
Noname manuscript No.
(will be inserted by the editor)

Validating the Hybrid ERTMS/ETCS Level 3 Concept with
Electrum

Alcino Cunha · Nuno Macedo

Received: date / Accepted: date

Abstract This paper reports on the development of
a formal model for the Hybrid ERTMS/ETCS Level 3
concept in Electrum, a lightweight formal specification
language that extends Alloy with mutable relations and
temporal logic operators. We show how Electrum and its
Analyzer can be used to perform scenario exploration to
validate this model, namely to check that all the opera-
tional scenarios described in the reference document are
admissible, and to reason about expected safety proper-
ties, which can be easily specified and model checked for
arbitrary track configurations. We also show how the
Analyzer can be used to depict scenarios (and counter-
examples) in a graphical notation that is logic-agnostic,
making them understandable by stakeholders without
expertise in formal specification.

Keywords Formal specification · Validation &
Verification

1 Introduction

This paper reports on the modelling and subsequent val-
idation and verification of the Hybrid ERTMS/ETCS
Level 3 (HL3) concept [10] in Electrum [19], developed
as an answer to the ABZ’18 call for case study contri-
butions. Electrum is a lightweight formal specification
language that extends Alloy [17] with mutable relations
and linear temporal logic (LTL) operators. The result is
a language as simple and flexible as Alloy, but with im-
proved support for the specification of reactive systems
and for the model checking of safety and liveness prop-
erties specified in LTL (possibly using past operators
as well). Its Analyzer [16] provides support for bounded

A. Cunha · N. Macedo
INESC TEC & Universidade do Minho, Portugal

(through SAT) and complete (through SMV) model
checking, with scenarios (and counter-examples) pre-
sented back to the user in a unified graphical interface,
customizable by user-defined themes.

The main features and outcomes of this work are:

– the development of a discrete HL3 model for arbi-
trary track configurations encoding most relevant
features, including the VSS state machine, TTD
and PTD communication delays, non-integer trains,
timers and movement authorities

– this model is amenable to validation and verifica-
tion with automatic analyses, including support for
animation and scenario exploration

– the development of a dedicated visualization theme
that allows instances to be inspected in a logic-
agnostic manner that resembles the one used in the
reference document to present scenarios [10]

– the encoding of all the reference scenarios [10], which
further validate the model and show that the VSS
state machine (mostly) acts as intended

– the specification of simple safety properties for the
HL3 and their subsequent automatic verification
under multiple configurations, both with bounded
and complete model checking

Model development was carried by the two authors of
the paper, both with extensive background in Alloy and
proponents of the Electrum extension. The challenging
nature of the work allowed the team to identify and
implement improvements to Electrum and its Analyzer.
It should be noted that the authors had no a priori
domain knowledge, and that the work was mainly based
on the provided reference document for the HL3 [10].

This paper is an extended version of a conference
paper [7]. Since then, the HL3 reference document has
been updated from version 1A [9] to 1C [10], which

2 Alcino Cunha, Nuno Macedo

changed certain components of the system and clari-
fied certain nomenclature ambiguities. We updated our
model accordingly, and also took the opportunity to
implement an additional feature (namely, TTD com-
munication delays) and address certain methodology
issues (namely, the traceability between the reference
document and the model). Unless explicitly mentioned,
the model referred to in this paper is the 1C version.

The paper is organized as follows. Section 2 describes
the modelling strategy employed. The resulting HL3
model, as well as relevant design decisions, are pre-
sented in Section 3. Electrum concepts are presented
throughout the section as needed. Section 4 describes
how the model was validated using the Analyzer, in-
cluding the encoding of the operational scenarios, and
explores some desirable safety properties that were au-
tomatically verified. Section 5 discusses issues identified
in the HL3 and evaluates the employed methodology.
Section 6 compares our work with other answers to
the ABZ’18 challenge and other relevant work, while
Section 7 points directions to future work.

2 Requirements and Modelling Strategy

Our modelling process was mostly based on the reference
document for the HL3 concept (initially version 1A [9],
currently adapted to version 1C [10]), and occasionally
on the ERTMS/ETCS glossary [11] to clarify domain
specific concepts. The current model also incorporates
some environment assumptions specified in the introduc-
tory document for the ABZ’18 case study challenge [14]
that are not explicit in the reference document.

The main focus of the HL3 concept (and conse-
quently, the main target of our analysis) is the design
of the VSS management sub-system of the trackside
system, with the remainder sub-system (which handles
MA authorisations) and the interlocking and train states
(with the respective TTD and PTD reports) acting as
the environment (see Fig. 1).

The VSS management sub-system requirements are
mostly encoded directly in our model, including how the
TTD and PTD reports are interpreted [10, §3.3,§3.5],
the behaviour of the VSS state machine [10, §3.2,§5], and
the definition of timer events [10, §3.4]. This modelling
process was backed by the remainder sections [10, §3.6–
§3.11,§4,§6] that provide justifications and examples for
the state machine and timer events.

The MA authorisation sub-system is outside the
scope of the HL3 reference document and its concrete be-
haviour depends on implementation decisions. To model
an abstract version of this sub-system, we tried to infer
sensible assumptions from the justifications provided for

design of the VSS sub-system and from the MA assign-
ments in the operational scenarios. Some assumptions
that were more clearly formalized in the introductory
document [14], which was unavailable at the time of the
original publication, were also integrated in the current
version. The same strategy was followed for the remain-
der environment assumptions, namely the interlocking
and train behaviour. Nonetheless, the environment is
purposely left under-specified, to allow a wide range of
alternative behaviours.

Due to the complexity (and occasional ambiguity) of
the requirements, we alternated the modelling process
with the encoding of the operational scenarios, which
allowed for the stepwise validation of the formalization.
Most inconsistencies between the behaviour of the VSS
sub-system in the reference scenarios and in our model
evidenced issues with our formalization, due to our lim-
ited knowledge of the domain or ambiguities in the
reference document. Occasionally, we were unable to
find an interpretation of the reference document that
would result in the behaviour described in the reference
scenarios, in which case we assumed an inconsistency in
the requirements. All such issues found in version 1A
have been fixed in version 1C of the HL3 reference doc-
ument; they are identified in Section 5 for completeness.
Other issues were identified in version 1C, which are
discussed in Section 5 as well.

Once the model was stable, it was amenable to the
verification of desirable properties. Neither reference
document clearly specifies desirable safety properties for
the VSS sub-system, so we started with simple proof-of-
concept correctness properties concerning the expected
assignment of VSS states. We then moved to the more
general property of avoiding train collisions. Due to
the open nature of the environment model, this stage
required exploring sensible restrictions to it (e.g., how
the trains behave in relation to the assigned MAs).

Accordingly, our model is (informally) structured in
the following blocks, as depicted in Fig. 1:
– the model of the environment assumptions, including

the MA management sub-system, and train and
trackside state and reporting, loosely specified to
allow various alternative behaviours

– the model of the VSS management sub-system re-
quirements, including VSS states and timers, and
their evolution through the VSS state machine and
timer events

– the codification of the operational scenarios and
respective animation commands for validation

– the specification of the safety properties and respec-
tive checking commands for verification
Traceability between our 1A model and the require-

ments was mostly provided through nomenclature con-

Validating the Hybrid ERTMS/ETCS Level 3 Concept with Electrum 3

Fig. 1 Architecture of the HL3 model (adapted from [14]).

ventions, clearly identifying each transition of the VSS
state machine and timer event with a matching predi-
cate. However, when updating the model to version 1C,
which clarifies how the train state and location is inter-
preted according to PTD reports, the lack of pointers to
the reference document proved troublesome. To tackle
this issue, we also took the opportunity to annotate the
elements of the 1C model with the reference document
sections where the requirements were identified.

Proper abstraction is key to achieve a model that
is representative of the system under study but that is
still prone to being automatically analysed for relevant
properties and easily understood by all interested parties.
In our model, the main abstraction points arise from the
mismatch between certain continuous aspects of the rail
traffic management domain and the necessarily discrete
nature of state-based modelling languages like Electrum.
These include concerns with train length changes, as
well as real-time issues related to communication delays
and the use of timers to optimize the performance of the
system. Nonetheless, since the level of granularity of HL3
is that of the VSS, this abstraction has not prevented us
from successfully formalising the VSS sub-system and
supporting every operational scenario.

