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ABSTRACT

In this paper, we show how stream fusion, a program transformation
technique used in functional programming, can be adapted for an
Object-Oriented setting. This makes it possible to have more Stream
operators than the ones currently provided by the Java Stream
API. The addition of more operators allows for a greater deal of
expressiveness. To this extent, we show how these operators are
incorporated in the stream setting.

Furthermore, we also demonstrate how a specific set of optimiza-
tions eliminates overheads and produces equivalent code in the
form of for loops. In this way, programmers are relieved from the
burden of writing code in such a cumbersome style, thus allowing
for a more declarative and intuitive programming approach.
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1 INTRODUCTION

Over the last several years, programming languages have evolved in
order to provide powerful abstractions to programmers. Examples
of such abstractions are models which represent code abstractions,
powerful type systems and recursion patterns allowing the defini-
tion of functions that abstract the data type they traverse.

Recently, Java 8 adopted lambda expressions and streams to
improve the language expressivity. Lambda expressions allow us
to write functions that do not belong to any specific class and
pass them as a parameter just like primitive data types and Objects.
Streams can be chained in order to represent a pipeline of operations.
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Each stream represents one operation. Intermediate operations are
lazy, i.e. they only return a stream describing what operation is to
be executed. Terminal operations trigger the execution of a pipeline,
thus producing the desired result. Combining these two elements
provides a powerful mechanism to manipulate Java collections.
However, as reported in [11], expressivity and performance are
still lacking. In fact, well-optimized Java 8 streams do not support
important operators, like for example the zip operator, and are still
an order of magnitude slower than hand-written loops [11].

Lambda expressions are widely used in the context of functional
programming. Together with the use of high-order functions, such
as map and filter, they make it possible to express non-trivial se-
quences of actions with little effort. However, the execution of these
recursion patterns has several efficiency problems, either by doing
more traversals than necessary, or by creating intermediate data
structures. Thus, a lot of work has been developed for an efficient
execution of these mechanisms. Techniques such as shortcut fu-
sion [2, 6, 7, 13, 15, 16], program tupling [9], or deforestation [12, 17],
among others, provide program optimizations which eliminate the
overhead introduced by expressing algorithms in this higher-order
functional style of programming: different traversals are fused into
a single one, and intermediate data structures are eliminated.

In general, program fusion aims to eliminate data structures
which are produced and consumed right away. Fusion is based on
the fact that programswritten in a compositional style can be rewrit-
ten in a more efficient way, avoiding the creation of intermediate
structures. For example, the concise Haskell function all,

all p xs = and (map p xs)

checks if all elements of a list xs satisfy a given predicate p. As we
can see, it is expressed as a composition of functions and (conjunc-
tion of a list of booleans) and map. The and function is a fold on lists
and therefore all is the composition of two higher order functions.
(For reasons that will be clearer later, we use the definition of and
in terms of foldl.)

all p xs = foldl (&&) True (map p xs)

In this definition, however, an intermediate list is created to
communicate the results from one function to another. However,
this program can be rewritten in a way which does not make use
of an intermediate list.

all ' p xs = h True xs

where

h b [] = b

h b (x:xs) = h (b && p x) xs

Although this version is more efficient, we lose readability and
conciseness. Furthermore, one does not wish to write programs in
this style and, instead, prefers to use a more compositional style
such as the first version of all provided but without performance
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penalties. Therefore, we want compilers to be able to automatically
perform this optimization. The Haskell compiler offers amechanism
to define rewrite rules, stating e.g. how to fuse functions together.
An example rule would be:

map f (map g xs) = map (f.g) xs

However, this approach has a key drawback: it requires a rule for
each possibile higher-order function combination. In other words,
we need to define a specific compiler optimization for each com-
bination. In order to avoid the case-by-case definition of all such
program fusion optimizations, Coutts et al. [1] proposed functional
stream fusion as a generic program transformation technique where
functions are fused without the need to explicitly state/implement
the rules performing those transformations.

In this paper we model functional stream fusion [1] in the Java
Object Oriented Programming (OOP) language in the form of a
library called FStream1. We express the stream fusion data type
as a set of Java classes and their constructors. Then, we model in
this OO setting the higher-order recursion patterns map, filter and
foldl offered by standard Java Streams. Moreover, we extend such
recursion patterns with other widely used functional patterns such
as zip and foldr which are not supported by Java 8, thus limiting
their expressiveness. Finally, we use stream fusion to optimize Java
methods expressed as streams.

