentioned above.
To actually accomplish this, we use a generic process

we called LS-Labeling that categorizes each subgraph

intermediate class. The actual storage of the labels and
subgraphs is done using a tree data structure that acts

as a customized g-trie in which the LS-Labeling works

as the divider, that is, it is responsible by the tree’s
edges. The following sections describe these techniques

thoroughly.

3.1 Subgraph Enumeration

The enumeration process is not constrained, it allows

for different approaches. As long as it counts every oc-
currence of each subgraph once and only once and pro-

vided that it does so in an incremental fashion, meaning

node by node, any process is allowed. The goal here is to

enforce that the process transitions from state to state
adding a single new node at a time. This permits that

each enumerated subgraph is labeled according to the

transitions it took to reach the final state.

Consequently, it is possible to use any modern enu-

meration algorithm. As described above, two of best
that accomplish this task are ESU (Wernicke 2006) and

Kavosh (Kashani et al 2009) and they both can be inte-

grated in FaSE since they follow the required behavior.

3.2 Encapsulating Isomorphism Information in a Tree

As the enumeration process is running, we need to record
the data collected. The reason to do so is to take ad-

vantage of the topology of subgraphs, which in prac-

tice is separating the subgraphs into said intermediate

classes. Thus, a data structure that is adapted to the

behavior of the enumeration step, but also compact and
benefiting from the common topology given by the la-

bels is required. Thus, a good candidate that follows

these parameters and fits to the idea of hierarchical con-
struction of the enumeration. The actual data structure

used is based on our previous work with g-tries, which

can be thought of as “prefix trees of graphs”, although
FaSE’s setup is somewhat altered. To avoid ambiguity,

throughout the rest of this paper, we will use nodes to

refer to tree nodes (in our g-trie) and vertices to net-

work and subgraph vertices.

3.2.1 G-Tries

The custom g-trie works as a tree whose nodes repre-

sent graphs. This is done in an order that respects the
topology of the subgraphs, meaning if a certain node is

parent of another node, then the graph represented by

the former is a subgraph of the latter (in this partic-
ular case, with only one additional vertex). Each node

stores two pieces of information: a frequency, which is

the number of subgraphs of the original network that
are of that particular type; a label information regard-

ing its topological structure. The idea is to start off with

an empty graph and sequentially add new vertices. For

each vertex added, a label that portrays its relation
with the previous added vertices is calculated and used

to determine its node on the g-trie. Each vertex addi-

tion follows a new node on the g-trie. Note that this is
a deterministic process, meaning that if the same sub-

graph is added twice the resulting label is the same. In

terms of the g-tree correspondence, the calculated la-
bel establishes the node to follow (and the due edge).

If this node is nonexistent, both the node and the edge

are created. As a result, if two different subgraphs are

processed and end up on the same g-trie node, it is
assured that they are isomorphic, thanks to the label

requirements. An example g-trie can be visualized in

Figure 4.

Regarding how the g-trie actually accomplishes this,

it works by keeping a current node that represents the

partial subgraph being enumerated (partial since it is
being enumerated), which is initially the root node (cor-

responding to the empty graph). It uses two procedures

to progress: Deepen and Jump. The first one inserts a
new vertex into the current graph by moving along the

g-trie to the corresponding node, a process which lowers

the current node (“deepening”). Additionally, it creates

the new node and edge if they were previously nonex-
istent and augments the frequency count of that par-

ticular node by one. It uses the label generated for the

added vertex, which is assigned to a determined edge, to
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Fig. 4: An example g-trie with some graphs up to 4 ver-

tices. The dark vertices represent newly added vertices.

decide where to go in the tree. This is implemented us-

ing a prefix tree (or “trie”) to ensure linear time search
of the new node on the length of the label. Contrary to

this, the Jump procedure sets the current vertex to its

parent, thus going up in the g-trie.

To actually insert graphs into this g-trie it is possi-
ble to take advantage of the common topologies inher-

ent on the enumeration of the subgraphs. Whenever a

new vertex is selected by the enumeration process, the
labeling algorithms assigns a new label to this vertex in

relation to the already selected ones and uses this in-

formation to perform a Deepen operation on the g-trie.
After the recursive call made to enumerate all the sub-

graphs that exist from the current subgraph, a Jump

call is performed to go back to the previous node in

the g-trie. The reason this works (and why it is done)
is since all subgraphs achieved from a particular state

(corresponding to a node in the g-trie) will share a com-

mon topology related to the partial enumerated set (the
state) and therefore share the same label information

to that point.

Summarizing the previous paragraphs, it is possible
to conclude that this setup is the one of a simple tree

regulated by the labels assigned in each step. The con-

sequence of this is that it ends up representing graphs
simply because the label is designed in that way. Hence,

this is a very general data structure adaptable to dif-

ferent labeling algorithms.

