
Adaptive Broadcast Cancellation Query Mechanism
for Unstructured Networks

Rui Lima
INESC Tec, HASLab

Universidade do Minho
Email: rmlima[at]inesctec.pt

Carlos Baquero
INESC Tec, HASLab
Universidade do Minho

Email: cbm[at]di.uminho.pt

Hugo Miranda
LaSIGE - Faculdade de Ciências

Universidade de Lisboa
Email: hmiranda[at]di.fc.ul.pt

Abstract—The availability of cheap wireless sensors boosted
the emergence of unstructured networks using wireless technolo-
gies with decentralised administration. However, a simple task
such as learning the temperature needs a discovery service to
find a thermometer among all the sensors. In general, resource
discovery relies on flooding mechanisms that waste energy and
compromises system availability. Energy efficient strategies limit
the exploration area, but with a significant impact on latency.
The paper proposes ABC (Adaptive Broadcast Cancellation), a
new algorithm that uses the knowledge acquired in previous
discoveries to accelerate queries towards the resource. Knowledge
is stored in a variation of Bloom filters, thus contributing for an
efficient utilization of the sensors limited memory.

Keywords—Wireless Networks; Search; Broadcast; Cancella-
tion.

I. INTRODUCTION

Many systems have been developed to monitor and locate
resources in adverse places. An example are, mining and
extraction companies which increasingly use wireless sensors
to gather operating conditions data [1]. Low cost wireless
sensors can be used to deploy an unstructured network in
a mine, as it avoids extending copper wires over several
kilometres while permitting to adapt the sampling rate and
trigger alarms in a efficient way [2], [3].

Wireless Sensors Networks (WSNs) applications based on
periodic reporting communication models [4], [5] are very in-
efficient in multi-hop networks because they are too resource-
intensive (for memory, cpu, power) even when there is no
new data to be transmitted. Unstructured sensor networks are
developed to maintain communications when topology change,
during removing and adding sensor nodes. When trying to
locate some target resource, a node queries its neighbours.
The simplest approach to implement a query is flooding,
where the query is disseminated to all nodes. Unfortunately,
successive flooding of the network consumes a lot of resources
as it requires a large number of transmissions and occupies
bandwidth, contributing to deplete the sensor nodes energy
cells [6], [7], [3].

Some energy efficient search mechanisms aim to attenuate
the negative impact of flooding by limiting the query
scope [8], [9], [10]. This can be achieved by intentionally
delaying propagation, exploring a trade-off between energy

This work is financed by the FCT − Fundação para a Ciência e a Tec-
nologia (Portuguese Foundation for Science and Technology) within project
UID/EEA/50014/2013.

consumption and response time. This paper proposes a new
strategy to improve the performance of flooding protocols, by
incorporating a distributed learning mechanism that adapts
the protocol behaviour according to previously conducted
queries. The paper shows that the proposed Adaptive
Broadcast Cancellation (ABC) protocol can significantly
improve latency and simultaneous reduce the number of
retransmissions in long term scenarios, where queries are
frequently repeated. ABC uses Linear Bloom Filter (LBF),
a Bloom filter inspired mechanism to store, propagate and
compact the acquired information in the local vicinity.
The ABC protocol was evaluated using the ns2 network
simulation under several network scenarios. Evaluation shows
that it is possible to speed up the searching tasks without
compromising the energy efficiency.

II. RELATED WORK

One of the most simple and popular [8], [11], [12], [13]
implementations of broadcast is known as flooding. Flooding
is a very energy inefficient [14] mechanism where all nodes
retransmit a message when it is received for the first time. One
of the reasons for the inefficiency of flooding, comes from the
continuation of the message propagation after the resource has
been found.

