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ABSTRACT
Dynamic software product lines (DSPLs) combine the ad-
vantages of traditional SPLs, such as an explicit variabil-
ity model connected to an integrated repository of reusable
code artefacts, with the ability to exploit a system’s vari-
ability at runtime. When a system needs to adapt, for ex-
ample to changes in operational environment or functional
requirements, DSPL systems are capable of adapting their
behaviour dynamically, thus avoiding the need to halt, re-
compile and redeploy. The field of DSPL engineering is
still in formation and general-purpose DSPL development
languages and tools are rare. In this paper we introduce
a language and execution environment for developing and
running dynamic SPLs. Our work builds on ABS, a lan-
guage and integrated development environment with dedi-
cated support for implementing static software product lines.
Our ABS extension advances the scope of ABS to dynamic
SPL engineering. Systems developed using ABS are com-
piled to Java, and are thus executable on a wide range of
platforms.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; D.3.3
[Programming Languages]: Language Constructs and
Features

Keywords
Dynamic Software Product Lines, Dynamic reconfiguration,
Runtime adaptation, Delta modelling

1. INTRODUCTION
Various application domains require systems that run con-

tinuously and without interruption. This is especially true
of highly-available applications such as mission critical soft-
ware. At the same time, user requirements as well as con-
ditions in the environment in which the system runs can
vary over time. Such scenarios motivate the adoption of
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systems that can react to external variations by adapting
themselves dynamically, in order to exhibit optimal per-
formance and functionality under all conditions, while also
eliminating upgrade-related downtime. One approach pro-
posed to address this problem is dynamic software product
lines (DSPL), which support the generation of system vari-
ants at runtime [3]. In other words, a deployed DSPL system
that behaves as a certain product can be reconfigured (i.e.,
adapted) to behave as a different, valid product without the
need to halt the system, recompile and redeploy.

While programming language support for static software
product lines has been investigated extensively [23, 2, 27],
comparable support for dynamic product lines is less well
explored [3]. Dynamic reconfiguration is typically consid-
ered from the high-level perspective of feature or component
modelling [16, 4, 22]. Among the methodologies for develop-
ing dynamic SPLs, delta-oriented programming (DOP) [27]
is a relatively recent proposal. DOP handles changes to
the set of selected features by triggering the application of
deltas; this results in a program transformation, as deltas
can add, modify and also remove code. The lower level
support required for such dynamic transformations is avail-
able [18, 21, 30] and some of this has crept into features
relevant for SPL engineering [10]. However, we do not know
of any tool and language support for DOP-based DSPL.

This paper addresses the problem in the context of the
Abstract Behavioural Specification language (ABS) [31], a
recent specification and programming language developed
in part by the current authors. ABS was chosen because
it already offers comprehensive support for (static) SPL de-
velopment based on DOP. The contribution of this work
is threefold. First, we introduce support for modelling dy-
namic variability in the ABS language. Second, we intro-
duce MetaABS, a reflective layer for the ABS language that
enables introspection and manipulation of the running pro-
gram from within itself, effectively enabling auto-adaptive
models. Third, we develop a runtime engine that supports
changing a running system incrementally, by applying deltas
and state transfer functions, effectively modifying the sys-
tem’s structure (interfaces, classes, etc.) and objects, and
also supporting changes to the variability model itself.

Static and dynamic product configuration in ABS differ in
two key aspects: First, static product configuration always
starts with the base product and applies a sequence of modi-
fications until obtaining any of the products specified by the
product line. Dynamic product reconfiguration starts with
any product already configured using the above process, and
applies a set of modifications to obtain a new product (out



of a specified set of valid products). The second aspect is the
necessity to adapt the program’s runtime state in addition
to adapting its structure.