3.2.2 LS-Labeling

The generic labeling algorithm is called LS-Labeling.
As already mentioned, it is the core of the g-trie and it

is also directly related with the branching factor of the

tree since it governs the different edges, thus it is associ-

ated with both the algorithm running time and the used

memory. It acts under a pair of conditions namely that
it deterministically partitions the different subgraphs

in a class created by the LS-Labeling are in the same

isomorphism class, and that it does so incrementally
(emulating the behavior of the enumeration step) us-

ing only information regarding the newly added vertex

and its relationship with the already added ones. From
these conditions one could idealize that this labeling

algorithm could simply be a procedure that actually

calculated isomorphisms, thus rendering the point of

the tree useless. However, as was said throughout the
paper, this is a computationally hard problem and so

its use is exactly what we are trying to avoid. Thus it

makes sense to ensure another condition: that the algo-
rithm runs in polynomial time. This behavior sets up

a trade off regarding the time spent labeling the vari-

ous subgraphs and the time spent on the actual g-trie
(which includes the final isomorphism test time).

In our past work we described two intuitive labeling

algorithms which are called the “adjacency list” label
and the “adjacency matrix” label, coming from the cor-

responding graph data structures. We show an example

of both labels in Figure 5. When a new vertex is added,
the algorithms act on the current subgraph and the

vertex to be added. For simplicity we will consider the

undirected case first when adding the k-th vertex and
then distinguish the directed one. In the case of the ad-

jacency list, the label corresponds to a ordered list of

at most k − 1 integers where the value i (0 < i < k) is

present if there is a connection from the newly vertex to
the i-th added vertex. Similarly, in the adjacency ma-

trix case a list of k− 1 Boolean values is kept, each one

indicating if there is a connection between the newly
added vertex and each vertex added before in order of

addition, which corresponds to a segment of the actual

adjacency matrix of those vertices. This method scales
pretty easily to the directed case, where instead of just

keeping one list, in both cases we keep two, one per-

taining to the ingoing connections and the other two

the outgoing (in practice a separator value is also used

Fig. 5: Two different valid LS-Labeling schemes on two

example graphs. Dark vertices are the ones being added.
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Fig. 6: An example g-trie with list LS-Labeling after searching for 4-subgraphs.

on the adjacency list case to separate the ingoing from

the outgoing list). We show a visual representation of

a g-trie with the labels associated with each edge using

the “adjacency list” label in Figure 6.

To prove the correctness of these two labels options

first notice that they are methodically equivalent and

only change the way they represent the information.
Thus, to prove its correctness it suffices to show that

two subgraphs labeled equally belong to the same iso-

morphism class. To show that we need to find a bijec-
tion between the two subgraphs. This is simple enough

by following the order in which each vertex was enu-

merated, which is implicitly represented on the actual
label, and map the vertex in each position of the or-

der to one another. Hence, any two subgraphs labeled

equally belong to the same isomorphism class and we

have our correctness proof.

We are aware that there are more possibilities for

this operation that we did not previously address. One

of them is what we called the “nth-neighbor” label,
which instead of simply considering the connections be-

tween the already added vertices and the newly added,

also considers the connections from the nodes at dis-
tance of a maximum of n from the corresponding ver-

tices. Obviously, these connections augment exponen-

tially and if they are all considered it corresponds to a

full isomorphic label. However, a simple “2nd-neighbor”
label could, in some cases where the subgraph finger-

print is more heavily populated with certain subgraphs,

decrease the run time and memory used. However, since
this method is not so simple as the previous ones it

would probably have greater costs on the general case

and thus we did not experiment with it.

Note also that since the LS-Labeling is being used

as an intermediate classifier, the g-trie will end up hav-

ing more leaves than there are different isomorphism

classes. This could affect the overall run time (since we
need to perform an isomorphism test per intermediate

class), however, in the case of both the adjacency list

and matrix label, the number of leaves is directly corre-

lated to the different automorphisms of a same graph.

Thus it ends up being just a fraction of the total num-

ber of occurrences in any practical example and so there

is a significant gain of computation time.

We conclude this section by highlighting the flexibil-

ity the LS-Labeling generic algorithm displays. Since it
only enforces a small number of conditions, it allows for

the trade off referred earlier to be adjusted by changing

the type of LS-Labeling. Perhaps more importantly, it
is adaptable to different formulations of the problem, as

was possible to observe with the case of directed graphs.

The algorithm is still the same, but the labeling is tuned
to suit this particular instance. So it can be extended

to other problem formulations such as colored graphs,

weighted graphs or even multigraphs.

3.3 The FaSE algorithm

We present an overview of the whole FaSE in Algo-

rithm 1. This incorporates the enumeration step, the

g-trie and the LS-Labeling. We use the expression +=

to denote “increment by a value”.

This algorithm puts together all the discussed parts
of FaSE. The procedure EnumerateAll() iterates through

all subgraphs of all sizes to K, incrementing the counter

when the size is K. The frequencies are stored inter-
nally by the g-trie, however, since the LS-Labeling does

not give the final classes, it is necessary to accumulate

the results from each g-trie node and perform an iso-
morphism test to a representing graph. In the original

implementation we do so resorting to nauty (McKay

2012), a third-party efficient isomorphism toolkit, al-

though any algorithms that create a canonical label
(that is, a label that represents isomorphism classes)

will work.