Some solutions have been proposed to stop the flooding,
when there is no need to continue the searching process.
Limiting the flooding area by using geographically limited
broadcasting [15], requires that nodes are aware of their and
their peers location, what may not be possible in all scenarios.
To control the query searching scope, without global location
information, the Expanding Ring Search (ERS) [8] algorithm
limits the query scope by adding a Time To Live (TTL) field
to the message. Each intermediate node decrements the TTL
when it forwards the query message and cease to forward it
when TTL reaches 0. ERS works in rounds, if the resource
was not found with some initial TTL, then another query is
initiated and the TLL value is increased so that the query
can go up to the following hops. This process is carried out
until the initiator receives a successful answer. ERS will only
be energy efficient when the resources are in the firsts hops.
Other flooding based mechanisms limit the expanding query
using geographical data or distance gradients. Unfortunately
a comparison of these methods [15] shows they all exhibit
a comparable performance. The Two-Sided Expanding Ring
Search (TSERS) [6] considers a searching mechanism where



two nodes are simultaneously executing the ERS for a path
between each other. All intermediate nodes that receive a query
can send back a successful response to the source of the query.
TSERS explores the fact that searching cost is lower for shorter
distances than for longer ones.

Solutions using chasing packets to stop the query propaga-
tion proved to be more energy-time efficient. In the Blocking
Expanding Ring Search (BERS?) [16] and in some varia-
tions [17], [18], [19] a new control message was added to
stop the retransmission process. When some resource is found
an acknowledgement is sent back to the initiator node. The
initiator sends the stop message, that is forward to every node
and stops the expanding query. BERS family protocols are
energy efficient when nodes wait a minimum time (delay ←
f(hop)) before retransmission. During the delay time window,
if a pending retransmission node receives a stop message, the
node aborts the forward operation and the expanding query
is blocked. However adding the minimum delay suitable for
cancellation reduces the time efficiency. There is a trade-off
between time efficiency and energy efficiency for protocols
using chasing packets. More recent protocols such as Broadcast
Cancellation Initiated from Resource (BCIR?) [10] and time-
BERS (tBERS) [9], instead of waiting for the initiator node to
start the cancellation process, start sending cancellation packets
as soon as the resource is found. Both protocols improve time
efficiency without additional energy costs.

Linear Bloom Filters (LBF), introduced in this paper,
provide both a generalization of Bloom filters [20] and a simple
approach to attenuate Bloom filters [21] to capture gradients of
resources in a network [7]. The idea of using attenuated Bloom
filters and directing routing towards resources is originally
in [21]. Their design is based on a vector of standard binary
Bloom filters data structures with a probabilistic document
localization algorithm; by assigning different weights to each
level, a metric similar to our confidence metric can be derived.
Gradient-based routing using Bloom filters is also used in the
Wader design [7]; here the strategy is to decay the information
in the filter, by setting random bits to 0 as filters are transmit-
ted, so that resources further away have a lower representation
in the local filter. The LBF data structure is a modified Bloom
filter capable to store the binary quantification of floating point
values. The LBF uses just a single Bloom filter data structure
instead of the multiple layered Bloom filters array used by the
attenuated Bloom filter technique [21]. The LBF data structure
controlled size makes ABC protocol independent of network
diameter.

III. AN ADAPTIVE CANCELLATION MECHANISM

As discussed above, many broadcast cancellation proto-
cols [16], [10] increase the delay linearly with hop distance.
The increasing delay creates a time window to disseminate
broadcasting cancellation messages, paving the way to mini-
mize the number of retransmissions, at the expense of time
efficiency. None of the protocols BERS? and BCIR? take
advantage of the knowledge obtained with previous queries
to improve the efficiency of the next. This section describes
the Adaptive Broadcast Cancellation (ABC) protocol which,
by assuming some topology stability, creates a gradient of
resource locations that can improve the query dissemination.
The ABC protocol abandons the blind delay increase by tuning

Algorithm 1: Linear Bloom Filter (LBF)
1 lLBF []← [0, · · · , 0]; // Local LBF
2 att← 0.9; // Attenuation factor
3 k ← 4; // Number of hash functions
4 Function LBFins(elem)
5 for i← 1 to k do
6 idx← hashi(elem);
7 lLBF [idx]← 1;
8 end
9 Function LBFmerge(rLBF[])

10 for i← 1 to rLBF.size do
11 lLBF [i]← max(lLBF [i], rLBF [i]× att);
12 end
13 Function LBFget(elem,lLBF[])
14 c← 1;
15 for i← 1 to k do
16 idx← hashi(elem);
17 c← min(c, lLBF [idx]);
18 end
19 return c;

it with the knowledge gained in previous queries. The key idea
is to have nodes propagating queries faster in the direction
where the resource is expected to be found. In contrast, when
the relay by some node is assumed to be less relevant for a
specific query, delay is kept at an adequate level to facilitate
the cancellation process.

