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Abstract—Biometric systems store sensitive personal data that need to be highly protected. However, state-of-the-art template
protection schemes generally consist of separate processes, inspired by salting, hashing, or encryption, that limit the achievable
performance. Moreover, these are inadequate to protect current state-of-the-art biometric models as they rely on end-to-end deep
learning methods. After proposing the Secure Triplet Loss, focused on template cancelability, we now reformulate it to address the
problem of template linkability. Evaluated on biometric verification with off-the-person electrocardiogram (ECG) and unconstrained face
images, the proposed method proves successful in training secure biometric models from scratch and adapting a pretrained model to
make it secure. The results show that this new formulation of the Secure Triplet Loss succeeds in optimizing end-to-end deep biometric
models to verify template cancelability, non-linkability, and non-invertibility.

Index Terms—Biometrics, cancelability, deep learning, invertibility, linkability, security, templates, triplet loss.
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1 INTRODUCTION

T RADITIONAL authentication systems are becoming ob-
solete as biometric recognition is widely adopted for

access control to data and belongings. Biometric systems do
not require the user to carry identity cards or remember
passwords. Instead, they rely on personal characteristics
that are harder to lose, share, or discover than traditional
credentials [1], [2], [3].

However, it is easy to change our keys or passwords
when a traditional authentication system is compromised,
but it is very hard to change our compromised biometric
characteristics. This is the reason why it is paramount that
biometric templates are kept secure [2], [4]. This is not easily
achievable since, unlike password-based systems, biometric
comparison is not binary and must also account for the
natural intrasubject biometric variability [4], [5].

While several methods have been proposed to protect
biometric templates, most require specific feature extraction
or additional processes based on salting, biohashing, or
cryptographic protection [4], [5]. Even those proposed for
deep learning biometric methods [6], [7] are integrated into
end-to-end models, thus creating hurdles that often limit the
achievable performance.

Considering this, in [8] we proposed the Secure Triplet
Loss, a reformulation of the well-known triplet loss that
enables training end-to-end deep learning models to ob-
tain cancelable biometric templates. The proposed method
allows taking full advantage of the capabilities of end-to-
end deep networks while still ensuring the security of the
stored biometric data. This methodology was successful in
promoting template cancelability and retaining performance
levels in ECG biometrics. However, the results have shown
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that the main drawback of the proposed training loss is
failing to promote template non-linkability.

Hence, this paper presents an extension of the afore-
mentioned work focused on tackling this problem. The
proposed Secure Triplet Loss is reformulated to include a
component that measures and actively promotes template
non-linkability. The contributions of this work relative to
the prior research in [8] are five-fold:

1) The previously proposed Secure Triplet Loss is
reformulated to promote template non-linkability,
through a loss component based on the Kullback-
Leibler divergence or distance statistics;

2) The evaluation of cancelability is enhanced to
test more thoroughly and objectively the proposed
methodology and state-of-the-art approaches;

3) Experiments were conducted anew to confirm the
solidity of the proposed method for biometric veri-
fication, not only with ECG but also with face;

4) The proposed loss formulations are studied in two
scenarios: (a) training a model “from scratch” (ini-
tialized with random parameters), and (b) adapting
an existing end-to-end biometric model to make it
secure (taking advantage of pretrained weights and
fine-tuning with the proposed method);

5) The Secure Triplet Loss is compared with compet-
itive state-of-the-art approaches based on Bloom
Filters [9] and Homomorphic Encryption [10].

As the prior study in [8], this work includes an evalua-
tion of identity verification performance and the template
security properties of cancelability, non-linkability, non-
invertibility, and secrecy leakage. For realistic results, we use
the off-the-person University of Toronto ECG (UofTDB) [11]
and the unconstrained YouTube Faces [12] databases, with
disjoint sets of identities for training and testing. The pro-
posed Secure Triplet Loss formulations are compared with
the original triplet loss in the same evaluation settings.
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Besides this introduction, this paper includes the presen-
tation of related concepts and prior art works, in section 2;
a detailed description of the original triplet loss and the
proposed secure formulations, in section 3; the details on
the conducted experiments, in section 4; the results and their
discussion, in section 5; and the conclusions drawn from this
work, in section 6. Code for this work is available online1.

2 BACKGROUND AND RELATED WORK

Beyond accounting for natural biometric characteristic vari-
ability, biometric data protection methods need to verify
template cancelability, non-invertibility, and non-linkability.
Cancelability (or revokability) means the templates can be
easily and effectively rendered useless if they become com-
promised, generally through the change of a personal key
that is bound with the template [13], [14].

Non-invertibility requires the transformation from bio-
metric samples to templates to be as close to irreversible as
possible. Thus, if the template is compromised, the original
biometric sample cannot be reliably recovered or approxi-
mated [4], [5]. Finally, template non-linkability means it is
difficult to assess if compromised templates from different
biometric systems belong to the same identity [9].

One of the first template protection methods was the
fuzzy commitment scheme proposed by Juels and Watten-
berg [15], using cryptography and error-correcting codes for
template cancelability. Later, Teoh et al. [16] proposed Bio-
Hashing, an adaptation of the hashing process commonly
applied to passwords to deal with fingerprint variability. A
similar approach has been proposed by Sutcu et al. [17].

More recently, Rathgeb et al. [18], [19] proposed the
Bloom filter approach for alignment-free template cancela-
bility and irreversibility. This approach was later adapted
by Gomez-Barrero et al. [9], [20] to ensure template non-
linkability, and by Drozdowski et al. [21] for higher com-
putational efficiency. Raja et al. [22] proposed a highly
efficient method using neighborhood-preserving manifolds
and hashing for biometric template protection in smart-
phones.