Note also that in our original implementation (and

in any practical implementation) we hard coded the

enumeration step into the EnumerateAll() function to
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Algorithm 1 The FaSE Algorithm
Input: A graph G and a subgraph size k

Result: Frequencies of all k-subgraphs of G

1: procedure FaSE(G, k)
2: EnumerateAll(G, k, ∅, 0)
3: for all n in GTrie.leaves() do

4: frequency[CanonicalLabel(n.Graph)] += n.count

5: procedure EnumerateAll(G,K, S, d) ⊲ S:subgraph;

d:depth

6: if d = K then

7: GTrie.current.count += 1
8: else

9: while nS ← EnumerateNext(S) do

10: w ← nS.NextNode()

11: nL← LSLabel(S,w)
12: GTrie.Deepen(nL)

13: nS.Subgraph← nS.Subgraph ∪ w

14: EnumerateAll(G,K, nS, d+ 1)
15: GTrie.Jump()

increase efficiency and explore low level features of the

algorithm.

4 Approximating a Subgraph Census

In this section we will explore this work’s contribution,

an interesting feature of the FaSE algorithm, namely

that it can be adapted to an approximation algorithm
to estimate the frequency of each subgraph type in a

network by obtaining a sample of subgraphs. It is pos-

sible to tune the algorithm to trade accuracy for time,
which allows it to be run in a wider range of real net-

works, which are usually too large for a complete ex-

act enumeration for higher subgraph sizes. The actual

method we use is very similar to the one presented in
Wernicke (2006) but we will provide our analysis and

discussion.

Since each subgraph is enumerated once and only

once in the exact version, we can use that to only find
a sample of the total number. To do so, we will intro-

duce a probability pd at each depth d (d varies from 0

to K−1, where K is the desired size of the enumerated
subgraphs) of the enumeration (which can conceptually

be easier to imagine in the g-trie). To clarify the previ-

ous sentence, the depth here is the order of the vertex

being currently added to the partial set, which is equiv-
alent to the size of the partially enumerated subgraph.

The idea is to instead of always processing each newly

enumerated vertex (which corresponds to lines 10 - 15

in Algorithm 1), do it with probability pd at each level

pd.

We can easily observe that the probability of a par-
ticular subgraph on the network being sampled is the

probability of the first vertex being chosen (at level 0)

which is p0, times the probability of the second vertex
being chosen and so on, which equals

∏
0≤d<K pd. We

will call this value sampling percentage, and denote it

as: ps =
∏

0≤d<K pd.

We denote the total number of subgraphs of size K
(the leaves in the induced ESU search tree) in graph G

by T (G). It is possible to show that the average number

of sampled subgraphs is ps × T (G). To prove so, first

note that each K-subgraph has the same probability of
ps of being sampled. Since there are T (G) subgraphs

and each one has a probability of ps of being sampled,

the average number of sampled subgraphs is ps×T (G).

We will call Fsample(Gk, G) to the frequency of sub-
graphs of G sampled by the algorithm that are from

the same isomorphism class as Gk. This definition al-

lows us to define an estimator for the value of F (Gk, G)
as follows:

F̂ (Gk, G) =
Fsample(Gk, G)

ps

Note that since all the isomorphism classes are dis-

joint, to obtain an estimator for the total number of
subgraphs it suffices to sum all the F̂ (Gk, G), one per

different isomorphism class.

4.1 Uniform Sampling

To start the theoretical discussion of the approxima-
tion, we will first prove the estimator is an unbiased

estimator. To do so, observe that since the probability

of sampling each subgraph is the same, ps, the expected

value of Fsample(Gk, G) is simply ps × F (Gk, G).

To calculate the expected value of F̂ (Gk, G), we ob-
serve that since the expected value is a linear operator,

this corresponds to the previously calculated value di-

vided by ps. Plugging this into the formula of the esti-
mator gives:

E(F̂ (Gk, G)) =
E(Fsample(Gk, G))

ps
= F (Gk, G)

Thus we conclude that F̂ (Gk, G) is an unbiased es-
timator for F (Gk, G).

Using this information, Algorithm 2 shows the adapted

algorithm, which from now on we will call Rand-FaSE

to distinguish from the exact version of FaSE.
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Algorithm 2 The Rand-FaSE Algorithm
Input: A graph G and a subgraph size k

Result: Frequencies of all k-subgraphs of G

1: procedure FaSE(G, k)
2: EnumerateAll(G, k, ∅, 0)
3: for all n in GTrie.leaves() do

4: frequency[CanonicalLabel(n.Graph)] += n.count

5: procedure EnumerateAll(G,K, S, d) ⊲ S:subgraph;

d:depth

6: if d = K then

7: GTrie.current.count += 1
8: else

9: while nS ← EnumerateNext(S) do

10: with probability pd do

11: w ← nS.NextNode()
12: nL← LSLabel(S,w)

13: GTrie.Deepen(nL)

14: nS.Subgraph← nS.Subgraph ∪ w
15: EnumerateAll(G,K, nS, d+ 1)

16: GTrie.Jump()

17:

Note that in all practical implementations the ac-

tual probability call should be hard coded, since it can
prevent some unneeded work done in the EnumerateNext()

function.

