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Abstract This paper presents two new approaches to solve
the reconfiguration problemof electrical distribution systems
(EDSs) with variable demands, using the CLONALG and the
SGACB algorithms. The CLONALG is a combinatorial opti-
mization technique inspired by biological immune systems,
which aims at reproducing the main properties and func-
tions of the system. The SGACB is an optimization algorithm
inspired by natural selection and the evolution of species. The
reconfiguration problem with variable demands is a com-
plex combinatorial problem that aims at identifying the best
radial topology for an EDS, while satisfying all technical
constraints at every demand level and minimizing the cost of
energy losses in a given operation period. Both algorithms
were implemented in C++ and test systems with 33, 84, and
136 nodes, as well as a real system with 417 nodes, in order
to validate the proposed methods. The obtained results were
compared with results available in the literature in order to
verify the efficiency of the proposed approaches.
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1 Introduction

In recent years, electrical distribution systems (EDSs) have
been the target of large investments and research towardmod-
ernizing and improving the automation of the operation of
these systems, so as to increase the reliability, efficiency,
and security of the networks. In this context, one available
mechanism to improve the efficiency of EDS operation is dis-
tribution system reconfiguration (DSR), which is a research
area that has been frequently addressed by the scientific com-
munity in recent years.

The DSR is a complex combinatorial problem that can
be modeled as a mixed-integer nonlinear programming
(MINLP) problem (Abdelaziz et al. 2009). The main objec-
tive of the DSR problem generally is the minimization of
active power losses in the EDS. In this case, the objective
function is subject to constraints related to the system’s oper-
ation, including nodal voltage limits, branch current capacity
limits, the first and second law of Kirchhoff (active and reac-
tive power balance), and the radial operation of the system.
Apart from this typical objective, the DSR problem can also
be solvedwith variable demands, where the objective ismini-
mizing the cost of the power losses along an operation period.
Due the combinatorial nature, the DSR problem is a prob-
lem which is difficult to solve using exact methods, as there
are many combinations of solutions. Thus, an alternative to
solve this problem, is the use of the intelligent methods such
as heuristics, metaheuristics, artificial neural networks, and
artificial immune systems.

In this sense, in the literature is possible found many
papers about the DSR problem, but the most of the papers
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just consider fixed demand in the analysis. In the mid-1970s,
Merlin and Back (1975) proposed one of the first heuris-
tic algorithms to solve the DSR problem. Similar but more
sophisticated approaches were proposed in Baran and Wu
(1989) andCivanlar et al. (1988). These approaches are good,
but not satisfactory to large problems. The metaheuristics
such as genetic algorithms (Guimarães et al. 2010; Nara et al.
1992; Souza et al. 2015a), simulated annealing (Chang and
Kuo 1994), Tabu search (Zhang et al. 2007; Abdelaziz et al.
2010), ant colony systems (Carpaneto and Chicco 2008), and
particle swarm optimization (Abdelaziz et al. 2009) are more
efficient. The application of other approaches, such as artifi-
cial neural networks (Kim et al. 1993; Salazar et al. 2006) and
artificial immune systems (Kavousi-Fard and Niknam 2014;
Souza et al. 2015b), can also be found in the literature. With
regard to the DSR problem with variable demands, there are
fewer reports and publications available in the literature. In
Bueno et al. (2004), the authors propose the use of branch
exchange by energy. Reference Queiroz and Lyra (2009)
presents a hybrid genetic algorithm to solve the problemwith
variable demands. On the other hand, Inoue et al. (2014) pro-
pose a novel optimization method with compressed search
space using a binary decision diagram and Possagnolo 2015
details four variations of the variable neighborhood search
(VNS).