Among cryptography-based methods, homomorphic en-
cryption (HE) approaches are particularly promising as HE
allows arithmetic operations on the encrypted domain [23].
This allows the biometric comparison to be fully conducted
on the encrypted domain, ensuring data security [10]. Fully
HE approaches, that allow for unlimited operations in
the encrypted domain, most notably include Gentry’s [24],
Brakerski’s [25], and Fan-Vercauteren’s [26] schemes.

HE has been successfully applied for biometric template
protection in face [10], [23], [27], signature [28], and even
multibiometric recognition [29]. However, with HE the pro-
tection of templates remains the responsibility of a separate
process that should, ideally, be harmoniously integrated
within the feature extraction algorithm.

Using deep learning, Pandey et al. [6] proposed a tem-
plate protection scheme that receives features from a convo-
lutional neural network (CNN), quantizes them, and applies
hashing to obtain exact comparison despite the variability.

1. SecureTL code repository. Available on: https://github.com/
jtrpinto/SecureTL.

Later, Talreja et al. [7] used forward error control (FEC) de-
coding and hashing to protect biometric features extracted
by deep neural networks. While these are applied to deep
learning, they still require separate protection and compari-
son schemes. Hence, they are inadequate for recent state-of-
the-art biometric recognition methods, which largely rely on
end-to-end deep learning models for significantly improved
performance.

Considering this, we recently proposed the Secure
Triplet Loss [8], a formulation of the triplet loss [30] that
enables learning end-to-end models to bind biometric sam-
ples with keys. With this method, biometric templates be-
come easily cancelable, just requiring a key change to be
invalidated. Additionally, the method provided near-perfect
non-invertibility without a decrease in performance relative
to the original triplet loss. However, it presented the major
drawback of high template linkability.

Hence, this paper addresses this problem by refor-
mulating the Secure Triplet Loss to include a linkability-
measuring term. With this, we aim to obtain a general
methodology to train end-to-end biometric models that
achieve cancelability, non-linkability, and non-invertibility
without additional protection processes. The original triplet
loss, the original Secure Triplet Loss formulation, and the
reformulated Secure Triplet Loss are presented in section 3.

3 SECURE TRIPLET LOSS

3.1 Original triplet loss
The triplet loss [30] has been widely used in deep learning
to train networks to accurately determine whether or not
two samples belong to the same class [31], [32], [33]. During
training, such networks receive three inputs (a triplet), in
parallel: one is the anchor (xA, the reference with identity
iA), the second is the positive sample (xP , with identity
iP = iA), and the third is the negative sample (xN , with
identity iN 6= iA). In biometrics, triplets are groups of
three biometric samples (images or signals): the anchor and
positive inputs correspond to the same individual, unlike
the negative input.

For each input, the network will output a representation:
e. g., for the anchor, yA = f(xA). The three representations
are then compared using a measure of distance or dissim-
ilarity d(y1, y2), and the network is optimized through the
minimization of the triplet loss function:

lTL = max [0, α+ d(yA, yP )− d(yA, yN )] , (1)

which leads representations of the same class to be more
similar than those of different classes, minimizing d(yA, yP )
and maximizing d(yA, yN ). The loss also aims to enforce a
minimum margin α > 0 between the two distances.

This is a generally successful strategy when training
neural networks for biometric verification (assessing if the
identities of a biometric template and a biometric query
match). However, it does not address the important issue of
security in biometrics, especially the topics of cancelability
and non-linkability.

3.2 Learning cancelability
The training method proposed in [8] modifies the triplet
loss to make the final sample representations cancelable (as

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TBIOM.2020.3046620

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, VOL. XX, NO. X, MONTH XXXX 3

Fig. 1. Comparison between the model training schemes of the original
triplet loss and the proposed Secure Triplet Loss method [8].

Fig. 2. During training, the Secure Triplet Loss promotes the proximity
between yA and yP1 (which match in identity and key) and larger
distance to the three negative samples with a margin α.

illustrated in Fig. 1). Besides the triplet inputs (xA, xP , and
xN ), the network also receives two different keys (k1, k2)
that are bound with the inputs by the network itself.

Unlike the original triplet loss, xP and xN are processed
by the network twice. First, they are combined with k1
and then with k2. The anchor xA is only bound with k1.
Thus, five representations are obtained: yA = f(xA, k1),
yP1 = f(xP , k1), yP2 = f(xP , k2), yN1 = f(xN , k1),
yN2 = f(xN , k2). From these, four distances are computed:
dSP = d(yA, yP1) (with matching identities and keys),
dDP = d(yA, yP2) (with matching identities but different
keys), dSN = d(yA, yN1) (with different identities but
matching keys), and dDN = d(yA, yN2) (with non-matching
identities and keys).

The objective is to minimize dSP , when both the identi-
ties and the keys match, and maximize the remaining three
distances (see Fig. 2). Hence, the loss is computed through:

lSTL = max (0, α+ dSP − dn) , (2)

where dn results of the combination of all three dis-
tances to be maximized. Here, we consider dn =
min({dSN , dDP , dDN}), with the three distances to be max-
imized being considered equally relevant. This results in:

lSTL = max [0, α+ dSP −min({dSN , dDP , dDN})] . (3)

As with triplet loss, α enforces a margin between pos-
itive and negative distances. In this case, the loss involves
four distances, since it also takes into account whether or
not the keys match. By minimizing the loss in (3), the

network learns to deal with the intrasubject and intersubject
variability of the biometric characteristic. More importantly,
it learns to recognize when the keys do not match, even if the
identity is the same. Hence, if the stored templates become
compromised, they can easily be invalidated through a key
change. However, as reported in [8], lSTL fails to promote
non-linkability.

