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Abstract—This paper presents a new methodology to maximize
the power output of Photovoltaic panels (PV), based on an
adaptive duty-cycle methodology. The approach embeds the
DC/DC converter characteristic in the cost function, allowing
an optimization based on a single measured variable. Two cost
functions, and respective learning rules, are derived. The first,
more complex and comprehensive, traces the ground for the
second which is less computational intensive and solves stability
issues and implementation difficulties. It is also demonstrated
that the system is asymptotically stable around the optimum
duty-cycle, in the Lyapunov sense. Both methods are compared
through simulations and deviations from the optimal solution are
assessed.

Index Terms—Adaptive Maximum Power Point Tracking,
MPPT, Hebbian Learning, PV optimization

I. INTRODUCTION

The problem of maximum power transfer in PV panels has
been extensively addressed in the literature. In order to solve
it, Maximum Power Point Tracking (MPPT) controllers are
employed at the PV panel terminals, to drive the electrical vari-
ables to the MPP — the Maximum Power Point. Several MPPT
methods have been proposed, being the most popular ones
Perturb and Observe (P&O) [1], Incremental Conductance
(IncCond) [2] and fractional open-circuit (or short-circuit) [3].
Their popularity arises from the implementation simplicity
and good performance trade-offs. Several other methods exist,
namely fuzzy control [4], neural network [5], DC link capac-
itor droop control [6], current sweep [7], Ripple Correlation
Control (RCC) [8], among others [9]. Essentially, the MPPT
algorithms vary in speed of convergence, implementation com-
plexity, number of sensed variables, steady-state misalignment,
need for parametrization (prior plant knowledge) and the type
of digital or analog blocks [10].

In order to control PV panels such that they operate at
their MPP, DC/DC (or DC/AC) converters are connected at
the panel terminals, which in turn are connected to a load.
The converter sources a DC output voltage and current whose
magnitudes are controllable via the duty-cycle parameter D,
using circuit elements that, ideally, do not dissipate power. A
conceptual view of this configuration is shown in Figure 1.
The output/input voltage gain depends on the topology of
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Table I: Different converter topologies and their respective
conversion ratios

Converter M (D)
Buck D
T
Boost —
1 _lD
Buck-boost | ————
1—-D

the converter, whose ideal expressions are shown in Table I
for three types of converters. The conversion ratio, hereafter
denoted as M (D), is defined as the ratio of the DC output
voltage (Vo) to the DC input (V;,) voltage, under steady-
state conditions (assuming continuous conduction mode of the
converter). Therefore, it follows that:

Vouf
M (D) = 2% 1
(D) v, (1
PV _ DC/DC
Module Vin r Converter Load | Vout

Rin Rout

Figure 1: A conceptual view of the system setup approached
in this paper.

Except for losses in the converter (modelled through the
efficiency factor 1), the delivered power P, is the same as
the output power P, ;. Therefore one can obtain a relationship
between input and output impedances, as follows:

Py, = nPout

Rin = Rout (2)
1 n 2
= M(D)".
Rin |:Routi| ( )
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This last expression provides a fundamental relationship
between impedances, which forms the basis of this paper.

II. COST FUNCTIONS AND DERIVATIONS OF THE
LEARNING RULES

A. First Rule

In order to mathematically formulate the power maximiza-
tion problem for the PV modules, a proper cost function, here
denoted as .J, must be defined. Once defined, a proper method-
ology for adapting the free parameters has to be developed to
achieve the goal of that cost function. It is clear that such free
parameters, here refer desirably to a single parameter — the
duty-cycle of the DC/DC converter. This way, no other control
loops are necessary, such as the normally used PI controller
when voltage or current is chosen as the control variable.
Moreover, such cost function must, in the control variable
domain, match the PV power maxima. Given a resistive load,
the power delivered to it is given by V;2/R;,, which using
(2) can be modelled in the cost function as follows:

12 Ui 2
s01=g L] mp
X ——— w 3)

Scaling factor
2
x Vin?M (D)