In this paper is proposed the application of two meth-
ods to solve the DSR problem with variable demands: the
clonal selection algorithm (CLONALG) (de Castro and Von
Zuben 2000) and the specialized genetic algorithm of Chu–
Beasley (SGACB) (Silva et al. 2005). Both algorithms are
efficient optimization techniques. TheCLONALG is inspired
by the functioning of biological immune systems, providing
a computational emulation of the main properties and func-
tionalities of the organism. The SGACB is an optimization
technique inspired by natural selection and the evolution of
species. In order to evaluate the quality of each proposed
solution, a specialized sweep load flow for radial EDS is
used (Shirmohammadi et al. 1988) for each demand level
to be analyzed as a way of calculating the power losses. The
proposedmethodswere evaluated using test systemswith 33,
84, and 136 nodes, along with a real system with 417 nodes.
The obtained results were compared to the results available
in the specialized literature in order to assess the efficiency
of the proposed methods.

It is noteworthy that the main novelty/contribution of this
paper is the two new proposed approaches to solve the DSR
problemwithvariable demands and themethodused toobtain
the variable demands making the analysis nearest of a real
situation.

2 Mathematical Model for the DSR Problem with
Variable Demands

The DSR problem with variable demands, considering a sin-
gle radial configuration and a symmetrical and balanced
system, can be modeled as an MINLP problem with the
structure shown in (1)–(12), as presented in Franco et al.
(2012):

min v =
∑

d∈�d

∑

i j∈�l

cld�d

[gi j xi j (V 2
i,d + V 2

j,d − 2Vi,dVj,d cos θi j,d)]s.t. (1)

Psi,d − Pdi,d −
∑

j∈�bi

(xi j Pi j,d)

= 0 ∀i ∈ �b,∀d ∈ �d (2)

Qsi,d − Qdi,d −
∑

j∈�bi

(xi j Qi j,d)

= 0 ∀i ∈ �b,∀d ∈ �d (3)

V ≤ Vi,d ≤ V ∀i ∈ �b,∀d ∈ �d (4)

(P2
i j,d + Q2

i j,d) ≤ S2i j,d xi j ∀i j ∈ �l ,∀d ∈ �d (5)

(I 2ri j,d + I 2mi j,d) ≤ I 2i j,d xi j ∀i j ∈ �l ,∀d ∈ �d (6)

xi j ∈ {0, 1} ∀i j ∈ �l (7)
∑

(i j)∈�l

xi j = nb − 1 (8)

In this formulation: �l is the set of circuits; �b is the set
of nodes; �bi is the set of nodes connected at node i ; �d is
the set of demands; cld is the cost of energy at demand level
d; �d is the duration of demand level d; gi j is the conduc-
tance of circuit i j ; Vi,d is the voltage magnitude at node i at
demand level d; θi j,d is the phase angle difference between
nodes i and j at demand level d; bi j is the susceptance of
circuit i j ; Pi j,d is the active power flow that goes from node
i to node j at demand level d; Qi j,d is the reactive power
flow that goes from node i to node j at demand level d;
Psi,d is the active power supplied by the substation at node
i at demand level d; Qsi,d is the reactive power supplied
by the substation at node i at demand level d; Pdi,d is the
active power demanded at node i at demand level d; Qdi,d
is the reactive power demanded at node i at demand level
d; V is the minimum voltage magnitude; V is the maximum
voltage magnitude; Si j,d is the maximum apparent power
of circuit i j at demand level d; nb is the number of nodes
in the system; and xi j is the binary decision variable that
represents the state (connected or disconnected) of circuit
i j .

123



J Control Autom Electr Syst

Equation (1) represents the objective function of the DSR
problem with variable demands, where “v” corresponds to
the cost of energy losses in the EDS to be minimized. The
mathematicalmodel considers physical constraints, the spec-
ifications of system components, and operational conditions.

Constraints (2) and (3) represent active and the reactive
nodal balance equations in which the active and reactive
power flows Pi j,d and Qi j,d are calculated, respectively,
using (9) and (10).