The paper is organised as follows. Section 2 provides the
necessary background on the ABS language. The rest of
the paper presents our contributions. Section 3 details the
ABS language elements for modelling dynamic SPLs and de-
scribes auto-reconfiguration using MetaABS. Section 4 de-
scribes the back-end implementation that enables the con-
current reconfiguration of systems at runtime. Section 5 ex-
plains how ABS supports openly adaptive models. Section 6
discusses related work and Section 7 draws our conclusions
and highlights future work.

2. BACKGROUND: THE ABS LANGUAGE
The ABS language allows the precise modelling and anal-

ysis of concurrent systems, focusing on their functionality
while abstracting from concerns such as concrete resources,
deployment scenarios and scheduling policies [20]. At the
same time ABS provides modelling concepts for specifying
variability incrementally from the level of feature models
down to object behaviour [7, 1]. Exploiting this variability
is, however, until now limited to compile time. This section
briefly introduces ABS, focusing on its concurrency model
and its variability mechanisms.

2.1 Concurrency Model
The concurrency model of ABS is based on active objects,

asynchronous method calls, and futures. Asynchronous method
calls trigger concurrent activities, as both the calling and
the called methods run in parallel. Futures enable the call-
ing process to later retrieve the result of an asynchronous
computation. In ABS, concurrent objects can be collected
in concurrent object groups (COGs) [20]. COGs are active
runtime entities possessing their own thread; objects inside
the same COG share a common thread, scheduler and mes-
sage queue—a COG is thus a locus of concurrency control
of a collection of objects. Methods execute as tasks inside a
COG and use cooperative multitasking, meaning that they
release control of the thread only at designated points, using
await and suspend statements. An await(guard) statement
causes the process to suspend until the guard is true. Sus-
pension of a process give another process in the same COG
the opportunity to run. Naturally, control of the thread is
relinquished whenever a method finishes.

2.2 Variability
Software variability is modelled in ABS following common

SPL engineering practice [6]. This includes a feature model
that defines the system variants abstractly using features
and feature attributes, and a set of code components called
deltas that implement units of variable behaviour. The two
are connected via a product line configuration description
that specifies for which feature combinations each delta is
applicable (details omitted here). A product is defined in
terms of a set of selected features and attribute values. For
an in-depth introduction to the variability modelling capa-
bilities of ABS we refer to Clarke et al. [7].

The delta-oriented programming paradigm [27] is a soft-
ware development approach in which program variants are
derived from a core program by applying a set of structural
program transformations called deltas. The core defines the
set of classes and interfaces that form a base product. Deltas

express the addition, removal, or replacement of program el-
ements such as classes, interfaces, methods, and fields.

module Chat;
interface Client { ... }
interface Text extends Client {
Unit message(Client client, String msg);

}
class ClientImpl implements Client, Text {
Unit message(Client client, String msg) { ... }

}

Figure 1: A core module of the chat SPL

As a simple example we introduce an SPL of chat ap-
plications, which will be extended in the following section
to a dynamic SPL. The core of the chat system (Figure 1)
consists of the classes needed to construct a chat product
that only supports text-based communication. Variants of
this system add support for voice and video communication,
the necessary code being supplied by deltas. Figure 2 shows
a delta DVoice that adds voice functionality by introducing
new classes and interfaces, and modifying the core imple-
mentation of the class ClientImpl.

delta DVoice; // modify core to add voice functionality
uses Chat;
adds interface Voice extends Client {