Additionally, we also discuss refactorings to fuse higher-order
patterns into loops. That is to say, that we refactor lambda expres-
sions and higher-order functions expressed in our functional stream
setting into regular Java foreach loops, as opposed to [4]. More pre-
cisely, our framework transforms a Java stream version of all into
a loop variant of all’.

The paper is organized as follows: Section 2 briefly presents
functional stream fusion, and in Section 3 we show how to express
it in Java. Section 4 explains howwe integratedContinuation Passing
Style into the setting’s implementation. Section 5 presents a set of
Java optimizations that eliminate overhead introduced by stream
fusion. In Section 6 we present transformations to simplify the
obtained loops. Finally, Section 7 gives our conclusions.

2 STREAM FUSION

Stream Fusion [1] is an automatic deforestation system that takes
a different approach compared to more traditional fusion systems.
In Stream Fusion, the operations over the original list structure
are transformed in order to work over an alternative, co-inductive
representation of the list that captures its generation process. As
Coutts et al. [1] state, the natural operation over a list is a fold,
while on the other hand, the natural operation over a stream is an
unfold. Therefore, a list’s co-structure is a stream.

The Stream datatype encloses that unfolding behaviour. In order
to achieve this, it wraps an initial state and a stepper function which
specifies how elements are produced from the stream’s state.

data Stream a = ∃s. Stream (s → Step a s) s

The stepper function produces a Step element, which permits
three possibilities:

1https://github.com/FranciscoRibeiro/FStream

data Step a s = Done

| Yield a s

| Skip s

The Step datatype allows the co-structure to be non-recursive,
thanks to the Skip data constructor. This is the key point of the
stream fusion system. The Skip constructor is what allows the
production of a new state without yielding a particular element.
This is a crucial point as it permits every stepper function to be non-
recursive. The Done and Yield alternatives are quite simple as they
pinpoint the end of a stream and carry an actual element together
with a reference to the rest of the stream’s state, respectively.

To convert lists to streams and vice-versa, we need two functions.

stream :: [a] → Stream a

stream xs0 = Stream next xs0

where

next [] = Done

next (x : xs) = Yield x xs

unstream :: Stream a → [a]

unstream (Stream next0 s0) = unfold s0

where

unfold s = case next0 s of

Done → []

Skip s' → unfold s'

Yield x s' → x : unfold s'

The function stream creates a Stream with:

• a stepper function next which is non-recursive and yields
each element of the stream as it unfolds;
• a state, which consists of the list itself.

The function unstream creates a list by unfolding the given
stream, repeatedly calling the stream’s stepper function.

Implementing a function over streams is quite simple; given an
input stream, one has to define the initial state and the particular
stepper function for the stream to be returned as result.

Map and filter are two well known higher order functions which
have implementations over streams: map f xs applies function f

to each element of xs whereas filter p xs returns a list with
all the elements of xs that fulfill the condition stated by p. The
implementation of map over streams is the following:

maps :: (a → b) → Stream a → Stream b

maps f (Stream next0 s0) = Stream next s0
where

next s = case next0 s of

Done → Done

Skip s' → Skip s'

Yield x s' → Yield (f x) s'

Function filter is the one where one can appreciate the advan-
tage of having a non-recursive stepper function. This non-recursive
implementation can only be achieved due to the Skip element be-
cause it avoids the need to recursively go through the structure
to find elements satisfying the predicate. As a result, the Haskell
compiler can optimize the code due to the absence of recursion.

filters :: (a → Bool) → Stream a → Stream a

filters p (Stream next0 s0) = Stream next s0
where

next s = case next0 s of

Done → Done

Skip s' → Skip s'

Yield x s' | p x → Yield x s'

| otherwise → Skip s'

The introductory example shown in Section 1 makes use of
function foldl over lists. Indeed, this function is also present in
the Stream Fusion setting.
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foldls :: (b → a → b) → b → Stream a → b

foldls f z (Stream next s0) = go z s0
where

go z s = case next s of

Done → z

Skip s' → go z s'

Yield x s' → go (f z x) s'

List functions can then be written in terms of their stream coun-
terparts by using stream and unstream.

map f = unstream . maps f . stream

filter p = unstream . filters p . stream

foldl f z = foldls f z . stream

Recall that function all, presented in Section 1, is a composition
of foldl and map. Therefore, in terms of streams it is expressed as:

all p = foldls (&&) True . stream . unstream . maps p . stream

In the Stream Fusion setting, the intermediate list that is being
created in the composition is then removed by the application of
the following law:

stream . unstream = id

which is implemented as a GHC rewrite rule. As result, function
all is written as follows:

all p = foldls (&&) True . maps p . stream

In [1], program tranformation rules of GHC are used in order to
completely fuse the codes of folds and maps . Those transforma-
tions exploit the fact that their stepper functions are non-recursive.
Next, we show how to model streams in Java, how to write the
stream-based higher order functions/methods, and, finally how to
mimic such program transformations as Java refactorings.

