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Abstract—In principle, Model-Driven Engineering (MDE) ad-
dresses central aspects of robotics software development. Domain
experts could leverage the expressiveness of models; implemen-
tation details over different hardware could be handled by
automatic code generation. In practice, most evidence points to
manual code development as the norm, despite several MDE
efforts in robotics. Possible reasons for this disconnect are the
wide ranges of applications and target platforms making all-
encompassing MDE IDEs hard to develop and maintain, with
developers reverting to writing code manually. Acknowledging
this, and given the opportunity to leverage a large corpus of open-
source software widely adopted by the robotics community, we
pursue modeling as a complement, rather than an alternative, to
manually written code. Our previous work introduced metamod-
els to describe components, their interactions, and their resulting
composition, as inspired by, but not limited to, the de-facto
standard Robot Operating System (ROS). In this paper we put
such metamodels into use through two contributions [1]. First,
we automate the generation of models from manually written
artifacts through extraction from source code and runtime
system monitoring. Second, we make available an easy-to-use
web infrastructure to perform the extraction, together with a
growing database of models so generated. Our aim with this
tooling, publicly available both as-a-service and as source code, is
to lower the MDE barrier for practitioners and leverage models
to 1) improve the understanding of manually written code; 2)
perform correctness checks; and 3) systematize the definition
and adoption of best practices through large-scale generation of
models from existing code. A comprehensive example is provided
as a walk-through for robotics software practitioners.

Index Terms—ROS, models, development environments.

I. INTRODUCTION

Robots are increasingly software-intensive systems. Many
innovations in the field are algorithmic in nature, and thus
typically implemented in software. Application domains for
robotic solutions are proliferating [2], making stock hardware
platforms repurposable by means of software repurposabil-
ity. The wider digitization trend affects also manufacturing
through flagship initiatives such as Industry 4.0, and puts an
emphasis on robots and other mechatronic equipment as actors
in a software-centric scenario [3]. Robotics software engi-
neering is hence a distinctly recognized field, with dedicated
publishing venues, technical committees [4], and educational

curricula [5]. In the years leading up to the establishment
of the field, software engineering approaches with proven
track records in other domains have been applied to robotics
with various degrees of technical maturity and uptake by
practitioners. Among them are model-based techniques, such
as model-based Software Product Lines (SPLs applied to
robotics software, e.g., [6], [7]) and Model-driven Engineering
Integrated Development Environments (MDE IDEs, e.g., [8]).
Meanwhile, more traditional approaches broadly falling under
the category of software frameworks have also been pro-
posed [9]–[12]. Among them, the Robot Operating System
(ROS [13]) gained widespread acceptance in research and
service robotics, with increasing signs of adoption in the
industrial domain [14]. As both developers of robot software
leveraging traditional frameworks for concrete, production-
grade use cases, and researchers in Model-Driven Engineering
approaches to robotics software, we identified possible ways
to bring some advantages of model-based techniques into
standard robotics software engineering practice. The norm
here being, still, to manually develop code: as the results of
a user study documented in [8] reveal, ”using an integrated
IDE for development is not yet standard” and ”reuse is
made on the level of libraries, but very few component-based
approaches are applied”. Our experience while consulting on
topics centered on robotics software engineering for several
organizations worldwide anecdotally confirms this finding.
Aiming at completely replacing manual code development
with an all-encompassing MDE IDE historically proved diffi-
cult to impossible, given the large variety of application use
cases and of target platforms to support. We thus instead aim
at leveraging a large existing codebase, such as the corpus
of open-source ROS hand-written components (more than
3000 [15]), while using model-based techniques when possible
as a complement.

The paper is structured as follows. The next section will
cover related work, while the following one will summarize
previous metamodeling efforts directly applicable to the con-
tribution later presented. Sec. IV presents the first and main
contribution of this paper: two approaches to automatically



generate models from existing ROS software artifacts, re-
spectively through static analysis of source code and runtime
system monitoring. Sec. V presents the second contribution,
i.e., a publicly available, easy-to-use cloud infrastructure to
extract models from provided source code repositories, and
a first database of models which we built from open-source
ROS components. Sec. VI details a use case example of how
our tooling can be applied to extract models from different
approaches, evaluating and comparing the results and their
potentials; and to ease the replacement of subcomponents
by identifying common interaction patterns. The Care-O-bot
4 [16], a service robot now engineered and commercialized
by the company Mojin Robotics, serves as the example. Its
source code is publicly available and hence suitable for a
walk-through style tutorial, while at the same time being
representative of the complexity of ROS code in commercially
deployed robots. Sec. VII recapitulates our contributions, and
lays out some directions for future work.

II. RELATED WORK

A. ROS - The Robot Operating System

ROS [12], [13] is the software framework whose concepts
we target with our effort, given its popularity and hence the
impact which we can achieve among practitioners. It combines
software written in common languages with little architectural
constraints, and has a federated development model, leveraging
common tools to easily share such components across orga-
nizations. This resulted in fast adoption and a large software
ecosystem.