Call call(Client client);
}
modifies class ClientImpl adds Voice {

adds List<Call> ongoingCalls;
adds Call call(Client c) { ... }

}
adds interface Call { ... }
adds class CallImpl implements Call { ... }

Figure 2: Definition of delta modules

3. EXTENDING ABS FOR DYNAMIC RE-
CONFIGURATION

This section describes the extensions to the ABS language
to support dynamic product lines. How these are compiled
and the runtime support for them are described in Section 4.
A DSPL in ABS is a set of software products that are avail-
able at runtime, together with a reconfiguration decision
model that describes the variability of the system at run-
time as a set of reconfiguration steps. A reconfiguration
takes place between two products and adapts the current
product’s structure and state (Figure 3). The possible re-
configurations between products are specified in a reconfig-
uration decision model (Section 3.1). The reconfiguration is
performed by dynamically applying deltas (Section 3.2), and
the state of objects is transformed according to state trans-
formation functions declared in a state update (Section 3.3).
As a result of reconfiguration, a different product becomes
active and the system behaves according to the specification
of the new product. That new product can be adapted into
yet another product and so forth. Throughout the paper we
refer to the product that is about to be adapted as the cur-
rent product and the product obtained after adaptation as
the target product. Each DSPL specification needs an initial
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Figure 3: Elements involved in a reconfiguration

product, which is the product that has been validated and
configured statically from the core and is active when the
system is deployed. Reconfiguration of a DSPL can be initi-
ated within the product line using auto-reconfiguration code
written in the ABS meta-language, MetaABS (Section 3.4).

3.1 Reconfiguration Decision Model
The reconfiguration decision model defines the possible

reconfigurations between products and how they are carried
out. A reconfiguration is performed between two variants
of the DSPL. The products are declared, as in the static
SPL setting, by associating the product name with a set of
features from the feature model. Additionally, each product
declaration lists the possible target products of the SPL that
the given product can be transformed into, together with a
sequence of deltas and a state update.

The reconfiguration decision model for the chat SPL ex-
ample (Figure 4) defines three products, by stating—for each
product—the product’s name and features, and the set of
other product that it can be reconfigured into. The “low-
end” chat product (line 1) implements only the Text feature.
This product can be reconfigured at runtime into a “regular”
chat product (line 4) that additionally supports the Voice
feature by applying the delta DVoice and the state trans-
fer function L2R. The third product is a “high-end” chat
system that also supports video and file transfer (line 8).
Both the static configuration options for the chat SPL and
its reconfiguration decision model can be readily visualised
(Figure 5).

1 product LowEnd (Text) {
2 Regular delta DVoice stateupdate L2R;
3 }
4 product Regular (Text, Voice) {
5 HighEnd delta DVideo,DFiles stateupdate R2H;
6 LowEnd delta DNoVoice stateupdate R2L;
7 }
8 product HighEnd (Text, Voice, Video, Files) {
9 Regular delta DNoFiles,DNoVideo stateupdate H2R;

10 }

Figure 4: Reconfiguration decision model of the chat
DSPL

3.2 Deltas
Transforming a software product with a certain set of fea-
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Figure 5: Left: static chat product configuration,
right: dynamic chat product reconfiguration

tures into a product with a different set of features gen-
erally requires changing both its structure and behaviour.
For an ABS model this entails adding, removing or modify-
ing model elements such as classes, interfaces, functions and
data types. As in the static setting, this is done by apply-
ing a sequence of deltas to a core program, except that now
deltas are applied while the system is running.

The sequence of deltas necessary for each reconfiguration
needs to be declared by the developer. For example, the re-
configuration decision model for the Chat product line (Fig-
ure 4) shows that the LowEnd product needs to apply the
DVoice delta when adapting to the Regular product (line 2).

In general, this manual approach requires some overhead
from the developer, who needs to declare additional deltas
(in addition to the deltas used for static reconfiguration) and
specify their order of application. For the chat SPL example,
the three deltas DNoVoice, DNoVideo and DNoFiles (Figure 6)
specify the removal of the Voice, Video and Files features.
Deltas defined for static product configuration can be also
applied dynamically, as is the case when reconfiguring the
Regular product into the HighEnd product by using deltas
DVideo and DFiles.

delta DNoVoice;
uses Chat;
removes interface Voice;
modifies interface Client removes Voice;
modifies class ClientImpl {

removes CallHistory callHistory;
removes Call call(Client client);

}
removes interface AudioStream;
removes interface Call;
removes class CallImpl;

delta DNoVideo; ...
delta DNoFiles; ...