Pi j,d = V 2
i,dgi j − Vi,dVj,d(gi j cos θi j,d + bi j senθi j,d) (9)

Qi j,d = −V 2
i,dbi j − Vi,dVj,d(gi j senθi j,d − bi j cos θi j,d)

(10)

Constraint (4) represents the voltage magnitude limits for
each node of the EDS, as defined by regulatory standards.
The power flow in each circuit is limited by (5). And the
constraint of the current limits is express by (6), in which
the real current and imaginary current Iri j,d and Imi j,d are
calculated, respectively, using (11) and (12).

Iri j,d = Gi j (Vi,d cos θi,d − Vi,d cos θ j,d)

−Bi j (Vi,d sin θi,d − Vi,d sin θ j,d) (11)

Iri j,d = Gi j (Vi,d sin θi,d − Vi,d sin θ j,d)

+Bi j (Vi,d cos θi,d − Vi,d cos θ j,d) (12)

Constraint (7) corresponds to the binary nature of the deci-
sion variables, according to which xi j can take two values
as follows: When it is 0 (zero), circuit ij is open (or dis-
connected), and when it is 1 (one), circuit ij is closed (or
connected).

Constraint (8) presents one of the necessary conditions
to guarantee the radial operation of the EDS, namely, that a
solution to the problem must have (nb − 1) active circuits.
The other necessary condition is that the system must be
connected (i.e., all nodes connected). This condition is guar-
anteed by (2) and (3). Thus, satisfying (2), (3), and (8) ensures
that any viable solution, as well as the optimal solution, will
be radial (Lavorato et al. 2012).

3 Clonal Selection Algorithm (CLONALG)

The CLONALG was originally proposed in de Castro and
Von Zuben (2000), inspired by the biological principle of the
clonal selection of B lymphocytes in an organism (biological
immune systems). Applying the CLONALG to optimization
problems can be described as presented in Pseudocode 1 (de
Castro and Von Zuben 2000).

The antibodies correspond to candidate solutions. Each
antibody generates a total number of clones (Nc). The num-
ber of clones Nc used in the cloning process (line 5 of

Pseudocode) for each antibody is given by (13) (de Castro
and Timmis 2002). In this expression, β is a cloning factor
between 0 and 1, N is the total number of antibodies of popu-
lation P , and round(·) is the rounding operator to the nearest
integer.

Ni
c = round

(
βN

i

)
(13)

Pseudocode A: CLONALG Algorithm
1 Generate a population (P) with N antibodies interpreted 

as candidate solutions to the problem under analysis;
2 while (stopping criterion is not satisfied) do
3 Evaluate the affinity (objective function) for each 

antibody of the population P ;
4 Select the n best antibodies of population P

(selection process), obtaining the set P{n};
5 Reproduce the n best antibodies selected (cloning 

process), generating a population (C) with Nc
clones. The quantity of clones of each antibody is 
directly proportional to its affinity;

6 Submit the population of clones (C) to a 
hypermutation process in which the mutation rate 
is inversely proportional to the antibody’s 
affinity. A population (C*) of antibodies is 
generated;

7 Evaluate the affinity of each antibody that 
belongs to the set (C*), and re-select the n best 
antibodies creating the set C*{n}, and add them to 
population P;

8 Replace d low affinity antibodies in population P
with new antibodies (P{d}) (metadynamic 
process). The antibodies with low affinity have a 
greater probability of being replaced;

9 end while

The mutation rate (α) of each clone is defined by (14) (de
Castro and Timmis 2002). In this expression, ρ is a damping
control parameter for the exponential function, and f ∗ is the
normalized value of affinity f , which is calculated according
to (15) for minimization problems and according to (16) for
maximization problems (de Castro and Timmis 2002).

α = exp(−ρ f ∗) (14)

f ∗ = f

fmax
(15)

f ∗ = fmin

f
(16)

where fmax is the largest affinity and fmin is the lowest affin-
ity.