A. Linear Bloom Filter (LBF)

Knowledge about resource locations is abstracted by each
node on a space-efficient probabilistic data structure coined
as Linear Bloom Filter (LBF). A traditional Bloom filter is
represented by a binary array where each position can store a
bit {0, 1}, that is used to test whether an element is a member
of a set or not. With the LBF variation of standard Bloom filters
our approach stores floating point values c ∈ [0, 1] instead
of binary values. LBF assign a totality ordered confidence c
quantity, to each stored element. This variation extends the
traditional test operation, permitting to map each element in a
set with a confidence c level, where 0 representing absence of
knowledge and 1 the highest confidence. By default c is set to
0 for all LBF positions.

When a node hosts some resources, this information can
be stored by setting c to 1 on the positions associated to the
resources by the hash functions. In ABC, resources owned
by neighbours are added to the same structure by editing the
confidence values. Fig. 1 depicts an LBF sample representing
the confidence values for elements {a, b, c, d, e}. By having
all their positions with confidence 1, the LBF signals that
elements {a, e} are stored locally. The high confidence value
associated to resource b suggest that it is stored in some node
in the neighbourhood, while c and d are hosted by more distant
nodes.

Fig. 1: Node context with LBF

LBF Operations: Alg. 1 defines three functions to operate
the LBF data corresponding to the actions: i) inserting elements
into a LBF; ii) merging data from two LBF; and iii) getting the



Algorithm 2: Start Query
1 begin
2 pkt← creatPacket(· · ·);
3 queryList← queryList ∪ {msg.queryID};
4 pkt.bloom← node.lLBF ;
5 send(pkt);
6 end

confidence level for some element. Network resources are des-
ignated as elemi in LBF context. Function LBFins(elemi) is
called to insert some elemi in node i’s LBF. It generates the
hash keys to address k independent Bloom array positions,
setting them to 1. Function LBFmerge(rLBF []) combines
node i’s local information (lLBF []) with received neighbour
node information (rLBF []). Note that the remote data is
attenuated by a constant factor att lower than 1, to privilege
local information. Function LBFget(elemi, lLBF []) returns
an estimate of the confidence value c assigned for element
elemi. The incorporation of the LBF gossiped in the query
dissemination progressively attenuates the confidence values
by att. A resource that is expected to be at hop distant, has a
confidence level of c = atthop.

B. Query Dissemination

To describe the ABC algorithm we assume that a node Ni

can have three primitive actions related with each query: Ni

can start a new query, by broadcasting a searching message
ms; can start the cancellation process, by sending a cancella-
tion message mc or; Ni can forward either or both of the mes-
sages ms and mc. Network communication is asynchronous.
Messages ms and mc are tagged with a queryID, so that Ni can
track similar concurrent queries, avoiding message duplication
and spurious retransmissions on the WSN.

Before broadcasting the first query there is no network
context and each Ni only knows its local resources (lLBF []).
However it will be necessary to disseminate the local context
through the network, without knowing the number of nodes or
topological properties, such as network diameter.

When Ni starts a new query it creates a new packet as
illustrated in Alg. 2. A query is initiated with the broad-
cast of a message ms. Ni copies lLBF [] into the mes-
sage header, thus initiating its dissemination. To acquire re-
source context the lLBF [] is piggybacked in the message
and incorporated in the LBFs of the receiving nodes, using
function LBFmerge(rLBF []). Learning with a piggybacking
approach prevents the dissemination of additional messages.
The increase in the size of the payload is not significant and
is bounded to the LBF size.