3.3 Promoting non-linkability

Non-linkability can be achieved by combining the original
formulation of the Secure Triplet Loss, lSTL, with a compo-
nent that quantifies linkability in the representations output
by the network during training, lL. Thus, the proposed re-
formulation of the Secure Triplet Loss follows the equation:

lSTL2 = γlSTL + (1− γ)lL. (4)

The lSTL component is the original Secure Triplet Loss
in (3), focused on biometric performance and template can-
celability, following the formulation in (3). The parameter
γ ∈ [0, 1] balances the lSTL and lL loss components. The lL
component is focused on measuring template linkability. To
achieve non-linkability, one has to ensure similar distance
values are obtained when keys don’t match (regardless
of whether or not the templates are from the same iden-
tity). Hence, dDP and dDN should assume similar values.
This can be achieved using the Kullback-Leibler divergence
(KLD), computed over each batch. This agrees with the
reference linkability metric, which is also inspired by the
KLD. In this case, this part of the loss becomes:

lL = DKL(PdDP
||PdDN

) =
∑

PdDP
log

(
PdDP

PdDN

)
, (5)

where PdDP
and PdDN

are the probability density functions
for the distributions of dDP and dDN , respectively. To obtain
these distributions and their respective probability density
functions, this part of the loss cannot be computed over each
triplet, instead being computed over each batch of triplets.
For brevity, this formulation of the Secure Triplet Loss with
Kullback-Leibler divergence-based linkability is from now
on designated as SecureTL w/KLD or STL w/KLD.

Alternatively, one can avoid estimating these distribu-
tions and the computation of the Kullback-Leibler diver-
gence using simple statistics to promote linkability. If we
consider µ(dDP ) and σ(dDP ) as the mean and standard
deviation, respectively, of the distances dDP on a given
batch, and likewise µ(dDN ) and σ(dDN ) for the distances
dDN on the same batch, then we can reformulate

lL = |µ(dDP )− µ(dDN )|+ |σ(dDP )− σ(dDN )|. (6)

This should lead the model to offer embeddings that result
in similar distance scores when the keys do not match,
regardless of whether or not the identities match, thus
avoiding template linkability. Throughout the remainder
of this paper, for brevity, the formulation of the Secure
Triplet Loss with this statistics-based linkability module is
designated as SecureTL w/SL or STL w/SL.
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Fig. 3. Architecture of the models used for ECG (top) and face (bottom)
identity verification (x denotes a input biometric sample, k a key, and y
a biometric template). The structure of the face model before concate-
nation with k follows exactly the structure of the Inception-ResNet-v1,
which is presented in higher detail in [34].

4 EXPERIMENTAL SETTINGS

The proposed methodology for learning secure biometric
models was explored for two characteristics: the ECG and
face. The ECG comes from the prior research in Secure
Triplet Loss [8], and experiments have been conducted
anew and in more depth, using PyTorch for more flexibility.
The face enables the study of the method’s behavior on a
more mature and developed biometric characteristic. This
section presents the details on the models, the data, and the
conducted experiments.

For either characteristic, keys have been randomly gen-
erated for each triplet, consisting of unidimensional arrays
with 100 binary values. Each key is processed after gen-
eration to verify unit-l2 norm. For SecureTL w/KLD and
SecureTL w/SL, the parameter γ that controls the balance
between the Secure Triplet Loss and the linkability com-
ponent was set to 0.9: this value has overall been able to
offer good template non-linkability without considerably
harming the validation performance and cancelability.

4.1 ECG identity verification

4.1.1 Data
The ECG data used comes from the University of Toronto
ECG Database (UofTDB) [11]. This database includes
recordings from 1019 subjects over up to six sessions and
five different positions. The signals are off-the-person (less
obtrusive and more comfortable for realistic biometric ap-
plications) and have been acquired at 200 Hz using dry
electrodes on the pointer fingers. Each recording is generally
2 to 5 seconds long.

Data from the last 100 identities were used for training,
while the data from the remaining 919 subjects have been
reserved for testing. From these 919, one has been discarded
for only having a total of 30 seconds of data. Triplets have
been generated by selecting an anchor from the first 30 s of
data from a subject and positive and negative samples from
the remaining data of the same or another identity, respec-
tively. From the 100 training identities, 100 000 triplets have
been generated, with 20% being used for validation. A total
of 10 000 triplets have been generated for testing. Each of
the three samples in a triplet is a blindly-segmented five-
second raw ECG sample, normalized to zero mean and unit
variance.

4.1.2 Model
The model for ECG identity verification (see Fig. 3) follows
the architecture of the model used for the previous Secure
Triplet Loss research in [8], adapted from the competitive
end-to-end model proposed in [31], [35]. The model is com-
posed of four unidimensional convolutional layers (with 16,
16, 32, and 32 filters, respectively, with size 1×5, unit stride,
and zero padding), each followed by ReLU activation and
max-pooling (with 1 × 3 kernels and stride 3). The model
ends with two fully-connected layers, each with 100 units
and followed by ReLU activation.

Once trained, this model receives a 5 second long raw
ECG segment (1000 samples long at 200 Hz sampling fre-
quency) and outputs an embedding or template that can
be compared to a reference through the Euclidean distance
(during training) or through the normalized Euclidean dis-
tance [36] (with the trained model, to obtain dissimilarity
scores in the [0, 1] range). In the case of Secure Triplet Loss,
the feature vector s(x) (the flattened feature maps from the
last max-pooling layer) is concatenated with the key array k,
and both are bound together by the fully-connected layers
to make the final secure template f(x, k).