Figure 6: Deltas used in the reconfiguration decision
model (Figure 4)

3.3 State Updates
When reconfiguring a running system, its execution state,

namely the collection of values assigned to variables and
fields, needs to be preserved or adapted to the systems new
structure. The challenges are how to adapt state elements
to match the updated system, and to when to adapt state
elements without disrupting the runtime execution.

While fully automated state update has been the focus
of recent research [12, 24], the transfer of state information
typically requires some manual guidance from the developer



in cases when state variables need to be mapped to new
variables by a function more complex than simple identity.
For example, if a field is removed, its value might need to
be preserved by transferring it to a new field of possibly
different type. Similarly, if a new field is added, it needs to
be given sensible value, which may not be the default value.

We adopt a hybrid approach, automating the simple cases
(e.g., fields that are present in the old and new code are car-
ried over unaltered), combined with the ability for the user
to manually define the transfer function for more complex
scenarios. An ABS state update specifies how to transfer
the values of fields to the object’s post-reconfiguration state
while also mandating when it is safe to do so.

A state update is a collection of object updates, each de-
scribing how to update objects from a given class. More
precisely, an object update consists of: (1) the name of the
class whose instances are targeted by the update, (2) an
update guard mandating when the state update can be ap-
plied, (3) a set of declarations of local variables and functions
used within the body of the object update, (4) a classupdate
statement that triggers the update of the object’s class (thus
updating its interface and fields), and (5) a set of assign-
ments used to initialise the object’s fields, possibly based
on values of its state before updating the class. When an
object update is applied to update an object, the follow-
ing steps are performed: The update guard is expressed by
an ABS await statement, allowing the developer to specify
when it is safe to apply the state update. The code before
the classupdate is run in the context of the object’s original
class and is used to salvage values of fields that are removed
by the update. The code after the classupdate is used to
initialise added fields, possibly with values computed in the
pre-update step. Note that the values of fields that are not
affected by the state update (i.e. present in the old and new
state) are carried over automatically. The names in scope
before and after the classupdate are thus different. The
scope changes according to how the object’s class structure
changes. For instance, if fields are removed, their names
are not available after the class update. Similarly, if new
fields are introduced by the new version of the class, they
are only available after the class update. Variables defined
locally within the object update are visible in both scopes.
Applying an object update triggers the creation of a task
that is scheduled to be executed on the COG where the ob-
ject resides. This task can execute only when the update
guard becomes true. The details of the implementation will
be described in Section 4.2.

stateupdate R2L;
objectupdate ClientImpl {
// pre−update section
await(length(ongoingCalls == 0));

def ChatHistory mergeHistories(CallHistory calls,
ChatHistory chats) = ...

ChatHistory mergedHistory;
mergedHistory = mergeHistories(callHistory,chatHistory);

classupdate; // change in scope
// post−update section
chatHistory = mergedHistory;

}

Figure 7: A state update declaration

String'getName()
List<Product>'getConfigurableProducts()
Unit'reconfigure(Product)
Reconfiguration'getReconfiguration(Product)

Product

ProductLine'getProductLine()
ObjectMirror'reflect(Object)

Runtime

Product'getCurrentProduct()
Product'getProduct(String)
Unit'addProduct(Product)
Unit'removeProduct(Product)
Unit'addReconfiguration(Reconfiguration)
Unit'removeReconfiguration(Reconfiguration)

ProductLine

String'getName()
Unit'apply()

Delta

String'getName()
Unit'apply()

Update

Product'getCurrentProduct()
Unit'setCurrentProduct(Product)
Product'getTargetProduct()
Unit'setTargetProduct(Product)
List<Delta>'getDeltas()
Unit'setDeltas(List<Delta>)
Update'getUpdate()
Unit'setUpdate(Update)