C. Query Handling

As in BCIR? [10], ABC progressively increases query
propagation latency to facilitate the dissemination of cancel-
lation messages once the resource is found. This is reflected
in the query handling algorithm depicted in Alg. 3. Once a
query is received, nodes confirm message validity, discarding
it if i) a cancellation for this message was already received or
ii) it is a duplicate. Afterwords, the query may produce two
outcomes. The node either starts the cancellation process by

Algorithm 3: Query Handling
1 Function handleQuery (msg)
2 LBFmerge(msg.rLBF );
3 pkt.bloom← node.lLBF ;
4 if msg.queryID 6∈ queryList then
5 queryList← queryList ∪ {msg.queryID};
6 if LBFget(msg.elem, lLBF ) = 1.0 then
7 cancelList← cancelList ∪ {msg.queryID};
8 send(CancelPacket(pkt));
9 else

10 time← calcDelay(msg.header,ABC);
11 insertTxQueue(time, pkt);
12 end
13 end
14 Function handleCancellation(msg)
15 LBFmerge(msg.rLBF );
16 pkt.bloom← node.lLBF ;
17 if IsInTxQueue(pkt) then
18 removeTxQueue(pkt);
19 else
20 if (NodeHostsResource(msg.elem) ∧

node.resourceFound[msg.queryID] = False then
21 node.resourceFound[msg.queryID]← True;
22 msg.resourceHost[msg.queryID]← node.ID;
23 end
24 if msg.queryID 6∈ cancelList ∧

msg.queryID ∈ queryList then
25 time← calcDelay(msg.header, FLOOD);
26 insertTxQueue(time, pkt);
27 end
28 cancelList← cancelList ∪ {msg.queryID};
29 end

Algorithm 4: Added delay
1 const DELAY MIN ; // Minimum delay
2 const JIT MAX ; // Maximum jitter
3 Function calcDelay (msg,proto)
4 jitter ← runif(0, JIT MAX); // Random Uniform
5 timeFLOOD ← DELAY MIN + jitter;
6 timeBCIR? ←

max(2 · (msg.hop− 1) · timeFLOOD, timeFLOOD);
7 c1 ← LBFget(msg.elem,msg.rLBF );
8 c2 ← LBFget(msg.elem, node.lLBF );
9 if c1 < c2 then

10 timeABC ← max(2 · (msg.hop− 1) · DELAY MIN ·
(1− c2) + jitter, timeFLOOD);

11 else
12 timeABC ← timeBCIR? ;
13 end
14 return now() + timeproto;

sending mc if it hosts the corresponding resource, or schedule
the query message ms for retransmission.

The ABC added delay applied during the query dissemina-
tion follows Alg. 4 and considers 3 components. The resource
location independent component is given by a static value
(DELAY MIN) plus some jitter, modelled by a random uni-
form distribution. The location dependent component makes
the delay proportional to the message hop counter (see Alg. 3).
This is the component that facilitates message cancellation.
The third component is dictated by the nodes estimation of
its distance to the resource, given by the LBF prediction. This
component given by (1 − c2) (see Alg. 4) aims to speed up
the query propagation in the predicted direction of the node
hosting the resource. The calcDelay(msg, proto) function in
Alg. 4 returns the schedule time for message retransmission.



Fig. 2: ABC - Delay Attenuation

Fig. 2 depicts an example of a query propagation accel-
erated into the most likely direction. It considers that N0

starts looking for a resource located at N1 and assumes that
nodes know the confidence c associated with the expected hop
distance. N3 receives ms and given that c1 < c2, an attenuation
(1−c2) is applied to the delay, speeding up the query towards
node N1. On the other hand, given that N2 receives ms and
c1 ≥ c2, no attenuation will be applied.

IV. EVALUATION

Ad-hoc network topologies can be modelled using Random
Geometric Graphs (RGG) or approached by synthetic topolo-
gies, such as those of the Manhattan movement model. This
paper evaluates both of these topology classes, while examin-
ing some more extreme deployments, occurring in mines [1],
that exhibit higher path lengths. To evaluate the performance
of ABC and understand the impact of the adaptive delay on the
number of transmissions and end-to-end delay, an implemen-
tation for the ns2 network simulation was developed. ABC
is compared with a naive implementation using plain flooding
and BCIR?, that one of the most efficient protocols to control
the query searching scope. ABC includes the adaptive delay
while other broadcast cancellation protocols operate without
knowledge from previous queries.

Two metrics are used to study the ABC time and energy
efficiency behaviour, namely end-to-end delay and the number
of transmissions. The end-to-end delay (L) is defined as the
average time between the broadcasting search by the initiator
node N0 and the moment at which N0 receives the first
answer. The energy cost is measured by the average number
of transmissions (R) performed by every node on each query.
It is assumed that any two retransmissions consume the same
amount of energy.

