Noname manuscript No.
(will be inserted by the editor)

A Multi-Population Hybrid Biased Random Key Genetic
Algorithm for Hop-Constrained Trees in Nonlinear Cost
Flow Networks

Dalila B.M.M. Fontes - José Fernando
Gongalves

Received: date / Accepted: date

Abstract Genetic algorithms and other evolutionary algorithms have been
successfully applied to solve constrained minimum spanning tree problems in
a variety of communication network design problems. In this paper we enlarge
the application of these types of algorithms by presenting a multi-population
hybrid genetic algorithm to another communication design problem. This new
problem is modeled through a hop-constrained minimum spanning tree also
exhibiting the characteristic of flows. All nodes, except for the root node, have
a nonnegative flow requirement. In addition to the fixed charge costs, non-
linear flow dependent costs are also considered. This problem is an extension
of the well know NP-hard hop-constrained Minimum Spanning Tree problem
(HMST) and we have termed it hop-constrained minimum cost flow span-
ning tree problem (HMFST). The efficiency and effectiveness of the proposed
method can be seen from the computational results reported.

Keywords Multi-population - genetic algorithms - local search - network
flows - hop-constrained trees - general nonlinear costs.

1 Introduction

Communication Network Design has increased significantly in the last decade
due to the dramatic growth in the use of the Internet for business and personal
use. As society transforms itself to an information society the network becomes
the primary source for information creation, storage, distribution and retrieval.

A cost-effective structure for a large communication network is a multilevel
hierarchical structure consisting of a backbone network (high level) and local

Corresponding author: email fontes@fep.up.pt, phone +351934211979, fax +351225505050

Faculdade de Economia da Universidade do Porto
and LIAAD-INESC Porto L.A.
Address: Rua Dr. Roberto Frias, 4200-464 Porto, Portugal

2 Dalila B.M.M. Fontes, José Fernando Gongalves

access networks (low level) [3,15]. The Minimum Spanning Tree (MST) prob-
lem is one of the best-known network optimization problems used for designing
backbone networks, which attempts to find a minimum cost tree network that
connects all the nodes in the communication network. There might be other
constraints imposed on the design such as the number of nodes in a subtree,
the number of nodes in any path from the root node (hop-constrained), degree
constraints on nodes (degree constrained), flow and capacity constraints on
any arc or node, and types of services available on the arcs or nodes (29,37,
39]. Many polynomial-time algorithms have been proposed for the MST prob-
lem by, for example, Dijkstra, Kurskal, and Prim [4]. The basic MST problem
can be solved in polynomial-time, however, the addition of one or more con-
straints often transforms it into problems, such as the Hop-constrained MST,
which have been shown to be NP-hard, see e.g., [27]. For these problems, a
heuristic must be used, at least on large problem instances, since there is no
known polynomial-time algorithm to identify an optimum. Genetic algorithms
(GAs) are examples of search heuristics that have been successfully applied to
such problems.

We consider a new problem which is an extension of the Hop-constrained
Minimum Spanning Tree problem (HMST), since in addition to the hop-
constraints we also consider flows. All nodes, except for the root node, have a
nonnegative flow requirement. Therefore, in addition to finding the arcs that
are part of the HMST, we must also find the flow that is to be routed along
each of these arcs. Thus, we have named this problem Hop-constrained Mini-
mum cost Flow Spanning Tree, HMFST. The cost, which is to be minimized, is
nonlinear and consists of two components: arc setup costs, as usual, and non-
linear flow dependent routing costs. The problem can be equivalently casted
as finding a hop-constrained tree solution on minimum cost flow networks
with nonlinear costs. Minimum cost network flow problems with nonlinear
cost function, either concave or general have been studied in [40,43,9,12,11].

The HMST problem has numerous practical applications and is frequently
encountered in network design problems, for example in computer networks
we can find the multicast-routing problem (see, e.g., [6,7]), where a number
of clients and a server are connected by a common communication network.
The server wishes to transmit identical information to all clients, and does
so by transmitting the data to the nodes it directly connects to, and these
latter nodes forward incoming data to their respective children in the tree.
Assuming that all arcs in the network have roughly the same transmission
delay (which is a reasonable assumption in local area networks), it is not
hard to see that this problem can be cast in the HMST framework. If in
this problem, the server wishes to transmit different information to different
clients or provide different levels of service to different clients, it no longer can
be modeled as a HMST, since different flows to each cliente are now required.
However, by including flows, as proposed, the multicast-routing problem with
different levels of service or with different information to be transmitted can
now be addressed, i.e. it becomes a Hop-constrained Minimum Cost Flow
Spanning Tree (HMFST). Tree-routing schemes allow for fast data delivery

Hop-Constrained Trees in Nonlinear Cost Flow Networks 3

while keeping the total network load low. Kompella et al. [34] consider the
problem of computing multicast-trees that minimize the overall network cost
as well as the maximum transmission delay on any path in the tree connecting
the server to a client.

The hop constraints are usually used to guarantee a certain quality of
service with respect to availability and reliability constraints [36,45], as well
as lower delays [30], since they limit the number of arcs in each path from
the central service provider. A decrease in the hop parameter leads to trees
with better performance both in terms of reliability and availability, as well
as smaller delays. This does not come as a surprise since availability is the
probability that all transmission lines, i.e arcs, in a path from the root node
are operational, while reliability is the probability that during a session no
arc, in the path being used, will fail. Network delays need to be kept under
control, since otherwise they may lead to further problems such as the need
for packet reordering. This latter problem has been addressed recently by, e.g.
[38].