4.2 Performance Analysis

To continue, we will reason about the variance of the

estimator and how the choice of each individual value
of pd affects it and thus the quality of the estimation.

First of all, notice that the number of subgraphs

sampled of a certain type depends on the structure of
the enumeration tree. If it were perfectly balanced and

each subgraph type evenly distributed along the tree,

then the individual values would not matter but only

their product (what we called of sampling percentage).
However this is not the case in any of the presented

enumeration algorithms. Even though for instance the

ESU enumeration tree is naturally skewed since it en-
forces an order on the enumeration, it is highly unlikely

that any algorithm generates a balanced enumeration

tree since this is very input dependent.
Since the enumeration tree is not balanced, the choice

of parameters influences the quality of the sample and

run time. If lower values for pd are chosen for levels

of the tree nearer to the root, this will increase the
variance of the results, since it is possible to branch

out a sub-tree with more occurrences of a certain type.

However, the run time of the algorithm is decreased in

exchange for the augment of variance. This decrease is

two-fold: on one hand, the amount of subgraphs sam-
pled has a higher variance, which results in fluctuations

in run time; on the other hand, since a subgraph that is

not going to be sampled is pruned earlier in the tree, we
can avoid most work on its partial enumeration, which

is costly since it involves traversing the g-trie, gener-

ating its label through the LS-Labeling and doing the
actual enumeration.

A consequence of the unbalance of the enumeration
tree is that even if given the values for pd, calculat-

ing the variance is hard since it is highly dependent on

the input network. It is possible to draw some conclu-

sions though, the most important one being that the
variance is higher in relative value for lower F (Gk, G)

values. To explain this recall that the average number of

sampled subgraphs in S(Gk, G) is: ps×F (Gk, G). When
this value is small (specially when it approaches 1 or is

smaller than 1) since the number of sampled subgraphs

is a discrete quantity, the actual value of Fsample(Gk, G)
is going to be rounded down or up. This means the

variance will be higher in relative value, since for high

values of F (Gk, G) the continuous approach is a good

approximation.

There are ways of decreasing the variance while keep-

ing the estimator unbiased. In Wernicke (2006) the au-
thor suggests instead of simply continuing with a cer-

tain probability, from a node (of the enumeration tree)

with x children at depth d randomly choose x′ = ⌈x · pd⌉
with probability x · pd−⌊x · pd⌋ or choose ⌊x · pd⌋ with

probability (1−(x ·pd−⌊x · pd⌋)). The idea is to choose

a fixed number of children instead of taking each one

with a certain probability, ensuring that there is always
a collection of nodes that will be followed. The author

also showed that this leads to a lower variance. In our

implementation, which we will discuss on the next sec-
tion, we did not include this because even though this

improves the quality of the sample on average, for lower

values of F (Gk, G) it can decrease, particularly when
⌈x · pd⌉ rounds to 0, where depending on the input net-

work, the algorithm would not sample any subgraphs

of a certain isomorphism class.

In the next section we will provide some experimen-

tal results that will help in understanding all the impor-

tant features and behavior of the sampling algorithm,
namely run time, performance and convergence.

4.3 Further Discussion

To conclude the discussion about the sampling we will

mention two important aspects regarding the sampling’s

application and how to improve it.
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Naturally, the main purpose of doing a sample in

place of a full enumeration is to use it in inputs that
would take too much time to calculate using the latter

approach. On these cases are included networks with

high number of vertices and edges. Therefore, the data
structure used to represent the network can not be a

simple adjacency matrix, since it would draw too much

memory and thus would be unfeasible. The obvious sub-
stitute is an adjacency list, but due to the fact that

FaSE requires a way of knowing if two certain vertices

are connected (in the LS-Labeling and in the isomor-

phism test), the adjacency list will hurt time perfor-
mance compared with the simple matrix (which imple-

ments this operation in constant time). To improve the

operation of finding out if two vertices are connected
we experimented numerous alternatives like keeping the

neighbor list of each vertex ordered and then perform-

ing a binary search to find if a vertex is in the list
(we can do this since we never delete vertices from the

graph). Another method we tried out turned out to give

better results on all networks we tested, this method

was to keep a hash table as a neighbor list with a simple
hash function of taking the vertex label of each neigh-

bor modulus a constant times the number of neighbors

of each vertex. We could slightly improve the results by
keeping a cache of a small number of recent queries and

reporting the result immediately if positive.

Another aspect that could improve the quality of the

sample would be to automatize the choice of the indi-

vidual probabilities pd. This could be achieved through

an adaptive sample, that would start out with very low
parameters and over multiple runs only explore the enu-

meration tree where needed. This works since for high

values of F (Gk, G) the estimator result converges rather
quickly whereas for lower values it does not. So explor-

ing this could significantly improve the sample.