Note that we have assumed for now that 7 is a constant
term that does not depend on D, so it is solely a scaling
factor not affecting the J(D) maxima in its input domain.
The R, term also does not depend on D), therefore one can

say that the [RL”} term is solely a scaling factor, and since
it is always positive, it can be removed from J(D). This cost
function can be interpreted as a combination of the input — x,
assigned to the voltage squared, and a weight — w, which is to
be adapted through the M ()2 non-linearity. Note that despite
J(D) does not estimate the power curve directly, it “travels”
along a scaled version of it (scaled by ﬁ ), however both
curves share the same optimum D* (assuming that 7 does not
depend on D). This method offers great advantages, since it
is employing the duty cycle directly in the DC/DC converter
and requires the measurement of only voltage. Therefore any
external controller and/or current sensors are not required,
reducing the overall complexity drastically. Equation (3) is
differentiated with respect to D and used to update the duty
cycle directly using the traditional stochastic gradient approach
[11], yielding:

aJ (D) % dM (D) @
oD oD dD
A general (in the DC/DC converter sense) update rule can
now be easily obtained, where n is the iteration index, and ¢

is the step-size:

(D)* + 22.M (D)

0J (D
D[n+1]:D[n]+E%[n} ®)
Since % is not known a-priori, as it depends on the

PV characteristic, it can be approximated by the temporal
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Table II: Learning Rules I for three different converter typolo-
gies

Converter 8,]8([[))) [n]
Buck <§—;D[n]2 + 2z [n] D[n])
Boost <£; +2z[n]. ———m—
‘ AD (1-D[n))* " "7 (1~ D[n))?*
Buck-boost (g . + 2z [n] _
AD (1= Dln])? (= D])’

differences of x and D, g—'g [n] = % %—? [n] = Ax/AD.
Table II shows how this rule can be applied to the different
type of converters referred earlier.

Figure 2a shows the behaviour of the controller, when
the controller is employing the developed learning rule, for
different £ values, namely: ¢1 = 1 - 1077, 69 = 2-1077,
e3=3-10"7,e4 = 4-1077, e5 = 5-10~". The plant comprises
a PV panel capable of delivering nearly 8W of power, coupled
with a Boost DC/DC converter with R,,; = 100€2. When the
adaptation starts (with an initial value of D[0] = 0.5), the
gradient (green curves in the bottom-left plot of the same
figure) increases exponentially as the controller approaches
the optimum, reaching then its peak value. At this point,
the present value of duty cycle is already very close to
the optimum (approximately 80% of the optimum value).
Then, the gradient abruptly reverses its trend in order to
compensate this effect, “swinging” ultimately around a zero
value when the system has reached the optimum. Very large
discrepancies between the initial and maximum values of the
gradient are noticeable, which in addition are not located in
desirable locations. In fact, the cost function should ideally
be a paraboloid surface where its gradient is continuously
weakening as the system reaches the optimum.

B. Second Rule: Improvements in the cost function

This effect can be overcome if one uses a proper basis func-
tion ¢(u) that is monotonically increasing and differentiable
with respect to its input domain. In this case, a new criterion
function J = ¢(J (D)) can be defined, where the maximums
of J and .J are located at the same D*. Thus, using the chain
rule, a new learning rule can be obtained through:

oJ aJ ¢

oD~ 99| _,, 3D

(6)

The previously undesirable effects are attenuated when the
employed ¢ function moves the inflection point of J (Ip)
away from its original position, in the D sense, i.e. away
from the maximum of .J, resulting in a smoother behaviour.
Figure 3 shows the J function when functions of the form
¢ (u) = —e~*" are employed. The top part shows the ¢ (u)
curves for a values of 0.005, 0.02 and 0.1. The middle
figure shows the original cost function (for the same previous
scenario) and its IP in a green square labelled as “Original IP”.
Three others IPs are shown for the corresponding « values.
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(a) Results when applying Rule I.
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(b) Results when applying Rule II.

Figure 2: Plot of relevant variables during adaptation using rules I and II when different step-sizes are considered. On both
plots, the upper left part shows the power and cost functions with respect to voltage; the right upper part shows the derivative

Oz .
oD’

They were placed on the same blue curve for visualization
purposes ( note that J is not of the same magnitude as J
). Finally, the bottom figure shows a scaled version of the
gradient of .J, which decreases where the IPs are located. One
can easily conclude that, the “flatter” the ¢ function is in the
codomain of J, the more the respective IP moves away from
the maximum of J.