The model was trained using the Adam [37] optimizer,
with initial learning rate of 0.0001 and l2 weight regular-
ization with λ = 0.001. The training lasted a maximum of
250 epochs, with batch size 32, with early stopping based
on validation loss with patience of 25 epochs.

4.2 Face identity verification

4.2.1 Data
To fine-tune and evaluate the model, images from the
YouTube Faces database [12] were used. This database is
composed of frames from 3425 YouTube videos, depicting a
total of 1595 subjects (up to six videos of each subject). Each
video corresponds to between 48 and 6070 frames. This
work used the aligned images provided on the database,
which resulted from face detection, cropping, and align-
ment.

Each face image has been reduced to 70% height and
width and resized to 160 × 160 to match the input dimen-
sions of the model. Ten random triplets have been generated
for each of the first 500 subjects on the database for a total
of 5000 training triplets, of which 1000 have been used for
validation. Ten random triplets have also been generated
from each of the remaining identities, reserved for testing,
resulting in a total of 10 950 test triplets. Whenever possible,
the anchor and positive samples corresponded to different
videos of the same identity.

4.2.2 Model
The model for face identity verification (see Fig. 3) is based
on the Inception-ResNet [34]. This network has been pre-
trained2 for identification on the VGGFace2 dataset [38]
and offered an accuracy of 99.63% on the Labeled Faces in
the Wild (LFW) dataset and 95.12% on the YouTube Faces
database [39]. The original fully-connected layer has been
replaced with two new fully-connected layers, each with

2. FaceNet Pytorch Package. Available on: https://github.com/
timesler/facenet-pytorch.
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100 units and followed by ReLU activation. For the Secure
Triplet Loss, the first of these layers receives the feature
vector s(x) from the first part of the model, concatenated
with the key k. The second outputs the template y(x, k).

All layers on the model have been frozen, to take ad-
vantage of the pretrained parameters. The exceptions are
the last convolutional block and the fully-connected layers
that come, respectively, before and after the average pooling
operation. The last convolutional block is fine-tuned to
allow for small adjustments during training, while the fully-
connected layers are newly created and thus require train-
ing. The model was trained for a maximum of 250 epochs
at batch size 32, with early stopping based on validation
EER with patience of 25 epochs. As with the ECG model,
the Adam optimizer was used with an initial learning rate
0.0001 and l2 regularization with λ = 0.001.

4.3 Evaluation frameworks and metrics
The experiments have been designed to quantify the perfor-
mance of the models trained with the original and Secure
Triplet Loss formulations, not only considering verification
accuracy, but also biometric security.

4.3.1 Verification performance
The verification performance is quantified through the
measurement of false match rates (FMR) and false non-
match rates (FNMR) over the range of possible decision
thresholds (for these models, t ∈ [0, 1]). These values are
presented in FMR vs. FNMR plots and detection error
tradeoff (DET) curves and used to compute the equal error
rate (EER), corresponding to the error where FMRV =
FNMR, and the FNMR@FMR = 0.01%.

4.3.2 Cancelability
Avoiding additional processes such as biohashing or tem-
plate encryption, the proposed Secure Triplet Loss inte-
grates cancelability into the single output of the system, the
template y(x, k), and is reflected in the distance measure
d between two templates. Although the proposed loss is
designed to promote cancelability, this property may not
necessarily be achieved.

Hence, the experiments with the Secure Triplet Loss
include the measurement of cancelability error. The plots
of false match vs. false non-match rates over the dissim-
ilarity/distance scores include both the false match rate
based on identity (when identities don’t match, denoted as
FMRV ) but also false match rate based on cancelability
(when keys don’t match, denoted as FMRC ). The false
non-match rate (FNMR) values are the same for identity
and cancelability since they refer to situations when both
identity and keys match. The value of cancelability false
accept rate at the operation point that corresponds to the
verification EER, FMRC@EER, is also computed.

4.3.3 Non-linkability
The template non-linkability analysis followed the method
described by Gomez-Barrero et al. [9]. The test samples
were paired into mated (different biometric samples from
the same identity with different keys) and non-mated in-
stances (different identities and keys). These have been

used to compute p(d|Hm) and p(d|Hnm): the probability
density functions of the distance score d given the in-
stances are, respectively, mated (hypothesis Hm) or non-
mated (hypothesisHnm). From the likelihood ratio LR(d) =
p(d|Hm)/p(d|Hnm), D↔(d) is computed through

D↔(d) =

0, if LR(d) ≤ 1

2

((
1 + e−(LR(d)−1)

)−1

− 1
2

)
, if LR(d) > 1

(7)

which allows to compute the Dsys
↔ linkability metric with

Dsys
↔ =

∫ dmax

dmin

D↔(d) · p(d|Hm) dd. (8)

The Dsys
↔ is considered the main metric to quantify

template linkability. A biometric system verifying perfect
template non-linkability, which is highly desirable, will
assume Dsys

↔ = 0. A biometric system creating entirely
linkable templates will verify Dsys

↔ = 1.