3 STREAM FUSION IN JAVA

In order to model functional streams in Java, first we need to express
the Stream and Step datatypes as Java classes.

3.1 Stream and Step classes

As one could previously see, the Stream datatype encapsulates a
stepper function (s → Step a s) and a state represented by s.
In order to represent this datatype in Java, a class called FStream

(standing for Fusion Stream) was created.

public class FStream <T>{

public Function <Object , Step > stepper;

public Object state;

...

As Haskell is a polymorphic language, the datatype Stream is
defined in a generic way. More precisely, a and s are type variables,
which means they can be of any type, and Stream and Step are
parameterized types.

To achieve this in Java, we use generics, which allows us to
use types as parameters when defining classes. In this case, T is a
type parameter of the class FStream, meaning that a stream can
hold values of any type (Integer, String, etc.), just as its Haskell
counterpart.

Resorting to the Function class introduced in Java 8, it is easy to
store the desired behaviour for the stepper function in an instance
variable. The input for this stepper function is a state (Object) and
the output is a Step object. There are different possibilities for the

type of the state encapsulated by the stream. As such, the more
generic Object class is used.

Another important datatype in this implementation, and the
main responsible for the advantages that the stream approach al-
lows, is Step. In Haskell, its definition has three value constructors:
Done, Yield and Skip. Similarly to Stream, the datatype Step is
defined in a polymorphic way and so the same approach using
generics was taken.

public abstract class Step <T,S>{

public T elem;

public S state;

To reflect the role of each of the value constructors, a separate
class was created for each of them. Each of these classes is a spe-
cialization of Step and, as such, they extend that class.

Done represents the end of a stream. When an object of this type
is detected, we know we have reached the end of the stream. As
this object does not carry any particular value, its implementation
is quite simple.

public class Done extends Step{}

A Yield object carries an actual element and the rest of the state
coming after the element in question. It has two types as parameters,
as previously seen with other classes, which are in conformity with
the generic types of the corresponding stream.

public class Yield <T,S> extends Step{

public Yield(T e, S s){

this.elem = e;

this.state = s;

Finally, we define the Skip class. Although this element is not
important to understand the approach being presented, it is of
extreme importance in the implementation because it is what en-
ables the stepper functions to be non-recursive and thus allowing
fusion, which is the mechanism behind all the optimization and,
consequently, the efficiency improvements.

public class Skip <S> extends Step{

public Skip(S s){ this.state = s; }

3.2 Methods

After creating the necessary functional datatypes as Java classes,
we need to generate an FStream object from a known state. To
simplify our presentation, we consider the state to be a list (more
general types are discussed in [14]).

In Haskell, this is represented by the function stream (presented
in Section 2). The state of the stream is the list itself and elements
are yielded one at a time as the stream gets traversed (unfolded).

To recreate this in Java, a method in the FStream class called
fstream was implemented. The return type of the method is an
FStream of the same type of objects (T ) as the input list. The stepper
function, as seen in the Haskell implementation, returns a Done

object if the list is empty, meaning it reached the end of the list.
Otherwise, it returns a Yield object yielding the first element of
the list and the rest of that list as the remaining state. Note that the
implementation of the stepper function is saved inside a variable of
type Function (nextStream). The returned FStream holds it and this
stepper function is only executed when its method apply is called
(as one shall see later).
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public static <T> FStream <T> fstream(List <T> list){

Function <Object , Step > nextStream = x -> {

List aux = (List) x;

if(aux.isEmpty ()) return new Done();

else{

List <T> sub = aux.subList(1, aux.size());

return new Yield <T, List <T>>((T) aux.get (0), sub);

}

};

return new FStream <T>( nextStream , list);

In order to create a list back from a stream, the unstream function
repeatedly calls the stepper function of the stream, unfolding it.
The Haskell implementation was shown in Section 2. The most
important part of this function is the unfold. In the equivalent Java
method that we define, this unfolding behaviour is implemented
in the form of a while loop, since it is a tail recursive function,
and, as a consequence, efficiently expressed by a loop. The stream’s
stepper function is repeatedly called inside the loop. Depending on
the result of that method call, a different behaviour can occur:

• First of all, if the object returned by the stepper function is
a Done, then the loop finishes, as the end of the stream has
been reached.
• If the object is of type Skip, then the unfolding process con-
tinues with the rest of the state.
• Otherwise, if it is a Yield object, it will add the yielded
element to the result list and continue unfolding the stream.

public List <T> unfstream (){

ArrayList <T> res = new ArrayList <>();

Object auxState = this.state;

boolean over = false;

while (!over) {

Step step = this.stepper.apply(auxState);

if (step instanceof Done) over = true;

else if (step instanceof Skip) auxState = step.state;

else if (step instanceof Yield) {

res.add((T) step.elem);

auxState = step.state;

}

}

return res;

Higher order functions are, perhaps, themost important aspect of
functional programming [10]. They are a powerful mechanism that
allow programmers to define what the computations are instead of
programming the steps that compose the computation.

As shown in Section 2, the map higher order function takes a
function as a parameter. In the Java implementation, that parameter
function receives an input of type T and its output is of type S.
Therefore, the FStream object returned by the method mapfs is a
stream holding objects of type S, which is the return type of the
function to be applied to each of the stream’s elements. As any other
stream, the stream being created needs a stepper function of its own.
The behaviour for that function is saved in the variable nextMap
and it produces a different Step object depending on the outcome
of the FStream’s stepper function to which we are applying mapfs.

Done represents the end of the stream. So, if it is encountered,
then an object of that type will also be created. If a Skip object was
produced, it means that that element should not be dealt with. As
such, another Skip is created referencing the rest of the stream’s
state. Finally, if an actual element is being yielded, i.e. a Yield object
exists, then the input function for mapfs (funcTtoS) is applied to
that element and the result is placed into the new Yield that is
going to be instantiated, along with the rest of the stream’s state.

public <S> FStream <S> mapfs(Function <T,S> funcTtoS){

Function <Object , Step > nextMap = x -> {

Step aux = this.stepper.apply(x);

if(aux instanceof Done) return new Done();

else if(aux instanceof Skip) return new Skip <>(aux.state);

else if(aux instanceof Yield)

return new Yield <>(funcTtoS.apply ((T)aux.elem), aux.state);

return null;

};

return new FStream <S>(nextMap , this.state);

The filterfs method (whose equivalent Haskell implementa-
tion has been presented in Section 2) is similar to the previous mapfs
method, although it takes a Predicate as a parameter instead of a
Function. Its stepper function’s behaviour is quite similar to the
one explained before in mapfs.

The only difference lies in the case when the stepper function
of the stream being filtered returns a Yield object. In that situ-
ation, the filter’s stepper function (nextFilter) should evaluate if
the element yielded satisfies the given predicate. If it does, then
a new Yield is created carrying the element in question and the
rest of the stream’s state. Otherwise, as the element does not sat-
isfy the predicate, it should not be present in the resulting stream
and, therefore, a Skip object is created with a state containing the
subsequent elements.

public FStream <T> filterfs(Predicate p){

Function <Object , Step > nextFilter = x -> {

Step aux = this.stepper.apply(x);

if(aux instanceof Done) return new Done();

else if(aux instanceof Skip) return new Skip <>(aux.state);

else if(aux instanceof Yield){

if(p.test(aux.elem))

return new Yield <>((T) aux.elem , aux.state);

else return new Skip <>(aux.state);

}

return null;

};

return new FStream <T>( nextFilter , this.state);

In the Stream Fusion approach, there are two other terminal op-
erations besides unstream. Those operations are foldr and foldl.

As seen in Section 2, unstream and foldl are implemented in a
recursive way. In contrast, in the Java implementation recursion
is converted to loops whenever possible. That is the case with
unstream and foldl, but not for foldr as it is not tail recursive.
Because of that it cannot be expressed in terms of a loop in the same
manner the other two functions are. This is discussed in Section 4.