Each clone suffers a mutation process as proposed in
Franca et al. (2005):

m = round(α∗N (0, 1)) (17)

where m is the number of mutations that each antibody will
suffer, α is the mutation rate, and N (0, 1) is a Gaussian
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random variable with a mean of 0 and standard deviation
of 1.

The stopping criterion usually employed in the CLON-
ALG is a maximum number of iterations.

4 Specialized Genetic Algorithm of Chu–Beasley
(SGACB)

The SGACB was originally proposed in Silva et al. (2005)
and corresponds to a specialized version of the genetic algo-
rithm of Chu–Beasley presented in Chu and Beasley (1997).
The SGACB can be described in Pseudocode 2 (Silva et al.
2005):

The stopping criterion commonly employed in the
SGACB is a maximum number of iterations

Pseudocode B: SGACH Algorithm
1 Generate a population (P) with N individuals;
2 while (stopping criterion is not satisfied) do
3 Evaluate the fitness (objective function) and the 

unfitness for each individual in population P;
4 Perform the tournament selection process, 

generating a pair of individuals (parent 
individuals) in the population (Ph1 and Ph2);

5 Perform the recombination process, generating 
two child individuals (Ch1 and Ch2) from the 
parents;

6 Evaluate the fitness function of each child (Ch1
and Ch2). Eliminate the one having the largest 
fitness value from the generated pair and keep 
the one having the lowest fitness value;

7 Perform the mutation process on the child that 
was selected in the previous step. In this 
process the child will be mutated, generating a 
matured child (Ch*);

8 Submit the matured child (Ch*) to an 
improvement process using a local heuristic 
search. In this step, the matured child passes 
through a local search in order to improve the 
fitness value;

9 Evaluate if the improved child can go back into 
population P, substituting some individuals in 
the current population. In the first place, check
if this improved child is already in the current 
population, if yes, the improved child is 
discarded. Otherwise, the fitness and unfitness 
values are used to verify the possibility of 
substitution, depending on the problem.

10 end while

5 Codification of the DSR Problem with Variable
Demands

In this paper is used the coding of DSR problem proposed in
Carreño et al. (2008),wherein theEDS is represented as a tree
(graph theory) constituted by an array of arcs (branches). The
encoding vector has dimension nl (number of branches) and
represents thewhole electrical system storing the branches of
the system. In this coding scheme, the first (nb −1) elements
of the vector indicate the branches of the radial topology (set
N1), and the branches between position nb and nl (set N2),
indicate the connection elements (branches off the radial con-
figuration), as illustrated in Fig. 1.

For example, a topology of the test system with 14 nodes
is shown in Fig. 2. This topology can be represented as (18),
where all elements between 1 and (nb − 1) belong to the
network topology (continuous line), and the others, from nb
until the end of the vector, are connection elements that are
disconnected in this configuration (dotted line). This repre-
sentation is not fixed, given that the same topology can be
represented as (19), which can help to diversify the search
depending on the kind of operators that are used.

[C1 C5 C10 C2 C7 C11 C3 C6 C12 C4 C8 C13 C9

(C14 C15 C16)] (18)

Fig. 2 Example of codification to the 14-node system

Fig. 1 Codification vector for
the 14-node system
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[C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

C13 (C14 C15 C16)] (19)

This codification ensures that the initial population only
includes radial topologies. Therefore, it is possible to develop
search operators that preserve the radial topology, avoiding
this type of infeasibility.

6 Proposed Approach to the DSR Problem

In this section, two new methods are proposed to solve the
DSR problem with variable demands. These methods use
the CLONALG (described in Sect. 6.1) and the SGACB
(described in Sect. 6.2).

6.1 Application of the CLONALG

In Fig. 3 is illustrated the flowchart of the application of the
CLONALG in the RSD problem.

The following sections describe the operators and process
of the CLONALG.