To distill the basic constituent entities from the system, we
can resort to the commonly cited analogy of ROS being a peer-
to-peer network of processes exchanging ad manipulating data
(the computation graph). This results in ROS systems designed
as a collection of small, mostly independent programs called
nodes that run all at the same time and can communicate with
each other. The communication mechanisms are the topic and
service patterns. Topics are means for one-way communication
and many-to-many connections, while services are used for
two-ways communication and one-to-one connections. The
agents of this communication are messages and services,
which consist of language-independent data structures com-
posed of primitive data types (String, Double, Int, Boolean..).
Last, collections of nodes can be started through launch files,
which can also be used to set parameters and to remap (i.e.,
reassign at runtime) names such as those of topics.

B. MDE efforts backends generating ROS code

The BRICS (Best Practices in Robotics) [17] component
model (BCM) combined the model-driven approach with the
separation of concerns paradigm, and introduced the 5Cs
(Computation, Communication, Coordination, Configuration,
and Composition) concept. The BRICS Integrated Develop-
ment Environment (BRIDE [18]), bridged BCM and ROS
using model-to-text (M2T) transformations to generate ROS
skeleton code to be filled by an application domain expert.
This achieved BRIDE’s main goal of “explicit separation of

two phases of the development process, i.e., capability building
and the system development” [18], and showed how to fit
ROS in a model-based approach, but maintained a traditional
MDE top-down approach with (partial) code generation from
models, not allowing the import of existing, manually devel-
oped ROS systems. BRIDE and similar efforts generating ROS
”boilerplate code” through a dedicated backend leverage MDE
to ease successive manual development, but do not allow for a
development style intermixing manual development and e.g.,
model-supported checking of component composition. Related
to the aim of easing the interoperability of ROS with other
systems, a visual modeling language was created to transform
ROS specific message to Robot Device Interface Specification
(RDIS) and viceversa, by mapping the communication mech-
anisms [19].

The ongoing RobMoSys project [20] leverages Smart-
Soft [21] and promises predictable composition of both ex-
isting and new components through MDE.

C. HAROS - Static code analyzer framework for ROS

HAROS is a plug-in-based framework whose primary focus
is static analysis of ROS software [22]. Its initial iteration
brought general-purpose quality metrics and coding style com-
pliance checks into the ROS ecosystem. More recent versions
backed HAROS with an internal metamodel that characterizes
typical source code artifacts (e.g., packages and different kinds
of source files) and runtime entities in a ROS system [23] (e.g.,
nodes and topics). Such a metamodel, coupled with source
code parsing tools, enables HAROS to reconstruct models of
a ROS system via static analysis. In particular, HAROS can
reverse-engineer the ROS computation graph by parsing C++
and ROS launch files. Support for other popular languages,
such as Python, is ongoing work by external contributors.
Extracted models can then be graphically visualized, subject
to automated analyses, or exported as raw data for other
applications. In summary, HAROS aims to provide support for
the analysis and validation of the architectural design of ROS
applications, without requiring the execution of said applica-
tions. However static analysis has well-known limitations, such
as values that cannot be resolved statically. HAROS developers
report this in [23], as handled by explicitly marking extracted
entities as conditional or unknown, rather than raising errors,
and by allowing users to aid the system in resolving some
of these entities. Metamodeling targeting ROS systems are
separately examined in the next section.

III. PREVIOUS WORK: ROS METAMODELING

The main motivation for this work is to facilitate the compo-
sition of large systems, a task that ROS integrators perform on
a regular basis. The lack of tools to validate, create deployment
artifacts and test the composition at design time (currently a
tedious trial-and-error verification) represents, from our point
of view, one of the biggest shortcomings of ROS.

The contributions of this paper leverage and existing family
of three metamodels which we developed in previous work [1].
These metamodels split the description of robot system into: 1)



the ROS metamodel (the monolithic description of ROS pro-
grams), 2) the Component Interface metamodel (the extraction
of the ROS-specific concepts to a generic Component-based
architecture) and 3) the System metamodel (the composition of
components and its connections). This previous work includes
also three matching Xtext DSLs, which allow the user to
check and validate against properties and constraints. All of
this work is supported by an Eclipse tooling that allows the
graphical definition and the validation of the models, referred
to thereafter as ”ROS tooling”.

The ROS tooling is being developed, improved and tested
for real use cases by the German funded project SeRoNet [24].
For this project different institutions (from research centers
to robotics OEMs companies) joined their efforts to create
a platform that unifies the development of robotics software
supporting different middlewares like OPC-UA [25], ROS or
SmartSoft.

A. ROS metamodel

The ecore ROS metamodel describes the concepts of the
main three ROS dimensions:

• the filesystem (how code is organized and stored);
• the computation graph (how systems are split in processes

and how these interact);
• the deployment mechanism (how entities are distributed,

named, accessed at runtime).
By layering such a minimal model on manually developed

ROS nodes and their disk location (the ROS package con-
tainer) we can model also the “simple plumbing” infrastruc-
ture, i.e., the interaction patterns, by describing the communi-
cation interfaces, and set the basis for deployment phase, that
is, artifact names. The ROS metamodel defines the interfaces
of the communication by the type of communication (one-to-
one, many-to-many or state machine pattern); the direction of
the information (input or output); and by the communication
object (the data structure of the messages being exchanged:
message, service or action).