Woolston and Albin [45] have shown that, by including hop constraints it
is possible to generate network designs with a much better quality of service
and with only a marginal increase in the total cost. Gouveia [27] presented
several node oriented formulations for the HMST problem based on the Miller-
Tucker-Zemlin subtour elimination constraints. The author presented some
lower bounding schemes based on Lagrangian relaxation and a fast heuristic for
obtaining feasible solutions, which he has subsequently improved as reported
in [28]. More recently Dahl et al. [5] have presented and surveyed several
ways of computing lower bounds, including: Lagrangian relaxation, column
generation, and model reformulation. Kawatra [33] has addressed a slightly
different problem, since he also considers the downtime cost associated with
each node that gets disconnected from the central service provider due to arc
failure. A Lagrangian relaxation method is developed to find a lower bound
to the optimal solution, which is optimized by using subgradient optimization
to find Lagrangian multipliers. A branch exchange heuristic is used to obtain
a feasible solution from an infeasible Lagrangian lower bound solution. The
best feasible solution is retained when the heuristic method stops. The best
lower bound given by the Lagrangian relaxation method is used to estimate
the quality of the heuristic solution.

Since the hop constrained minimal spanning tree problem is NP-hard (see
e.g. Gouveia [27]), much of the research on this problem has been devoted to
optimization-based heuristics that provide good solutions.

Recently, Genetic Algorithm (GA) and other Evolutionary Algorithms
(EAs) have been successfully applied to solve constrained spanning tree prob-
lems of the real life instances; and also have been used extensively in a wide
variety of communication network design problems [15,16]. For example, some
authors have proposed GAs for the capacitated MST problem [1,35], while
others propose GAs for the degree-constrained MST, see for example [31,46]
for a hybrid GA (with local search). Other researchers have investigated differ-
ent encoding schemes, see for example [42,44]. GAs have also been proposed

4 Dalila B.M.M. Fontes, José Fernando Gongalves

for other types of trees-shaped problems, for instance in [9] the authors address
problems including flows and with general nonlinear cost functions.

In this paper, we propose a hybrid random key genetic algorithm, based
on a previous version [13], to solve the hop-constrained minimum cost flow
spanning tree problem, which is an extension of the HMST. For the HMST
we wish to find a minimum cost tree spanning all nodes in a given network
such that any path from the root node to any other node has no more than
a pre-specified number of arcs. For the problem considered here however, we
also have flow decisions to be made since all nodes, except for the root node,
have a nonnegative flow requirement. Therefore, in addition to finding the arcs
that are part of the HMST, we must also find the flow that is to be routed
along each of these arcs. Furthermore, the costs to be minimized include a
general nonlinearly flow dependent cost component and a fixed cost compo-
nent. Nonlinear cost functions arise naturally in these types of problems as
a consequence of taking into account economic considerations. Set up costs
or fixed-charge costs arise, for example, due to the consideration of a new
customer or a new route. Economies of scale often exist, and thus an output
increase leads to a decrease in the marginal costs. On the other hand, further
output increase may lead to an increase in marginal costs, e.g. by implying
the need of extra resources. Therefore, discontinuities are observed. These may
also arise due to price-discounting. As far as we are aware of, no previous work,
except that of Fontes [8] (that uses an exact method) has considered HMST
with flow requirements and/or having nonlinear costs.

2 Problem description

As aforementioned, our objective is to find a minimum cost tree spanning all
nodes in a given network having general nonlinear arc costs and subject to
hop constraints, i.e., a limit on the maximum number of arcs that any path
from the root node to any other node may contain. Since all nodes, except for
the root node, have a nonnegative flow requirement, in addition to finding the
arcs that form the HMST, we must also find the flows that are to be routed
along these arcs such that all demand nodes are satisfied.

Let G = (W, A) denote a directed network defined by a set W of n+1 nodes
(the source node and a set V containing n demand nodes, i.e. W =V U {t})
and a set A of m directed arcs. Nodes 1 to n have associated a nonnegative
integer demand r;, which must be satisfied. The total cost to be minimized,
is given by the summation of all costs incurred by both using an arc (a setup
cost) and routing flow through it (a flow cost), since each arc (z,2) € A has
associated a general nonlinear and nonnegative cost function g,.. The cost
of sending r units of flow through an arc, say (z, z) is given by any function
gz (1) satisfying ¢,.(0) = 0. (The flow that can be routed through each arc
(z,z) may have upper u;, and lower I, limits.) The hop parameter H forces
all paths, of the minimum cost tree connecting the source node to any other
node, to have no more than H arcs.

Hop-Constrained Trees in Nonlinear Cost Flow Networks 5

The cost function g,, consists of a nonlinear routing component and a
fixed cost component. Furthermore, a discontinuity point, other than at the
origin is also considered, let it be represented by R< R, where R is the total
requirement and is, by definition, given by R =3, 74..

The problem can be cast in an intuitive way in the form of a nonlinear
programming model. Let us first define the decision variables and parameters.

Decision variables:

x;jn - flow on arc (¢,7) € A, which is in position h,

B 1, if z45, > 0,
Yijh N {0, if Tijh = 0.

1, if Tijh = R,
Zijh = . A
0, if Tijh < R.

n+l n H

(P) Minimize > Y > gii(wijn, Yijh» Zijk) (1)
i=1 j=1h=1

subject to

n+1 H
Z Zyiih =1, foralljeV, (2)
i=1 h=1
n+1 n n+1

E Xijh — E Xjihe1 =75 E Yijn,
=1 =1 =1

foralljeV,h=1,....,. H—-1, (3)
Tijh — R < R 2y, forallie W,j € V,h=1,...,H, (4)
Zijn > 0, forallie W,j e V,h=1,...,H,(5)
yijn € {0,1}, forallie W,jeV,h=1,...,H,(6)
zin € {0, 1}, forallic W,j e V,h=1,...,H.(7)

Equation (1) states the minimum cost nature of the problem. Note that
it depends on z;;;, due to the routing cost, on y;;, due to the fixed cost
component, and on z;;, due to the additional discontinuity point, other than
at the origin. No cycles may exist, which is guaranteed by the constraints
(2) since exactly one arc enters each node. Constraints (3) represent the flow
conservation constraints, while constraints (4) guarantee that z;;; is 1 if the
flow is beyond the discontinuity value if there is an increase in cost (or a
decrease, in this case the constraint becomes ;5 — R< R(1 — z;3)). Finally,
constraints (5) to (7) defined the domain of the variables.