6.1.1 Heuristic to Generate the Initial Population

To generate the initial population (P) for the CLONALGwas
used a heuristic inspired by Prim heuristic presented by Car-
reño et al. (2008). This heuristic considers the codification of
the problem presented in the previous section and described
in Pseudocode 3.

Pseudocode C: Heuristic to generate initial population
1 D is the set of nodes present in the current configuration;
2 φ=D , φ=1N , φ=2N ;
3 Add the node to the substation (root node) to D;
4 Find all branches with a vertex in D;
5 Select a branch, identified in the previous step to enter in 

the topology (randomly);
6 If the selected branch generates a loop in the topology, 

include it in N2, otherwise include the opposite vertex in 
D and the branch in N1;

7 Back to step 3 until all branches are selected.

In the end of the process, the vector [N1, N2] repre-
sents a topology of the EDS. This strategy always generates
topologically feasible solutions (radial), contributing to the
efficiency and diversity of the algorithms proposed in this
paper.

For more details of the heuristic to generate the initial
population, consult the Ref. Carreño et al. (2008), where it
is detailed in step by step.

Fig. 3 Flowchart of application of the CLONALG

6.1.2 Evaluation of the Affinity

In this step, the affinity of each antibody (candidate solution)
in population P is evaluated. This value represents the cost of
the energy losses associated with a topology in the operation
period for all demand levels under analysis. In order to obtain
the cost of losses, a specialized sweep load flow for radial
EDSs (Shirmohammadi et al. 1988) is run. To analyze several
demand levels, the power flow is run for each demand, and
then expression (20) is used to obtain the affinity value of
the associated antibody. In this expression, Nd is the number
of demand levels to be analyzed, Ki is the cost of energy
losses for demand level i , and Ti and Pi are the duration and
the value, respectively, of the active power losses associated
with demand level i .

f =
Nd∑

i=1

[Ki ∗ Ti ∗ Pi ] (20)

Additionally, for theCLONALG, a value of the penalty for
each antibody in the population is calculated bymeasuring its
infeasibility degree for all the demand levels to be analyzed.
This value is given by the sum of the absolute values of
the deviations of nodal voltages in terms of the specified
ranges plus the sum of the deviations of the branch currents
in terms of the thermal limits of each branch. If this value is
zero, then the associated antibody is not penalized and can
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be implemented from a technical point of view at all demand
levels.

6.1.3 Selection Process

In the selection process of theCLONALG, the n best antibod-
ies (memory antibodies) are selected to carry out the cloning
and hypermutation processes, as well as the re-selection
mechanism to insert the n best matured antibodies into the
population (P). In order to select the n best antibodies, the
algorithm takes into account the affinity values ordered from
the onewith the least power losses (the one of highest quality)
to the one with the most power losses. The selected subpop-
ulation of antibodies is called P{n}.

6.1.4 Cloning Process

In the cloning process, a subpopulation of clones (C) is gen-
erated. The subpopulation consists of Nc clones obtained
through the antibodies of subpopulation P{n}. The number of
clones that each antibody can generate is calculated by using
(13).

6.1.5 Hypermutation Process

After obtaining a subpopulation of clones (C), the hypermu-
tation process is carried out to generate a new subpopulation
of matured clones (C∗). Initially it is necessary to calculate
the number of mutations of an antibody i in the iterative
process of the CLONALG using (17). Equation 14) defines
the mutation rate (α), and (16) establishes the normalized
affinity ( f ∗). Following these calculations, a random muta-
tion is performed as described as following Pseudocode.