Unfortunately, the computational complexity of the system
increases significantly if ¢ functions in the previously form
were to be used. However, one interesting choice for ¢(u)
is the log(.) function, which has the double advantage of
moving the IP to a more desirable position (see Fig. 4), and
at the same time because of its propriety of transforming the
logarithmic product into a sum. Therefore, defining J (D)
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the bottom-left and bottom-right parts show respectively, the gradient (along with the duty-cycle) and power curves.

In {m (D)M (D)2}, the gradient expression becomes:

dM(D) 1
dD M (D)

gTJ) (D) = 82%)) x(i))

Since (D) = Vi,(D)?, the gradient expression can be

further simplified, eliminating the need to obtain the square of

(D). Replacing # (D) = Vj,,(D)” in the gradient expression,
one obtains:

)

‘lj( - V(D) 1 dM(D) 1
oD/ 7 D Vi, (D) dD M (D)
Table III shows this adaptation rule when applied to the
very same converters (note that the 2 scalar was dropped and

®)
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Figure 3: J features when ¢ (u) = —e~*" for three values of

. The top part shows the ¢(u) curves. The middle part shows

the original IP of .J, and three other IPs of .J are placed on

the .J curve. The bottom part shows the gradient curves.

Table III: Learning Rules II for three different converters

a.J (D)
C t
onverter 3D [n]
Buck (AV 1 n 1 >
uc ——+ —
AD Vin]  Din]
Boost <AV 1 I 1
00s —_—
ADVin] 1—Din]
<AV 1 1
Buck-boost —_—
ADVin] 1-—Din]

incorporated in the step-size). It is evident that the expressions
are drastically simpler than the formers shown in Table II,
especially because square and cubic terms disappear. This
subsection introduced that any new rule can be obtained from
equation (6), leading to a controller where J and J are
computed through ¢(u). However, it should be highlighted
that this is not carried out explicitly when ¢(u) = log(u), as
this basis function leads to a special case for the learning rule.

Apart from reducing the complexity of the adaptation rule,
the optimization with the J also improves the controller
stability significantly. Figure 2 faces the adaptation results
obtained when the first adaptation rule was used, against
the results obtained for .J, in 2a and 2b figures respectively.
Note that the plant was set exactly with the same parameters,
and the learning rates were set so that the time constant
of adaptation is approximately the same for both scenarios,
namely: ) = 0.4-107%, ¢, = 0.8-107%, ¢4 = 1.5- 1074,
€y =26-10"%and e} =4.0- 107

As opposed to the first scenario, the gradient is much
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Figure 4: Displacement of the IPs when the original learning
rule is used and when .J is used ( for ¢(u) = In(u) ). The
green squares represent respectively, the IP of J (original IP
in the figure) and the IP of J (New IP in the figure), placed
on the same curve for visualization purposes.

smoother, consequently smoothing the system response sig-
nificantly. Also, the discrepancies between the initial and
maximum values are noticeable small when compared to the
first scenario. This allows a higher speed of convergence,
because in the time domain, the first rule would become
unstable at some point before the second one (implying that
the step-size had to be reduced, reducing consequently the
adaptation speed). Moreover, using J reduces the magnitude
of the gradient, so larger step-sizes must be used in order
to achieve the same time-constants. This eases a practical
implementation of the system, because of limited numerical
resolution.

C. Stability Analysis

The derived update rule will now be proven to show global
asymptotic stability around the optimum duty cycle D*, using
Lyapunov theory. It will be derived for a boost-converter for
illustrative purposes, without loss of generality to any other
type of converters.

Proof: The learning rule updates the duty-cycle values
through time, as stated in (9). It can also be written as an
approximation of the time-derivative of D, as (10) shows,
being 1" the sampling step. (Note that dots on variable names
refer to their derivatives with respect to time)

o.J
Di+1 = DZ + EiaD (9)
. 0J1
D~5pT (10)

Assume that T is sufficiently small so that the former
inequality is assumed equal. Lyapunov conditions for stability
hold at the origin of dynamic systems. Since this aims at
proving that the system is globally stable around some point
(the optimum D*), a change of variables must be carried out.
Let the notion of error be introduced as e(t) = D(t) — D*,
where D(t) is the duty cycle at some time instant ¢, and D*
is the optimum duty-cycle for the PV system. A differential
equation for this system can be obtained as follows:

7 (5P 125)

Time-differentiating e, one obtains ¢ = g(e,t) = f(D* +
e,t) — f(D*,t). Since D = D* implies D = 0, the second

D= f(D,t) = (11)
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part of this equation is f(D*,t) = 0. Therefore the stability
on the origin of the following system is to be analysed:

. fdv, ., 1
“f(@“) +6)V(D*+e)+1—D*—e) 12)

Let us introduce the following Lyapunov-candidate function:

1
Vie) = 562 (13)
Differentiating this function with respect to time one gets:
. e dV 1 € 1
V = c —e— —— D* —
() =ce=eqp P Ty mre T T D —e
(14)

At this point, Lyapunov conditions need to be verified for these
functions to check if stability holds, i.e., if V(e) is positive
definite and V' (e) is negative definite. One immediately con-
cludes that such propriety holds for V(e), and the same can
be easily done for V(e), as will now be shown. Both terms in
V (e) multiply by e, thus implying V' (0) = 0. Therefore it will
be shown that the sum of these two terms is always negative.

Dealing first with the first term, %, it can be rewritten
using the chain rule as follows:

av._ov of

dD — df oD

Suppose that the I-V curve of the PV module to be
controlled is modelled through a monotonically decreasing
function (in physical terms this means that no “shading”
effects are present) and the PV is always operating as source
(V is always positive). This implies that g—"; is always negative.
Conversely the same holds for %—‘Jf. As for the (% quantity,
note that since we are dealing with a boost converter, the
input impedance is ideally given by R, = Rou: (1 — D)2
. This implies that in extreme scenarios, the input resistance
is either 0 (for D = 1) or R,y (for D = 0). Since (1 — D)2
is monotonic, the input resistance decreases monotonically
between these two extreme points, then (% is positive. These
considerations imply finally that 2 & is negative VD € (0, 1).
Regarding the second term, note that the function changes
its sign on its asymptote, located at e = 1 — D*. For smaller
values of e, it is negative, and positive for bigger values of e.
This observation is sufficient, since e = 1 — D* corresponds
to D = 1, therefore V (e) is proven to be positive definite. In
fact, it is not globally positive definite, which was expected
since solutions with D > 1 are not feasible, and this Lyapunov
function mimics exactly that converter constraint. However, it
has been proven that within the feasible operating points of the
system, global stability is ensured by this MPPT controller. ®

s)

D. Practical Considerations

Regardless of the method to be applied, a'g(DD) is never

directly available, hence its value must be estimated and

where V [n] and D [n] are respectively, the time derivatives
of V and D at time instant n. These derivatives can be
estimated, in the simpler way, by taking the temporal dif-
ferences, e.g, V[n] = AV[n] = V[n] — V[n—1] and
D[n] = AD[n] = D[n] — D [n — 1]. A more convenient (but
not necessary) way to obtain a reasonable estimate for % ,is
to pre-filter the quantities V [n] and D [n] using for instance a
differentiator operator of the form

<1— @ )(goz(l—a i )
s+« z—0b

where s is the Laplace variable, z is the transformation variable
associated with the Z-transform, a > 1 is a smoothing factor
and b = =T, where T is the sampling period. A discrete
implementation of (17), takes the following form:

a7

y[n+1] =byln] + (1 - b) z[n]
tn+1]=alzn—yn+1))
where x is the variable that is to be time-differentiated.

This derivative takes a non-zero value in steady state (equat-
ing (7) to zero gives (2%)" = ~V*M(D*) , where (.)" refers
to the optimum value of the respective variables), so its proper
estimate is of major importance. Since the variations in D are
very small in steady-state, this estimate becomes very unstable.
A simple saturation operator is desirable, where its bounds can
be set close to the theoretical (%)*, if available.