The go function in foldls (presented in Section 2) is imple-
mented in Java as a while loop. On every iteration, the stepper
function of the input stream is called. If the resulting Step happens
to yield an element, function f is applied to the current value and to
the element in question. The state moves forward whenever step
evaluates to a Skip or a Yield.

public <S> S foldl(BiFunction <S,T,S> f, S value) {

Object auxState = this.state;

boolean over = false;

while (!over) {

Step step = stepper.apply(auxState);

if (step instanceof Done) over = true;

else if (step instanceof Skip) auxState = step.state;

else if (step instanceof Yield) {

auxState = step.state;

value = f.apply(value , (T) step.elem);

}

}

return value;
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Let us now return to our motivating example presented in Sec-
tion 1: using the FStream setting, the higher-order all function is
written as follows:

Boolean res = fstream(xs).mapfs(p).foldl ((x,y) -> x && y, true);

In the end of Section 6.1, an equivalent version using a for each
loop is presented.

3.3 Extending patterns

While Java Streams currently support several functional operators,
their expressiveness is still lacking. Let us assume that a polyno-
mial expression like 3x2 + 5x + 1 is represented by a list of its
coefficients in reverse order: [1,5,3], where the list index is the
corresponding power. For a given value x and a list cs represent-
ing a polynomial, one can write a Haskell function calculating the
result through the composition of zip, that explicitly builds the
list of pairs (coe f ,power ) - [(1, 0), (5, 1), (3, 2)] in our example, and
foldr in order to perform the accumulation of the addition of all
individual terms.

pol x cs =

foldr (\(a,b) acc -> acc + a*(x^b)) 0 $ zip cs [0.. length(cs) -1]

In fact, zip and f oldr are widely used to express inumerous
functions in a functional setting. Unfortunately, the right fold and
zip operators are not present in Java Streams, and as a consequence
we can not express such functions in functional Java. Moreover,
it is not simple to extend the Java Streams library to efficiently
support more higher-order operators [11]. Next, we show how we
can easily express a right fold and a zip pattern in our setting.

3.3.1 Right fold. As previously stated, foldr is not tail recursive
and its conversion to a loop in the Java implementation needs to be
somewhat different from the one regarding unstream and foldl.

foldrs :: (a → b → b) → b → Stream a → b

foldrs f z (Stream next s0) = go s0
where

go s = case next s of

Done → z

Skip s' → go s'

Yield x s' → f x (go s')

Different alternatives for an implementation of foldr are dis-
cussed in [14].

In order to come up with an efficient implementation, one can
resort to a particular mechanism in the scope of functional program-
ming, Continuation Passing Style (CPS) [8]. With CPS, one explicitly
passes the control of the operation in the form of a so called contin-

uation. This is useful, as it allows us to create an implementation
for foldr that is tail recursive.

foldr ' f z [] cont = cont z

foldr ' f z (x:xs) cont = foldr ' f z xs (\a -> cont (f x a))

As a result, an equivalent implementation in the form of a loop
can be created for foldr’.

public <S> S foldrTailRec(BiFunction <T,S,S> f, S value){

Continuation.b = f;

Continuation cont = new ContinuationId ();

boolean over = false;

Continuation.globalState = this.state;

Continuation.res = value;

while (!over){

Step step = this.stepper.apply(Continuation.globalState);

if(step instanceof Done){

cont = cont.execute(Continuation.res);

if(cont == null){ over = true; }

} else if(step instanceof Skip){

Continuation.globalState = step.state;

} else if(step instanceof Yield){

Continuation.globalState = step.state;

Continuation <S, ContinuationListElem <T,S>> nextCont = new

ContinuationListElem <T,S>((T) step.elem , cont);

cont = new ContinuationListFold(nextCont);

}

}

return (S) Continuation.res;

Continuations are discussed in more detail in Section 4.

3.3.2 Zip. When a function consumes more than one stream at
the same time, some extra care is needed in order to handle the
stream’s state. The zips function is an example of such a function.
This function receives two lists as input and produces a list of
corresponding pairs. In case the two input lists are of different
lengths, the remaining elements of the longer list are discarded.
The fact that this function has to deal with Skip, means that the
function might be able to extract one element from one of the
streams at some point but might not be able to do it simultaneously
from the second stream.

If that is the case, the extracted element is saved inside the current
state and we iterate over the second stream until an element gets
extracted too.

For that, the Maybe datatype is used. When no element is being
carried, the value is empty (Nothing). When an element is yielded
and waiting to be coupled with another one, the value is saved
inside Just.

zips :: Stream a → Stream b → Stream (a, b)

zips (Stream nexta sa0 ) (Stream nextb sb 0 ) =

Stream next (sa0, sb 0, Nothing)

where

next (sa , sb , Nothing) =

case nexta sa of

Done → Done

Skip s'a → Skip (s'a , sb , Nothing)

Yield a s'a → Skip (s'a , sb , Just a)

next (s'a , sb , Just a) =

case nextb sb of

Done → Done

Skip s'b → Skip (s'a , s'b , Just a)

Yield b s'b → Yield (a, b) (s'a , s'b , Nothing)

In order to create an equivalent Java method, the Optional class
is used. Similarly to Haskell’s Maybe, an Optional object can either
have a value present or be empty.