When processing PTD reports, version 1C of the
reference document specifies 10 steps through which the
state machine is updated, each processing a different
kind of information. Forcing such procedure at all times
would lead to an explosion of the trace lengths of the
instances, possibly rendering the problem intractable.
Thus, while also allowing such phased evaluation of re-
ports, in the general case our approach assumes all steps
to be processed in a single transition (see Section 3.2
for details). In fact, in the description of the reference
scenarios these steps are often collapsed in a single tran-
sition, since this simplification usually does not affect
the outcome. When it does, it is explicit in the descrip-
tion of the scenario, and in such cases (Scenarios 7, 8
and 9) our encoding of the scenario forced the update
in individual steps.

Our model does not explicitly consider the classes of
trains that are to be supported by the HL3 according
to [14] (ERTMS with TIMS, ERTMS without TIMS,

open util/ordering[TTD] as D // ASM1/2
open util/ordering[VSS] as V // ASM3

sig VSS {}
sig TTD { // ASM3

start,end : one VSS }

fact trackSections { // ASM1,2
all d:TTD | (d.end).gte[d.start]
all d:TTD-D/last | d.end.V/next = (d.D/next).start
D/first.start = V/first and D/last.end = V/last }

fun VSSs[t:TTD] : set VSS { // ASM3
t.start.*V/next&t.end.*(∼V/next) }

fun parent[v:VSS] : one TTD { // ASM3
max[(v.*V/prev).∼start] }

Fig. 2 Excerpt of the static environment.

and non-ERTMS). In fact, these categories are never
explicitly mentioned in the HL3 reference document.
Our model considers trains that fail to communicate or
to report integrity, thus these classes can be simulated
by enforcing additional restrictions: non-TIMS trains
must never report integrity, and non-ERTMS must never
communicate with the trackside.

3 Model Details

The section presents the HL3 Electrum model devel-
oped for the HL3 concept 1C, which is available online.1
Relevant design decisions are explained as the model is
presented. The Electrum language is also presented by ex-
ample throughout the section. The formal presentation
of its syntax and semantics is available elsewhere [19].

3.1 Environment Modelling

In Electrum, likewise Alloy, structure is introduced through
the declaration of signatures (keyword sig), that repre-
sent sets of uninterpreted atoms, and fields, that create
relationships between multiple atoms. Both signatures
and fields can be restricted by simple multiplicity con-
straints (e.g., set, some or one), and a signature hierar-
chy can be introduced by inclusion (in) or extension
(extends), the latter forcing children signatures to be
disjoint. In Electrum, signatures and fields may either
be static (by default) or variable (those marked as var).
Static elements represent the possible configurations on
which a system can act. During the analysis process,
they will be populated with arbitrary atoms for which
the structural constraints hold, within a given scope,
and then remain frozen throughout the instance traces.

In the HL3 model such configurations are part of
the environment specification – depicted in Fig. 2 –

1 http://haslab.github.io/Electrum/ertms_1C.ele

http://haslab.github.io/Electrum/ertms_1C.ele

4 Alcino Cunha, Nuno Macedo

and represent the valid partitioning of tracks into train
detection sections (signature TTD) and virtual subsec-
tions (signature VSS). HL3 addresses single straight lines,
whose granularity is that of the VSS, thus tracks are
simply discrete sequences of VSS atoms [14, ASM1–3].
In Electrum this can be achieved by imposing total or-
ders through the library module util/ordering, which
introduces relations first, last, next and prev, qualified
for TTDs (D) and VSSs (V). To partition TTDs, fields
start and end each register exactly one VSS in which each
TTD starts and ends. This environment representation
does not consider any particular dimension of blocks or
trains, which mostly does not affect the concept; the
few exceptions are identified when relevant.

Relational expressions combine signatures and fields
(and constants, namely the empty (none) and universe
(univ) sets, and the identity binary relation (iden)) using
standard relational operators like union (+), intersection
(&), difference (-), join (.) or the binary converse (∼),
and transitive (^) or reflexive-transitive (*) closure oper-
ators. Relational expressions can also be constructed by
comprehension. Primitive relational formulas are either
inclusion (in) or equality (=) tests, or basic multiplicity
tests (e.g., some or no), which can be combined through
common Boolean operators (not, and, or, implies or iff)
and first-order quantifications (e.g., all or some).

Through fact paragraphs arbitrary relational for-
mulas can be imposed as axioms that always hold in a
model. Such is the case of trackSections that guarantees
that TTDs are correctly partitioned into VSSs, namely
by quantifying over all TTD elements and forcing their
end to occur after their start (using the total order on
VSS), that the last VSS of a TTD is succeeded by the
first VSS of the next TTD (except in the edges of the
track), and that the edges of the TDD and VSS orders
coincide. This declarative definition eases the analysis
of properties over every valid track partition within a
given scope for signatures TTD and VSS. Functions (fun)
and predicates (pred) declare reusable expressions and
formulas, respectively. For instance, function VSSs calcu-
lates all the subsections of a TTD using transitive closure
over the total order on VSS, and parent retrieves the
TTD to which a VSS belongs by calculating the maximum
TTD among those starting before it.

The static structure, presented so far, is essentially
a normal Alloy model. Electrum enables the encoding of
dynamic structure through variable signatures and fields,
declared using the keyword var. In the HL3 environment
these regard the interlocking state, the physical state
of the trains and on-board systems, the TTD and PTD
information reported at each time, and the currently
assigned MAs. An excerpt is depicted in Fig. 3.

var sig Reports in TTD {} // §4.5.1.3.5

abstract sig Train {
var pos_frnt,pos_rear : one VSS, // §3.3.1.1
var EoA : lone VSS } // §3.1.1.7,ASM16

var sig MissStartd,MissEnded, // §4.2.1.1
UnknwnTrain extends Train {}

var sig Reporting extends MissStartd {} // §1.2.1.1
var sig IntgrtyConfirmed, // §1.2.1.1,§1.2.3.1

IntgrtyLost extends Reporting {}

fact TTDReports { // sensible delays
always all t:TTD | t not in Reports implies t in Reports’ }

fun pos : Train → VSS { pos_rear + pos_frnt }

fun occupied : set TTD { // §3.1.1.5,ASM4/5
{ t:TTD | t in Reports

implies some VSSs[t]&Train.pos
else previously some VSSs[t]&Train.pos } }

fact trainEvolution { // inferred from scenarios
always all t:Train | som[t] or eom[t] or move[t]

or some s:Train | split[t,s] or split[s,t] }

pred move [t:Train] { // inferred from scenarios
t.pos_frnt’ in t.pos_frnt.(iden+next)
t.pos_rear’ in t.pos_frnt’.(iden+prev)
t.pos_rear’ in t.pos_rear.(iden+next)
t in MissStartd iff t in MissStartd’
t in MissEnded iff t in MissEnded’ }

pred twocarr[t1,t2:Train] {
historically {
t1.EoA = t2.EoA
t1.pos_frnt = t2.pos_frnt
. . . } }

pred split [t,t1:Train] { // inferred from scenarios
twocarr[t1,t2]
t1 in MissStartd implies t1 in IntgrtyLost’
t2 in UnknwnTrain’ - UnknwnTrain
t1 in MissStartd iff t1 in MissStartd’
t1 in MissEnded iff t1 in MissEnded’
t1.pos_frnt’ = t1.pos_frnt
t1.pos_rear’ = t2.pos_rear
t2.pos_frnt’ = t2.pos_frnt
t2.pos_rear’ = t2.pos_rear }

fun MA[t:Train] : set VSS { // §3.1.1.7
memorisedRear[t].*V/next&(t.EoA).*V/prev }

pred OS[t:Train] { // §3.10.1.1
t.EoA = last }

fact MAAssignment {
let Off = Disconnected+UnknwnTrain |

always {
all disj t1,t2:Train | // ASM17
not (twocarr[t1,t2] or OS[t1] or OS[t2]) implies

no MA[t1]&MA[t2]
all t:MissStartd-Off’ | // §3.2.1.4

(t.EoA != t.EoA’ and not after OS[t]) implies
(locatedFrnt[t].^next&t.EoA’.*prev).state in Free

all t:Train | no t.EoA implies // §3.1.1.7.1
(t in Off or previously no t.EoA) } }

Fig. 3 Excerpt of the dynamic environment model.

The HL3 concept assumes TTD occupation reporting
to be safe [10, §3.1.1.5] but with possible delays [10,
§4.5.1.3.5]. Although in general a mutable boolean field
could be used to encode whether TTDs are reporting, in
Electrum this can be achieved by variable sub-signatures.
Concretely, signature Reports is a subset of TTD denoting
at each instant which TTDs are reporting.