6 Dalila B.M.M. Fontes, José Fernando Gongalves

3 Solution Approach

The new approach is based on a Multi-Population Hybrid Biased Random Key
Genetic Algorithm, MPHBRKGA, that hybridizes a genetic algorithm with a
local search method. A constructive heuristic algorithm, Tree-Constructor,
is used to generate solution trees. Then a local search heuristic is applied
to try to improve the solution obtained by the tree-constructor by searching
amongst neighbor feasible solutions. A penalty cost term is included in the
fitness function to drive the solutions towards solutions satisfying the Hop
constraints.

The role of the MPHBRKGA is to evolve the encoded solutions, or chro-
mosomes, which represent the input to the Tree Constructor and the Local
Search Procedure. For each chromosome, the following phases are applied:

1. Solution Construction. In the first phase the Tree-Constructor trans-
forms part of the chromosome supplied by the genetic algorithm into a
solution tree.

2. Solution Improvement. In the second phase, part of the chromosome
supplied by the genetic algorithm is used by a local search procedure to
try to improve the solution tree obtained in the previous phase.

3. Fitness Evaluation. This phase computes the cost of the final solution
tree. A penalty cost term is included in the cost to drive the evolutionary
process to solutions satisfying the Hop constraints.

Figure 1 illustrates the sequence of steps applied to each chromosome gener-
ated by the genetic algorithm.

In the remainder of the paper we describe in detail all the components of
the methodology.

4 Genetic Algorithm

Holland first proposed GAs in the early 1970s as computer programs that
mimic the evolutionary processes in nature [32]. Since then GAs have been
demonstrating their power by successfully being applied to many practical
optimization problems in the last decade.

We use a random key representation and followed the biased random key
genetic algorithm (BRKGA) framework that has been proposed by Gongalves
and Resende [25]. In [25] the authors present a tutorial on the implementation
and use of biased random-key genetic algorithms for solving combinatorial
optimization problems. Furthermore, they also provide a survey of recent suc-
cessful applications that appeared in the literature.

To specify a biased random-key genetic algorithm, we simply need to spec-
ify how solutions are represented and decoded into solutions and how there
corresponding fitness values are computed. In the nest sections we specify our
algorithm next by first showing how the solutions are represented and then
decoded into solutions and how their fitness evaluation is computed.

Hop-Constrained Trees in Nonlinear Cost Flow Networks 7

4.1 Chromosome Representation

The choice of genetic representation is usually the first and probably most
important single decision, but many other decisions affect the effectiveness of
the algorithm. The BRKGA described in this paper proposes a random-key
alphabet, which is comprised of real-valued random numbers between 0 and 1.
Random keys have been used successfully for addressing problems where the
relative order of tasks is important, e.g., [17,18,19,20,21,22,23,24,25,26].

A chromosome is made of 3n genes, and is represented as a vector of 3n
random keys, where n is the number of nodes (see Fig. 2). The first 2n genes
of the chromosome are decoded into a solution tree by the Tree-Constructor
procedure described in Section 5. The last n genes are used, by the local search
procedure described in Section 6, to improve upon the existing solutions.

4.2 Evolutionary Strategy

Given the current population and the fitness value of each chromosome, i.e.
total cost incurred in constructing the tree and routing the flow plus a penalty
(for Hop constraints not satisfied), the population is divided into two sets: the
elite solutions subset and the remaining solutions. The elite subset is a small
subset containing only very good solutions.

The population in the next generation is formed by all solutions in the elite
set (TOP), a small number of new randomly generated solutions (mutants)
(BOT), and solutions obtained by mating solutions of the current population
(offspring), see Figure 3.

By copying the best solutions, we guarantee that the best solution is mono-
tonically improving. However, it may lead to excessive convergence to a local
optimum. To overcome this problem we use two strategies. On the one hand,
we use mutation as described below, and on the other hand we use several
populations, which are evolved separately.

4.2.1 Crossover

In the crossover operator two individuals are randomly chosen to act as par-
ents. One of them is chosen amongst the elite solution set (TOP), while the
other is chosen from the entire population. Genes are chosen by using a biased
uniform crossover, that is, for each gene a biased coin is tossed to decide on
which parent the gene is taken from. This way, the child inherits the genes
from the elite parent with higher probability, see Figure 4.

4.2.2 Mutation

As mutation operator we use the so-called immigration operator. Immigration
acts like a mutation operator, however, instead of performing gene-by-gene
mutation with very small probability, at each generation some new individuals

8 Dalila B.M.M. Fontes, José Fernando Gongalves

are introduced into the next generation. This new individuals are randomly
generated from the same distribution as the original population and thus, no
genetic material of the current population is brought in.

4.3 Multi Population Strategy

As mentioned before several populations are evolved, each being initially ran-
domly generated. The populations are left to evolve independently and after
a predetermined number of generations they interact by exchanging informa-
tion. The information exchanged is the chromosomes of good quality solutions.
When evaluating possible interchange strategies we observed that exchanging
too many chromosomes, or exchanging them too frequently, often leads to the
disruption of the evolutionary process. Therefore, we choose a strategy that
after a pre-determined number of generations (determined empirically) inserts
only the best two chromosomes in all populations.

5 Tree-Constructor

The Tree-Constructer uses the first 2n genes of each chromosome supplied
by the BRKGA to construct a solution tree. The first n genes are used to
determine the order in which nodes are considered by the tree constructor to
find a source to be supplied from. The second n genes are used to select the
corresponding source node.

The decoding (mapping) of the first n genes of each chromosome into the
node sequence, NS, in which the nodes are considered by the tree constructor
is accomplished by sorting, in ascending order of gene values, the corresponding
nodes, see Fig. 5. The source of each node i is decoded by choosing, amongst
the possible source nodes for node 4, the one that has the smallest gene value
and does not cause a cycle in the graph.

The Tree-Counstructer repeatedly performs (for ¢ = 1 to n—1) the following
three steps in turn.

1. Select for processing node iSel = NS[il;

2. Search for the set of nodes S such that an arc (isel, j) exists, i.e. S = {i €
W (i,j) € A}

3. Chose the node k € S with the smallest value of genex not creating a cycle
(with the arcs already chosen), if one exists.

At the end of the algorithm either a tree or an infeasibility has been ob-
tained.