4.3.4 Non-invertibility and secrecy leakage
Other aspects of template security offered by the proposed
method were evaluated, namely non-invertibility and se-
crecy leakage. Non-invertibility is measured through the
privacy leakage rate, which can be computed through the
expression:

H(X|Y )

H(X)
= 1− I(X;Y )

H(X)
, (9)

where X is the input biometric, Y is the output of the
model, H(X) denotes the entropy of X , H(X|Y ) denotes
the conditional entropy of X given Y , and I(X;Y ) denotes
the mutual information between X and Y . The privacy
leakage rate, in the range [0, 1], should be as close to 1 as
possible: obtaining information on X should be impossible
even when one has all knowledge of Y . The secrecy leakage
measures the mutual information between the stored tem-
plate Y and the key K, through the expression I(Y ;K). The
keys are public, unlike the templates, so they should reveal
as little information as possible on the templates. Hence, the
secrecy leakage should be close to zero.

These require the computation of some information the-
oretical measures, such as entropy and mutual information.
This is very difficult in biometrics, due to the high dimen-
sionality of the inputs and the feature sets, as well as their
variability. In this work, we repeat the process described
in [8] to estimate such measures. Entropy and mutual in-
formation were estimated using a Python implementation3

of the methods proposed in [40] and in [41], respectively,
for continuous multivariate data. These methods, based on
nearest neighbor statistics, were shown to be more accurate
than the alternatives [42]. Since the processing cost of such
estimations grows exponentially with the size of the dataset,
a subset of 1000 test anchors has been used for this test.

5 RESULTS AND DISCUSSION

A general overview of the results obtained is presented in
Table 1 and Table 2, respectively for ECG and face identity
verification. The following subsections discuss the results on
verification performance, cancelability, and non-linkability,
and the comparison with state-of-the-art alternatives.

3. Paul Brodersen’s Entropy Estimators. Available on: https://github.
com/paulbrodersen/entropy estimators.
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TABLE 1
Summary of the test results for ECG identity verification.

Performance Cancel. Link.

Method EER (%) FNMR @
FMRV = 0.1%

FMRC

@ EER
Dsys
↔

Triplet Loss 12.56 0.9033 - -
STL 11.36 0.8362 0.0035 0.288
STL w/KLD 13.58 0.8700 0.0 0.005
STL w/SL 13.33 0.9458 0.0 0.004
BF [9] 15.76 0.9242 0.0075 0.234
HE [10] 12.49 0.9573 0.0806 0.002

TABLE 2
Summary of the test results for face identity verification.

Performance Cancel. Link.

Method EER (%) FNMR @
FMRV = 0.1%

FMRC

@ EER
Dsys
↔

Triplet Loss 13.99 0.8496 - -
STL 13.61 0.8314 0.0966 0.399
STL w/KLD 15.93 0.8586 0.0089 0.132
STL w/SL 15.15 0.8771 0.0182 0.070
BF [9] 17.07 0.9103 0.0396 0.245
HE [10] 15.06 0.8312 0.0371 0.001

5.1 Verification performance

On ECG identity verification, the baseline method trained
with triplet loss offered 12.56% EER. This is similar to the
results presented in the work that first proposed this end-
to-end model [31], [35]. As presented in Table 1 and in the
receiver-operating characteristic (ROC) curves in Fig. 4, the
Secure Triplet Loss previously formulated in [8], without
considering linkability, attained 11.36% EER, which is an
improvement in performance over the original triplet loss
despite the inclusion of a cancelability module. Both these
results are aligned with those previously reported in the
original work in Secure Triplet Loss [8].

The proposed reformulations of the Secure Triplet Loss,
which consider template linkability using the Kullback-
Leibler divergence (SecureTL w/KLD) or using distance
statistics (SecureTL w/SL), led the model to attain, respec-
tively, 13.58% and 13.33% EER. These results show that a
small performance gap should be expected when consid-
ering both cancelability and linkability in the triplet loss.
Recalling the performance improvements with the previous
Secure Triplet Loss formulation, it can be hypothesized
that the performance decrease in SecureTL w/KLD and
SecureTL w/SL is caused by measuring linkability in a
separate loss module (computed batch-by-batch and then
added to the SecureTL formulation). It is likely that, if link-
ability was better integrated into the Secure Triplet Loss, as
was cancelability, then the performance gap would remain
closed.

Nevertheless, the model trained with any of the pro-
posed loss formulations still offers considerably better
performance than the state-of-the-art methods. The best
state-of-the-art method evaluated in the same conditions
(in [31]) offered 21.82% EER vs. 13.58% attained by Se-
cureTL w/KLD and 13.33% achieved by SecureTL w/SL.
This denotes that the proposed method, while presenting a
small performance gap with the linkability loss module, still
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Fig. 4. Detection Error Tradeoff (DET) curves for the ECG identity verifi-
cation model when trained with the original triplet loss vs. the proposed
formulations of the Secure Triplet Loss.
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Fig. 5. Detection Error Tradeoff (DET) curves for the face identity verifi-
cation model when trained with the original triplet loss vs. the proposed
formulations of the Secure Triplet Loss.

retains most of the performance advantages associated with
deep end-to-end models.

For face identity verification, the performance results are
presented in Table 2 and in the ROC curves on Fig. 5. The
model trained with the triplet loss attained 13.99% EER,
which seems adequate given the difficulty of the evaluation
settings: the YouTube Faces provides a challenging frame-
work for evaluation (noted by the 95.12% accuracy achieved
by the Inception-ResNet model on this database vs. 99.63%
on the LFW database), disjoint subsets of identities are used
for training/validation and testing, and each identity is only
represented by a single template for each comparison (the
gallery size is 1).

In harmony with the results on ECG, the model trained
with the Secure Triplet Loss without linkability offered a
small improvement on verification performance (13.61%
EER). Likewise, the addition of a linkability-measuring term
to the loss leads to a 2% increase in EER. This confirms
the aforementioned belief that the separate linkability loss
term is affecting performance and improvements could be
achieved by integrating it into the Secure Triplet Loss in a
more cohesive way.