(18)

E. Consequences of the non-constant behaviour of the DC/DC
converter

During the derivation of the cost functions, the efficiency 7
was assumed constant. However, it is in fact a function of D
- the independent variable, as well as controller parameters.
The analysis and conclusions of the consequences of such
assumption will be made for a DC/DC boost converter, but
analogous results hold for other DC/DC typologies. According
to [12], the efficiency of a boost converter is as follows:

r ((R+7)’ = R(R+2r,)D) D
R+, ro(R+7,) + Rrp,D' + R2D’?
19)

where R,r,r, are respectively, the load resistance, the internal
resistance of the input inductor and equivalent series resistance
of the output filter capacitor; and D’ = (1 — D). Note that the
switches were still assumed ideal. Figure 5 shows some curves
of this function for different values of the load impedance, for
the same 7, = 0.10€2 and 7, = 0.10€2.

In fact, the learning rules derived previously could have
incorporated this effect, which would have leaded to the
following equations for both rules:

W(D77"57Tp7R)

special care must be taken. As stated earlier, it can be estimated 9J (D) — on 1
by the temporal differences, in the following way: oD oD (1 — D)2 20)
V [n] 2 Ox 1
dn] = —— 16 Tt 3| T |\ T 2
978-1-4673-2232-4/13/$31.00 ©2013 IEEE 799
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It was assumed that n(D) = constant, hence g—g =0,
which leads to the same results derived previously. The incor-
poration of this effect in the learning rule, would however lead
to heavy computational costs, and it is of great interest to keep
the computations low. Moreover, the converter parameters in
(19) are not always available, and can be even time-varying
(which is the case for R). This affects the magnitude of the cost
function curve in a non-constant way, affecting the maxima
position. However, the deviations are in general very small,
lower than the ripple around D* which naturally arises through
any perturbation method.

III. SIMULATIONS

The simulated setup was performed in Matlab, comprising a
static plant, in the sense that the model of the attached DC/DC
converter was static, hence no transients due to the DC/DC
converter are present. This approach decorrelates the time
constant effect of the DC/DC converter with the performance
of the algorithm. For this reason, the time scale is in samples,
which can be viewed as a normalization by the update rate of
the MPPT in a real application.

In these systems, perturbations come from very different
natures: they can be due to measurement errors; changes in the
PV I-V curve due to environmental factors (such as slow or
fast varying irradiances or temperature changes); or changes in
the output impedance of the DC/DC converter. This analysis
was focused on the variation of the output resistance R,
since it was discarded from the learning rule (assumed constant
in (2)), and typically it changes over time. Yet, the controller
should track the maximum power in this scenario. Consider the
situation where the system has reached its optimum. If R,
varies, the input impedance to the PV changes, as equation
(2) shows. This will in turn, change the optimum value for
the system, as it will imply another voltage level. Therefore,
it is desirable that the adaptive system “senses” this effect, and
acts on the duty cycle in order to compensate the perturbation.
An effective and easy way of assessing the tracking capability
of the controller is to continuously vary the R,,; value with a
sine-wave at different frequencies and amplitudes. Therefore,
Ryt was modelled as R,y = R sin(w.n),

_r
out + Rowe+100
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where R,,: is the DC value of the load, r is ratio of
the amplitude variation with respect to R,,; and w is the
normalized frequency.

In order to track these perturbations, the gradient magnitude
over time must follow a similar shape to the variations shape,
and the same holds for the frequency. Intuitively, the step-size
constant adjusts how fast the controller is able to react to a
perturbation, so the bigger its value is, the faster the system
should be able to track these variations. Figure 6 shows the
behaviour of the duty-cycle when R,,; = 1009, r = 50%
and w = 0.01. In the left part, ¢ was set to 5.107° and 10
times greater in the right part (5 - 10~%). The dashed curve
in both parts represents the optimum duty cycle for the given
perturbation value, while the strong curve represents the D
value outputted by the controller. In the first scenario, it took
approximately 2200 iterations for the controller to reach the
optimum curve, as opposed to the second scenario where
the speed of convergence increased significantly - since only
300 iterations were needed approximately. In the left part,
although the controller is able to reach the correct amplitude
according to the perturbation, the delay between the two curves
is evident. The right part shows the effect of increasing the
step size which leads to a significant increase in the tracking
speed, where the phase angle between the controller output
and the optimum is unnoticeable. However, the output noise
is increased, due to the fact that the gradient estimate is noisier.