Validating the Hybrid ERTMS/ETCS Level 3 Concept with Electrum 5

Signature Train denotes the available trains and their
state. Each train has an exact physical position (not
necessarily known by the trackside) for its front and rear
ends [10, §3.3], represented by variable fields pos_frnt

and pos_rear, that point to exactly one VSS at each time.
For simplicity purposes, all trains are assumed to be in
the track at all times, so trains may not enter or leave
the track. Modelling such behaviour can be easily done
by creating additional “dummy” VSSs at the beginning
or end of the track, as in Scenarios 8 and 9. Variable
sub-signatures are used to represent the state of the
PTD communication between each train and the track-
side. Trains have either started (MissStartd) or ended
(MissEnded) a mission [10, §4.2.1], or are completely
unknown to the trackside (UnknwnTrain), for example,
when a carriage splits. By being defined by extension
(rather than inclusion), each train belongs only to one
of these signatures in each instant; by defining Train

as abstract, each train must necessarily belong to one
of them. Trains on a mission may in turn be Reporting

PTD information at each instant, and additionally re-
port IntgrtyConfirmed or IntgrtyLost [10, §1.2].2 Trains
not reporting in an instant represent PTD communi-
cation delays; trains reporting but without integrity
information represent trains that have been unable to
confirm integrity. Finally, each train is assigned at most
one (lone) VSS as its current end of authority (EoA),
which determines its MA [10, §3.1.1.7].

Relational expressions in Electrum are extended to
support primed expressions, that denote their value in
the succeeding state, while formulas are extended with
future (e.g., after, eventually or always) and past (e.g.,
previously, once or historically) LTL operators.

Using facts, Electrum supports the imposition of
arbitrary temporal restrictions, like fairness conditions,
over variable elements. For example, to keep our model
manageable, fact TTDReports forces TTDs to always have
communication delays of at most one step by stating that
a TTD not in Reports, must be in it in the succeeding
state. Function pos abbreviates the union of the front
and rear end positions of a train. Auxiliary functions and
predicates can also use temporal operators freely. For
instance, at each instant, function occupied calculates
by comprehension all TTDs whose state is occupied: if
a TTD reports, then it is occupied if there is any train
in it; otherwise, compute its occupancy in the previous
state using the past operator previously.

Restrictions must also be imposed to constrain the
behaviour of trains. By analysing the reference document
and the operational scenarios, we identified 4 events

2 A third integrity issue in HL3 arises train length changes are
reported; since they are treated exactly as integrity lost reports,
for simplicity we encode only the latter in our model.

that affect the state of trains. In Electrum events can
be encoded as declarative predicates that relate the
current state with the succeeding one through primed
expressions (although more advanced events may use
full LTL). Start of mission (som) and end of mission
(eom) actions simply update the mission status of a
train accordingly. A move action updates the physical
position of the train. Lastly, a split action models the
breaking up of a trains composed by two carriages. Fact
trainEvolution then forces the state of every train to
change at each state through one of these events. The
PTD reporting signatures (Reporting, IntgrtyConfirmed
and IntgrtyLost) are left unrestricted by the events,
meaning that there are no restrictions on how often
communication or integrity problems occur.

Predicates move and split are presented in more
detail in Fig. 3 (the others are omitted). To keep the
evolution of the system manageable, each train is al-
lowed to move forward at most one subsection in each
step, and the rear is always kept at most one subsection
away from the front. These restrictions could easily be
relaxed, but note that since trains may fail to report
PTD information, jumping behaviour in the perspective
of the trackside still occurs (Scenario 8). The last formu-
las preserve the mission status of the train when moving.
Even though the train behaviour should consider the as-
signed MA, according to the reference document trains
cannot be assumed to stay within the assigned MA [10,
§1.2.3.3], so move enforces no such restriction. To model
the split action, two-carriage trains must be identified
in the model. In order to avoid introducing additional
variables in the model, two trains are assumed to be
connected if they had exactly the same state up to that
point. This is encoded by predicate twocarr that tests
the state of two trains using historically. During break
up, the front one will fail to confirm integrity and the
rear one will become unknown to the trackside. Other
than that, the state of the trains does not change.

Lastly, the MA assignments are modelled. The VSSs
covered by an MA are calculated by function MA using the
transitive closure between the EoA and the train location.
Trains can also be assigned on-sight (OS) MAs, in which
case they are allowed to move freely in the complete
track. For simplification purposes, a train is assumed
to have an OS MA when its EoA is the last VSS of the
track, as encoded in predicate OS. Finally, loose, but sen-
sible, MA policies based on the reference documents are
enforced, even though they are beyond the HL3 concept.
MAs are allowed to change as long as the (declarative)
constraints imposed by fact MAAssignment hold: i) MAs
must not overlap at each instant [14, ASM17] (unless
they represent a two-carriage train or have OS MAs),
ii) an MA can be changed only to a free section of

6 Alcino Cunha, Nuno Macedo

one sig VSSMgr {
var mem_fr,mem_re : Train → one VSS, // §3.3
var jumpng : VSS → lone Train, // §3.3.3.6
var state : VSS → one State } // §3.2.1.1

enum State { Unknown,Free,Ambiguous,Occupied }

var sig MuteExpired in MissStartd {} // §3.4.1
. . .
var sig DiscPropRunning,DiscPropExpired in VSS {} // §3.4.2
. . .
fun Disconnected : set Train { // §3.3.1.3

MissEnded + MuteExpired }

fun NonInteger : set Train { // §3.5.1.3
IntgrtyLost + WaitIntgrtyExpired }

fun locatedFrnt[t:Train] : one VSS { // §3.3.2
t in Disconnected+UnknwnTrain implies none
else t.(VSSMgr.mem_fr) }

fun locatedRear[t:Train] : one VSS { . . . } // §3.3.3
fun located[t:Train] : set VSS { // §3.3.2.1

locatedRear[t].*V/next & locatedFrnt[t].*∼V/next }

fun assumedRear[t:Train] : one VSS { // §3.3.4
t in NonInteger implies locatedFrnt[t]
else locatedRear[t] }

fun memorisedFrnt[t:Train] : one VSS { // §3.3.2
t.(VSSMgr.mem_fr) }

fun memorisedRear[t:Train] : one VSS { . . . } // §3.3.3
fun memorised[t:Train] : set VSS { . . . } // §3.3.1.3

fact jumpingTrains { // §3.3.3.6
always VSSMgr.jumpng’ = { v:TTD.start,t:Train {
t not in IntgrtyConfirmed’
t in located[parent[v].prev]
parent[v].prev in occupied - occupied’
parent[v] in occupied’ } } }

fact memoryUpdate { // §3.3
let fr = VSSMgr.mem_fr,re = VSSMgr.mem_re,jp = VSSMgr.jumpng |

always all t:Train {
t.fr’ = t in Reporting’ implies t.pos_frnt’

else t not in Disconnected’ implies max[jp’.t+t.fr]
else t.fr

t.re’ = t in IntgrtyConfirmed’ implies t.pos_rear’
else t not in Disconnected’ implies max[jp’.t+t.re]
else t.re } }

Fig. 4 Excerpt of location processing.

the track [10, §3.2.1.4] (unless an OS MA is assigned),
and iii) an MA may only be removed for disconnected
trains [10, §3.1.1.7.1]. Note that the MA sub-system
consumes information (like train location) from the VSS
sub-system that will be presented in the next section.

3.2 VSS Management Sub-system

The VSS sub-system interprets TTD and PTD reports
in order to approximate the current location of trains
and trigger timer events, finally updating the state of
the VSSs accordingly. An excerpt of its specification is
presented in Figs. 4 (location processing) and 5 (state
machine and timer events).

The state of this sub-system is registered in the
(singleton) VSSMgr signature. Fields mem_fr/mem_re store
the memorised front/rear locations of each train. HL3

detects trains “jumping” between TTDs to avoid losing
their location due to communication delays [10, §3.3.3.6];
when such an event is detected for a train, it is registered
in field jumpng. Field state stores the state assigned to
each VSS [10, §3.2.1.1], which will be calculated from
the processed location information. The 4 possible states
are represented by the enumeration State (a signature
partitioned into singleton sub-signatures).

To avoid performance deterioration due to commu-
nication fluctuations, HL3 implements a set of timers
to avoid unnecessary VSS state transitions. Each of
these timers has start and (possibly) stop events, and
is assigned to either a VSS, a TTD or a train. All 7
types of timers were implemented in our model. A set
of variable signatures identifies which timers with non-
trivial start/stop events are running in each instant
(e.g., DiscPropRunning contains all VSSs whose discon-
nect propagation timer is running). It is easy to identify
mute and integrity lost timers by inspecting the current
state, so their running signatures were not created. A
second set of signatures then registers timers that have
actually expired (e.g., MuteExpired for all trains whose
mute timers expired, and DiscPropExpired for VSSs with
expired disconnect propagation timers).