Overall, the verification performance results denote that
it is possible to adequately train or fine-tune an end-to-
end model with the proposed loss formulations. With either
biometric characteristic, the performance difference between
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Fig. 6. False match rate (FAR) and false non-match rate (FNMR) curves w.r.t. the distance comparison threshold t, for the ECG (left) and face
(right) identity verification models with triplet loss and the proposed Secure Triplet Loss formulations. The latter include both FMRP , relative to
verification error, and FMRC , relative to cancelability error, as well as the FMRC that corresponds to the EER point (FMRC@EER).

using KLD and distance statistics is not appreciable, which
denotes these formulations may each be fitted for specific
settings or used interchangeably.

5.2 Cancelability evaluation
As aforementioned, by integrating identity verification and
template cancelability into a single comparison score, tem-
plate cancelability is not necessarily ensured. Hence, the
results of false match rates based on cancelability (FMRC )
are presented, in Fig. 6, alongside the false match rates based
on verification (FMRV ) and the common false non-match
rates (FNMR).

In all cases, the FMRC is lower than FMRV at and
around the EER operation point. In most cases, FMRC

at this point is very small and is lower than or equal to
FMRV for all operation points, which is highly desirable.
As presented in Table 1 and Table 2, cancelability error is

significantly lower in the ECG models. As shown by the
results, SecureTL w/KLD and w/SL appear to be better
at promoting cancelability than the original secure loss
formulation, denoting that the linkability loss term could
have a positive effect on cancelability.

Considering these results and the increased difficulty
experienced while fine-tuning the face models, one can con-
clude that the proposed Secure Triplet Loss is likely better
fitted for training models from scratch than to adapt pre-
viously trained models to become secure. Nevertheless, the
cancelability results, especially with the SecureTL w/KLD
and SecureTL w/SL, are encouraging in either case.

5.3 Non-linkability evaluation
The results of the linkability analysis following the frame-
work established in [9] are presented in Fig. 7. In both
cases, the original formulation of the Secure Triplet Loss
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Fig. 7. Template linkability analysis for the ECG (top) and face (bottom) identity verification models, following the procedure proposed in [9].

presents relatively high Dsys
↔ (0.288 for ECG and 0.399 for

face). However, the result with ECG is much better than the
equivalent reported in the previous work (0.67). This results
from the fact that linkability was not promoted by this
loss during model training: hence, the model may achieve
adequate non-linkability, but that would be accidental.

In the case of the proposed SecureTL w/KLD and Se-
cureTL w/SL, linkability is actively promoted during train-
ing through the loss. The effects of this loss reformulation
are clear: the probability density functions of mated and
non-mated are more superposed, which indicates that it
would be more difficult, as desired, to distinguish identities
in pairs of templates where the keys do not match.

With ECG, Dsys
↔ assumes the values 0.005 for SecureTL

w/KLD and 0.004 for SecureTL w/SL. With face, it assumes
0.132 for SecureTL w/KLD and 0.070 for SecureTL w/SL.
All of these can be considered semi to fully-unlinkable.
Just as with cancelability, the proposed method seems more
adequate for training models from scratch than for fine-
tuning existing biometric models. Additionally, using KLD
appears to offer some advantages in linkability for ECG
verification, but that should be weighted with the increased
instability this alternative has shown during training, rela-
tive to SecureTL w/SL, especially in face verification.

5.4 Non-invertibility and secrecy leakage

Regarding the non-invertibility and secrecy leakage evalu-
ation, the results follow those previously reported in the
original Secure Triplet Loss work [8]. The privacy leakage
rate was estimated as 1 for the model trained with any of
the losses. This indicates that it is highly difficult for an
attacker to recover the original biometric measurements x
based on compromised templates y output by the model. As
stated in [8], this could be a result of using end-to-end deep
learning models: recent research indicates that optimized
deep models compress the inputs retaining only the infor-
mation needed for the task [43]. This means perfect non-

invertibility can be achieved without carefully handcrafted
feature extraction algorithms.

Similarly, all losses led the model to offer a perfect
secrecy leakage rate of 0, which denotes that the public keys
used to make the templates cancelable reveal no information
on them. These results on non-invertibility and secrecy
leakage do not show a superiority of the proposed loss
formulations over the original triplet loss but emphasize the
meaningful advantages of using end-to-end deep learning
models for secure biometrics.

5.5 Comparison with state-of-the-art approaches

The proposed method was compared with two state-of-the-
art approaches: Bloom Filters (BF) and Homomorphic En-
cryption (HE), as described in [9] and [10], respectively. To
provide a fair and direct comparison between the template
protection schemes, the features given to those methods
were those output by the triplet loss baseline model.

The results are presented in Table 1, Table 2, Fig. 4,
and Fig. 5. Both with face and ECG, the proposed method
outperformed BF in EER, cancelability, and linkability.
HE offered the best linkability results, at the cost of poor
cancelability. Additionally, HE took significantly longer for
biometric comparison than any of the alternatives, which
may grant it limited real applicability.

Although the error results are relatively high, the Secure
Triplet Loss is competitive vs. the state-of-the-art alterna-
tives, especially on cancelability and linkability. Moreover,
improved results are expected when the Secure Triplet Loss
is used on more accurate biometric models.