Reconfiguration

Figure 8: MetaABS API exposing the DSPL

An example state update (Figure 7) is used to adapt a
“regular” chat software to the “low-end” variant. The up-
date of chat clients (objects of class ClientImpl) is guarded
by a condition that requires that no calls are ongoing with
the client involved. We assume that the state of the regu-
lar client includes a history of calls and a list of chat ses-
sions, stored in the fields callHistory and chatHistory, re-
spectively. The chatHistory is common to both products,
therefore its value is preserved by default. However, the
history of calls will be lost upon removing the callHistory
field, as directed by the delta DNoVoice (cf. Figure 6). To
keep this information, both histories are merged into in a
local variable mergedHistory in the pre-adaptation phase.
In the post-adaptation phase this value is assigned to the
chatHistory field.

3.4 MetaABS Support for Auto-Adaptation
To support product line adaptation autonomously at run-

time, ABS introduces a dynamic meta-programming facility,
called MetaABS, based on reflection. MetaABS exposes ba-
sic elements of the runtime environment to the programmer,
enabling their inspection and modification. Among these el-
ements are the running system’s underlying DSPL structure,
giving the running system the capability to reconfigure itself.

The part of the MetaABS API relevant for the dynamic
reconfiguration of products (cf. Figure 8) centres around
a ProductLine object, obtained by calling getProductLine
on the Runtime object. The ProductLine interface gives ac-
cess to ABS methods to obtain the current product and the
products that can be obtained through reconfiguration of
the current product, as defined by the reconfiguration de-
cision model. Beyond simple introspection, it provides a
reconfigure operation to actually reconfigure the current
system to behave as a given target product. Furthermore,
MetaABS makes products, reconfigurations, deltas and state
updates accessible as objects of the language.

An example of how the developer can use MetaABS to



implement a global triggering of reconfiguration of the chat
DSPL is given in Figure 9. The code monitors certain vari-
ables in its operating environment and adapts autonomously
as these variables change. The reconfiguration logic is en-
capsulated in a Reconfigurator class. A reconfigurator in-
stance runs as a separate process (i.e., concurrently to the
chat functionality), monitors the network connection and
transforms the running product depending on the available
bandwidth. The highlighted calls invoke methods from the
ABS.Meta library.

module Monitor; import * from ABS.Meta;
data Bandwidth = Low | Mid | High;
interface Connection { Bandwidth checkBandwidth(); }
class Reconfigurator(Connection conn) {

Unit run() {
ProductLine pl = getProductLine ();
while(True) {

Product currentP = pl. getCurrentProduct ();
Product targetP;
Bandwidth bw = conn.checkBandwidth();
if (currentP.getName() == "RegularChat") {

if (bw == Low) {
targetP = pl. getProduct ("LowEndChat");
currentP. reconfigure (targetP));

} else if (bw == High) {
targetP = pl. getProduct ("HighEndChat");
currentP. reconfigure (targetP));

}
} else if (p == "HighEndChat") {

if (bw == Low || bw == Mid) {
targetP = pl. getProduct ("RegularChat");
currentP. reconfigure (targetP));

}
} else if (p == "LowEndChat") {

if (bw == Mid || bw == High) {
targetP = pl. getProduct ("RegularChat");
currentP. reconfigure (targetP));

}
}

}
}

}

Figure 9: Implementing runtime product reconfigu-
ration for the chat product line using MetaABS

4. DYNAMIC RECONFIGURATION
Dynamic software product reconfiguration has two phases:

changing the system structure and behaviour by applying
deltas, and subsequently mapping the old execution state to
the new system structure. The ABS user controls the appli-
cation of both deltas and state updates via the reconfigura-
tion decision model. We now describe the mechanisms that
enable dynamic reconfiguration in ABS, that is, the mecha-
nisms that delta and state update application rely upon.