To illustrate the Tree-Constructer procedure we will consider the network
data depicted in Table 1 and the chromosome given in Fig. 6.

The decoding of the first five genes into the node sequence (the source node
is excluded since it has no node acting as a source to it) results in the following
NS = (3,5,1,4,2). The pictures in Fig. 7 will be used to illustrate the various
steps of the algorithm.

Hop-Constrained Trees in Nonlinear Cost Flow Networks 9

Initially we have a network with no connections (no acting sources assigned)
(see step 0 of Fig. 7).

In step 1, and according to the vector N.S, we will process node 3. For this
node the potential nodes for acting as its source are (1, 2, 4) since node 2 has
the smallest gene value we select node 2 as its source node (see step 1 of Fig.
7).

In step 2, and according to the vector NS, we will process node 5. For this
node the potential nodes for acting as its sources are (2, 3, 4) since node 2 has
the smallest gene value we select node 2 as its source node (see step 2 of Fig.
7).

In step 3, and according to the vector N.S, we will process node 1. For this
node the potential nodes for acting as its source are (2, 4, 6) since node 2 has
the smallest gene value we select node 2 as its source node (see step 3 of Fig.
7).

In step 4, and according to the vector N.S, we will process node 4. For this
node the potential nodes for acting as its source are (3, 5, 6) since node 3 has
the smallest gene value we select node 3 as its source node (see step 4 of Fig.
7).

In step 5.1, and according to the vector VS, we will process node 2. For
this node the potential nodes for acting as its source are (1, 3, 5, 6) since node
3 has the smallest gene value we select node 3 as its source node (see step 5.1
of Fig. 7). However, since the selection causes a cycle we have to repeat step
5 and choose another node, excluding node 3 from the possible source of node
2.

In step 5.2, and according to the vector VS, we will process node 2. For
this node the potential nodes for acting as its source are (1, 5, 6) since node

6 has the smallest gene value we select node 6 as its source node (see step 5.2
of Fig. 7).

6 The Local Search

The local search tries to improve on a given solution by comparing it with adja-
cent extreme solutions. As no transshipment node exists, adjacent extreme so-
lutions are obtained by replacing an arc currently in the solution by an arc not
in the solution such that the new solution is still an extreme flow, i.e., a tree.
Such strategy is based on the generalized definition of neighborhood by Gallo
and Sodini [14]. An extreme flow X’ with induced tree Tx» = (Wr,,, Ar,,),
is adjacent to X if and only if the arcs in Ar,, \ Ar, constitute a path that
connects two vertices in Wr, and does not contain any other vertex in Wr,,
where Tx = (Wp,, Ap,) is the tree induced by X and Wrp, and Ap, are the
set of vertices and the set of arcs in the tree, respectively.

Consider the example in Figure 8. Let X’ be obtained from X by removing
arc (I, m) and including a arc (k,m) from some vertex k in X. By joining the
two extreme flows a single undirected cycle is formed. Let us decompose it into

10 Dalila B.M.M. Fontes, José Fernando Gongalves

four parts: arcs (k,m) and (I, m) and paths P, and P,,, where ¢ is the last
common vertex to paths Py, and Py.
The total resulting change in the objective function value is

AC = Acm(k) + gk:m(xlm> - glm(mlm>7

where AC), (k) is the cost variation due to redirecting flow z;,, from P, to
P, If AC is negative then X’ is better and the current solution is updated;
otherwise the solution X is kept.

The order by which nodes are considered for improvement by the local
search, IS, is accomplished by sorting in ascending order of gene values the
corresponding nodes, see Fig. 5. According to the chromosome values given in
Fig. 6 IS = (2,4,3,5,1). (Note that the source node, 6, is excluded since it is
not to be supplied by any other node).

Figure 9 depicts a possible outcome of the local search procedure when
applied to node 1. In this case node 1 is being supplied by node 2, which is
acting as a source, and could have as other potential "sourcestt nodes 4 and 6.
Assume that exchanging the acting as source node, from node 2 to node 4 we
get AC = 10, while if the exchange is to node 6 we get AC = —15. Then the
local search procedure would improve upon the current solution by exchanging
the node acting as a source of node 1 to node 6.

7 Fitness

As mentioned before, the Hop constraints are not considered within the Tree-
Constructor procedure and are handled implicitly by a penalty cost term in the
fitness. Therefore, the fitness of each chromosome is equal to the sum of two
cost terms, a cost term associated with cost of the flow and another cost term
associated with a penalty for not satisfying the Hop constraints. The penalty
cost depends on the Hop constraints violation degree. That is, we penalize
nodes having more than H arcs in their path from the source node, as follows.

Max{0, patharcs; — H} x M, for all nodes i, (8)

where patharcs; represents the number of arcs in the path from the source
node to node ¢ and M represents the penalty factor. In summary, the fitness
function associated with each chromosome is given by Flow Cost + Penalty
Cost.

8 Computational results

The algorithm proposed in this paper was implemented in C++ and the com-
putational experiments were performed on a personal computer with a Intel
Core2 processor at 2.4 GHZ and a Linux Fedora 12 operating system. The
pseudo-random generator used is based on the 1998 paper of Park and Miller
[41], who wrote an excellent paper on random number generators. The random

Hop-Constrained Trees in Nonlinear Cost Flow Networks 11

number generator code in C+- is present in the appendix A. The proposed
algorithm was computationally evaluated by solving a set of randomly gener-
ated test problems. The problems considered are amongst the most difficult
nonlinear network flow problems since all arcs have nonlinear cost functions,
some are neither convex nor concave. The cost functions consist of two compo-
nents: a set-up cost and a routing cost. The problem data can be downloaded
from the OR-Library! , see [2|, and a thorough description of the generation
procedure is provided in [10].

Three different cost function types are considered: types G1 and G2 are
variations of the fixed-charge cost function where discontinuities other than at
the origin are introduced; and type G3, where arc costs are initially concave
and then convex, having a discontinuity at the break point. The discontinuity
point was set to R=05R.