5.6 Effects of varying γ

Fig. 8 presents the EER and Dsys
↔ results obtained when

varying the γ parameter which balances the original se-
cure triplet loss formulation and the template linkability
component. As shown, lower γ values (γ < 0.7) lead to
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Fig. 8. Results with the proposed loss when varying the γ parameter.

higher EER with either SecureTL w/KLD or SecureTL
w/SL, since template non-linkability takes precedence over
verification accuracy on the loss that guides model training.
For γ ≥ 0.7, lower EER results are obtained, albeit with a
slight increase in template linkability (Dsys

↔ ), especially for
γ > 0.9. Results may vary in other application scenarios
depending on their specificities, but 0.7 < γ < 0.95 should
offer the highest likelihood of success.

6 CONCLUSION

This work reformulated the recently proposed Secure Triplet
Loss [8] to address the problem of template non-linkability.
The goal of this training methodology is to allow the
learning of end-to-end deep biometric models, without any
additional processes, to verify template cancelability, non-
linkability, and non-invertibility. The results on ECG and
face identity verification show that the proposed method
is not only able to fulfill this purpose, but also to adapt
pretrained biometric models to offer secure templates, with
competitive performance results.

However, there is still room for improvement. Further
efforts should be devoted to design ways to better in-
tegrate linkability in the Secure Triplet Loss, in order to
avoid performance decreases. A scheme where linkability
would be measured triplet-by-triplet (instead of batch-by-
batch), similarly to cancelability, should lead to improved
performance using the Secure Triplet Loss. This would also
enable the formulation of triplet mining approaches for the
proposed method. Nevertheless, the Secure Triplet Loss is,
overall, a suitable and flexible general scheme for template
protection in end-to-end deep biometrics.

ACKNOWLEDGMENTS

This work was financed by the ERDF – European Regional
Development Fund through the Operational Programme
for Competitiveness and Internationalization - COMPETE
2020 Programme and by National Funds through the Por-
tuguese funding agency, FCT – Fundação para a Ciência e
a Tecnologia within project “POCI-01-0145-FEDER-030707”,
and within the Ph.D. grant “SFRH/BD/137720/2018”. The
authors wish to acknowledge the creators of the UofTDB
(University of Toronto, Canada), and the YouTube Faces (Tel
Aviv University, Israel) databases, essential for this work.

REFERENCES

[1] A. K. Jain, A. A. Ross, and K. Nandakumar, Introduction to Biomet-
rics. Springer Publishing Company, Incorporated, 2011.

[2] T. Ignatenko and F. M. Willems, “Biometric security from an
information-theoretical perspective,” Foundations and Trends in
Communications and Information Theory, vol. 7, no. 2–3, pp. 135–316,
2012.

[3] J. R. Pinto, J. S. Cardoso, and A. Lourenço, “Evolution, Current
Challenges, and Future Possibilities in ECG Biometrics,” IEEE
Access, vol. 6, pp. 34 746–34 776, 2018.

[4] K. Nandakumar and A. K. Jain, “Biometric Template Protection:
Bridging the performance gap between theory and practice,” IEEE
Signal Processing Magazine, vol. 32, no. 5, pp. 88–100, 2015.

[5] A. K. Jain, K. Nandakumar, and A. Nagar, “Biometric template
security,” EURASIP J. Adv. Signal Process, vol. 2008, pp. 113:1–
113:17, 2008.

[6] R. K. Pandey, Y. Zhou, B. U. Kota, and V. Govindaraju, “Deep
secure encoding for face template protection,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), June 2016, pp. 77–83.

[7] V. Talreja, M. C. Valenti, and N. M. Nasrabadi, “Multibiometric se-
cure system based on deep learning,” 2017 IEEE Global Conference
on Signal and Information Processing (GlobalSIP), pp. 298–302, 2017.

[8] J. R. Pinto, J. S. Cardoso, and M. V. Correia, “Secure Triplet Loss for
End-to-End Deep Biometrics,” in 2020 8th International Workshop on
Biometrics and Forensics (IWBF), Porto, Portugal, Apr 2020.

[9] M. Gomez-Barrero, C. Rathgeb, J. Galbally, C. Busch, and J. Fierrez,
“Unlinkable and irreversible biometric template protection based
on bloom filters,” Information Sciences, vol. 370-371, pp. 18–32,
2016.

[10] P. Drozdowski, N. Buchmann, C. Rathgeb, M. Margraf, and
C. Busch, “On the Application of Homomorphic Encryption to
Face Identification,” in 2019 International Conference of the Biometrics
Special Interest Group (BIOSIG), 2019.

[11] S. Wahabi, S. Pouryayevali, S. Hari, and D. Hatzinakos, “On Eval-
uating ECG Biometric Systems: Session-Dependence and Body
Posture,” IEEE Transactions on Information Forensics and Security,
vol. 9, no. 11, pp. 2002–2013, Nov. 2014.

[12] L. Wolf, T. Hassner, and I. Maoz, “Face recognition in uncon-
strained videos with matched background similarity,” in CVPR
2011, June 2011, pp. 529–534.

[13] P. Punithavathi and G. Subbiah, “Can cancellable biometrics pre-
serve privacy?” Biometric Technology Today, vol. 2017, no. 7, pp.
8–11, 2017.

[14] M. Tarek, O. Ouda, and T. Hamza, “Robust cancellable biometrics
scheme based on neural networks,” IET Biometrics, vol. 5, no. 3,
pp. 220–228, September 2016.

[15] A. Juels and M. Wattenberg, “A Fuzzy Commitment Scheme,” in
Proceedings of the 6th ACM Conference on Computer and Communica-
tions Security, New York, NY, USA, 1999, pp. 28–36.