The state produced and handled by zipfs’s stepper function
consists of a tuple of size three. Therefore, a class Triple was
created in order to represent values of the form (stateA, stateB,

Optional).
The objects that the returned stream represents consist of tuples

too, although these ones have size two. An identical approach was
taken in order to represent these values. As such, the Pair class
was created.

The first action the stepper function needs to perform is to check
if the Optional element inside the input state is empty or not.

After that, the same procedure of all the other stepper functions
so far is followed. Depending on the type of the Step returned,
nextZip performs the appropriate operation.

When unfolding the first stream (Optional is empty), a value is
saved only when a Yield is encountered. Therefore, this results in
a value being present inside the Optional object, which makes the
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stepper function unfold the second stream, beginning the search
for an element to complete the Pair. Thus, the Optional value
inside the Triple is only set to empty again when another Yield
is found.

public <S> FStream <Pair <T,S>> zipfs(FStream <S> streamB){

Function <Object , Step > nextZip = x -> {

if(!((( Triple) x).getElem ()).isPresent ()){

Step aux = this.stepper.apply ((( Triple) x).getStateA ());

if(aux instanceof Done) return new Done();

else if(aux instanceof Skip)

return new Skip <>(new Triple(aux.state , (( Triple) x).

getStateB (), Optional.empty ()));

else if(aux instanceof Yield)

return new Skip <>(new Triple(aux.state , (( Triple) x).

getStateB (), Optional.of(aux.elem)));

}

else{ // There is a value present in Optional

Step aux = streamB.stepper.apply ((( Triple) x).getStateB ());

if(aux instanceof Done) return new Done();

else if(aux instanceof Skip){

return new Skip <>(new Triple ((( Triple) x).getStateA (),

aux.state , (( Triple) x).getElem ()));

else if(aux instanceof Yield)

return new Yield <>(new Pair <>((( Triple) x).getElem ().get

(), aux.elem), new Triple ((( Triple) x).getStateA (), aux.

state , Optional.empty ()));

}

return null;

};

return new FStream <>(nextZip , new Triple <>(this.state , streamB.

state , Optional.empty ()));

Let us rewind to the polynomial function previously presented.
In the Haskell implementation provided in the beginning of this
section, in order to create the list of numbers representing the pow-
ers we use ranges: [0..length(cs)-1]. In a strict setting like Java,
we would have to explicitly generate this list from the coefficients.
However, we can use streams to come up with an implementation
that is also based on laziness. Methods unfoldr and take from the
FStream setting allow us to emulate the desired behaviour.

Function <Integer , Optional <Pair <Integer ,Integer >>> builder =

v -> Optional.of(new Pair <>(v, v+1));

BiFunction <Pair <Integer ,Integer >, Integer , Integer > f =

(pair ,acc) -> (int) (acc+pair.getX()*pow(x, pair.getY()));

FStream <Integer > powers = unfoldr(builder , 0).take(cs.size());

return fstream(cs).zipfs(powers).foldrTailRec(f, 0);

As one can see, because the FStream setting supports both zip

and foldr, it allows for an elegant representation of the example
in question.

4 CONTINUATIONS

Different Continuations are going to be needed for different rea-
sons during execution. Yet, they all still share one common blueprint.
Therefore, a more general class was created. All other, more specific,
Continuations will extend this super class.

public abstract class Continuation <S, R extends Continuation <S,R

>> {

public static Object globalState;

public static Object res;

public static BiFunction b;

public Continuation <S,R> nextCont;

public abstract Continuation execute(S value);

The class signature forces every subclass to have its type pa-
rameters be the same as the superclass ones. All objects of type
Continuation will share three class variables:

• globalState: the current stream state as it gets modified;

• res: the accumulator value that is built throughout the fold-
ing operation;
• b: the function that is repeatedly applied to every element
retrieved from the stream and the accumulator value.