0’ ifr = 0_,
9ij(r) = —air® +biyr+e; r <R, ©)
ai;r* + bijr + ¢ij + k otherwise,

where a;; = 0 for G1 and G2, k = b;; for G1, k = —b;; for G2, and k = 0 for
G3.

A graphical representation of the fixed-charge cost function variations, G1
and G2, is given in Figure 10, while Figure 11 represents a cost function that
is initially concave and then convex, as is the case for cost functions of type
G3. Types G1 and G2 correspond, respectively, to the so called staircase and
sawtooth cost functions with two segments.

In Table 2, we report on the parameters used in the MPHBRKGA. The
seeds used to initialize the random number generator of each of the 3 popula-
tions of each of the five runs are given in Table 3.

In tables 4 to 6, we summarize the results obtained for uncapacitated prob-
lems involving cost functions of types G1, G2, and G3, respectively, with
the discontinuity point occurring at 50% of the root node outflow, which
is obviously the total requirement R. Four different arc limit values have
been considered H = 3,5,7,10. Nine problem sizes have been considered
n = 10,12,15,17,19, 25, 30,40, 50. For each size considered, each cost func-
tion type (G1, G2, and G3) and hop parameter value (H = 3,5,7,10) value
we have solved 30 problem instances for the smaller size problems (up to 30
nodes) and 15 problem instances for the remaining problem sizes. Each of the
720 (3 x (7 x 30 + 2 x 15)) problem instances has been solved for each of the
four considered hop parameter values five times. Thus, overall we have solved
2880 problem instances, five times each.

We report on the average computational time, in seconds, required by
the MPHBRKGA. We also report on the average deviation from the optimal

1 The problems ar found under “Network flow: Single commodity, concave costs, sin-
gle source, uncapacitated” and are named “CCNFP10gla.txt, CCNFP10glb.txt, CC-
NFP10glc.txt, CCNFP10g2a.txt, ... , CCNFP10glOc.txt, CCNFP12gla.txt, ... , CC-
NFP50ghc.txt”.

12 Dalila B.M.M. Fontes, José Fernando Gongalves

value. The percentage deviations from the optimal values (minimum, maxi-
mum, and average) have been computed using the optimal solutions obtained
by CPLEX for problems of type G1 and G2 and by the dynamic programming

methodology proposed in [8] for problems of type G3 with up to 19 nodes as
MPHBRKGA-Opt 100
Opt .

As can be seen from the results reported in tables 4 to 6, the multi popula-

tion genetic algorithm is capable of finding an optimal solution for all problem
instances, since the minimum deviation from optimal is always zero. How-
ever, this is not the case for all solutions found. As it can be seen, the average
deviation from optimal is small but positive. It can also be observed that prob-
lems are harder to solve for tighter hop constraints, i.e. smaller hop parameter
values.

In order to better understand the results obtained and the conclusions
drawn we provide some graphical representations of the results, given in figures
12 and 13. The computational times reported show that the time requirements
of the DP algorithm grow very rapidly. The CPLEX computational times also
have a rather bigger rate of increase with problem size. However, this trend is
not observed in the proposed algorithm, see Figure 13. It should be noticed that
each figure shown in the tables and in the graphs is an average obtained after
solving 30 or 15 problem instances, depending on the size under consideration,
for each combination of problem size, cost function type, and hop parameter
value.

9 Conclusions

In this work the problem of finding Hop-Constrained Trees in Nonlinear Cost
Flow Networks, a very recent problem first proposed by [8], is addressed. This
problem is a generalization of the hop-constrained Minimum Spanning Tree
problem, since it also includes the determination of the flows to be routed
through the tree, and therefore it is NP-hard. In practice it can be used to
model the multicast-routing problem, where a number of clients and a server
are connected by a common communication network, where the server wishes
to transmit nonidentical information to all clients. Information is transmitted
by the server to the nodes it directly connects to, and these latter nodes
forward incoming data to their respective children in the tree.

We have presented a Multi Population Hybrid Random Key Genetic Al-
gorithm that on average finds nearly optimal solutions. In addition, as the
results have shown, the MPHBRKGA actually has been able to find an opti-
mal solution for all problem instances solved. Recall that CPLEX and a DP
method were used to obtain an optimal solution for these problems. The pro-
posed algorithm combines a local search algorithm with a Multi Population
biased random key genetic algorithm, where several populations are evolved
independently.

We have solved 240 problem instances with four different hop-parameter
values and three different cost function types (2880 overall). The cost func-

Hop-Constrained Trees in Nonlinear Cost Flow Networks 13

tions considered are amongst the most difficult ones, since in addition to a
fixed cost component they also include a nonlinear routing cost component.
Furthermore, the routing cost functions are neither convex nor concave and
have discontinuity points other than at origin. The results obtained have been
compared with the existing literature and the comparisons have shown the
proposed algorithm to improve upon the efficiency of existing methods [§],
since the computational time requirements are very modest for all problem
sizes (always below one minute). When the Hop-constraints are not very tight
we were able to find an optimal solution for almost all runs performed. Nev-
ertheless, when they are very tight we are still able to find very good average
solutions, always below 0.425%. In addition, we were always able to find an
optimal solution for all problem instances regardless of the cost function type
and hop parameter value.

Thus, the Multi Population Hybrid Genetic Algorithm proposed here is
capable of efficiently finding heuristic solutions, close to optimal (when not
optimal), for the Hop-Constrained Minimum Cost Flow Spanning Tree Prob-
lem, which is NP-hard.

Acknowledgements The financial support by FCT, POCI, COMPTE, and FEDER, through
projects PTDC/EGE-GES/099741/2008 and PTDC/EGE-GES/117692/2010 is gratefully
acknowledged.