The HL3 concept treats trains differently depend-
ing on the available PTD information. Auxiliary func-
tions in our model determine when a train should be
treated as Disconnected – mission ended or mute timer
expired [10, §3.3.1.3] – or as NonInteger – integrity loss
reported or wait integrity timer expired [10, §3.5.1.3].
Fact jumpingTrains determines, by comprehension, the
state of field jumpng at each instant: a train was located
in a TTD that became free, and the succeeding is still
free as well. The way the train locations are approx-
imated depends on the inferred status and detected
jumps, and is encoded in fact memoryUpdate [10, §3.3]: if
the train is reporting, the front end location is updated
to the current physical location of the train (and also the
rear end location, if reporting integrity); otherwise, if
the train is not disconnected, try to identify TTD jumps;
otherwise keep the memorised location unchanged.

Auxiliary functions to align the processing of loca-
tion information in our model with the nomenclature
from the reference document. Although the memorised
location of a train is stored, it is in general not used by
the VSS sub-system when a train is disconnected [10,
§3.3.1.3]. This is encoded in functions locationFrnt and
locationRear, for the front and rear end of a train, re-
spectively; function located then calculates all VSSs
occupied by a train between its rear and front ends. In
the cases where the memorised location is to be consid-
ered, the field can be accessed directly (corresponding
functions memorisedFrnt, memorisedEnd and memorised).

Validating the Hybrid ERTMS/ETCS Level 3 Concept with Electrum 7

fact setTimers { // §3.4
always {
setMuteTimer
setDiscPropTimer
. . . } }

pred setMuteTimer { // §3.4.1.2
MuteExpired in MissStartd-Reporting }

. . .
pred setDiscPropTimer { // §3.4.2.2
DiscPropExpired in DiscPropRunning
DiscPropRunning’ =
(DiscPropRunning+DiscPropStart-DiscPropStop)-DiscPropExpired

no DiscPropExpired & DiscPropExpired’ }
fun DiscPropStart : set VSS {
{ v:VSS | some t : Train {
(v in MA[t] and v.state’ = Unknown and

t in MuteExpired’-MuteExpired) or
(v in located[t] and eom[t]) or
(v in located[t] and t in MuteExpired’-MuteExpired) } } }

fun DiscPropStop : set VSS { . . . }
. . .
pred n04 [v:VSS] { // §5.1.1.1

v.state = Unknown
n04A[v] or n04B[v] }

pred n04A [v:VSS] { // §5.1.1.1, #4A
parent[v] not in occupied’ }

pred n04B [v:VSS] { // §5.1.1.1, #4B
some tr:(MA[v])’ {
tr in Disconnected-Disconnected’
v in (locatedFrnt[tr])’.^next } }

. . .
fact stateMachine { // §5.1.1.1
always all v:VSS |
v.state’ = (n01[v] implies Unknown else

n02[v] implies Occupied else
n03[v] implies Ambiguous else
n04[v] implies Free else
n12[v] implies Occupied else
. . .
n11[v] implies Occupied else

v.state) }

Fig. 5 Excerpt of timer events and the state machine.

Finally, when integrity information is missing, there
is a notion of assumed rear location (used in a single
transition, #10A) that approximates the rear end from
the known train length [10, §3.3.4]. Since our model
abstracts length-related information, initially we took
a conservative approach where the assumed rear was
the VSS before the front end location (recall that our
model assumes, as do the operational scenarios, a train
occupies at most two VSSs). However, this assumption
broke operational scenarios (e.g., Scenario 9), where the
assumed rear happens to be the same VSS as the front
end location. Thus our current encoding uses the front
end location as the assumed rear end location, although
this is a potential treat; a possible improvement would
be to introduce (abstract) train lengths that could be
set to concrete values when needed.

For each of the 7 timer types there is a predicate
that enforces its behaviour, whose encoding depends on
the complexity of the start and stop events. Figure 5
presents those of mute (setMuteTimer) and disconnect
propagation (setDiscPropTimer) timers; the remainder
are omitted from the excerpt. Fact setTimers aggregates

these predicates and forces them to hold in each instant.
No particular duration is imposed on timers, so these
predicates only model the possibility of expiration, and
not its enforcement. Since each step does not represent
any particular real-time interval, the free expiration
allows for the designer to test different interleavings.
Electrum has limited support for integers, which could
allow for the eventual codification of real-time timers.
However, we did not find that level of detail to be helpful
in the kind of analyses performed.

Mute timers [10, §3.4.1.2] start when a train re-
ports position information, and stop when a train is
identified as disconnected. Thus, they may expire when
a connected train fails to report information, as en-
coded in predicate setMuteTimer in Fig. 5. Wait integrity
timers [10, §3.4.1.3] follow the same rationale. Notice
how only the upper bound for expired timers is specified,
encoding only the possibility of expiration. For timers
with more complex start conditions (shadow timers [10,
§3.4.1.4,§3.4.1.5] and propagation timers [10, §3.4.2])
functions were defined to collect timers for which those
conditions are met. Function DiscPropStart, e.g., models
the 3 conditions for disconnect propagation timers to
start [10, §3.4.2.2]. Disconnect and integrity loss prop-
agation timers also have complex stop conditions, so
similar functions were defined, as DiscPropStop for the
former. These sets are used to update the set of running
timers by adding those starting and removing those
stopping and expiring (see predicate setDiscPropStop).
All propagation timers in version 1C have at least one
stop event, applied when the VSS state machine finishes
executing, so that they are only processed once [10,
§3.4.2.1.2]. The last constraint on setDiscPropTimer re-
moves expired timers from the succeeding state.

Lastly, the VSS state machine [10, §5.1.1.1] can be
encoded, combining the inferred state of the trains and
the timers, whose outcome is used to issue MAs. Fact
stateMachine in Fig. 5 updates the state of the VSSs by
enforcing the various transitions. Depending on the cur-
rent state of each VSS, transition conditions are tested
in an order that preserves the priorities specified in
the requirements. The structure of the requirements is
preserved, with a predicate defined for each alternative
condition. This translation of the triggering conditions
into our model’s predicates is rather straightforward,
especially with the aligned nomenclature for location
information. As an example, conditions for transition
#4 between unknown and free states are depicted. Due
to the complexity (and occasional ambiguity) of these
conditions, this construction process was iterative with
the encoding of the operational scenarios (Section 4.1.2).
Other than the issue already identified with the assumed
rear end location in transition #10A, the only other con-

8 Alcino Cunha, Nuno Macedo

dition not expressible in our model is #11A regarding
the minimum safe rear end position and the distance
that can be covered within the shadow train timer A. Al-
though this did not affect the operational scenarios and
the verified properties, it would be relevant to exactly
identify the consequences of this omission.

4 Verification & Validation

The Electrum Analyzer provides automatic analysis pro-
cedures that can be used to validate and verify the
developed models through run – generate instances for
which a property holds – and check – check whether a
property holds for all instances – commands. Two alter-
native engines are provided, one bounded (SAT-based)
and one complete (SMV-based) that can be used at
different stages of development. This section describes
how these were used in the development of our model.

4.1 Validation

A conceptual model must be validated against the re-
quirements and with other relevant stakeholders. The
Electrum Analyzer provides support to generate solutions
to the model that satisfy provided properties, allowing
for the specification and exploration of scenarios, as well
as providing a graphical visualizer.

4.1.1 Scenario Visualisation

The Electrum Analyzer provides a graph visualiser for
depicting the found instances, whose appearance can be
customisable through themes. This is essentially an ex-
tension to the Alloy Analyzer to natively support infinite
temporal traces through loopbacks. These logic-agnostic
graphical instances are understandable by stakeholders
without expertise in formal specification, and have pre-
viously proven to be suitable for establishing a common
interpretation of the requirements [22]. We focused on
providing a visualisation theme that allowed both soft-
ware designers and ERTMS/ETCS domain experts to
communicate through a common scheme.

The Analyzer’s theme editor provides basic customi-
sation functionalities (e.g., changing the shape, colour
and border of elements). More customizations can be
performed by defining additional functions in the model,
whose result is calculated at static time by the visualizer.
For instance, one can draw occupied VSSs differently
by creating a function that retrieves all those VSSs:
fun occupied : set VSS {

{ v:VSS | v.state = Occupied } }

Given the theme customizations, the Alloy Analyzer
applies a graph representation algorithm and distributes
nodes among layers, a process that is oblivious of the
underlying semantics of the nodes and edges. The only
mechanism available to the user to change the shape of
this graph is to reverse the direction of edges. In our HL3
model, this resulted in a graph that, although layered
into TTDs, VSSs and trains, did not preserve the order
on TTD and VSS blocks, hindering the readability of
scenarios. To overcome this, we implemented a small
modification of the Electrum Analyzer where information
regarding totally ordered sets (TTD and VSS in HL3) is
passed down to the visualizer and, when possible, used
to order such elements in the same graphical layer.