4.1 Back-End Variability Support
We designed an adaptive runtime environment and an

ABS compiler back-end that generates adaptive Java code.
These tools are implemented and available as part of the
ABS tool framework.1 The key idea behind the dynamic
Java back-end is to use dynamic structures in the target

1http://tools.hats-project.eu/spl/dynamic.html

language to represent ABS elements. In practice, Java ob-
jects and the singleton design pattern are used to represent
interfaces, classes, methods, objects and object fields. An
example shall illustrate this setup. Adding a new class to
the system is a common activity when configuring a new
product. The new class is represented as an instance of
the class ABSDynamicClass, which is provided by the back-
end. Fields and methods of the new class are also encoded
as objects, and are associated with the class by calling the
addField and addMethod on the class instance. Modifying
an existing class amounts to adding and removing fields and
methods by calling addField, addMethod, removeField and
removeMethod.

4.2 Concurrent Reconfiguration
The runtime updating mechanism uses ABS’s own concur-

rency model based on asynchronous method calls and coop-
erative multitasking. Like methods, updates are scheduled
as tasks, in response to system reconfiguration requests (typ-
ically the MetaABS operation Product.reconfigure). In or-
der to control when updates are applied to specific objects,
a standard await(guard) statement is used. The guard de-
fines the quiescence condition for each object. As long as
the condition is false, the update task suspends; when true,
the update is executed to completion. This gives the ABS
developer the power to formulate what is considered a safe
state for the objects of each class, and it ensures the update
is performed when the object is in such a state.

In the following, our concurrent reconfiguration mecha-
nism for ABS is presented in detail. Reconfiguration cor-
responds to globally modifying the system’s structure by
applying a sequence of deltas, and incrementally updating
each object by applying a state update (cf. Section 3).

The Object Roster.
A state update contains object updates that define the re-

configuration of objects of a certain class. Prior to schedul-
ing an object update, the system needs to obtain the set of
objects in the system to which the object update applies.
For this purpose, the runtime maintains the object roster, a
set of objects for each class. In our implementation the ros-
ter has weak references, allowing the JVM garbage collector
to collect objects that are no longer in use. The object ros-
ter is cleared periodically of references to objects that have
been collected.

Sequencing Object Updates.
Object updates are applied in the order in which they

were deployed, that is, no update can overtake one that was
triggered by an earlier reconfiguration request. To ensure
this, updates and objects bear version numbers. To apply an
update to an object, their versions must be equal. Objects
increment their version number after having been updated.
Technically, if an update process is scheduled to run and the
versions do not match, the process suspends. Consequently,
the next-in-sequence update process gets a chance to run.

4.2.1 Global Reconfiguration Scheme
A product is reconfigured in two steps, as illustrated by

the algorithm in Figure 10. First, a sequence of deltas D1..Dn
is applied to a copy of the targeted classes, extending the
system’s class structure. These new classes will be linked
to the running objects in the second step. Secondly, all

http://tools.hats-project.eu/spl/dynamic.html


objects affected by structural changes (that is, all objects
whose class was modified) are scheduled for update. The
application of deltas and updating of objects are performed
using MetaABS operations.

Require: deltas D1..Dn; state update U
for all deltas D in D1..Dn do

D.apply()
end for
for all classes C targeted in state update U do

for all instances obj of class C do
ObjectMirror objm = reflect(obj)
ObjectUpdate u = U.getUpdate(C)
objm.scheduleUpdate(u)

end for
end for

Figure 10: Global reconfiguration schematic

The first for loop in Figure 10 shows the application of
the delta sequence associated with a reconfiguration. Deltas
are applied atomically for each class. To achieve atomicity,
all class modifications are applied to a copy of the targeted
class; the copy eventually replaces the original class. When
a delta adds a class, the new class is created. In case of class
removal the targeted class is marked for removal (which pre-
vents creating new instances), but it is only removed when
no more objects of that class exist in the system. The timing
of delta application is therefore not critical.