A. Network Topologies

Two topology models are used to create Manhattan sce-
narios for ns2. The Manhattan scenarios are set up with
equidistant streets from each other, ensuring that the interior
streets share equitably distance to cover the area. The distance
between the streets is greater than the radio range, to avoid
direct communication from one street to another. The equidis-
tant grid was generated with 176 nodes uniformly distributed
along the rows covering an area of 3200×3200m2, resulting in
a node density of ' 17 Nodes/Km2. The Manhattan topology
was generated using the BonnMotion 1 tool with 250 nodes

1http://sys.cs.uos.de/bonnmotion/index.shtml

Fig. 3: Random Geometric
Graph (N'400)

Fig. 4: Modified Random
Geometric Graph (N'165)

TABLE I: ns2 Simulation Parameters

Attribute Value [Default]

DELAY MIN 10 ms
jitter 7 ms
Packet Size 1000 bytes
Max Simulation Time 17000s
Number of topologies 500
Radio range 250 m
Network links 11 MBit/s
Transmission power 25 dBm
Antenna gain 1
Antenna Polarization Omnidirectional
ns2 propagation model TwoRayGround

distributed along the streets covering an area of 2000×2500m2,
resulting in a node density of 50 Nodes/Km2.

The creation of the mine topologies mirrors previous
works [22] [23] using random geometric graphs (RGG) to
model wireless networks topologies. The bi-dimensional ran-
dom geometric graph model G(N, r, `) creates N nodes that
are randomly placed inside an unit square area. The topology
defined in the unit square is mapped into the ns2 using a
linear transformation taking into account the radio transmission
range. Any two nodes whose euclidean distance is below r are
considered connected and linked by an edge. Unfortunately the
RGGs created using NetworkX2 reveal a graph topology that
was not suitable to represent mine topologies scenarios because
there were too many clusters with high level of redundancy. To
create more realistic scenarios, a maximum graph degree was
defined by removing nodes whose degree exceeds a threshold.
The result is a modified random geometric graph. Figure 3
depicts the original RGG as created by NetworkX and Figure 4
depicts the modified version of the same graph, after imposing
a limit to the node degree. The mine topologies use N ' 165
nodes on a square area of 3100× 3100m2.

The modified RGG is considered to make a better mine
structure representation, resulting in a topology with longer
paths (tunnels) and lower node density.

B. Experiment Setup

Table I summarizes the parameters used for setting ns2
simulations. The antenna settings, signal power and receiving
threshold, are selected to give approximately 250m of radio
communication range. To each node is attached one resource.
The queries are schedule in random order and search for
random resources.

2http://networkx.github.io



(a) Equidistant Grid Topology (b) Manhattan Topology (c) Mine Topology

Fig. 5: Impact of the topologies and distance on the number of transmissions.

The ABC evaluation tests use a default LBF with m = 256
cells and k = 4 hash functions. These constants are suggested
by Eq. (1), extracted from [7], to provide a false positive
probability up to fp = 5% and considering that LBF can keep
information for at least 40 resources (i.e. #LBF < 40).

m = −#LBF · ln(fp)
(ln 2)2

; k = ln(2) · m

#LBF
(1)

The attenuation factor att (used in Algorithm 1) can be
any value from [0, 1] and is set to att = 0, 9 corresponding to
10% of attenuation for each hop.

C. Result Analysis

Results are presented as a function of the distance between
the initiator and the first node responding with a successful
answer, a metric hereafter designated as hop count.

All protocols are submitted to a pool of 500 topologies.
For each topology, the queries are scheduled using a uniform
distribution over the maximum simulation time. The absolute
number of queries that received a successful reply is depicted
in Fig. 7. Table II lists the percentage of packet drops for each
protocol, which confirms density and topology impact on the
algorithms performance. Not surprisingly, for the equidistant
grid and Manhattan topologies, the number of packets dropped
increases with node density, an aspect that can be attributed to
the increasing number of collisions.