B. Component Interface metamodel

The component interface aims to achieve two main goals: 1)
to simplify the deployment process of ROS systems with the
concept of composition of sub-systems, and 2) to facilitate
the creation of hybrid systems (in terms of interoperability
with other frameworks, ideally component-based). Given these
goals, and inspired by the Object Management Group (OMG)
specification “Deployment and Configuration of Component-
based Distributed Applications” [26], the previous ROS meta-
model (Sec. III-A) was transformed to this generic “standard”
concept. That is, according to the OMG , “a named set of
provided and required interfaces that characterize the behavior
of a component”. To group entities (“components”, in the
parlance of this subsection) ROS provides a hierarchical
naming structure used for all resources in a ROS computation
graph, where each resource (node, topic, etc) is defined within
a namespace. To preserve the nature of the original ROS
code, the Component Interface metamodel refers to the topics,

services and actions definitions from the ROS specific model
and only adds the definition of namespaces for the entire
component and/or for each interface.

C. System metamodel

The third metamodeling tool of this family makes use of
Component Interface models to compose ROS nodes, sub-
systems, and systems. Such composition is achieved in ROS
through the use of launch files, in which the integrator de-
fines the nodes to be started, the package containing each
of them, the arguments to be parsed and their grouping in
namespaces and/or machines within which the nodes will be
started. Another embedded tag available in launch files is the
remapping one, used to define complex name assignments.
This system, which currently have to be written manually,
can only be validated at runtime. The ROS system metamodel
was created to possibly validate at design-time the respective
interconnections between nodes.

For its implementation the OMG specification “Deployment
and Configuration of Component-based Distributed Applica-
tions” [26] was also taken into consideration. Such specifi-
cation defines a connection as “either a communication path
among the ports of two or more subcomponents allowing
them to communicate with each other, or (it is) a commu-
nication path between an assembly’s external ports and an
assembly’s subcomponents that delegates the external ports
behavior to the subcomponents ports”. For the ROS case,
this resulted in TopicConnections, ServiceConnections and
ActionConnections. Using the tooling it is possible to validate
the composability of nodes and identify the disparity of a
communication object, i.e., the subscriber of a topic asking
for a different message type than the one being published.
The identification of such disparity results in an error emitted
at design-time. Once the interconnection of different ROS
nodes is validated, the tooling generates automatically the
deployment artifacts code (i.e. roslaunch). This avoids the
debug at runtime of errors often simply due to typing mistakes,
and ensures the successful connections between the defined
components.

IV. AUTOMATED MODEL GENERATION FROM ROS
SOFTWARE ARTIFACTS

Our work aims to build upon the related work in order to:

• Leverage the many existing, manually written ROS com-
ponents and the familiarity with ROS conventions among
robotics software practitioners

• Leverage model-based techniques to improve the un-
derstanding of the existing code through automatically
extracted models. Models that make use of our previous
work (Sec. III) can be composed, with correctness and
verification checks performed before deployment

• Systematize the definition and adoption of best practices
by examination of such models, specifically with regards
to interaction patterns



Fig. 1. Architecture overview of the approach using HAROS to extract the
models

Given its open source nature and its federated development
process, the sharing culture within the ROS community en-
couraged modularization of the software in order to facilitate
the interoperability with software artifacts developed by others.
In order to fit the needs of this characteristic community,
we focus our efforts, at a first instance, on automatically
generating the models by analyzing existing code. As a
second strategy, also to improve the understanding of large
ROS systems, whose source code is not necessarily always
available, we complement this with a runtime monitor, which
automatically extracts the ROS system model (Sec. III-C) of
the running system it is started with.

A. Method 1: Static Code Analysis

For the code analysis we use the framework HAROS [27].
Supporting an extensive list of options, HAROS can be con-
figured to check custom error types. For our concrete case, the
analysis of ROS C++ code extracts a simplified (but expressive
enough for our purpose) syntax tree of the programs.

For the purposes of this work, we created a plug-in that
builds a model (conforming with the ROS metamodel in Sec.
III-A) out of the simplified syntax tree of the ROS C++ code
that the parsing and extrcation functions of HAROS yield.
Concretely, it extracts the name of the package that contains
the node, the name of the artifact that runs the node, the name
of the node itself, and the list of the communication interfaces
of the node (topics, services and actions) with other nodes
in the system, respectively annotated with message types.
HAROS actually extracts a considerably larger amount of
information, which however is not needed and thus not being
processed by our plug-in. The mentioned plug-in is publicly
available and can be used for the generation of two different
types of metamodels (Sec. III):

• Model extraction of a single node: the input for this
scanner is the name of a node and the ROS package
that contains it. The automatically generated result is a
ROS model (Sec. III-A) for a node in Xtext grammar. By
importing it into the ROS tooling, it can be visualized and
integrated with other nodes.

• Model extraction of a system and its constituent
components: the ROS nodes can be grouped so as to be
started together using launch files. This extractor option
takes as input the name of a launch file and the name
of the ROS package that includes it. Thanks to HAROS
and its launch files parser we can detect the names of the
packages and names of nodes whose models compose the
full system. Having obtained this list, we recursively call
the extraction of models of single nodes (previous bullet
point) to obtain all the required models of dependency
packages. The parser is also able to detect the namespace
where each node is started (instances of the source code
classes), in our case defined in the ComponentInterface
metamodel (Sec. III-B) within a system. To complete the
analysis and give to the user the full package, together
with the the models of the nodes we also automatically
generate the rossystem model (Sec. III-C). Fig. 1 shows
a schematic diagram of this approach.