References

1. Ahuja, R., Orlin, J.: Multi-exchange neighborhood structures for the capacitated mini-
mum spanning tree problem. Mathematical Programming 91, 71-97 (2001)

2. Beasley, J.E.: Or-Library: Distributing test problems by electronic mail. Journal of The
Operational Research Society 41, 1069-1072 (1990)

3. Boorstyn, R., Frank, H.: Large-scale network topological optimization. IEEE Transac-
tions on Communications COM-25, 29-47 (1977)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 2nd
edn. MIT press Cambridge, MA (2001)

5. Dahl, G., Gouveia, L., Requejo, C.: On formulations and methods for the hop-
constrained minimum spanning tree problem. In: P.M. Pardalos, M. Resende (eds.)
Handbooks of Telecommunications, pp. 493-515. Springer (2006)

6. Deering, S.E., Cheriton, D.R.: Multicast routing in datagram internetworks and ex-
tended lans. ACM Transactions on Computing Systems 8, 85-110 (1990)

7. Deering, S.E., D., D.E., Farinacci: An architecture for wide-area multicast routing. Pro-
ceedings of SIGCOMM (1994)

8. Fontes, D.B.M.M.: Optimal hop-constrained trees for nonlinear cost flow networks. IN-
FOR 48, 13-22 (2010)

9. Fontes, D.B.M.M., Gongalves, J.F.: Heuristic solutions for general concave minimum
cost network flow problems. Networks 50, 67-76 (2007)

10. Fontes, D.B.M.M., Hadjiconstantinou, E., Christofides, N.: Upper bounds for single
source uncapacitated minimum concave-cost network flow problems. Networks 41, 221—
228 (2003)

11. Fontes, D.B.M.M., Hadjiconstantinou, E., Christofides, N.: A branch-and-bound algo-
rithm for concave network flow problems. Journal of Global Optimization 34, 127-155
(2006

12. Fonte)s, D.B.M.M., Hadjiconstantinou, E., Christofides, N.: A dynamic programming
approach for solving single-source uncapacitated concave minimum cost network flow
problems. European Journal of Operational Research 174, 1205-1219 (2006)

14

Dalila B.M.M. Fontes, José Fernando Gongalves

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Fontes, D.B.M.M., Gongalves, J.F.: Upper Bounds for Single Source Uncapacitated
Concave Minimum Cost Network Flow Problems. Proceedings of INOC - International
Network Optimization Conference (2009)

G. Gallo and C. Sodini, Adjacent extreme flows and application to min concave cost
flow problems, Networks 9, 95-121 (1979)

Gen, M., Cheng, R., Oren, S.: Network design techniques using adapted genetic algo-
rithms. Advances in Engineering Software 32, 731-744 (2001)

Gen, M., Kumar, A., Kim, R.: Recent network design techniques using evolutionary
algorithms. International Journal of Production Economics 98, 251-261 (2005)
Gongalves, J.F., Mendes, J.J.M., Resende, M.: A genetic algorithm for the resource con-
strained multi-project scheduling problem. European Journal of Operational Research
189 pp. 1171-1190 (2009).

Gongalves, J., Resende, M.: A parallel multi-population genetic algorithm for a con-
strained two-dimensional orthogonal packing problem. Journal of Combinatorial Opti-
mization 22 pp. 1-22 (2010).

Gongalves, J., Resende, M., Mendes, J.: A biased random-key genetic algorithm with
forward-backward improvement for the resource constrained project scheduling problem.
Journal of Heuristics 17 pp. 1-20 (2010).

Gongalves, J., Sousa, P.: A genetic algorithm for lot sizing and scheduling under capac-
ity constraints and allowing backorders. International Journal of Production Research
49(9), 2683-2703 (2011).

Gongalves, J.: A hybrid genetic algorithm-heuristic for a two-dimensional orthogonal
packing problem. European Journal of Operational Research 183(3), 1212 — 1229 (2007).
Gongalves, J., Almeida, J.: A hybrid genetic algorithm for assembly line balancing.
Journal of Heuristics 8, 629-642 (2002).

Gongalves, J., Mendes, J., Resende, M.: A hybrid genetic algorithm for the job shop
scheduling problem. European Journal of Operational Research 167(1), 77 — 95 (2005).
Gongalves, J., Resende, M.: An evolutionary algorithm for manufacturing cell formation.
Computers and Industrial Engineering 47, 247-273 (2004).

Gongalves, J., Resende, M.: Biased random-key genetic algorithms for combinatorial
optimization. Journal of Heuristics 17, 487-525 (2010).

Gongalves, J., Resende, M.: A parallel multi-population biased randomkey genetic algo-
rithm for a container loading problem. Computers & Operations Research 39, 179-190
(2012).

Gouveia, L.: Using the miller-tucker-zemlin constraints to formulate a minimal spanning
tree problem with hop constraints. Computers and Operations Research 22, 959-970
(1995)

Gouveia, L.: Multicommodity flow models for spanning trees with hop constraints. Eu-
ropean Journal of Operational Research 91, 178-190 (1996)

Gouveia, L., Martins, P.: The capacitated minimum spanning tree problem: revisiting
hop-indexed formulations. Computers & Operations Research 32, 2435-2452 (2005)
Gouveia, L., Requejo, C.: A new lagrangean relaxation approach for the hop-constrained
minimum spanning tree problem. European Journal of Operational Research 132, 539—
552 (2001)

Han, L., Wang, Y., Guo, F.: A new genetic algorithm for the degree-constrained mini-
mum spanning tree problem. IEEE International Workshop on VLSI Design and Video
Technology pp. 125-128 (MAY 2005)

Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, MI (1975)

Kawatra, R.: A hop constrained min-sum arborescence with outage costs. Computers
& Operations Research 34, 2648-2656 (2007)

Kompella, V., Pasquale, J., Polyzos, G.: Multicast routing for multimedia communica-~
tion. IEEE/ACM Trans. Networks 1, 286292 (1993)

Lacerda, E., Medeiros, M.: A genetic algorithm for the capacitated minimum spanning
tree problem. IEEE Congress on Evolutionary Computation 1-6, 725-729 (2006)
LeBlanc, L., Reddoch, R.: Reliable link topology/capacity design and routing in back-
bone telecommunication networks. First ORSA telecommunications SIG conference
(1990)

Hop-Constrained Trees in Nonlinear Cost Flow Networks 15

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Lee, Y., Atiquzzaman, M.: Least cost heuristic for the delay constrained capacitated
minimum spanning tree problem. Computer Communications 28, 1371-1379 (2005)
Lelarge, M.: Packet reordering in networks with heavy-tailed delays. Mathematical
Methods of Operations Research 67, 341-371 (2008)