The developed theme3 depicts HL3 instances and
counter-examples as the snapshot in Fig. 6 for Scenario 2.
TTD sections and VSS subsections appear layered and
ordered, with different colours depending on their cur-
rent state (a textual label is also present). A train repre-
sentation depicts (textually and graphically) its position,
reporting status and EoA. Running and expired timers
are also depicted. Figure 6 in particular denotes a split

event, where a two-carriage train breaks up, one failing
to report integrity and the other becoming disconnected.

4.1.2 Modelling the Operational Scenarios

Electrum specifications can be animated through run

commands that, given an arbitrary desirable property
and a finite scope for the declared signatures, automat-
ically search for satisfying instances. Each signature
scope denotes the maximum (or exactly the) number
of elements that will be considered by the Analyzer.
When performing bounded model checking, the maxi-
mum trace length that will be considered is imposed by
a scope on Time. Once a solution is found, additional
non-isomorphic solutions can be efficiently navigated
through the Analyzer.

This functionality allows the user to quickly explore
loosely defined scenarios and reason about model in-
stances that satisfy properties of varying complexity.
They were heavily used throughout the development
of the model to validate each introduced feature. For
instance, for an initial insight on whether jumping trains
are being detected as expected (field jumpng), the follow-
ing command was specified and executed

run { eventually some jumpng }
for 8 Time, 3 Train, 3 TTD, 8 VSS

which will generate a trace where a jumping train is
detected. Alternative solutions, with arbitrary track

3 http://haslab.github.io/Electrum/ertms_1C.thm

http://haslab.github.io/Electrum/ertms_1C.thm

Validating the Hybrid ERTMS/ETCS Level 3 Concept with Electrum 9

Fig. 6 The first 3 steps of the HL3 operational Scenario 2.

configurations within the scope, can then be quickly
iterated, helping the user detect problematic instances.

The HL3 concept [10, §6] provides a set of oper-
ational scenarios, whose specification and animation
also proved essential to validate the model during de-
velopment, and acted as regression tests for subsequent
changes. All 9 scenarios (and 2 variants of Scenarios 2
and 5) were encoded in Electrum, and their outcome
can be consulted online.4 Our approach to the encoding
of the operational scenarios is presented below. Mod-
ulo some differences due to design decisions already
presented in Section 3 and to (in our view) few incon-
sistencies in the reference document, we were able to
animate every scenario.

As already stated when discussing the architecture
of our HL3 model, scenarios bound the environment

4 https://github.com/haslab/Electrum/wiki/ERTMS

and allow the VSS sub-system to evolve freely. Thus,
we started by modelling as a pred the environment,
comprised by 5 blocks restricting at each state: the
track configuration (actually the same in all scenarios),
the TTD reporting delays, the state of the trains, the
PTD communication, the MA assignments (recall that
no concrete policies are enforced) and the expiration of
timers (recall that no timer duration is imposed).

Specifying tight scenarios with several steps in Elec-
trum is verbose, since LTL does not allow the reference to
concrete time instants, resulting in formulas with nested
after operators. This was manifest when developing the
HL3 model, where every scenario has at least 8 steps.
This led us to explore potential language extensions to
ease the specification of such scenarios, including the
introduction of a new (syntactic sugar) operator: rather
than p and after (q and after r) one can now simply
write p;q;r. Figure 7 presents an excerpt of predicate

https://github.com/haslab/Electrum/wiki/ERTMS

10 Alcino Cunha, Nuno Macedo

pred S2env {
let v11 = V/first, v12 = v11.next, v21 = v12.next . . . {
some disj t1,t2:Train {
// track configuration
v12 in parent[first].end and v31 in parent[last].start
// TTD reporting
always Reports = TTD
// train positions
t1.pos = v12;t1.pos = v12;t1.pos = v21; . . .
always t2.pos = v12
// PTD reporting
split[t1,t2]
after after after after after (historically t1 in Reporting;

t1 not in Reporting;
always t1 in Reporting)

t1 in IntgrtyConfirmed;t1 not in IntgrtyConfirmed; . . .
// MA assignments
t1.EoA = v12;t1.EoA = v12;always t1.EoA = v33
t2.EoA = v12;always no t2.EoA
// timer expiration
after after after (historically no IntgrtyLossPropExpired;

v12 = IntgrtyLossPropExpired)
. . . } } }

pred S2ok {
let v11 = V/first, v12 = v11.next, v21 = v12.next . . . {

// final VSS state
eventually always {
(v11+v12).state = Unknown
v31.state = Occupied
(v21+v22+v23+v32+v33).state = Free }

// timer start events
v12 = IntgrtyLossPropRunning;v12 = IntgrtyLossPropRunning’
D/first.next = ShadwARunning’’’’’’ } }

Fig. 7 Excerpt of the Scenario 2 specification.

S2env encoding the environment of Scenario 2 relying
on LTL and this new operator.

At this point run commands were used to animate
the scenarios and inspect the behaviour of the VSS sub-
system. Since the trace length of scenarios is known, the
bounded engine of the Analyzer is better suited to for
this task. Results are visualized as depicted in Fig. 6 for
Scenario 2. Unsatisfiability of these commands usually
amounted to issues in the dynamic environment model.

For each scenario, a predicate denoting the expected
outcome for the VSS sub-system was then specified,
which tests whether timers are correctly triggered and
whether the expected final state of the VSS is reached,
and thus the consistency of the scenario under our model.
It also tests whether the final state is stable, in the sense
that no spurious state changes are triggered (recall that
traces are always infinite, so a stable final state should
loop into itself). Figure 7 denotes such predicate S2ok

for Scenario 2, which can finally be simulated through
the following command:
run { S2env and S2ok }
for exactly 8 Time, exactly 2 Train,

exactly 3 TTD, exactly 8 VSS

At this point the environment predicate is known to be
consistent, so unsatisfiability usually amounted to issues
in VSS sub-system model. Occasionally however, incon-
sistencies between the VSS sub-system requirements
and the reference operational scenarios were detected,

which are discussed in Section 5. It could also represent
non-stable final states, which required longer traces to
form a loop (e.g., Scenario 9, see Section 5), meaning
that the trace length scope needed to be increased.

All operational scenarios have 3 TTDs, 8 VSSs and
either 1 or 2 trains, so the scopes can be bound exactly
in the commands. At the beginning of the development
of HL3, scope Time denoted the maximum trace lengths
that would be explored in bounded analysis. A scope n
on Time would launch an iterative process to check traces
up to n length. This is important, since the absence
of a counter-example for length n does not entail its
absence for some m < n. However, in the HL3 model we
are aware of the exact number of steps that comprises
each scenario, and, since this number is not particularly
small (at least 8 states), the incremental iterative process
encumbers the solving process. Thus, the Analyzer was
adapted to support ranges or exact bounds for Time,
allowing for the faster generation of scenarios.

Finally, once the scenario was stable and shown to
be consistent, we encoded a check predicate to assert
whether the expected behaviour of the VSS sub-system
is the only one acceptable under our model:
check { S2env implies S2ok }

for exactly 8 Time, exactly 2 Train,
exactly 3 TTD, exactly 8 VSS

Counter-examples could identify under-specified tran-
sitions or timer events, but usually regarded under-
specified environment restrictions on scenarios.

4.2 Verification

Proper validation increased our confidence that the
model effectively abstracts the behaviour specified in the
HL3 concept. The next logical step is to verify whether
such model behaves as expected. However, other than
the general goal of avoiding collisions, there is no ex-
plicit notion of correctness defined in [10]. Moreover,
this correctness is dependent on behaviour that is out-
side the scope of [10], namely the policy for extending
and shortening MAs, as well as how the train acts upon
those MAs. As a consequence, this exercise was mainly
exploratory, although we hope that these preliminary
results can foment the discussion among domain experts
and lead to more formally defined safety requirements
for implementations of the HL3 concept.