Increasing the step-size of the controller increases the stabi-
lization speed of the system. This behaviour is shown in table
IV, where the number of iterations required for the system to
reach (1—1/e)p* were measured, being p* the optimum power
value. No important differences with respect to the considered
frequencies were verified, hence this parameter is not present
in this table. Notice that the step-sizes for both rules (being
€1 and e, the respective step-sizes for rules I and II) were set
so that the time-constant is approximately the same, ensuring
a proper comparison between both rules.

Table IV: Controller time constant measured for different
simulated scenarios

§ €1 £2 L
z%) (x10-3)| (x10-5) T(Iterations)
15 5 2178
1 60 20 562
120 50 239
200 100 132
R - 2237 ~
5 60 20 562
120 50 238
200 100 133
RS 2365~
10 60 20 581
120 50 235
200 100 134
R - 2048
60 20 549
20 120 50 233
200 100 136
T s T 1427 —
60 20 487
0 120 50 224
200 100 143

Table VI shows the Mean squared error (MSE) measured
between the optimum duty cycle and the value actually ob-
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Figure 6: Duty-cycle results obtained during simulations when rule II is used. The system is being perturbed in the following
way: Rou = 10092, 7 = 50% and w = 0.01. The left part shows the effect of choosing e = 5.10~°, while the right part depicts
the system behaviour when ¢ = 5.10~%. The gray and black curves refer respectively to the the optimum duty-cycle and the

output by the MPPT converter.

tained for both rules, where the left and right tables represents
respectively the results for Rules I and II . Different operating
scenarios were considered, relating controller step-sizes with
magnitude and frequency of the perturbation sine wave. The
optimum duty cycle value was computed previously for all
the perturbation scenarios. The smoothing operator used in
the derivative estimate during simulations was simply the
saturation operator, bounding this value within the 4200
range. From a general point of view, the error increases as
the magnitude () of the perturbation increases. This is due
to the fact that higher amplitude variations imply greater
variations in the optimum duty cycle, so the “distance” to
travel is higher. Another interesting aspect to analyse is the
controller behaviour with respect to the frequency. In general,
for a fixed step-size value (¢), as the frequency is decreased
(lower w), the MSE decreases which was expected since faster
variations imply higher step-sizes to ensure proper tracking.
These results show that the controller tracks slow variations
easily than fast variations. In order to increase the controller
response, larger step sizes can be used, which would in
principle improve the controller behaviour in the MSE sense.
However, as observed before the introduced noise is higher,
leading to an increase in the MSE value most of the times. In
fact, this was expected since even without perturbations, higher
step-sizes would imply higher rattling effects during steady-
state, due to a noisier derivative estimate. This effect mimics
the behaviour of conventional linear adaptive filters during
adaptation [13]. Comparing the behaviour of the controller
when different rules are used, one can conclude that in general
the MSE in smaller when rule II is used, specially for higher
rs. This shows that in addition to being smoother, Rule II
handles perturbations better than Rule I. This can be explained
by the fact the gradient expression is smoother.

Table V shows how the different scenarios affect the power
output in terms of RMS value with respect to optimum (in
percentage). Analogous observations and conclusions of those
discussed for table VI can be drawn from this table. This was
expected since the higher the duty cycle is from the optimum,
the lower the extracted power is, and vice-versa. This table
intents to show a more practical interpretation of the MSE

978-1-4673-2232-4/13/$31.00 ©2013 IEEE

Table V: RULE II: RMS values with respect to the optimum
power output in different simulated scenarios

w =
€
T _5 0.1 0.01 0.001 0.0001
(%) (x107?)
5 99.8837 | 88.7901 | 99.4687 | 99.9941
| 20 99.4591 | 95.4820 | 99.5746 | 99.9839
50 99.2754 | 97.4146 | 99.5174 | 99.9872
100 98.7672 | 97.2070 | 99.5760 | 99.9728
R 99.3668 | 88.7901 | 99.4687 | 99.9941 ~
5 20 98.4859 | 95.4820 | 99.5746 | 99.9839
50 97.9618 | 97.4146 | 99.5174 | 99.9872
100 97.6271 | 97.2070 | 99.5760 | 99.9728
R 98.5688 | 88.7901 | 99.4687 | 99.9941 ~
10 | 20 97.6070 | 95.4820 | 99.5746 | 99.9839
50 96.6438 | 97.4146 | 99.5174 | 99.9872
100 96.5136 | 97.2070 | 99.5760 | 99.9728
R 96.1383 | 88.7901 | 99.4687 | 99.9941 ~
20 | 20 95.6012 | 95.4820 | 99.5746 | 99.9839
50 95.0025 | 97.4146 | 99.5174 | 99.9872
100 94.1481 | 97.2070 | 99.5760 | 99.9728
R 88.6063 | 88.7901 | 99.4687 | 99.9941 ~
50 | 20 85.9593 | 95.4820 | 99.5746 | 99.9839
50 32.2997 | 97.4146 | 99.5174 | 99.9872
100 87.9965 | 97.2070 | 99.5760 | 99.9728