Montemanni, R., Gambardella, L.: A benders decomposition approach for the robust
spanning tree problem with interval data. European Journal of Operational Research
161, 771-779 (2005)

Nahapetyan, A., Pardalos, P.: Adaptive dynamic cost updating procedure for solving
fixed charge network flow problems. Computational Optimization and Applications 39,
37-50 (2008)

Park, S.K., Miller, K.W.: Random number generators: good ones are hard to find.
Communications of the ACM 31, 1192-1201 (1998)

Raidl, G., Julstrom, B.: Edge sets: An effective evolutionary coding of spanning trees.
IEEE Transactions on Evolutionary Computation 7, 225-239 (2003)

S., R., A., N., P.M., P.: Bilinear modeling solution approach for fixed charge network
flow problems. Optimization Letters 3, 347-355 (2009)

Thompson, E., Paulden, T., Smith, D.: The dandelion code: A new coding of spanning
trees for genetic algorithms. IEEE Transactions on Evolutionary Computation 11, 91—
100 (2007)

Woolston, K., Albin, S.: The design of centralized networks with reliability and avail-
ability constraints. Computers & Operations Research 15, 207-217 (1988)

Zeng, Y., Wang, Y.: A new genetic algorithm with local search method for degree-
constrained minimum spanning tree problems. ICCIMA - 5th International Conference
on Computational Intelligence and Multimedia Applications pp. 218-222 (September
2003)

16 Dalila B.M.M. Fontes, José Fernando Gongalves

Chromosome Phase

\ 4

Y/

Construction of a Solution using R R
based on part of the Chromosome Solution Construction
and on the Tree-Constructor

X v

Improvement of a Solution
based on part of the Chr Solution Impr 1t
and on a Local Search Procedure

Evolutionary Process of the Genetic Algorithm

v
ICompute the fitness including a term Fitness Evaluation
to lize HOP-i il luti

A 4

A

Feedback Quality of Chr

Fig. 1 The solution approach.

Chromosome = | gene, , ..., gene, , gene,.y, ..., gene,, ,)
L™ g N\ 7 4 ’J
A 4 v A 4
Genes used ta determine the Genes used ta select Cenes used ta determine the
arder inwhich the saurce af the source of & node arder inwhich the nodes are
each node is faund cansiderad Tar impravement

oy the |acal search pracedure

Fig. 2 Chromosome representation.

Node ‘ Sources

1 2,4, 6
2 1,356
3 1,24
4 3,5,6
5 2,3, 4

Table 1 Network data for the tree construction example.

Hop-Constrained Trees in Nonlinear Cost Flow Networks

Current Population

Best Elitist Selection
TOP ~

One Chromosome
from TOP

AN

Crossover |——

One Chromosome
from entire population

4 BOT
Worst

Mutation /
(Immigration)

Fig. 3 Evolutionary strategy.

Next Population

Chromosome 1 (FromToP) [0.32][0.77]/0.53][0.85]
Chromosome 2 [0.26][0.15//0.91][0.44]

Random Number |0.58//0.89/0.72/(0.25
Relation to SelTopProb=0.8 | < > < <

Offspring Chromosome [0.32][0.15//0.53]0.85|

Fig. 4 Parameterized crossover example.

Nodes 1 2 3 4 5 6 7
Chromosome = (0.45, 0.67 ,0.35, 0.49, 0.07,0.78,0.17)

Increasing Order

Chromosome = (0.07,0.17,0.35,0.45, 0.49, 0.67, 0.78)
Nodes 5 7 3 1 4 2 6

Order in which sources are found

Fig. 5 Decoding procedure for the Tree-Constructor.

Nodes | 1 2 3 4 5 6 |

1
Chromosome ‘ .55 .75 .35 .65 .45 .99 ‘ 9

Fig. 6 Chromosome for the tree construction example.

.45

.66

.14

18 Dalila B.M.M. Fontes, José Fernando Gongalves

Step | Node Sources Source
selected Network
Source
©
O 66 66 O ©
0
Source
O,
© QP © ©
1 3 1,2,4 2
Source
©
T P A
2 5 2,3, 4 2
Source
O,
O—Ex ©© O O
3 1 2,4,6 2
Source
©
O—E O—060 O
4 4 3,5,6 3
Source
O,
O—R O—0 ©
5.1 2 1,3,5,6 3
Source
®
O—E O0—6 O
5.2 2 1,5,6 6

Fig. 7 Tree construction example.

Hop-Constrained Trees in Nonlinear Cost Flow Networks 19

Fig. 8 Cycle decomposition.

Adjacent solution 1 Initial solution Adjacent solution 2

Saurce

Source

AC +10 | | -15
Solution Selected ‘ ‘ ‘ v
Fig. 9 Improvement example.
Parameter Value
Population Size 15 times the number of vertices
Crossover The probability of tossing heads was made equal to 0.7
Selection Copy to the next generation the top 25% chromosomes
Mutation Substitute the bottom 15% with randomly generated chromosomes
Fitness Cost (to minimize) and penalty function

Number of Populations
Exchange Frequency
Number of Seeds
Stopping Criterion

3

Every 15 generations
1

1000 generations

Table 2 MPHBRKGA configuration.

Run | Population 1 — Population 2 — Population 3
1 1776393743 — 1531978007 — 1772919766
2 1126905037 — 1234673966 — 30865601
3 1214597080 — 1901058825 — 833971709
4 2084232841 — 2095592470 — 1890832490
5 758651124 — 1039028829 — 1767995246

Table 3 Seeds used for the computational experiments.

20

Dalila B.M.M. Fontes, José Fernando Gongalves

Cost -- g(r)

Cost -- g(r)

600

500

400

300

200

100

400

300

200

100

Type G1

10
Flow -- r

Type G2

15

20

10
Flow --r

15

20

Fig. 10 Staircase and Sawtooth cost functions, respectively.