5 Experimental Results

In order to evaluate the performance of both proposed

algorithms, Rand-FaSE was implemented in C++ using

ESU as the base enumeration algorithm. All tests were
performed on a Linux machine with an Intel Core 2

6600 (2.4GHz) and 2GB of memory.

We implemented both the adjacency list and matrix

LS-Labeling methods, but the two had very similar exe-

cution times, although the list method ended up having

slightly better results most of the time, so we opted to
only show the results obtained using it. As stated previ-

ously, we used the third party tool nauty (McKay 2012)

to efficiently perform the isomorphism classifications.

We used a varied set of undirected and directed net-

works. In all networks weights, self-loops and multiple
edges were either ignored or nonexistent.

To provide a comparison measure, we included a

summary of the experimental results obtained by the
Exact approach in (Paredes and Ribeiro 2013) and its

analysis.

We will first present the results regarding the Exact
approach and follow it with the Approximate approach

results.

5.1 Exact Approach Results

To test the performance of the Exact approach we ran
FaSE with different subgraph sizes and different net-

works and compared the execution times to ESU, through

its publicly available tool and Kavosh, through its orig-
inal source code. We chose these algorithms since at

the time they were the main previous approaches. The

networks used are summarized in Table 1.
The time each algorithm took to perform a complete

K-subgraph census on all networks was measured, with

K varying from 3 to 9. Due to time constraints, we only
show execution times up to 5 hours. All the results as

well as statistics about the number of subgraphs per

network and how many leaves of FaSE’s g-trie used are
shown in Table 2.

Analyzing the results, the general trend is that FaSE

obtains better results in all setups than both ESU and

Kavosh, as was expected. Moreover, it was always an or-
der of magnitude faster, except for a couple of outliers.

Another observation in order is that there is a tendency

for the speedup to increase as the K increases, which
means there is a larger speedup in setups where the to-

tal execution time is higher, which are the ones where

a faster algorithm is more critical. This is a sensible
outcome, since the speedup comes mainly from the iso-

morphism tests avoided, which is directly related to the

ratio between the total number of subgraphs and num-

ber of g-trie leaves and this is a quantity that generally
increases for smaller subgraph sizes and larger networks

(as is possible to observe in the results table). The ac-

tual values are very much network dependent and there
is no “external” measure (number of nodes, edges . . . )

that allows a prediction of the actual execution times

in any order of accuracy, since it heavily depends on
combinatorial features of the network.

It is also important to notice that the major bottle-

neck of a subgraph census is the isomorphism testing,

which is what the algorithm aims to improve. To check
that FaSE addresses this and is not a somehow faster

implementation of the ESU algorithm it was ran with-

out the g-trie functionality, simulating the actual ESU
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Table 1: Complex networks used in the Exact tests
Network Directed Nodes Edges Avg. Degree Type Source

StarWars No 51 157 3.08 Social Our Own (Paredes and Ribeiro 2013)
Jazz No 198 2,742 13.85 Social Arenas (Gleiser and Danon 2003)

Neural Yes 297 2,359 7.94 Biological Newman (Watts and Strogatz 1998)
Foldoc Yes 13,356 120,700 9.04 Semantic Pajek (Batagelj and Mrvar 2006)

Table 2: Detailed experimental results for the 4 networks used for the exact setup.

Network K
Subgraphs found FaSE ESU Kavosh

Types Occurrences Time (s) Leaves Time (s) Speedup Time (s) Speedup

StarWars

3 2 1,449 <0.01 3 <0.01 — <0.01 —

4 6 12,958 <0.01 17 0.04 23.5 0.03 17.6

5 21 98,426 0.01 171 0.39 30.7 0.21 16.5

6 106 630,369 0.08 2,406 3.12 38.0 1.90 23.1

7 699 3,445,808 0.58 26,692 21.95 38.0 13.26 23.0

8 5,601 16,320,648 3.55 203,687 133.34 37.6 78.18 22.0

9 41,790 67,883,236 19.08 1,133,749 (*) — 395.90 20.7

Jazz

3 2 67,414 <0.01 3 0.14 31.8 0.06 13.6

4 6 1,833,618 0.15 17 4.24 28.9 2.55 17.4

5 21 49,500,654 4.65 171 143.64 30.9 89.3 19.2

6 112 1,266,953,062 140.84 3,113 (**)3,630.00 25.8 2,912.43 20.7

7 853 30,166,157,456 3,946.81 106,417 >5h — >5h —

Neural

3 13 47,322 0.01 45 0.09 16.7 0.04 7.4

4 197 1,394,259 0.13 1,846 2.21 17.5 1.71 13.5

5 7,072 43,256,069 4.73 76,214 102.14 21.6 91.03 19.3

6 286,376 1,309,307,357 170.96 2,499,645 (**)4,420.00 25.9 4,636.43 27.1

Foldoc
3 13 2,553,830 0.35 45 3.97 11.2 2.17 6.1

4 198 228,272,189 27.80 2,304 903.39 32.5 308.78 11.1

5 8,345 29,621,881,964 3,735.20 141,115 >5h — >5h —

(*) FanMod accepts only 8 as the maximum subgraph size.