As should be expected, without additional restric-
tions on the train movement in relation to the assigned
MAs, no safety property would hold. After analysing
counter-examples, two additional assumptions were de-
fined (predicate strictMove, not shown): i) trains with
MAs assigned always move within them, and ii) trains

Validating the Hybrid ERTMS/ETCS Level 3 Concept with Electrum 11

without MAs assigned or with OS MAs do not move into
sections with other trains on it. Recall that in our model
disconnected trains may have their MAs removed, so
strictMove forces these trains to act “on sight” unaware
of MAs. It should be noted however, that there are (un-
specified) reasons for trains to move outside the assigned
MAs [10, §1.2.3.3], as in Scenario 8, where a connected
train moves into VSS21, outside its assigned EoA VSS12.
Although train movement was further restricted, MA
assignment policies were still left under-specified.

We started by exploring properties regarding the
behaviour of the VSS state machine. A reasonable cor-
rectness property is that, if communication never fails
nor integrity problems occur (predicate noProblems, not
shown), only free or occupied VSSs should occur. In fact,
every VSS with a train on it should be set as occupied
and the others as free. Electrum allows the definition
of assertions as regular formulas, so that they can be
re-used in multiple check commands. For instance, the
following asserts whether VSSs with trains in it are
always marked as occupied
assert trains_Occupied {

(init and
always (strictMove and noProblems)) implies

always Train.pos.state = Occupied }

where state predicate init encodes a sensible initial
state, forcing all trains to be reporting and the VSSs to
have a consistent state.

Assertions were then checked for increasing scopes
using the bounded engine until a considerable level of
confidence was attained. For instance, trains_Occupied
was shown to hold up to the following scope:
check trains_Occupied
for 10 Time, 8 VSS, 3 TTD, 3 Train

This encompasses 63 different configurations (21 tracks,
with up to 3 trains). Finally, the complete model check-
ing engine was employed, guaranteeing that the property
holds for traces of any length (the scope on Time is ig-
nored in this mode), albeit with smaller scopes (5 VSSs,
2 TTDs and 2 train, 8 configurations).

Other interesting safety properties should allow for
failures in communication, which necessarily involves
reasoning about timers. Timers are used to avoid unnec-
essary state changes, but if assumed to expire instan-
taneously should guarantee the correct assignment of
states to VSSs at all times. Our model does not impose
particular timer durations, but they can be forced to
expire instantaneously by declaring that the running
signatures are contained in the expired ones (predicate
instTimers, not shown). Then it would be sensible to
expect, e.g., that VSSs with trains are never free:
assert timers_Free {

(init and
always (strictMove and instTimers)) implies
always Train.pos_frnt.state != Free }

Unfortunately, counter-examples are found to this prop-
erty, such as the one in Fig. 8, with a train physically
located in free VSS. We were unable to find sensible
restrictions to train movement and MA assignment to
render this property true. More complex assertions could
test alternative timer durations and reason about possi-
ble interleaving issues among different types of timers.

A more general goal of HL3 and the VSS manage-
ment sub-system is to preserve the safety of the trains,
i.e., that no collision occur:
pred noCollisions {

no disj t1,t2:Train | some t1.pos&t2.pos }
assert no_collisions {

(init and
always (strictMove and instTimers)) implies
always noCollisions }

Without additional restrictions on the environment, this
property does not hold in our model. We explored pos-
sible stronger environmental constraints, and have been
able to show that, for instance, if i) there are no de-
lays on TTD reporting and ii) disconnected trains have
their MAs removed, then no 2 trains ever collide. As
expected, these are too strong and do not hold in all op-
erational scenarios. Moreover, under our formalization
they are not sufficient to avoid collisions if 3 trains are
considered.

5 Other Observations

5.1 Issues with the Reference Document

Validation and verification allowed us to detect possible
ambiguities or under-specifications in the HL3 concept.
Note that this analysis is essentially based on [10] with-
out any a priori domain knowledge by the authors. Some
relevant issues were identified in version 1A of the doc-
ument, and have been fixed as of version 1C; they are
included in the discussion for the sake of completeness.

Two of these issues regarded transitions in the VSS
state machine, namely #1A and #5A, that when codi-
fied as described in [9, §5.1.1.1] were inconsistent with
the operational scenarios. Condition #1A triggered the
transition between a free VSS into unknown whenever
the parent TTD was occupied without a train located
or without an MA assigned. Yet some scenarios did
not reflect this behaviour, like Scenario 7, where VSS33
should transition to unknown since no train was located
in the occupied TTD30. At the time we proposed drop-
ping the second disjunct or converting the condition
into a conjunction. The latter is now encoded in version

12 Alcino Cunha, Nuno Macedo

Fig. 8 The 3 steps of a minimal counter-example for instantaneous timer expiration.

1C of the reference document. Transition #5A between
unknown and ambiguous should be triggered whenever
a train was located in the VSS. For the remainder tran-
sitions, “located” was assumed to denote the last known
position of the train. Yet, several scenarios broke under
this interpretation for #5A, like VSS22 at Scenario 4
that remained unknown even though the last reported
position of the train was that VSS. A more flexible no-
tion of location for #5A had to be considered to match
the scenarios’ behaviour. In version 1C of the document,
several conditions were modified and the location in-
formation to be used has been clarified (namely, when
memorised information should be used). This issue no
longer occurs in version 1C of our model.

Another issue regarded the indefinite expiration of
timers. Although [9, §3.4.2.1] stated that expired timers
remained expired until the start conditions were met
again, this behaviour did not seem to be followed in
the operational scenarios. For instance, in Scenario 9, if
the ghost propagation timer remained expired, VSSs at
TTD30 would transition from free to unknown according
to #1F. At the time, we did not implement indefinite
expiration of timers, so that they would only be pro-
cessed once. Version 1C of the reference document fixed
this issue and no longer imposes indefinite expiration
for propagation timers [10, §3.4.2.1].

New issues were identified in version 1C of the refer-
ence document, mainly regarding timers. First, the stop
event conditions for disconnect propagation timers [10,
§3.4.2.2.2] seem to be too loose: condition b) is triggered
if a VSS becomes free, which would not allow the timer
at VSS12 to expire at step 5 of Scenario 6. The same
applies to the stop event conditions for integrity loss
propagation timers [10, §3.4.2.4.2]: condition a) tests
whether all trains in the VSS confirm integrity, which
breaks every scenario where such timers are relevant.
We believe it is more sensible to test the integrity of
the trains for which that timer had started (much like
stop condition a) of the disconnect propagation timer,
that tests the connectivity of the trains for which that
timer had started). Unfortunately, this still breaks Sce-
nario 2, where the timer is triggered even though train
1 confirms integrity. In Scenario 3 there seems to be

an inconsistency due to legacy from version 1A: the
shadow timer B is said not to start due to a condition
on the rear end of the train, but as of version 1C of the
reference document, the start event of shadow timer B
has no such condition [10, §3.4.1.5].

A (possible) issue identified when encoding the op-
erational scenarios is that the VSS state machine may
not stabilize for fixed environments. Namely, Scenario 9
does not stabilize in the specified final state: as de-
picted in Fig. 9, even though the environment does not
change, the state of VSS21 keeps alternating between
unknown and ambiguous, triggered by transition #5A,
since Train$0 never updates its rear position.

Although MA policies are not the focus of the HL3,
the lack of information regarding the impact of such
assignments proved confusing during the formalization.
For instance, when modelling version 1A, two kinds of
MAs seemed relevant: FS MAs up to a specific VSS
and OS MAs over the full track. Yet, version 1C uses
OS MAs limited by VSSs and FS MAs with optional
OS mode. Their impact was unclear to us, as they did
not seem to affect the VSS sub-system requirements
nor the operational scenarios. Moreover, our assumption
for verifying safety properties, that connected trains
respect assigned MAs, is broken in Scenario 8, although
the phenomenon is not mentioned in its description. If
depicting this unpredictable behaviour in a scenario was
intended, it would be helpful to clearly state so in the
description. In general, although the reference document
makes no claim of completeness, it would be helpful for
validation purposes to clarify the criteria followed in the
description of the scenarios. For instance, even though
the scenarios often mention when timers start running,
we have found timers (mostly shadow timers) that are
triggered in our model but not reported as so in the
scenarios (e.g., Scenario 4., shadow timer A at TTD10,
or Scenario 5., shadow timer B at TTD10).

5.2 Electrum Evaluation

The analysis of the HL3 under Electrum triggered im-
provements on the language and its Analyzer. These

Validating the Hybrid ERTMS/ETCS Level 3 Concept with Electrum 13

Fig. 9 2-step non-stabilizing loop at the end Scenario 9.

have already been introduced in previous sections, and
aim essentially to ease the specification and animation
of scenarios: i) the long and rich traces of the case study
motivated the introduction of a new operator ; to ease
the specification of concrete traces; ii) the long traces
also motivated the introduction of finer scopes enforced
over their length, reducing the solving times by focusing
on specific lengths; iii) and the need to present such
complex scenarios in a manner understandable by all
interested parties (as close as possible to that from the
reference document) led us to tweak the visualizer to
consider information from totally ordered atoms.