Hop parameter values
3 5 7 10 CPLEX
N | Min. Aver. Max. Min. Aver. Max. | Min. Aver. Max. | Min. Aver. Max. Time Time
10 0 0.360 7.157 0 0 0 0 0 0 0 0 0 4.35 8.45
12 0 0.104 1.900 0 0 0 0 0 0 0 0 0 6.85 8.67
15 0 0.031 0.641 0 0 0 0 0.005 0.258 0 0 0 11.11 8.88
17 0 0.120 3.743 0 0 0 0 0 0 0 0 0 17.08 9.27
19 0 0.182 17.353 0 0.062 4.919 0 0 0 0 0 0 21.96 10.06
25 0 0.283 6.141 0 0.005 0.162 0 0 0 0 0 0 44.52 15.02
30 0 0 0 0 0.109 4.083 0 0 0 0 0 0 70.21 21.55
40 0 0.139 7.501 0 0.074 1.945 0 0 0 119.13 33.00
50 0 0.076 0.991 0 0.047 1.426 0 0 0 232.84 51.02

Table 4 Solution quality (% deviation from optimal) and time (s) for cost function type

Gl1.

Hop-Constrained Trees in Nonlinear Cost Flow Networks

21

Cost -- g(r)

Type G3
700 T T
500 B
300 B
+
L i _
///
////
100 - — B
0 1 1
0 5 10 15
Flow --r

20

Fig. 11 Concave cost function up to the discontinuity point, which then becomes convex.

Hop parameter values
3 5 7 10| CPLEX
N | Min. Aver. Max. | Min. Aver. Max. Min. Aver. Max. | Min. Aver. Max. Time Time
10 0 0.389 7.162 0 0 0 0 0 0 0 0 0 4.906 8.555
12 0 0.110 1.914 0 0 0 0 0 0 0 0 0 7.879 8.682
15 0 0.075 2.396 0 0 0 0 0.006 0.228 0 0 0 12.201 8.888
17 0 0.120 3.743 0 0 0 0 0 0 0 0 0 19.877 9.449
19 0 0.041 1.787 0 0.095 4.922 0 0 0 0 0 0 23.305 10.205
25 0 0.251 6.993 0 0.006 0.177 0 0 0 0 0 0 50.687 14.942
30 0 0 0 0 0.071 4.083 0 0 0 0 0 0 112.754 | 21.264
40 0 0.425 13.909 0 0.048 1.945 0 0 0 121.342 | 33.110
50 0 0.084 0.992 0 0.004 0.243 0 0 0 273.912 | 51.089
Table 5 Solution quality (% deviation from optimal) and time (s) for cost function type
G2.
Hop parameter values
3 5 7 10| DP
N | Min. Aver. Max. | Min. Aver. Max. | Min. Aver. Max. | Min Aver. Max. ‘ Time Time
10 0 0.251 7.160 0 0 0 0 0 0 0 0 0 0.04 8.69
12 0 0.157 2.453 0 0 0 0 0 0 0 0 0 0.34 8.66
15 0 0.038 2.352 0 0 0 0 0.003 0.131 0 0 0 9.74 8.93
17 0 0.093 3.858 0 0 0 0 0 0 0 0 0 107.89 9.49
19 0 0.122 9.108 0 0.042 1.615 0 0 0 0 0 0 2053.50 | 10.42

Table 6 Solution quality (% deviation from optimal) and time (s) for cost function type

G3.

22 Dalila B.M.M. Fontes, José Fernando Gongalves

Type G1
0.4 T T T T T T
n=10 ——
n=12 -—x-—-- |
n=15 ---%
n=17 =]
= i
o, n=30 ---®- |
g nzéO i
o n=50 ----4-- i
4+
-
a
I
g i
-
s}
Q,
8 i
. g
1 _,,.,,:i:% rrrrrrrrrrr [1 .
6 7 8 9 10

Problem Size (number of nodes)

Type G2
0.45 T T T T T T
A n=10 ——
0.4 n=12 -—x-- 4
n=15 ---*
0.35 F n=17 3] _
5
o 0-37T n=30 --e-]
v n=40 -4
2 0.25 i n=50 pe 4
>
bt
o 0.2 o
£
= 0.15 - 1
JEL i
© 0.1 F -
A
¥ e
0.05 F a. 1
0 l 1 ot 1 P P
3 4 5 6 7 8 9 10
Problem Size (number of nodes)
Type G3
0.3 T T T T T T
n=10 ——
n=12 ---%---
n=15 ---* i
n=17 3]
5
0, n=30 ----® T
© n=40 ----4&
o
n=50 A~
> -
it
h
a
o}
g
5 o
i)
0,
O
. Mmoo doo. L
6 7 8 9 10

Problem Size (number of nodes)

Fig. 12 The effect of the hop parameter value on solution quality, for problem types G1,
G2, and G3, respectively.

Hop-Constrained Trees in Nonlinear Cost Flow Networks

23

200

(s)

Computational Time

50

300

(s)

200

Computational Time

50

2500

2000

(s)

1500

1000

Computational Time

Type G1
T T T T T T T
CPLEX —+—
b L T I 1 1 1 1
0 15 20 25 30 35 40 45 50
Problem Size (number of nodes)
Type G2
T T T T T T T
T NTV 1 1 1 1
0 15 20 25 30 35 40 45 50
Problem Size (number of nodes)
Type G3
T T T T T T T
DP —+—
GA —-X---
O L i k) 1 ke N 1 —
10 11 12 13 14 15 16 17 18

Problem Size (number of nodes)

Fig. 13 The effect of problem size on computational time, for problem types G1, G2, and
G3, respectively.

24 Dalila B.M.M. Fontes, José Fernando Gongalves

Appendix A
double NextRnd (int & PrevSeed)

unsigned int const a = 16807;

unsigned int const m 2147483647 ;

unsigned int lo a * (PrevSeed & OxFFFF);

a * (PrevSeed » 16);

unsigned int hi
lo += (hi & Ox7FFF) « 16;
lo += hi » 15;

if (lo > Ox7FFFFFFF) lo -= Ox7FFFFFFF;
// the next line is a faster implementation of the previous line

lo = (lo & Ox7FFFFFFF) + (1lo » 31);

return (PrevSeed = 1o) / (1.*m);