(**) Overflow problem in its own reported enumeration time and so we used elapsed time.

algorithm functioning. The result proved to be slightly

better than FanMod, but was still roughly an order

of magnitude slower than FaSE’s normal functioning.
Furthermore, contribution of the enumeration process

was compared to the final execution time by running

the algorithm without the isomorphism tests, mean-
ing only running the enumeration algorithm. Obviously,

this does not allow to compute the actual census. The

results indicate that the actual enumeration is only a

tiny fraction of the whole execution time, confirming
what we stated above.

The final aspect we want to highlight is that the

number of leaves used by the g-trie has a heavy influ-
ence on the memory used by the algorithm. This im-

plicates that it is impossible to run it with much larger

subgraph sizes than the ones tested in this work. Even
though the super exponential growth of the number of

subgraph types makes it impossible to even store the in-

dividual frequencies of each type, this is still prohibitive

and actually potentially slightly affects the execution
time.

5.2 Approximation Approach Results

We divided the tests for the Approximation approach

into three sections with different aims. We first com-
pared it with the Exact approach in order to assess

the accuracy of the approximation for different sam-

pling values. Then we compared it with the previous
work by testing how many subgraphs were sampled per

second, so as to evaluate the time efficiency of the ap-

proximation. Finally, we tested how the approximation
converges to the exact values by measuring the error

and standard deviation displayed through various sam-

pling percentages.

We used additional networks on the tests regarding

the Approximation approach. We summarized the net-
works we used in Table 3. Note that we repeated some

networks used in the previous section, but we included

them in this table for completeness.

Since our algorithm requires choosing the multiple
probabilities per level, pd, we opted for the following

three setups, that explore the sampling properties dif-

ferently:
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Table 3: Complex networks used in the Approximation tests
Network Directed Nodes Edges Avg. Degree Type Source

Jazz No 198 2,742 13.85 Social Arenas (Gleiser and Danon 2003)
Yeast No 2,361 6,646 2.81 Biological Pajek (Batagelj and Mrvar 2006)

AstroPh No 18,772 198,050 10.55 Social SNAP (Leskovec et al 2007)

Metabolic Yes 453 2,025 4.47 Biological Arenas (Gleiser and Danon 2003)
Foldoc Yes 13,356 120,700 9.04 Semantic Pajek (Batagelj and Mrvar 2006)
Neural Yes 297 2,359 7.94 Biological Newman (Watts and Strogatz 1998)

High: p0=1, . . . , pK−3=1, pK−2=ps, pK−1=1
Medium: p0=1, . . . , pK−4=1, pK−3=

√
ps, pK−2=

√
ps,

pK−1=1
Low: p0=1, p1= K−2

√
ps, . . . , pK−2= K−2

√
ps, pK−1=1

Note that we always considered p0 and pK−1 to be
1 since due to the way we implemented our algorithm

having pK−1 6= 1 means it will do all the work enu-

merating a certain subgraph and then discard it with

probability 1−pK−1 and having p0 6= 1 means discard-
ing a whole branch of the enumeration recursive tree,

which means a whole isomorphism class could be dis-

carded.

5.2.1 Comparison with the Exact Approach

To compare the Approximate approach with the exact

one we first ran Rand-FaSE with two different input
networks, Yeast and Metabolic, to different sampling

percentages. We used these two for this particular test

since they are average sized directed and undirected

networks and so allow us to perform more time de-
manding tests that would otherwise be unfeasible on

larger networks. To measure the accuracy of the approx-

imation, we calculated the percentage of isomorphism
classes correctly estimated by the algorithm and con-

sidered the frequency of an isomorphism class to be cor-

rectly estimated when the approximated value is within
15% of the real value (calculated through the Exact ap-

proach) for the three sampling setups described above

(high, medium and low). We did not consider isomor-

phism classes where the expected number of subgraphs
sampled is smaller than 10, the reason being that in

these cases the error associated would be too large to

estimate the real value in any practical scenario.
The obtained results were graphed in a log plot dis-

played in Figure 7. Excluding a few outliers, both plots

are approximately a line (the first one eventually con-
verges to 100% correctness). Since this is a semi-log

plot, this means that it is approximately a logarith-

mic function, that is, multiplying by 10 the number of

samples should roughly double the correctness of the
approximation. Of course this result is dependent on

the way we measured correctness and thus is not fit for

all scenarios.

Another observation to make is that, as expected,

since the high setup places the probabilities in lower

levels it should have a lower variance, which results in
overall better results. Likewise, since the low setup dis-

tributes the probabilities more evenly it has the high-

est variance and obtains the overall worse results. There

were a few outliers on the lower probabilities, but it was
probably due to the fact that for lower sampling per-

centages the variance is obviously higher and so there

are a lot more fluctuations in the results.

To have a better understanding of how the sampling

works for individual isomorphism class sizes, we ran the

algorithm with the network foldoc for different sam-

pling percentages and measured the relative error to
the real value. We used the foldoc network to show-

case this since it is a rather dense network and thus for

the particular subgraph size chosen, it has at least a
subgraph of each existing type. Thus it is clearer how

our algorithm behaves for lower and higher frequency

subgraph classes. The results are showcased in Table 4.
Taking a close look at the table confirms that the rela-

tive error for isomorphism classes with fewer subgraphs

is higher, specially for the smaller sampling percent-

ages. Furthermore, for the 0.1% there were even isomor-
phism classes that did not get any subgraphs sampled

at all.