As the folding operation progresses through the stream, each
Continuation that is created along the way holds a reference to
the next one - nextCont - i.e. what to do next (as this style of pro-
gramming implies). As a result, a chain of Continuation objects
will have been created by the time the fold operation finishes un-
rolling the stream. An object belonging to this class represents an
action. As such, every object needs to define a method execute

which indicates what should be performed.
foldr consumes a list from right to left. However, elements are

retrieved from a stream from its beginning to its end, i.e. from
left to right. As a result, as the stream gets unrolled, we need to
somehow save the yielded elements so that, in the end, it is possible
to replicate the processing of these elements from right to left.
Therefore, each time a Yield is returned by the stream’s stepper
function, that element needs to be enclosed inside a continuation
which encodes what should be performed at that particular point
of execution.

public class ContinuationListElem <T,S> extends Continuation <S,

ContinuationListElem <T,S>> {

public T pendingElem;

public ContinuationListElem(T elem , Continuation nextCont){

this.pendingElem = elem;

this.nextCont = nextCont;

}

@Override

public Continuation execute(S value) {

Continuation.res = b.apply(pendingElem , value);

return this.nextCont;

When dealing with a list element, a ContinuationListElem is
used so that the item in question gets saved in pendingElem. Note
that the execute method, in this case, is responsible for two things:

• applying the parameter function of fold to the pending
element and the accumulator value;
• returning the next Continuation object.

This Continuation can be thought of as the (\a -> cont(f x a))

part in the foldr’ definition previously presented.
Additionally, we still need another type of Continuation in

order to have the desired behaviour completely implemented. An-
other aspect to take into consideration is that, in order to replicate
the recursive call in the next iteration of the loop, the self call in
foldr’ needs to be represented as a Continuation object too.

public class ContinuationListFold <S> extends Continuation <S,

ContinuationListFold <S>>{

public ContinuationListFold(Continuation nextCont) {

this.nextCont = nextCont;

}

@Override

public Continuation execute(S value) {

return this.nextCont;

In this case, the action performed by the execute method is quite
simple, as it only returns the next continuation, allowing for the
execution flow to take its correct course.

One final aspect to bear in mind is that the chain of continuations
ends with a ContinuationId which represents the identity func-
tion. This final piece is responsible for saving the final accumulator
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value to its class variable res and not returning a Continuation,
i.e. null.

5 STREAM OPTIMIZATION

As previously seen, program fusion generally requires a rule for
every possibility of a higher-order function combination. This is
not required in Stream Fusion. Thus, the refactorings we present
are generic.

Stream Fusion accomplishes the elimination of intermediate data
structures. Although this is the main goal of program fusion, this
approach achieves that at the cost of introducing lots of object
allocations. In fact, intermediate data structures are replaced by
Step objects and, depending on the kind of method being executed,
complex states like the ones in appendfs and zipfs need even
more objects.

These allocations are responsible for a great amount of overhead.
In the Haskell implementation, this situation is handled thanks
to several aggressive optimizations included in the Haskell com-
piler. Therefore, programs are automatically optimized and, in the
end, the most efficient solution is obtained (where all the objects
mentioned have been eliminated, thus reducing unnecessary allo-
cations).

The Java compiler does not perform any of these optimizations.
As a consequence, all the overhead of object allocation, analysis
and manipulation is still present in the final executed version.

This section explains how these optimizations can be achieved
through Java refactorings [3]. Most Java IDEs provide a great deal
of assistance when performing these refactorings [5].

5.1 Refactorings

In [1], one of the examples used for demonstration consists of
summing the elements of two lists. In their fusion framework, the
authors express this as:

foldls (+) 0 (appends (stream xs) (stream ys))

In Java, this can be translated as:

BiFunction <Long , Integer , Long > f = (a, b) -> a+b;

FStream <Integer > xsFs = FStream.fstream(xs);

FStream <Integer > ysFs = FStream.fstream(ys);

Long res = xsFs.appendfs(ysFs).foldl(f, (long) 0);

The previous code is how a programmer using the FStream
setting would represent this computation. In order to optimize its
execution, a set of source code refactorings needs to be applied. To
keep the paper concise, the example illustrating the transformations
is not included here but it is available from the FStream library. The
reader is encouraged to check it while reading the summarized
description that follows.