While using HAROS, we are also aware of some of its
limitations. Specifically, 1) it does not support ROS actions
[28], and 2) it can only be used to analyze C++ code, while
ROS is multilingual and supports also Python, Java, Lisp and
Lua, among the others. Part of the technical contribution of
this publication is the improvement of HAROS for a minimal
support of ROS actions.

B. Method 2: Runtime Systems Monitoring

With static analysis being the most convenient approach
to extract models from source code, we pursued the goal of
automated generation of models from ROS artifacts also for
already deployed, running systems. The idea is to monitor a
running ROS system and inspect the communication between
all its executing programs in order to extract the nodes,
components, and system models, to then import them into
the metamodels ecosystem of the ROS tooling. With this
complementary approach we cover the following use cases:

• Non-Open Source Software (OSS). Although ROS code
is often OSS, this framework is also used for commercial
applications where, due to business reasons or licensing
matters, the source code is not available and the end user
can only run the pre-compiled binary code.

• Unsupported ROS distributions. The model extractor was
developed for the newest ROS distribution. However,
since the first ROS release (March 2010), the framework
evolved in different distributions (12 in total at the
time of this writing), which analogously to the Linux
kernel distributions are still being officially supported
or are already marked as having reached ”end-of-life”
(EOL). Structuring the communication interfaces of both
components with a common model language facilitates
the interoperability.

For this contribution we use a simple introspection method:
we analyze all the running nodes and their calls through
the ROS master (i.e., the central broker for communications
between nodes).



This method is very useful to inspect and get an overview
of a system, but from the qualitative point of view, it is
not the most convenient analysis method. First, because this
monitor can observe just a specific execution at a certain
moment. This does not capture, for example, a very common
programming strategy in ROS of a topic being subscribed
within the call of a service client. And second, because one of
the main motivations of our work is the analysis of software
composition at design time, performed to avoid errors and thus
problems at runtime.

Additionally, to further expand on this method there are
other approaches under consideration, like creating a wrapper
for the ROS master; or even to intervene at the transport
level, by running a monitor in parallel during execution and
intercepting any call to the master.

Fig. 2. Architecture overview of the approach using the runtime monitor to
extract the models

As explained in Sec. III, the starting point of our architecture
is a definition of a node based on two criteria: 1) the file
system level, and 2) the computational level. Unfortunately,
with the current implementation of the runtime monitor (using
exclusively ROS framework sources) we can not obtain the
first item, i.e., we are not able to extract the information about
how the software is saved, distributed or organized on the
disk. A future improvement of this approach combining the
information we get from ROS (the current monitor) with the
one that a Linux tool to manage processes provide (i.e. path
to the executable file) could help to obtain further information
and complete the model. In order to comply with the archi-
tecture, and to allow interoperability and full integration of
models generated automatically through the runtime inspection
method, the analysis at runtime generates two models. The
first using the ROS metamodel (Sec. III-A) grammar (that
generates a .ros file), and the second by defining the full
system (Sec. III-C). See the Fig. 2 as overview. For the
ROS model a fictitious ROS package is defined to hold all
the nodes and their interface descriptions. In this generated
model we see one of the limitations of this approach: the
runtime monitor cannot differentiate the information of two
of the ROS dimensions: the deployment and the filesystem
level. Concretely, it cannot disambiguate whether a node was
launched on a specific namespace, or whether the original
source code already identified the interfaces within a particular
namespace infrastructure.

C. Comparison of the two methods

Both methods are conceived with the same purpose in mind:
to auto-generate models. However, the concepts employed
are very different. The static analysis of code allows early
detection of errors, while the runtime monitor cannot prevent
execution issues. It can however give the user a good under-
standing of the (current) behavior of a system. Structuring
this information as a model, and thanks to the ROS tooling
we provide, with the results from both methods the use of
common specification and name conventions can be checked
and the components, subsystems and systems composed and
their interoperability (potentially even with other frameworks
through model to model (M2M) transformations) verified at
design time.

We can expect a higher rate of components and interfaces
found by the runtime monitor analysis, mainly because of the
following factors:

• HAROS does not support Python, one of the most used
languages in ROS.

• The support of ROS actions for HAROS is still at
prototypical stage, and as such it does not cover all the
possible ways to define an action with ROS C++ code.

Conversely, runtime analysis presents the following issues:
• It does not support ROS service clients, since it is not pos-

sible to find them through the analysis mechanism which
we currently adopt (based on rosgraph introspection).

• It cannot extract filesystem information (part of this
information is mixed with the one related to deployment
on the resulting models), which makes it unfeasible to
use this method to detect common patterns of interaction
to then systematize their adoption (feature explained in
the next Sec. V-B).

In Sec. VI we quantitatively compare a real example of
results obtained by both approaches.

V. LEVERAGING MODELS IN MANUAL ROS CODE
DEVELOPMENT

With the tools for the auto-generation of models imple-
mented and integrated successfully with the metamodels and
ROS tooling, our next step is to exploit these tools in two
phases. First, by providing a cloud system for convenient and,
potentially, large-scale analysis of ROS code (given a quick
enough uptake from the ROS community), and second by
collecting generated models in a database so as to allow for
comparisons and, ultimately, systematization of the adoption
of common patterns and practices.