5.2.2 Comparison with the Previous Approaches

Comparing our algorithm with the previous approaches
was done by analyzing the speed performance. We com-

pared our algorithm with Rand-Esu, the approximated

version of the ESU algorithm. Since the functioning of
Rand-Esu is conceptually similar to Rand-FaSE and uses

the idea of probabilities per level, when comparing with

it we used the same probabilities in the same depths.
Note however, that we did not enforce pK−1 = 1 in

Rand-Esu’s tests since its implementation places the

probability before performing the enumeration, contrary

to how FaSE does it (as explained above). Even though
in Subsection 5.1 we compared with Kavosh, it does not

own an approximate version, as far as we know, so we

did not consider it in this section.
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Fig. 7: Accuracy of Rand-FaSE for the undirected Yeast Network and directed Metabolic Network for size 5
subgraphs.

Subgraph Type
Number Number Error Number Error Number Error Number Error
Exact 50% Sample 10% Sample 1% Sample 0.1% Sample

178,812 179,364 0.3% 177,400 0.8% 186,500 4.3% 184,000 2.9%

167,053 166,736 0.2% 170,820 2.3% 159,100 4.8% 138,000 17.4%

420,580 423,762 0.8% 437,710 4.1% 371,400 11.7% 311,000 26.1%

1,354,914 1,353,372 0.1% 1,348,450 0.5% 1,321,900 2.4% 1,534,000 13.2%

30,118 30,448 1.1% 29,420 2.3% 27,400 9.0% 29,000 3.7%

13,783 13,870 0.6% 14,280 3.6% 13,300 3.5% 7,000 49.2%

65,626 65,616 0.0% 64,570 1.6% 57,700 12.1% 62,000 5.5%

676 698 3.4% 670 0.7% 500 25.9% 0 100.0%

2,254 2,222 1.2% 2,180 3.1% 1,700 24.4% 0 100.0%

262,620 263,238 0.2% 270,730 3.1% 268,500 2.2% 237,000 9.8%

29,963 29,972 0.0% 29,130 2.8% 28,000 6.5% 42,000 40.2%

7,401 7,484 1.2% 7,550 2.1% 5,500 25.6% 5,000 32.4%

20,030 19,942 0.4% 19,940 0.4% 19,500 2.6% 22,000 9.8%

Total 2,553,830 2,556,724 0.1% 2,572,850 0.7% 2,461,000 3.6% 2,571,000 0.7%

Table 4: Results obtained for different sampling percentages for the directed Foldoc Network for size 3 subgraphs

with setup high.
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Fig. 8: Sampling speed comparison for a 10% sample for the undirected Jazz Network and directed Neural

Network.

We first ran our algorithm against the Rand-Esu in

the Jazz network and the Neural network for a 10%

sampling percentage and recorded the number of sub-

graphs sampled per second. We used this instead of the
raw execution time since the actual number of sampled

subgraphs oscillates and thus it does not represent the

quality of the algorithm speed-wise. We chose these two
networks to both vary the type of tested networks and

the average degree. The results obtained are plotted in

Figure 8.

The principal aspect to take note is that Rand-FaSE

always outperforms Rand-Esu, being roughly an order

of magnitude faster. This result is consistent with the
one obtained in the exact approach. However, the speedup

is expected to be slightly less in the sampling version,

since the speedup derives from the number of enumer-

ated subgraphs that do not require an isomorphism
test, thus by reducing the number of subgraphs that

are actually enumerated, the speedup will tend to de-

crease. Although, the results on these networks show
that it is not a noticeable decrease.

Other important observation is that our algorithm,

as well as Rand-Esu, appear to scale well with the in-
creased subgraph size. As it increases a small drop is

detectable, however it is a very subtle one.

To evaluate how the approximation speed compares
to the exact value speed, we ran Rand-FaSE on the

networks of Subsection 5.2.1 and plotted the execution

time for various sampling percentages in relation to the

time the exact approach took, on a 5-subgraph census
in Figure 9. By using the same networks here as in the

previous subsection we get an idea of how speed per-

formance compares with accuracy for the same setups.

Note that the result displays a roughly linear growth

behavior (since the graph is in a semi-log scale, the ex-

ponential represents a linear growth). However, even

though for both networks a 50% sample takes approxi-
mately 50% of the time the exact approach takes, a 1%

sample takes 3% of the time the exact approach, for the

high setup. This effect worsens as the sampling percent-
age drops and ends up stabilizing at about 2% of the

time the exact approach takes, regardless of the sam-

pling percentage. The reason for so is that thanks to the
way the high setup is designed, it ends up enumerating

all subgraphs up to size K − 1. For the medium setup

a similar effect is noticeable, but much subtler, since

in this case we are enumerating all subgraphs to size
K − 2. Obviously, the low setup does not display this

behavior, but likewise, as the sampling percentage de-

creases the relation between time of the approximation
and time of the exact deviates more from an exponen-

tial. For example, a 0.1% sample takes approximately

0.2% of the time the exact approach does.