[16] A. Teoh, D. Ngo, and A. Goh, “Biohashing: two factor authenti-
cation featuring fingerprint data and tokenised random number,”
Pattern Recognition, vol. 37, no. 11, pp. 2245 – 2255, 2004.

[17] Y. Sutcu, H. T. Sencar, and N. Memon, “A secure biometric
authentication scheme based on robust hashing,” in Proceedings
of the 7th Workshop on Multimedia and Security, August 2005, pp.
111–116.

[18] C. Rathgeb, F. Breitinger, and C. Busch, “Alignment-free cancelable
iris biometric templates based on adaptive bloom filters,” in 2013
International Conference on Biometrics (ICB), 2013, pp. 1–8.

[19] C. Rathgeb, M. Gomez-Barrero, C. Busch, J. Galbally, and J. Fierrez,
“Towards cancelable multi-biometrics based on bloom filters: a
case study on feature level fusion of face and iris,” in 3rd Interna-
tional Workshop on Biometrics and Forensics (IWBF 2015), 2015, pp.
1–6.

[20] M. Gomez-Barrero, C. Rathgeb, G. Li, R. Ramachandra, J. Galbally,
and C. Busch, “Multi-biometric template protection based on
bloom filters,” Information Fusion, vol. 42, pp. 37–50, 2018.

[21] P. Drozdowski, S. Garg, C. Rathgeb, M. Gomez-Barrero, D. Chang,
and C. Busch, “Privacy-preserving indexing of iris-codes with can-
celable bloom filter-based search structures,” in 2018 26th European
Signal Processing Conference (EUSIPCO), Sep. 2018, pp. 2360–2364.

[22] K. B. Raja, R. Raghavendra, M. Stokkenes, and C. Busch, “Bio-
metric template protection on smartphones using the manifold-
structure preserving feature representation,” in Selfie Biometrics:
Advances and Challenges, A. Rattani, R. Derakhshani, and A. Ross,
Eds. Cham: Springer International Publishing, 2019, pp. 299–312.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TBIOM.2020.3046620

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, VOL. XX, NO. X, MONTH XXXX 10

[23] V. N. Boddeti, “Secure face matching using fully homomorphic
encryption,” in IEEE International Conference on Biometrics: Theory,
Applications, and Systems (BTAS), 2018.

[24] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D.
dissertation, Stanford University, 2009.

[25] Z. Brakerski and V. Vaikuntanathan, “Fully Homomorphic En-
cryption from Ring-LWE and Security for Key Dependent Mes-
sages,” in Advances in Cryptology – CRYPTO 2011, 2011, pp. 505–
524.

[26] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” IACR Cryptology ePrint Archive, Report 2012/144, 2012.

[27] J. Kolberg, P. Drozdowski, M. Gomez-Barrero, C. Rathgeb, and
C. Busch, “Efficiency Analysis of Post-quantum-secure Face Tem-
plate Protection Schemes based on Homomorphic Encryption,” in
2020 International Conference of the Biometrics Special Interest Group
(BIOSIG), 2020.

[28] M. Gomez-Barrero, J. Fierrez, and J. Galbally, “Variable-length
template protection based on homomorphic encryption with ap-
plication to signature biometrics,” in 2016 4th International Confer-
ence on Biometrics and Forensics (IWBF), 2016.

[29] M. Gomez-Barrero, E. Maiorana, J. Galbally, P. Campisi, and J. Fier-
rez, “Multi-biometric template protection based on homomorphic
encryption,” Pattern Recognition, vol. 67, pp. 149–163, 2017.

[30] G. Chechik, V. Sharma, U. Shalit, and S. Bengio, “Large scale online
learning of image similarity through ranking,” Journal of Machine
Learning Research, vol. 11, pp. 1109–1135, 2010.

[31] J. R. Pinto and J. S. Cardoso, “A end-to-end convolutional neural
network for ECG based biometric authentication,” in 10th IEEE In-
ternational Conference on Biometrics: Theory, Applications and Systems
(BTAS 2019), 2019.

[32] W. Chen, X. Chen, J. Zhang, and K. Huang, “Beyond triplet loss:
A deep quadruplet network for person re-identification,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017.

[33] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng, “Person Re-
Identification by Multi-Channel Parts-Based CNN With Improved
Triplet Loss Function,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016.

[34] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-
v4, Inception-ResNet and the Impact of Residual Connections on
Learning,” in Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence (AAAI-17), 2017.

[35] J. R. Pinto, J. S. Cardoso, and A. Lourenço, “Deep Neural Networks
For Biometric Identification Based On Non-Intrusive ECG Acqui-
sitions,” in The Biometric Computing: Recognition and Registration,
K. V. Arya and R. S. Bhadoria, Eds. Boca Raton FL, United States:
CRC Press, 2019, ch. 11, pp. 217–234.

[36] Wolfram Language and System Documentation Center,
“Normalized square euclidean distance,” 2010, (last accessed on
22-11-2019). [Online]. Available: http://reference.wolfram.com/
language/ref/NormalizedSquaredEuclideanDistance.html

[37] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” in 3rd International Conference for Learning Representations,
2014.

[38] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “VG-
GFace2: A dataset for recognising faces across pose and age,” in
International Conference on Automatic Face and Gesture Recognition,
2018.

[39] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified
embedding for face recognition and clustering,” in 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). IEEE,
Jun 2015.

[40] L. F. Kozachenko and N. N. Leonenko, “Sample estimate of the
entropy of a random vector,” Problemy Peredachi Informatsii, vol. 23,
pp. 9–16, 1987.
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