A. Cloud Tools for Automated Model Generation

We use the metamodels defined with a platform independent
language and with accompanying tooling developed in Java
within an Eclipse environment. In addition, to generate the
models a local installation of HAROS and its libraries and
ROS packages is required. Seeing this as a limitation and
entry barrier for some users, we decided to provide a cloud
solution that, through a web interface, can be used to generate



models from code publicly available (hosted on Git, the most
commonly used platform to share code for the ROS commu-
nity). The web interface runs a Docker container [29] with
a pre-configured image, that already contains all the required
Linux libraries, ROS packages and HAROS. This image also
sets up and prepares the workspace and the extractor scripts.
This Docker-based architecture allows also to trigger multiple
jobs in parallel on several Docker containers. This feature
(supported by the web interface) was a strong motivator for the
cloud solution. By allowing large scale analysis of packages,
this concept can be used to extract common patterns over large
codebases, to then advise users about “de-facto” standards,
and produce a good base set of re-usable models for the ROS
tooling.

B. Extracting Best Practices from Models

The advantages of ROS in terms of fast-prototyping and
federated development were clearly the factors promoting its
wide expansion, but at the same time these characteristics
spurred its growth without a common definition of specifi-
cations and interfaces. The increasing adoption of ROS in
professional domains calls for the definition of conventions
and best practices as statements to assure, on one hand,
a minimum threshold of quality for the software and, on
the other hand, the integrability and interoperability of the
different modules and systems. However, there exists no tool
or even common documentation (beyond what users sponta-
neously share over a wiki) collecting all this knowledge in
a formal format. Neither exists a quantitative global study
analyzing the use of the different patterns to define a proper
set of best practices. With the structures to formalize ROS
interfaces in place (Sec. III-A), a tool for automatic large
scale analysis available (Sec. V-A), and and awareness of
the need for common specifications, we put efforts toward
an extra technical contribution to analyze a diverse set of
drivers for different devices types to create a common set of
specifications. This is performed in two separate steps:

1) Detection of commonly used communication objects
(the messages types of the communications between
nodes) and their provision as a basic dictionary. This
dictionary is publicly available and will be automatically
loaded to any new ROS project created within the ROS
tooling.

2) Detection of common patterns. In collaboration with
the EU H2020 project ScalABLE 4.0 [30] we created
a growing database of specifications (patterns for typi-
cally used robotics components, e.g., actuator controller,
sensors, I/O devices...) by analyzing systematically the
models of diverse drivers for types of devices. For this
concrete project’s use case the component specifications
aim to help the configuration and use of a task orches-
trator.

To complement this set of models, we contributed a new
wizard for the ROS tooling to compare one-by-one the in-
terfaces of two models (the target one, and a standard one
or a custom specification). This returns a diagnostic of the

comparison, listing as errors the cases that will interfere on the
integration of the component with other generic standardized
modules, like:

• the use of non-common messages (communication ob-
jects). This issue produces a mismatch between both sides
of the communication channel.

• the absence of a required interface. This issue prevents
the establishment of the communication.

The experiment section contains an example demonstration
of this feature (Sec. VI-E)

VI. USE CASE EXAMPLE

All the tools and concepts presented in this paper are
being improved, tested and evaluated on real demonstrators in
the context of the ongoing projects SeRoNet and ScalABLE
4.0. In order to practically demonstrate the concrete technical
contributions for this paper, we report in this section a use
case based on the commercially deployed service robot Care-
O-bot-4 (Fig. 3). Given its complexity, we can consider it
an adequately representative example for service robotics
applications.

Fig. 3. Care-O-bot4 full robot. Developed by Mojin Robotics.

The goal of this section is both to highlight the advantages
and convenience of our tools when applied to the typical
tasks that a robotics software engineer performs, and to point
out the limitations of the different approaches, to be possibly
tackled as future work. So to facilitate the understanding of
the next subsections and of the vocabulary used to described
the experiments, we first list the set of publicly available
repositories from which to source the companion material:

• ROS Tooling: this repository contains the ROS tooling in-
frastructure and also serves as the storage for documenta-
tion. By tooling we mean the Eclipse environment and the
full Java and ecore implementation of the metamodels, as
well as the Xtext and Xtend grammar implementations, a
set of wizards for the graphical representations, and the
support tools to automatically import, create or modify
the models. ⇒https://github.com/ipa320/ros-model

• ROS Cloud tool: this repository contains the backend
code of the web interface publicly available to extract
models (i.e. http://153.97.4.193/). We made this repos-
itory public for the cases where the source code is
not hosted online. Furthermore, all the script tools used

https://github.com/ipa320/ros-model
http://153.97.4.193/ 


to extract models are available within this repository.
⇒https://github.com/ipa320/ros-model-cloud

• ROS Graph monitor: This repository holds the ROS
package used for the monitoring and extraction of models
at runtime. ⇒https://github.com/ipa-led/ros graph parser

• ROS Experiments: this repository contains the re-
sults of different analysis. Including the full results
of the experiment explained in this section correspond
to the version cob4-25. ⇒https://github.com/ipa-nhg/
ros-model-experiments

To perform the system experiments, we used the software
description of the drivers that manage the hardware of the
cob4-25, consisting in a total of 38 software components.
We selected the most characteristic modules of which a real
robot consists of (for the mechanic and sensing point of view),
and provide interfaces to run a complete application. Listing
some of them, we have included for instance the base with
three wheels; the joystick to teleoperate it; three 2D laser
scanners used to navigate the environment; four 3D cameras
for visualization tasks; components like light, mimic control,
and sound for general robot-user interaction. Fig. 3 shows the
real aspect of one of the robot of the series.