4.2.2 Object Updating Scheme
Object updates are scheduled individually for each object

as tasks of their respective COG. They are executed ob-
serving their application guards. This corresponds to the
second for loop in the reconfiguration scheme (Figure 10).
The object updating algorithm is broken down into individ-
ual MetaABS instructions as shown in Figure 11. Finally,
objects that are not targeted by the state update but whose
classes have been updated by a delta need to update their
class reference to the new class version. For these objects,
the compiler generates object updates implicitly, with empty
pre and post transformations, and guard set to True; they
are included in state update U.

Require: new class C; state update U
await(this.version == U.version && U.guard)
initialise local definitions
run pre-classupdate body of U
Class c = this.getClass()
Class newC = c.getNextVersion()
this.setClass(newC)
run post-classupdate body of U
this.version += 1

Figure 11: Per-object reconfiguration schematic

Object updates are executed after a user-defined condition
(guard) becomes True and the object matches the version of
the update. The update consists in first saving elements
of the old state that need to be preserved, then updating
the object’s class pointer to the new class version (created
through delta application), and then initialising the new
state, possibly based on values saved from the old state.
Finally, the object’s version is incremented.

The R2L state update (Figure 7), for example, is converted
into the task presented in Figure 12. This example (arbitrar-
ily) assumes that the update’s version number is 2. The task
is scheduled for every instance o of ClientImp, in the same
way if it was a method of o being invoked asynchronously.

{ await(this.version == 2 && length(ongoingCalls == 0));

// pre:
mergedHistory = mergeHistories(callHistory,chatHistory);

// class update
Class c = this.getClass();
Class newC = c.getNextVersion();
this.setClass(newC);

// post:
chatHistory = mergedHistory;

// version update
this.version += 1; }

Figure 12: Task performing an object update

5. OPEN ADAPTIVITY
DSPL that can evolve at runtime by incorporating changes

into their variability model are openly adaptive [3]. Such
changes can be the addition, removal or modification of
products or transitions between products. ABS supports
open adaptivity by allowing changes to the reconfiguration
decision model via the MetaABS language. The only re-
striction we impose is that the currently running product
cannot be removed when the reconfiguration decision model
is updated. Should this become necessary (for example if
the evolved set of products is disjoint from the current set),
then the adaptation has to be performed in two steps.

Adding variants to an existing DSPL requires injecting the
corresponding code (i.e. products, reconfigurations, deltas
and state updates) into the system at runtime. Our system
provides a runtime interface that allows dynamic loading of
code via Java’s standard class loading mechanism.

The MetaABS API (introduced in Section 3.4) provides
operations to add and remove products as well as recon-
figurations, that is, transitions between products. It also
supports modifying existing products by adding or remov-
ing reconfigurations, and re-setting a reconfiguration’s state
update and delta sequence. Figure 8 shows the MetaABS
interface complete with meta-variability operations.

The model a programmer should have in mind when think-
ing about open adaptivity is that of a transformation be-
tween reconfiguration decision models. For instance, Fig-
ure 13 shows how the chat SPL could evolve by adding a
Premium product that implements video conferencing. The
implementation of this evolution is provided in Figure 14.

6. RELATED WORK
Our work relates to research in the fields of dynamic soft-

ware product lines and dynamic software updating.

Dynamic Software Product Lines.
A large portion of DSPL research is concerned with the

delineation of the field itself (principles, properties, chal-
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Figure 13: Evolving the chat DSPL

ProductLine pl = getProductLine();
Product high = pl.getProduct("HighEnd");
Product prem = new Product("Premium");
pl.addProduct(prem);
Reconfiguration h2p = new Reconfiguration();
h2p.setCurrentProduct(high);
h2p.setTargetProduct(prem);
h2p.setDeltas(...); h2p.setUpdate(...);
Reconfiguration p2h = new Reconfiguration();
p2h.setCurrentProduct(prem);
p2h.setTargetProduct(high);
p2h.setDeltas(...); p2h.setUpdate(...);
pl.addReconfiguration(h2p)
pl.addReconfiguration(p2h)