The Analyzer allowed for the automatic generation of
scenarios and checking of assertions. Analyses were run
in a quad-core Intel Core i5-4200U Haswell with 4GB
RAM, the bounded engine relying on MiniSAT and the
unbounded on nuXmv. Bounded performance of scenario
generation ranged from 11s for Scenario 1 to 34s for
Scenario 9. Regarding the safety properties, bounded
analysis of trains_Occupied, e.g., took 287s for 8 VSSs,
3 TTDs and 2 trains (42 configurations), for 8 instants
of time. The same property, but for 5 VSSs and 2 TTDs
(8 configurations), took 514s in the unbounded engine.

Bounded model checking can sometimes have un-
predictable effects for those unaccustomed with its se-
mantics. As already reported, the infinite traces forbid
deadlocks at the last state, forcing the trace to loopback
into a previous state. This may lead to unexpected un-
satisfiable commands and the need to extend traces (on
a positive note, this also forced us to reason about the
stability of the VSS state machine).

6 Comparison

6.1 Comparison with other submissions

The comparison with other HL3 submission focuses on
differences of methodology, capabilities of the formalism
and toolkits, and main outcomes, rather than on the
interpretation and modelling of the HL3. Note that they
were developed for version 1A of the reference document.

Submissions followed different modelling approaches.
Hansen et al. [13] modelled HL3 in B [1] while Mammar
et al. [20] and Abrial [3] relied on Event-B [2], supported
by the Rodin toolkit [4]. B-related approaches require
the system to be explicitly encoded as a state machine.
Invariants over them can then be specified and verified,
with no direct support for temporal logic. Arcaini et
al. [5] propose an approach based on the Spin explicit
model checker [15] by modelling the HL3 in the Promela
language. Models are a set of processes (state variables
and statements to update them) over which assertions,
or more general LTL properties, can be checked. In
contrast in Electrum there is no explicit notion of state
machine, which is implicitly defined by full first-order
LTL restrictions. Likewise, the specification of properties
can rely on the full Electrum language, although we
mostly verified safety properties.

Other authors relied on higher-level, graphical mod-
elling languages, which were then translated into formal
models, arguing that they promote a better understand-
ing of the model between the stakeholders. Dghaym et
al. [8] diagrammatically modelled HL3 in iUML-B [24,
23] class diagrams and state machines in Rodin, which
are converted into Event-B. Fotso et al. [12] encode

14 Alcino Cunha, Nuno Macedo

the HL3 in a higher-level formalism, SysML/KAOS [21],
through goal diagrams and domain models. These are
translated into B System, a variant of Event-B supported
by Atelier-B,5 creating skeletons for events.

Our model encodes arbitrary track configurations
(within a given scope for VSSs and TTDs), supporting
the analysis of TTDs with different number of sub-blocks.
As far as we can tell, the other approaches encode track
partition as constants of the model [3,20,8,12], in the
initial state of the state machine [5] or as input configu-
rations [13]. This makes it harder to verify properties
for all possible configurations of track partitions.

The kinds of properties verified varied considerably.
In [13] invariants regarding train status and location
were specified and model checked by ProB [18], which
generates counter-examples to broken properties. In [3],
all invariants relevant for a simplified HL3 model, that
regard train status and VSS states, were proved using
Rodin, 70% automatically and the remainder interac-
tively. [20] focused on no collision properties and deter-
minism of VSS state machine. ProB was used to quickly
find counter-examples and Rodin to carry out proofs.
In [8] the main addressed safety property was also the
absence of collisions, with most of the proof obligations
generated by Rodin automatically discharged. In [12]
Rodin is used to (automatically and interactively) ver-
ify invariants and the proof obligations generated by
the translation from SysML/KAOS. They conclude that
collisions may not be avoided for disconnected trains
since they may move freely. In [5] the safety properties
were verified by model checking in Spin: trains do not
collide and do not move beyond the assigned MAs. The
authors also show that the VSS state machine is not de-
terministic. The Electrum Analyzer only supports model
checking, and not theorem proving.

Our approach allows the user to animate models
to quickly identify problematic issues by generating in-
stances for which certain restrictions (in full first-order
LTL) hold. Other frameworks provide animation func-
tionalities that have been used by the other submis-
sions, namely ProB for Event-B approaches [12,8,20]
(although few details are provided on how cumbersome
or helpful the process was), and Spin for the Promela
models [5]. Unlike the Electrum Analyzer, the anima-
tors provided guided simulation where the user selects
the next state interactively. Although this can prove
infeasible for larger models [5], we believe that such func-
tionality is helpful in early model development stages,
and is one of our current focus of research for Electrum.
The Analyzer does provide an alternative scenario explo-
ration functionality by allowing the user to randomly
iterate over alternative, non-isomorphic instances.

5 https://www.atelierb.eu

Although simulation is helpful for scenario explo-
ration, there is often the need to encode and replay
specific scenarios, e.g., when reference examples are pro-
vided, or to be used as regression tests. In particular, we,
as others, relied heavily on the inspection and codifica-
tion of the provided operational scenarios. In [20], ProB
was used to animate the operational scenarios, but no
information is provided regarding the process and how
cumbersome it was. In [13] all operational scenarios were
encoded as environment models, but again no details
regarding this process are provided. In [5] all operational
scenarios were animated, but since the authors could
not rely on the guided simulation functionalities of Spin,
an alternative approach was followed. The state of every
step in the scenarios was encoded in Promela, and the
model transitions were adapted to read specific states
when a scenario was specified as an input parameter. In
Electrum scenarios can be directly encoded as axioms
using full LTL formulas, without imposing any change
on the remainder of the model. The use of declarative
LTL, we argue, also results in more readable scenarios
than explicitly specifying the complete state of each
step. Issues in the reference document were detected in
this process in [5] and in [13], including in the latter the
issue with transition #1A we also identified.

The ability to graphically visualize model instances
promotes the communication between the interested par-
ties. In [5] standard output printing instructions were
added to the model definition to inspect scenarios. ProB
supports custom visualizers, and in [13] the authors de-
veloped one such plug-in that was used both for valida-
tion and in the executable plug-in, which proved helpful
to communicate among the team and domain experts.
Although we believe Alloy’s / Electrum’s visualization
functionalities to be quite useful, the ability to further
customize visualization in complex projects would be
helpful. We are currently studying this topic [6].

An issue not addressed by this work is how to obtain
an executable component from our model. B-based ap-
proaches are naturally better-suited for this, as model
refinement is a key feature of the formalism, which is
still an unexplored issue in Alloy/Electrum. An alter-
native approach is followed in [13], where ProB’s Java
API is used to create an executable component that
was integrated into a real Radio Block Centre system
that processes trackside information and issues MAs. It
would be interesting to assess whether Electrum’s Java
API would be feasible this purpose, performance-wise.

6.2 Comparison with Alloy

Being an extension to Alloy, it is important to compare
the verbosity and readability of Electrum models with

https://www.atelierb.eu

Validating the Hybrid ERTMS/ETCS Level 3 Concept with Electrum 15

those developed in normal Alloy. Thus, a similar encod-
ing of the version 1A of the HL3 concept was developed
in Alloy as well,6 which, given the complexity of the case
study, enabled us to clearly picture the cons and pros of
the two languages. The static structure of the system
is identical in either language. In Alloy however, time,
mutability and dynamic properties must be explicitly
modelled. This requires the modelling of traces – by
declaring a new signature Time and imposing a total
order over it – and the conversion of all variable signa-
tures and fields to a state idiom [17] – where, e.g., field
pos_frnt would be declared with type VSS one → Time.
Temporal formulas must also explicitly quantify over
time instants, i.e., atoms of Time. For instance assertion
no_collisions could take the shape:
pred noCollisions[t:Time] {
no disj t1,t2:Train | some t1.pos.t&t2.pos.t }

assert no_collisions {
(init[first] and
all t:Time | strictMove[t] and instTimers[t])

implies all t:Time | noCollisions[t] }

The tradeoff is that Electrum does not allow quantifica-
tion over time instants. For instance, to retrieve the last
reported train location in Alloy one can retrieve the last
state s1 in which a train reported, treat it as a first-level
entity throughout relational formulas and expressions,
and use it to query the state of the system at that state:
let s1 = max[s.*prev&t.Reporting] |
t.pos_frnt.s1

Various alternative Electrum encodings can be employed
for the same purpose, including using LTL with past op-
erators or introducing additional variables in the model.
The latter was followed in our model, where a field
mem_fr was introduced to register the location whenever
a train is Reporting (fact memoryUpdate), which is then
retrieved by function locatedFrnt (Fig. 4). An alterna-
tive to introducing new fields would be to rely on the
since past operator directly in locatedFrnt:
{ v:VSS | (t not in Reporting) since

(t in Reporting and v = t.pos_frnt) }

Other kinds of expressions also require a different for-
mulation in Electrum. For instance, evaluating a field r

over every instant except t can be encoded in Alloy as
r.(Time-t), while in Electrum it must formalized as an
LTL formula.