values shown in table VI.

IV. CONCLUSIONS

A method to perform MPPT for PV panels is proposed with
single variable measurement, by imposing the duty-cycle value
directly in the DC/DC converter. Its derivation is done for
the input voltage case but analogous results are obtained if
the input current is measured. A full theoretical derivation is
presented, as well as a proof of global stability around the
optimum operating point for the considered cost function. The
DC/DC efficiency effects were also discussed. The obtained
learning rule shows very simple computational complexity as
well as good speed of adaptation and converges very close to
the true optimum. Simulations were carried out showing that
it is robust to variations on the load impedance.
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Table VI: MSE values with respect to the optimum duty cycle in different simulated scenarios for both rules.

w = w =
T _8 0.1 0.01 0.001 0.0001 r ¢ _5 0.1 0.01 0.001 0.0001
(%) (x107%) (%) (x107?)
15 6,15E-05 | 8.83E-06 | 1,12E-06 | 846E-07 5 1,I5E-05 | 9,66E-06 | 2,67E-06 | 6,08E-07
1 60 5,25E-05 I,11E-05 7.43E-06 1,19E-05 1 20 4,09E-05 1,27E-05 291E-06 | 8,59E-07
120 9,42E-05 | 5,35E-05 3,32E-05 3,99E-05 50 6,18E-05 1,47E-05 | 4,14E-06 1,16E-06
200 3,34E-04 | 9,97E-05 | 3,37E-05 | 8.32E-06 100 | 2,28E-05 | 7,99E-06 | 3,57E-06
T 7157 T 7||T3.08E-04 | 330E-05 [ 5,58E-06 | 6,30E-06  ~ T " [ 5 7 7 7| 443E05 | 4,12E05 | T45E-06 | I,S8E-06
5 60 2,1SE-04 | 2,22E-05 1,40E-05 | 2,57E-05 5 20 1,06E-04 | 3,89E-05 | 8,23E-06 | 2,04E-06
120 2,59E-04 | 1,12E-04 | 6,11E-05 1,33E-04 50 1,79E-04 | 4,15E-05 1,06E-05 | 3,78E-06
200 5,73E-04 | 2,24E-04 | 6,97E-05 | 6,13E-05 100 5,58E-05 1,66E-05 | 6,26E-06
T T I57 T 7||TS06E04 | 6,16E-05 [ T49E-05 [ 2,03E-05 T T T [ 5 7 7 7| 09B04 [ §73E-05 [ [,6TE-05 | 2,91E-06
10 60 3,91E-04 | 4,66E-05 | 2,45E-05 | 4,98E-05 10 20 6,71E-05 1,24E-05 | 3,31E-06
120 3,82E-04 1,69E-04 1,05E-04 1,87E-04 50 6,56E-05 1,63E-05 | 4,92E-06
200 5,93E-04 | 2,19E-04 | 826E-05 | 7,32E-05 100 9,01E-05 | 2,43E-05 | 7,68E-06
T T [TI5 T T 7]|79,10E-04 | [,54E-04 | 422E-05 | 6,03E-05 | 5 7 || T332E-04 | 2,89E-04 [ I,73E-05 | 4,65E-06
20 60 6,01E-04 | 1,12E-04 | 5,39E-05 1,14E-04 20 20 3,70E-04 | 1,23E-04 | 2,14E-05 | 4,80E-06
120 5,71E-03 1,90E-04 | 1,26E-04 1,65E-04 50 4,83E-04 | 1,08E-04 | 2,49E-05 | 7,70E-06
200 6,07E-04 | 3,00E-04 | 1,37E-04 1,07E-04 100 5,90E-04 | 1,31E-04 | 3,78E-05 1,06E-05
T T I5T T || T228E°03 | 7,59E04 [ [97E-0F | T92E-04 = T T T [0 5 77 I 37E-03 | [[33E-03 | 6,26E-05 [ 7,52E-07 ~
50 60 5,67E-03 | 6,43E-04 | 1,58E-04 | 2,72E-04 50 20 1,72E-03 | 545E-04 | 5,94E-05 1,67E-06
120 1,70E-03 | 2,89E-04 | 1,44E-04 | 2,18E-04 - 50 4,73E-03 | 3,04E-04 | 4,73E-05 1,92E-06
200 7,50E-03 | 5,18E-04 | 4,13E-04 | 8,08E-04 100 1,74E-03 | 3,16E-04 | 6,68E-05 | 3,15E-06
(a) Rule 1 (b) Rule 2