Figure 14: Adapting the reconfiguration decision
model of the chat DSPL: MetaABS implementation

lenges) [14, 29, 19]. Our understanding of DSPL concepts is
largely based on this research, but we focus on providing a
language and tool implementation that support the develop-
ment of DSPL. Context-oriented programming [8] and dy-
namic aspect-oriented programming [11] models have been
used in connection with feature models as variability mech-
anisms for DSPL. Feature- and delta-oriented programming
(FOP and DOP) have both been instrumented to support
runtime (re)binding of features. Rosenmüller et al. [26] use
FOP to statically compose sets of features called dynamic
binding units, which can be switched on and off during run-
time. Technically this is achieved by using the decorator
design pattern to add behaviour to objects. A binding unit
adds feature-specific behaviour by decorating the relevant
classes. In contrast, we follow the DOP approach, which
uses deltas to define (more general) program transforma-
tions. Our deltas exist and can be applied at runtime. We
include a language feature that allows the developer to ex-
plicitly define how to transform the state of the program
upon dynamic feature reconfiguration. DOP has been also
applied recently to dynamic SPL [10, 9, 17] in the sequential
setting of the DeltaJ language. In DeltaJ the reconfigura-
tion space is formalised by an automaton and a reconfigure
instruction specifies safe reconfiguration points in the pro-
gram. In contrast, we describe the reconfiguration semantics

in a concurrent setting based on active objects, where up-
dates are incremental rather than global. Instead of quies-
cent program update locations, we use update-specific safety
guards. Additionally we provide a concrete implementation.

Dynamic Software Updating (DSU).
DSU research focuses on the safety and timing of dy-

namic updates. Several DSU systems propose the auto-
matic derivation of safety constraints for applying updates to
single-threaded systems [18, 28]. When it comes to concur-
rent systems, such constraints may be both too broad to en-
sure timely application of updates, and generally insufficient
to ensure safety [13]. This problem can be addressed by spec-
ifying safe update points in the code of each thread [25, 15].
Our approach is to specify safe update conditions attached
to the update code itself; this is arguably more flexible be-
cause it allows the safety criteria to be tailored specifically
to each update. Timing incremental updates is challenging
from the perspective of preserving type safety when objects
communicate with each other. Johnsen et al. [21] use type
analysis to synchronise the updates of dependent objects.
Wernli et al. [30] introduce first-class contexts that represent
different versions of a system; these are kept mutually com-
patible with the help of bidirectional transformations. Our
system currently lacks the ability to generally ensure type
safety over the reconfiguration period. Another important
challenge when building a DSU system is how to transfer
the state when updating objects. Approaches range from
simply preserving the values of unaltered fields and initialis-
ing new fields with default values [5, 28] to fully automated
approaches [12, 24] based on analysing the program code or
heap. Our solution automates the value transfer of unal-
tered fields but allows the user to specify state transforma-
tion functions.

7. CONCLUSION
This paper introduces an extension of the ABS language

and tool suite that adds support for modelling, implement-
ing and executing dynamic software product lines. This
framework includes language constructs for specifying the
runtime variability model, a meta-language to control re-
configuration from within the running model, and the im-
plementation of both a runtime environment that supports
runtime reconfiguration and a compiler that generates re-
configurable Java code. Concurrent systems developed in
ABS are reconfigured incrementally, without the need for
global quiescence.

Future work will address the issue of safe adaptation in
the presence of concurrent objects. As distributed objects
cannot be updated all at once without effectively halting the
system, it is important to ensure that, in the course of an
update, objects in an old state and those already in an up-
dated state can interact seamlessly. Future work will also
focus on automating tasks that currently require the user’s
intervention, such as the inference of deltas. We plan to
extend the support for SPL model evolution by also repre-
senting the feature model at runtime. Finally, a case study
and further practical evaluation will assess performance and
scalability of dynamic SPL systems developed in ABS. We
will also subject our tools to synthetic time/space efficiency
measurements in order to evaluate and improve the efficiency
of our approach.
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