Since the main goal of running an approximation al-

gorithm is to apply it to a network where the exact ap-

proach is unfeasible, we tested our algorithm using the
ideas discussed in Subsection 4.3 in an undirected net-

work with 1, 134, 890 nodes and 2, 987, 624 edges that

represent the network of a Youtube community taken
from SNAP (Yang and Leskovec 2012). We ran a 0.1%

sample for 4-subgraphs with setup high, which took

about 20 minutes to complete. Based on tests on enu-

merations on 3-subgraphs of the same network and the
results of this section, it should take about a full day to

run the exact approach. The results allow us to have an

idea of the total number of subgraphs as well as the dis-
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Fig. 9: Comparing the execution time of various sampling percentages with the Exact approach for the undirected
Yeast Network and directed Metabolic Network for size 5 subgraphs.

tribution of the different subgraph types having run for

only a very small fraction of what the exact approach

is expected to.

5.2.3 Measuring Convergence

To bring this section to an end, we performed some tests

to assess the convergence of our algorithm. In Subsec-

tion 5.2.1 we could observe the percentage of correctly
estimated values converging towards the optimal value

so we consolidate this with a more detailed view over

the percentage of error and the standard deviation. We
ran Rand-FaSE with the astroPh network with setup

high for various sampling percentages and measured

both the relative error and the standard deviation nor-

malized by the real value. We used this network since it
is of a larger size and thus allows us to better observer

the convergence and standard deviation evolution. The

results are plotted in Figure 10. Note that “Sub1” refers
to the “L” shaped size 3 subgraph and “Sub2” refers

to the triangle (size 3 complete graph). The number of

subgraphs of type “Sub1” and “Sub2” in the astroPh

network is of the same order of magnitude.

As expected, both the relative error and the stan-

dard deviation decrease towards 0. It is interesting to

notice that above the 10% sampling percentage the rela-
tive error and standard deviation stabilize and decrease

very slowly, with little fluctuations.

6 Conclusion

In this paper we presented both Rand-FaSE, an exten-

sion of FaSE that performs an approximate network-

centric subgraph census. By making use of the com-

mon topology of the enumerated subgraphs and encap-

sulating this information in a tree structure called a

g-trie, FaSE is able to discard most of the isomorphism
tests required to correctly identify each subgraph type,

which is the main bottleneck of this problem. Hence, it

achieves much better results than any of the past ap-
proaches that tackle the same problem, which is shown

by the results found by comparing all approaches. Fur-

thermore, its sampling version, Rand-FaSE, acts as a
logical extension and works by sampling only a per-

centage of the total number of subgraphs. By placing a

probability in each depth and during the enumeration

process only continuing the recursive step if a drawn
random number is smaller than that depth’s probabil-

ity, the algorithm gives an unbiased estimate of the real

frequency of each subgraph type in the original network.

Thanks to FaSE’s use of LS-Labeling, the algorithm

is very generic and allows for various different LS-Labeling
functions. This means that the algorithm can be easily

adapted for different scenarios such as colored graphs

or multigraphs. In these more complex setups, network-
centric approaches have a clear advantage over other

approaches that require a pre-generated set of subgraphs

as input since the addition of colors or multiedges vastly
increments the number of possible subgraphs types. Network-

centric algorithms naturally only enumerate the exist-

ing types, which are normally a very small fraction of

the total number of possibilities. We note that there are
some examples of applications on other graph setups,

such as weighted graphs (Choobdar et al 2012b) and

colored graphs (Ribeiro and Silva 2014a).
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Fig. 10: Testing convergence through % of error to the real value and standard deviation (normalized by the real
value).

The main drawback of the FaSE algorithm is the

memory it spends to store the g-trie and all its leaves.

We intend to tackle this issue by first noticing that since

our g-trie only stores the intermediate classes gener-
ated by the LS-Labeling, there is still a lot of common

substructures that we can take advantage of. The idea

is to compress the g-trie so as to only store as many
leaves as actual isomorphism classes during the actual

enumeration process. Having this done, we intend to

pre-calculate a whole g-trie and completely discard the
isomorphism tests, as long as there is enough memory.

Regarding Rand-FaSE, we wish to experiment with

the large scale data structures to store huge networks.

As stated in Subsection 4.3 we have tried different ap-

proaches and tested it real networks, as said in Subsec-
tion 5.2.2. However, there is still a lot of improvement

that could be done by studying how the queries of con-

nected vertices are performed to explore any patterns.

We are currently working on a parallel version of
FaSE to take advantage of having multiple processors

working. Our goal is to adapt it in a shared memory

environment, by having multiple threads sharing the

work.

Lastly, we wish to apply both algorithms in real
complex networks in greater detail by both considering

larger subgraph sizes and getting more accurate approx-

imations (by having a larger sampling percentage).
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