A. ROS model extraction through static code analysis

The first step to import models into the ROS tooling is to
statically analyze the atomic, self-contained software entities
in ROS, that is, the nodes. To perform this step, we invoked
the HAROS framework providing as input the name of the
package that contains the C++ code and the name of the node.
To cover all the possible cases, we provide to the user different
methods: the cloud web interface, a locally running extraction
script (this requires a local installation of HAROS), and the
provided pre-configured Docker container.

For this concrete walk-through we opted for the cloud
solution, providing as input (the information of one of the
scanners node):

• Git repository https://github.com/ipa320/cob driver
• Package cob sick s300
• Node name cob sick s300

The code in Lst. 1 shows the result of the analysis. Im-
porting the auto-generated model to the ROS tooling we can
visualize the driver of this scanner as showed in Fig. 4

PackageSet { package {
CatkinPackage cob sick s300 { artifact {

Artifact cob sick s300 {
node Node { name cob sick s300

publisher {
Publisher { name ’scan’

message ’sensor msgs.LaserScan’},
Publisher { name ’scan standby’

message ’std msgs.Bool’},
Publisher { name ’/diagnostics’

message ’diagnostic msgs.DiagnosticArray’}}}}}}}}

Listing 1. sick s300.ros file in Xtext format generated automatically by the
cloud tool

Fig. 4. Tooling visualization of the auto-generated model for a Sick s300
scanner driver

B. System model extraction through static code analysis

The first section analyzed only one of the nodes that
compose the full robot. Performing such an operation inde-
pendently for every single node is a tedious task. To facilitate
the analysis of a system composition we use the launch file
parser of HAROS. Practically speaking, launch files are written
in XML format and are used in ROS to start together several
programs.

Fig. 5. Diagram of the approach of system model extraction through static
code analysis

Fig. 5 shows an overview of the approach. First of all, we
have to locate the source code of all the ROS software required
to run our system. Typically, ROS system integrators install a
released stable version of the dependencies in binary form, but
for this analysis we need a local build of the full source code
and all its dependencies. To automate the solution of this issue,
we created a script that first asks ROS for all the dependencies
of the target package (command rospack depends-indent) and
obtains for each single package the GitHub URL that holds the
source code (command roslocate info). Once we have this in-
formation, we download all the source code to our workspace
and compile it, with the isolated option, all these packages
together (catkin make isolated).When the build completes, we
combine all the isolated builds, making our workspace ready
to be analyzed with HAROS. The launch files in ROS are
very powerful and can be used to manage and potentially
fully redefine the behavior of a robot. This also means that
they are very complex and hard to be fully supported by
any automated tooling. Even more so when we consider a
Care-O-bot whose launch file architecture is defined to support
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all the possible combinations of modules and configurations.
Ultimately, this results in the main launch file being translated
into an entangled combination of launch and XML files, with
recursive inclusions and parsing of arguments and parameters.
To streamline this analysis we created a script (ros-model-
experiments/tools/roslaunch-dump) that, given the original root
launch file, is able to create a new one that resolves all the
namespaces (ns), names of the parameters and the monolithic
includes of single nodes and their parameters.

Having this obtained launch file, the next step is to use the
HAROS launch parser to detect the name of the packages
and name of nodes, and the namespace that organizes the
nodes. With this information we invoked the extractor (same
code than in Sec. VI-A but called recursively) to generate
automatically:

• a set of .ros files (including the model of the Sick
S300, i.e. Lst. 1) ⇒ros-model-experiments/cob4-25/cob4-
25 static/rosnodes

• a rossystem file that contains all the components with
their list of remapped interfaces and its references to
the original ROS model. A short part of this file is
shown in Lst. 2 ⇒ros-model-experiments/cob4-25/cob4-
25 static/cob4-25 experiment.rossystem

RosSystem { Name cob4−25
RosComponents ( ....

ComponentInterface { name ’/base laser right/driver’
NameSpace ’/base laser right/’

RosPublishers{
RosPublisher ’/base laser right/scan raw’ { RefPublisher ’

cob sick s300.cob sick s300.cob sick s300.scan’},
RosPublisher ’/base laser right/scan standby’ {

RefPublisher ’cob sick s300.cob sick s300.
cob sick s300.scan standby’},

RosPublisher ’/diagnostics’ { RefPublisher ’cob sick s300
.cob sick s300.cob sick s300./diagnostics’}}....}}}

Listing 2. Sample of the ROS system metamodel generated by the static code
analyzer

Examining the quality of the result, we found three concrete
launch file structure limitations:

• The name of the interfaces is parsed as input argument.
An example of this issue is the node scan unifier node
of the package cob scan unifier. To solve this problem,
we made a small modification to the original source code
to obtain statically the name of the interfaces. However,
this case should be supported and the code not modified.

• The type and name of the interfaces are parsed as param-
eters. This issue is made evident by a very concrete and
common ROS framework: ros control. This software can
be called with a list of arguments that set the type of the
controller to be started (i.e., joint trajectory controller,
velocity controller, position controller..), and with this
argument the controller manager checks through calls to
the ROS parameter server at runtime the configuration
and name of the interfaces providing such command.
This case is quite complex to be supported by a static
C++ code analyzer. To momentarily solve this issue, also
knowing that once the type of controller is defined the

delivered interfaces are fixed, we defined a special plug-
in for our extractor that checks the arguments of the
controller manager node using a pre-defined template for
the ros control model

For a complete quantitative analysis of the result the next
step of our experiment is the introspection of the system
at runtime, and the comparison of results obtained by both
methods.