TABLE II: Packet Drops

TOPOLOGY Nodes/Km2 FLOOD BCIR? ABC

Mine ' 17 ' 5% ' 3% ' 3%
Equidistant Grid ' 17 ' 11% ' 10% ' 10%
Manhattan ' 50 ' 30% ' 32% ' 33%

The impact of packet drops can be observed in Fig. 7,
which shows the absolute number of successfully replied
queries in the mine scenario. A comparison with table II
suggests a correlation between the number of successfully
queries and the number of packets dropped.

Fig. 6: End-To-End Delay

Energy impact. Assuming that transmissions are the dom-
inant factor on energy consumption in a system based on
wireless communications, we compare the energy efficiency by
counting the number of transmissions used until all messages
related with a query cease to be propagated. As depicted in
Fig. 5, the energy consumption of ABC is smaller than BCIR?

for queries to resources at 6 or more hops. A comparison
between the mine and the equidistant grid topologies shows
that the adaptation mechanism of ABC preserves the energy
consumption in a pattern comparable to BCIR?, specially in
the first hops. This is very significant considering that ABC
was able to improve latency and that BCIR? is capable of
significantly reducing transmissions with respect to flooding.

Latency. Fig. 6 shows the variation of the average end-
to-end delay between the moment a query is broadcast and
its sender receives a reply. The ABC protocol significantly
reduces the average end-to-end time and the gains increase
with the distance to the resource (Fig. 6). For example, the
difference between BCIR? and the FLOOD baseline for H = 4
is similar to the difference between ABC and the FLOOD
baseline for H = 8. This result can be attributed to the
LBF contribution for accelerating the query propagation in the
resource direction, a unique property of ABC which makes it
competitive with flooding for resources located up to 7 hops.

Both ABC and BCIR? protocols evidenced a trade-off
between latency and the number of transmissions, and by



Fig. 7: Successfully Replied Queries (Mine Scenarios)

comparing the performance for resources at the same distance,
ABC significant gains in time with faster responses and with a
reduction in the number of transmissions. The gains increase
in line with the distance between the source of query and
the resource. However, a cross-analysis of Fig. 5 and Fig. 6
indicate that ABC is able to reduce the latency without
increasing transmissions cost.

Fig. 7 shows that the number of successfully replied queries
for ABC is similar to BCIR? and by combining with the
latency information from Fig. 6, the results show a very
significant reduction in latency, justifying the effort to reduce
the added delay achieved by ABC.

V. CONCLUSIONS

Mechanisms to improve the performance of resource dis-
covery in WSNs typically exhibit a trade-off between the
number of transmissions and latency. This paper presented
ABC, an algorithm that makes an innovative approach capable
to attenuate such trade-off by speeding the query propagation
in the predicted direction of the resource. Evaluation showed
that a sense of the resource location can significantly reduce
the end-to-end time, while still benefiting from a reduction in
energy cost for successive discovery queries. ABC achieves
these goals with a small penalty in the query message size,
resulting from the piggyback LBFs inside query messages. The
ABC protocol operates by taking advantage of the query prop-
agation mechanism, to epidemically disseminates the resource
location direction without increasing the number of transmitted
messages.

REFERENCES

[1] M. Li and Y. Liu, “Underground coal mine monitoring with wireless
sensor networks,” ACM Trans. Sen. Netw., vol. 5, no. 2, pp. 10:1–10:29,
Apr. 2009. [Online]. Available: http://doi.acm.org/10.1145/1498915.
1498916

[2] G.-R. Lin, Y.-C. Fan, E. T. Wang, T. Zou, and A. Chen, “Energy-
efficient sensor data acquisition based on periodic patterns,” in Parallel
and Distributed Systems (ICPADS), 2009 15th International Conference
on, Dec 2009, pp. 487–494.

[3] M. Maróti, “Directed flood-routing framework for wireless sensor
networks,” in Proceedings of the 5th ACM/IFIP/USENIX International
Conference on Middleware, ser. Middleware ’04. Springer-Verlag New
York, Inc., 2004, pp. 99–114.

[4] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with glossy,” in Information Process-
ing in Sensor Networks (IPSN), 2011 10th International Conference on,
April 2011, pp. 73–84.

[5] L. Mottola and G. Picco, “Muster: Adaptive energy-aware multisink
routing in wireless sensor networks,” Mobile Computing, IEEE Trans-
actions on, vol. 10, no. 12, pp. 1694–1709, Dec 2011.