Table VII: RMS values with respect to the optimum power output in different simulated scenarios for both rules.

w = w =
e €
7(“00) (x10~8) 0.1 0.01 0.001 0.0001 E"%) (x10-5) 0.1 0.01 0.001 0.0001
15 99,17146 | 99,87876 | 99,98853 99,9886 5 99.8837 | 88.7901 | 99.4687 | 99.9941
1 60 99,31641 | 99,85188 | 99,88624 | 99,83776 1 20 99.4591 | 95.4820 | 99.5746 | 99.9839
120 98,74026 99,2699 99,51025 | 99,18108 50 99.2754 | 97.4146 | 99.5174 | 99.9872
200 96,9683 98,94164 99,6107 99,91634 100 98.7672 | 97.2070 | 99.5760 | 99.9728
T |15 T T ]|795,72015 |T99.61107 [ 9993575 | 99.88937 © T | 5 ¢ 99.3668 | 887901 | 99.4687 | 99.9941 ~
5 60 97,0244 99,69469 | 99,78967 | 99,60048 5 20 98.4859 | 95.4820 | 99.5746 | 99.9839
N 120 96,57991 | 98,51121 [ 99,12256 | 98,35294 50 97.9618 | 97.4146 | 99.5174 | 99.9872
200 94,12113 | 97,75713 99,3459 99,19101 100 97.6271 | 97.2070 | 99.5760 | 99.9728
T U156 T T 7| 793,07576 | 99,16796 [ 9981302 | 99,61751 © © T | 5 98.5688 | 887901 [ 99.4687 | 99.9941 ~
10 60 94,50079 | 99,34032 | 99,62675 | 99,13787 10 20 97.6070 | 95.4820 | 99.5746 | 99.9839
120 94,93197 | 97,69514 | 98,80876 | 97,34066 50 96.6438 | 97.4146 | 99.5174 | 99.9872
200 93,75753 97,7531 98,9689 98,78513 100 96.5136 | 97.2070 | 99.5760 | 99.9728
T 715 T T ]| 788.14057 | 97,9627 [ 9941223 | 9875847 ~ | 5 | 96.1383 | 887901 [ 99.4687 | 99.9941 ~
20 60 92,17633 | 98,35925 99,1422 97,74812 20 20 95.6012 | 95.4820 | 99.5746 | 99.9839
120 31,09372 | 97,38775 | 98,32442 | 97,9486l 50 95.0025 | 97.4146 | 99.5174 | 99.9872
200 93,7015 | 96,70684 | 98,49976 | 98,34358 100 94.1481 | 97.2070 | 99.5760 | 99.9728
T 77157 T 7]|780,331527 | 91,9081 [ 9749027 | 95713922~ ~ T T | 5 7 || 88.6063 | 887901 [ 99.4687 | 99.9941
50 60 32,29971 | 93,48075 | 97.30573 | 94,41066 50 20 85.9593 | 95.4820 | 99.5746 | 99.9839
120 85,55564 | 96,23209 | 97.60749 | 95,44052 N 50 32.2997 | 97.4146 | 99.5174 | 99.9872
200 32,29971 | 93,47364 | 93,98928 | 81,31823 100 87.9965 | 97.2070 | 99.5760 | 99.9728
(a) Rule 1 (b) Rule 2
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