7 Conclusions

This paper reports on the modelling, validation and
verification of the Hybrid ERTMS/ETCS Level 3 con-
cept, version 1C, in Electrum, extending and improving

6 http://haslab.github.io/Electrum/ertms.als

previous work on version 1A [7]. Electrum proved well-
suited to model most relevant features of the HL3, as
well as the provided operational scenarios. Its Analyzer
allowed the automatic animation of scenarios and verifi-
cation of simple safety properties. We believe that the
visualization of the scenarios/counter-examples with the
customized theme also promotes its understanding by
different stakeholders.

The complexity of the HL3 concept has tested Elec-
trum and its Analyzer to their limits, allowing us to fully
explore their potential and identify possible improve-
ments and future lines of research. Some improvements
(minor changes to the visualizer, a new temporal opera-
tor for formulas over traces, finer control on the scope
of trace lengths) were already implemented throughout
the development of the HL3 model. The proposed model
could still be further developed to allow reasoning about
some HL3 aspects that were abstracted in the current
version, including train lengths and forcing the stepwise
VSS state update, although we expect them to have a
considerable toll on performance.

The predicates encoding the operational scenarios
proved to be quite verbose, so we are currently explor-
ing potential extensions to the language to address this,
including variants of temporal logic with support for
intervals that would allow the definition of properties
over ranges of steps. It should be noted however that
Electrum’s (and Alloy for that matter) greatest strength
is on the exploration of scenarios, and not the specifica-
tion of fixed instances. Although we advocate that the
current graphical feedback can be understood by stake-
holders without background on formal specification, we
also believe that there is room for improvement. We are
currently working on techniques specifically tailored for
the visualization and animation of traces [6]. Another
line of research that we are currently pursuing, and that
would prove helpful for modelling and validating sys-
tems of this complexity, aims to provide Electrum with
guided simulation functionalities.

We hope that this preliminary work can help clarify
some ambiguities in the HL3 concept and motivate the
ERTMS/ETCS community to explore the potential of
formal specification and analysis methodologies.

Acknowledgements The authors would like to thank David
Chemouil for the support provided during the model checking of
the model. This work is financed by the ERDF – European Re-
gional Development Fund through the Operational Programme
for Competitiveness and Internationalisation - COMPETE 2020
and by National Funds through the Portuguese funding agency,
FCT - Fundação para a Ciência e a Tecnologia within project
POCI-01-0145-FEDER-016826.

http://haslab.github.io/Electrum/ertms.als

16 Alcino Cunha, Nuno Macedo

References

1. J. Abrial. The B-book - assigning programs to meanings.
Cambridge University Press, 2005.

2. J. Abrial. Modeling in Event-B - System and Software
Engineering. Cambridge University Press, 2010.

3. J. Abrial. The ABZ-2018 case study with Event-B. In ABZ,
volume 10817 of LNCS, pages 322–337. Springer, 2018.

4. J. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta,
and L. Voisin. Rodin: an open toolset for modelling and
reasoning in Event-B. STTT, 12(6):447–466, 2010.

5. P. Arcaini, P. Jezek, and J. Kofron. Modelling the hybrid
ERTMS/ETCS level 3 case study in Spin. In ABZ, volume
10817 of LNCS, pages 277–291. Springer, 2018.

6. R. Couto, J. C. Campos, N. Macedo, and A. Cunha. Improv-
ing the visualization of Alloy instances. In F-IDE@FLoC,
volume 284 of EPTCS, pages 37–52, 2018.

7. A. Cunha and N. Macedo. Validating the hybrid ERTM-
S/ETCS Level 3 concept with Electrum. In ABZ, volume
10817 of LNCS, pages 307–321. Springer, 2018.

8. D. Dghaym, M. Poppleton, and C. Snook. Diagram-led
formal modelling using iUML-B for hybrid ERTMS level 3.
In ABZ, volume 10817 of LNCS, pages 338–352. Springer,
2018.

9. EEIG ERTMS Users Group. Hybrid ERTMS/ETCS level
3 – principles. Available at http://www.ertms.be/sites/
default/files/2018-03/16E0421A_HL3.pdf 16E042, ver-
sion 1A, 2017.

10. EEIG ERTMS Users Group. Hybrid ERTMS/ETCS level
3 – principles. Available at https://ertms.be/sites/
default/files/2018-07/16E0421C_HL3-clean.pdf
16E042, version 1C, 2018.

11. ERA, UNISIG, and EEIG ERTMS Users Group. Glossary
of unisig terms and abbreviations. Available at https:
//www.era.europa.eu/filebrowser/download/492_en
SUBSET-023, issue 3.3.0, 2016.

12. S. Fotso, M. Frappier, R. Laleau, and A. Mammar. Modeling
the hybrid ERTMS/ETCS level 3 standard using a formal
requirements engineering approach. In ABZ, volume 10817
of LNCS, pages 262–276. Springer, 2018.

13. D. Hansen, M. Leuschel, D. Schneider, S. Krings, P. Körner,
T. Naulin, N. Nayeri, and F. Skowron. Using a formal B
model at runtime in a demonstration of the ETCS hybrid
level 3 concept with real trains. In ABZ, volume 10817 of
LNCS, pages 292–306. Springer, 2018.

14. T. S. Hoang, M. Butler, and K. Reichl. The hybrid ERTM-
S/ETCS level 3 case study. In ABZ, volume 10817 of LNCS,
pages 251–261. Springer, 2018.

15. G. J. Holzmann. The SPIN Model Checker - primer and
reference manual. Addison-Wesley, 2004.

16. INESC TEC and ONERA. Electrum Analyzer, v1.0.
Available under the MIT License at https://github.com/
haslab/Electrum/releases/tag/v1.0, 2018.

17. D. Jackson. Software Abstractions: Logic, Language, and
Analysis. MIT Press, revised edition, 2012.

18. M. Leuschel and M. Butler. ProB: A model checker for B.
In FME, volume 2805 of LNCS, pages 855–874. Springer,
2003.

19. N. Macedo, J. Brunel, D. Chemouil, A. Cunha, and D. Ku-
perberg. Lightweight specification and analysis of dynamic
systems with rich configurations. In SIGSOFT FSE, pages
373–383. ACM, 2016.

20. A. Mammar, M. Frappier, S. Fotso, and R. Laleau. An
Event-B model of the hybrid ERTMS/ETCS level 3 stan-
dard. In ABZ, volume 10817 of LNCS, pages 353–366.
Springer, 2018.

21. A. Mammar and R. Laleau. On the use of domain and
system knowledge modeling in goal-based Event-B specifi-
cations. In ISoLA, volume 9952 of LNCS, pages 325–339,
2016.

22. J. M. Moreira, A. Cunha, and N. Macedo. An ORCID based
synchronization framework for a national CRIS ecosystem.
F1000Research, 4(181), 2015.

23. C. Snook. iUML-B statemachines. In Proceedings of the
Rodin Workshop 2014, pages 29–30, 2014. Available at
http://eprints.soton.ac.uk/365301/.

24. C. Snook and M. Butler. UML-B: formal modeling and
design aided by UML. ACM Trans. Softw. Eng. Methodol.,
15(1):92–122, 2006.

http://www.ertms.be/sites/default/files/2018-03/16E0421A_HL3.pdf
http://www.ertms.be/sites/default/files/2018-03/16E0421A_HL3.pdf
https://ertms.be/sites/default/files/2018-07/16E0421C_HL3-clean.pdf
https://ertms.be/sites/default/files/2018-07/16E0421C_HL3-clean.pdf
https://www.era.europa.eu/filebrowser/download/492_en
https://www.era.europa.eu/filebrowser/download/492_en
https://github.com/haslab/Electrum/releases/tag/v1.0
https://github.com/haslab/Electrum/releases/tag/v1.0
http://eprints.soton.ac.uk/365301/

	Introduction
	Requirements and Modelling Strategy
	Model Details
	Verification & Validation
	Other Observations
	Comparison
	Conclusions