[6] S. Shamoun and D. Sarne, “Two-sided expanding ring search,” in
Communication Systems and Networks (COMSNETS), 2014 Sixth In-
ternational Conference on, Jan 2014, pp. 1–8.

[7] D. Guo, Y. He, and Y. Liu, “On the feasibility of gradient-based data-
centric routing using bloom filters,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 25, no. 1, pp. 180–190, Jan 2014.

[8] D. B. Johnson, D. A. Maltz, and J. Broch, “Dsr: The dynamic source
routing protocol for multi-hop wireless ad hoc networks,” in In Ad Hoc
Networking, edited by Charles E. Perkins, Chapter 5. Addison-Wesley,
2001, pp. 139–172.

[9] I. M. Pu, D. Stamate, and Y. Shen, “Improving time-efficiency in
blocking expanding ring search for mobile ad hoc networks,” J. of
Discrete Algorithms, vol. 24, pp. 59–67, Jan. 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.jda.2013.03.006

[10] R. Lima, C. Baquero, and H. Miranda, “Broadcast cancellation in search
mechanisms,” in Proceedings of the 28th Annual ACM Symposium
on Applied Computing, ser. SAC ’13. ACM, 2013, pp. 548–553.
[Online]. Available: http://doi.acm.org/10.1145/2480362.2480467

[11] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector
routing,” in Mobile Computing Systems and Applications, 1999. Pro-
ceedings. WMCSA ’99. Second IEEE Workshop on, Feb. 1999, pp. 90–
100.

[12] N. Beijar, “Zone routing protocol (zrp).”
[13] Y.-B. Ko and N. H. Vaidya, “Location-aided routing (lar) in mobile ad

hoc networks,” Wirel. Netw., vol. 6, no. 4, pp. 307–321, Jul. 2000.
[Online]. Available: http://dx.doi.org/10.1023/A:1019106118419

[14] S. Preethi and B. Ramachandran, “Energy efficient routing protocols
for mobile adhoc networks,” in Emerging Trends in Networks and
Computer Communications (ETNCC), 2011 International Conference
on, april 2011, pp. 136 –141.

[15] Q. Chen, S. S. Kanhere, and M. Hassan, “Performance analysis
of geography-limited broadcasting in multihop wireless networks,”
Wireless Communications and Mobile Computing, vol. 13, no. 15, pp.
1406–1421, 2013. [Online]. Available: http://dx.doi.org/10.1002/wcm.
1188

[16] I. Park, J. Kim, and I. Pu, “Blocking expanding ring search algorithm
for efficient energy consumption in mobile ad hoc networks,” in WONS
2006 : Third Annual Conference on Wireless On-demand Network
Systems and Services. INRIA, INSA Lyon, IFIP, Alcatel, Jan. 2006,
pp. 191–195, http://citi.insa-lyon.fr/wons2006/index.html.

[17] I. Pu and Y. Shen, “Enhanced blocking expanding ring search in mobile
ad hoc networks,” in New Technologies, Mobility and Security (NTMS),
2009 3rd International Conference on, dec. 2009, pp. 1 –5.

[18] M. A. Al-Rodhaan, L. Mackenzie, and M. Ould-Khaoua, “Improvement
to blocking expanding ring search for manets.”

[19] A. Shintre and S. Sondur, “Improved blocking expanding ring search (i-
bers) protocol for energy efficient routing in manet,” in Recent Advances
and Innovations in Engineering (ICRAIE), 2014, May 2014, pp. 1–6.

[20] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.
[Online]. Available: http://doi.acm.org/10.1145/362686.362692

[21] S. Rhea and J. Kubiatowicz, “Probabilistic location and routing,” in
INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, vol. 3,
2002, pp. 1248–1257 vol.3.

[22] H. Kenniche and V. Ravelomananana, “Random geometric graphs as
model of wireless sensor networks,” in Computer and Automation
Engineering (ICCAE), 2010 The 2nd International Conference on,
vol. 4, feb. 2010, pp. 103 –107.

[23] M. Haenggi, J. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti,
“Stochastic geometry and random graphs for the analysis and design of
wireless networks,” Selected Areas in Communications, IEEE Journal
on, vol. 27, no. 7, pp. 1029–1046, September 2009.