C. System model extraction through runtime monitor

For this part of the experiment, we used the hardware of
the real robot (Fig. 3) and started all the components used for
the previous section analysis, in order to obtain comparable
results.

Starting the same launch file (ros-model-experiments/cob4-
25/cob4-25 experiment.launch)and initializing the actuators of
the base (the wheels) to make their commands available, we
called our ROS graph monitor (Sec. IV-B) to extract the model
of the system. The result of this experiment are two files:

• the fictitious nodes model. A ROS file model
(Sec. III-A) with a single ROS package contain-
ing all the nodes running on the system and
the interfaces that these nodes offer to the rest
of the network ⇒ros-model-experiments/cob4-25/cob4-
25 runtime/rosnodes/dump.ros.

• a model of the system. A ROS system file model (Sec.
III-C) containing a component definition for all the pre-
viously found nodes and referencing all the interfaces
of the ROS model file. A short excerpt of this file is
shown in Lst. 3 ⇒ros-model-experiments/cob4-25/cob4-
25 runtime/cob4-25.rossystem

RosSystem { Name ’cob4−25’
RosComponents (....

ComponentInterface { name ’/base laser right/driver’
RosPublishers {

RosPublisher ’/base laser right/scan standby’ {
RefPublisher ’dump pkg./base laser right/driver./
base laser right/driver./base laser right/scan standby
’},

RosPublisher ’/base laser right/scan raw’ {RefPublisher ’
dump pkg./base laser right/driver./base laser right/
driver./base laser right/scan raw’},

RosPublisher ’/diagnostics’ {RefPublisher ’dump pkg./
base laser right/driver./base laser right/driver./
diagnostics’}}....}}}

Listing 3. Sample of the ROS system metamodel generated by the runtime
monitor

D. Comparison of system extraction through static code anal-
ysis and runtime monitoring

Table I shows the quantitative comparison of both ap-
proaches in terms of number of components and interfaces
found.

Unsurprisingly, the ROS Graph monitor is able to find
all the nodes. This is expected because ROS starts all the
nodes included in a launch file. For the static code analysis
we obtained 25 components (a total rate of a 65,7%). A
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Static Analysis Runtime Analysis
Components 25 38

Topic Publisher 148 245
Topic Subscriber 23 54
Service Server 35 92
Service Client 2 0
Action Client 5 3
Action Server 4 6

Total interfaces 217 400
TABLE I

COMPARISON OF THE EXPERIMENTS VI-B AND VI-C

similar result is obtained by comparing the number of detected
interfaces through the runtime monitor (400) and through the
static code analyzer (217). However, taking into account the
lack of Python support (with many of the tools and monitors on
Care-O-bot being written in Python), we consider the obtained
data a more than satisfactory result. This consolidates our
belief about the static analysis approach as the right one
to support the auto generation of models, and its preferred
adoption to build a database of common patterns. This also
further directs our next efforts towards the improvement of
HAROS to mitigate the mentioned (Sec. IV-C) limitations.

We now consider usability and re-usability. The models
extracted through the static code analysis (e.g. Lst.1) are
completely truthful and the ROS metamodels structures fully
fulfilled. If we compare this model with the corresponding
“node” auto-generated by the runtime monitor, we find the
following two types of information as missing or wrong:

• we are not getting the filesystem information (i.e., the
name of the ROS package that contains this node).
Without this information the ROS tooling is not able to
auto-generate a valid launch file for the composition of
this component with others.

• the information related to the name of the node is wrong.
When the runtime model generator runs, the nodes and
its interfaces are already remapped. This assignment of a
namespace is done during the deployment phase (i.e. for
the family of metamodels, included in the ROS system,
see Lst. 2).

These issues, mainly the lack of the filesystem information,
make it hard (almost useless) the reuse of the single extracted
models from the ROS Graph monitor for the composition of
new systems. The only aspect where the analysis of this file is
helpful is to find commonly used communication object types
(i.e., messages types) that upgrade the provided dictionary 1.

E. Replacement of a component using code scanning and
comparison of specifications

To show the potential of large scale code analysis as made
possible by our tooling, we chose a typical use case in
robotics: a system integrator in need of replacing one of the
components of a system (often because a component is not
commercially available anymore). The process of replacing a
robot component starts with an evaluation of the alternatives
in the market, 1) in terms of hardware (physical dimensions
and electronic requirements), and 2) in terms of compatible

software. In our case, we will focus on 2D laser scanners
(specifically, those for which a ROS driver exists) which can
potentially replace the SICK S300 laser on the current setup
of the Care-O-bot. The ROS wiki provides an open catalog
of supported sensors [31]. From this list we filter those that
use the same driver (usually from the same vendor, but for a
different series), and those whose software is not up-to-date or
not publicly available. We obtain a final list of seven scanners
to be evaluated. In order to know which of them are compatible
with the rest of our system, we first obtain the model for
each of them using our cloud tooling for the extraction (i.e.,
http://153.97.4.193/) with the following input list:

HLS-LFCD LDS:
• Git https://github.com/robotis-git/hls lfcd lds driver
• Package hls lfcd lds driver
• Node name hlds laser publisher
Hokuyo:
• Git https://github.com/ros-drivers/hokuyo node
• Package hokuyo node
• Node name hokuyo node
Pepperl Fuchs r2000:
• Git https://github.com/dillenberger/pepperl fuchs
• Package pepperl fuchs r2000
• Node name r2000 node
Rplidar:
• Git https://github.com/Slamtec/rplidar ros
• Package rplidar ros
• Node name rplidarNode
Sick Safety Scanners:
• Git https://github.com/SICKAG/sick safetyscanners
• Package sick safetyscanners
• Node name sick safetyscanners node
Teraranger Evo:
• Git https://github.com/Terabee/teraranger array/
• Package teraranger array
• Node name teraranger evo
Neato XV-11:
• Git https://github.com/rohbotics/xv 11 laser driver
• Package xv 11 laser driver
• Node name neato laser publisher
Having obtained the auto-generated models (ros-model-

experiments/scanner comparison), we imported all of them
into the tooling.

Fig. 6. Teraranger Evo auto-generated model imported on the tooling

The first check is the evaluation of the use of standard
messages. This check was not passed by the Teraranger Evo(as
shown in the Fig. 6) and by the Sick Safety Scanners because
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both use non-generic message types (i.e., the use custom-
defined ones) for the communication. The use of communica-
tion objects not included in the ROS tooling dictionary can be
solved by updating it (one of the tools that we provide calls
a script to import automatically new communication objects),
but this is only recommended after a systematic evaluation of
existing software and matched patterns.

Validate the file: hlds_laser_publisher.ros
for the specifications model: Laser2DScan.ros
OK:
- OK: Publisher for message type sensor_msgs/

LaserScan found: scan -> scan

Listing 4. result of the comparison of the hlds laser publisher with the
specification Laser2DScan generated by the tooling

In the case of the scanners, through a previous analysis
of several nodes we already distilled a de-facto “standard”
specification model from commonly used code (ros-model-
experiments/scan comparison/Spec/Laser2DScan.ros). The
second part of this test is to compare all the automatically
obtained models with this generic specification by using the
comparison models tool V-B. All the analyzed package except
the Teraranger Evo passed this check, with the diagnostic
tool providing the output showed in Lst. 4. This means that
they fulfill the requirement of publishing their output through
the standard message type sensor msgs/LaserScan. Lst. 5
shows the result of an unsuccessful check.

Validate the file: teraranger_evo.ros
for the specifications model: Laser2DScan.ros
ERRORS:
- ERROR: missed a publisher for message type:

sensor_msgs/LaserScan

Listing 5. result of the comparison of the teraranger evo with the specification
Laser2DScan generated by the tooling

The third part of this test is to compare the models obtained
automatically with the model of the current scanner mounted
on the Care-O-bot, the SICK S300. The model of this driver
is shown in Lst. 1. Unsurprisingly, none of the nodes passed
the test, whose result is shown in Lst. 6. As for Care-O-
bot there is a special best practice requirement, that all the
drivers report constantly the current status of the hardware by
publishing a diagnostics message. The lack of the diagnostics
message will produce a warning for the Care-O-bot. The other
error pointed by the test is due to the SICK S300 having non-
common standby mode which can be published by its driver.
However, this property is not needed and its absence is not
considered an error and neither a warning.

Validate the file: hokuyo_node.ros
for the specifications model: sick_s300.ros
ERRORS:
- ERROR: missed a publisher for message type:
std_msgs/Bool
- ERROR: missed a publisher for message type:
diagnostic_msgs/DiagnosticArray
OK:
- OK: Publisher for message type sensor_msgs/

LaserScan found: scan -> scan

Listing 6. result of the comparison of the hokuyo node with the sick s300
model generated by the tooling

VII. CONCLUSION AND FUTURE WORK

The work presented in this paper aims to improve the
software quality of ROS systems, in a complementary fashion
to other initiatives within the ROS community. The basic ideas
of this approach are: the exploitation of information available
at design time, but mostly not used due to insufficient tooling,
in order to avoid errors at runtime such as naming or message
format mismatches; the identification of de-facto standard
practices whose reuse, empirically, often improves quality
through better understanding of the developed code by other
developers and easier reuse/replacement of components. We
pursued this approach through model generation by: automatic
model extraction, both from source code through static code
analysis and from binaries through runtime monitoring; and by
making available the necessary tooling both as source code
and as a cloud service, together with the starting nucleus
of a model database to be used and expanded by the ROS
community. We hope that this initial effort can contribute
forms of model-based verification of manually written ROS
code and push towards a future standardization of ROS
interfaces beyond the practice of manually annotating and
inspecting wiki documentation. In addition to growing the
models database and involving further ROS developers, we
plan two further directions for our future work. The first is to
merge our cloud-based service for model generation with the
Eclipse tooling into a more comprehensive cloud-based IDE,
necessitating no installation and offering ”IntelliSense-style”
suggestions to e.g., pick the most adequate message format
given a comparison performed in the background between the
extracted model and matches in the database. The second is
to ease interoperability between other frameworks, such as
those leveraging OPC-UA servers and clients, through M2M
transformations methods. This would improve the applicability
of ROS within the manufacturing domain and other contexts.
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