The first transformation is to inline all the stepper functions that
compose the methods fstream, appendfs and foldl. After that,
another inlining is applied in which the bodies of the stepper func-
tions of the two fstream operations are moved inside the stepper
functions corresponding to the appendfs operation. Following this,
a case-of-case transformation is performed where an outer condi-
tional block gets moved and replicated inside the alternatives of
a previous inner conditional block. Although this transformation
results in the (apparently excessive) duplication of code, it makes it

more explicit which path the code from the (now previous) outer
conditional block should take. As a result, two out of the three
alternatives that compose the block can be completely removed in
what can be called a trivial rewriting transformation. All of these
transformations are repeatedly applied until there are no Step ob-
jects left. Also, the majority of Function objects are removed. In
case of pipelines that include complex stream states (e.g. appendfs,
zipfs) an additional constructor specialization transformation may
be applied. This aims to eliminate objects that are created only to
control the mode of operation (e.g. Left, Right).

6 THE GENERAL TEMPLATE

This template consists of a final step in the optimization process
which aims to make the code obtained from the refactorings simpler,
more readable and more efficient.

6.1 The Template’s Structure

In order to explain the template’s skeleton, we shall consider the
following stream pipeline.

List <Student > res = fstream(l).filterfs(p).mapfs(f).unfstream ();

After applying all the optimizations, we obtain a code similar to
the one presented below.

The comments highlight the logic behind each instruction.

List auxState = l;

boolean over = false;

while (!over) {

if (auxState.isEmpty ()) over = true; //End reached: break out

of loop

else {

// Set sub to be the tail of the current state

List <Student > sub = auxState.subList(1, auxState.size());

if ((( Predicate) p).test(auxState.get (0))) {

// auxState.get (0) is the element corresponding to the

current iteration

res1.add(f.apply (( Student) auxState.get (0)));

auxState = sub; // Advance one element , i.e. set the state

to its tail

} else { auxState = sub; }

Listing 1: Code after optimizations

If we analyse the code above and try to identify a general form for
its representation, we can conclude that the template one whishes
to obtain after performing code optimization has the following
structure.

List auxState = list;

boolean over = false;

while (!over) {

if (auxState.isEmpty ()) over = true;

else {

List <T> sub = auxState.subList(1, auxState.size());

body

}

Listing 2: Template’s structure

Here, body (highlighted inside a red rectangle) consists of the
instructions that, when executed, perform the behaviour that the
original stream pipeline describes. Therefore, the innermost if-else
statement in Listing 1 corresponds to the body just described.

More precisely, that particular if-else statement is the equivalent
for the filter operation used in the stream version. In a similar
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way, the equivalent for the map operation is the f.apply(...)

present inside the if statement.
This structure can be converted into a for loop.

for (... x: list){

modified body

}

Listing 3: Conversion into for loop

In Listings 1, 2 and 3 there are some yellow and green high-
lights that represent the collection (list) over which operations are
performed and the element being manipulated in each iteration,
respectively.

The collection which the for loop iterates over is pretty straight-
forward to set, as it corresponds to the first value held by the state.

The while loop in 1 should perform operations on no more than
one element on each iteration. The way we refer to the element
in question is through the instruction auxState.get(0). In the
enhanced for loop, we refer to each element in list as x. Therefore,
each specific occurrence of auxState.get(0) gets replaced with
x (both in the loop’s header and in modified body). As an iterator is
used under the hood for this kind of control flow structure, there is
no need to explicitly set what the state should be before the next
iteration starts and, as a result, auxState = sub instructions do
not show up in modified body.

Following this idea, the example presented in the beginning can
be converted into an equivalent for loop.

for(Student s: l)

if ((( Predicate) p).test(s)){ res1.add(f.apply(s)); }

Going back to the introductory example of the all function, if
one applies the presented refactorings and templates, an equivalent
version using a more efficient for each loop is obtained.

Boolean value = true;

for(Integer i: xs){ value = value && p.apply(i); }

7 CONCLUSIONS

In this paper, we expressed functional stream fusion in an object
oriented setting by developing a Java library based on the use
of lambda expressions. Like Stream Fusion, our embedding does
not rely on any specific functional fusion rules - as required by
most short-cut fusion techniques - nor in any meta-programming
optimizations. Our higher-order functions (map, filter, folds, etc)
are modeled directly in Java as operations that work on streams.
We also showed the extensability/expressiveness of our techniques
by implementing operators, such as foldr and zip, which are not
regular Java expressions. The main goal of this paper was to show
how Stream Fusion can be expressed in Java. As future work, we
plan to study the performance of our implementations in detail.
Even though our work does not behave exactly like Stream Fusion,
it acts in a very similar way and thus represents a proof of concept
showing that these fusion techniques can be equally implemented in
an object oriented setting. Currently, most refactorings are provided
by Java IDEs and our transformation process is semi-automatic.
Now, we plan to develop a plugin to fully automate the process.
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