Pseudocode D: Hypermutation process
1 Read C and obtain Nc (number of clones of population 

C);
2 for i=1 until Nc do
3 Calculate the number of mutations (m) for 

antibody i;
4 for j=1 until m do
5 Select randomly a circuit l ∈ N2 of 

antibody i. This position l represents a 
disconnected circuit;

6 Connect/close the selected circuit and 
identify the loop formed. Choose a circuit 
in the loop formed and replace by the 
circuit l;

7 end for
8 Store the matured antibody i in C*;
9 end for
10 return C*;

Figure 4 presents an illustrative example of the hyper-
mutation process. In this example it was used the antibody
shown in (19). In this process, it was initially randomly cho-

Fig. 4 Hypermutation example for the 14-node system

sen a circuit belonging to set N2, i. e., a disconnected circuit.
After this process, this circuit is connected and a loop is
formed in the system. This loop should be identified and
stored. In the sequence, it is randomly chosen another circuit
belonging to the mentioned loop formed to replace the initial
circuit. Finally the circuits are exchanged (the circuit 15 is
replaced by the circuit 11), generating a matured antibody.
This hypermutation strategy always generates topologically
feasible antibodies.

6.1.6 Metadynamic Process

In the metadynamic process of the CLONALG, the worst
d antibodies of the population (P) are replaced by d new
antibodies, which are randomly generated using the heuristic
described in Pseudocode 3, presented in Sect. 6.1.1.

6.1.7 Stopping Criterion

TheCLONALGstops if the affinity value of the best antibody
in the population does not change for a specified number of
iterations (ger), and the average affinity value of the antibod-
ies in the population does not change bymore than a specified
percentage over a given number of iterations. If the above two
conditions hold, then the algorithm ends, indicating that a
final solution has been obtained. If not, the iteration counter is
increased by 1. If themaximumnumber of iterations has been
reached, then stop. If not, return to Step 2 of the algorithm.

6.2 Application of the SGACB

In Fig. 5 is illustrated the flowchart of the application of the
SGACB in the RSD problem.

The following sections describe the SGACB. In order
to conduct a comparison between the CLONALG and the
SGACB, both were implemented using the same strategies
for codification, generation of the initial population, evalua-
tion of the affinity (objective function), and mutation.

6.2.1 Heuristic to Generate the Initial Population

The heuristic to generate the initial population of the SGACB
is the same as the one used to generate the initial population
for the CLONALG, as presented in Sect. 6.1.1.
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Fig. 5 Flowchart of application of the SGACB

6.2.2 Evaluation of Fitness and Unfitness

To evaluate the fitness value for the SGACB, the same oper-
ator as the one described in Sect. 6.1.2 of the CLONALG
is used. In the SGACB, unfeasibility is represented by the
unfitness (UF) coefficient and used in the substitution step of
the SGACB (Sect. 6.2.7).

6.2.3 Selection Operator

The selection operator used in the SGACB is based on the
tournament selection process. This mechanism uses pairs of
individuals in population P to select two individuals (Ph1
and Ph2) to be processed by the algorithm.

6.2.4 Recombination Process

After the selection process, the recombination step takes
place, generating two child individuals from the parent indi-
viduals. This process is presented in Carreño et al. (2008)
and described in the following steps.

Pseudocode E: Recombination process
1 Read the individual parents;
2 Choose randomly a cross point (nr) in the set of N1 of 

the first parent;
3 Copy the first nr elements of the first parent to the child 

individual in construction;
4 In the second parent, eliminating all the elements that 

are already present in the child individual;
5 For each branch still present in the second parent: If the 

branch does not form a loop, include in the set of N1, 
otherwise, include in the set of N2.

This recombination strategy generates only child indi-
viduals that are topologically feasible; that is, they remain
associated with radial topologies.

6.2.5 Mutation Process

The mutation process used in the SGACB is the same as the
one described in Sect. 6.1.5 of the CLONALG.

6.2.6 Improvement Process

The improvement process used in the SGACB is an inten-
sified search (local improvement), which is run to improve
the fitness values of the individuals. This process uses the
local search heuristic proposed in Carreño et al. (2008) and
detailed in Souza et al. (2015b).

6.2.7 Substitution Criterion

The substitution criterion of the SGACB evaluates whether
the improved child can substitute any individual in the cur-
rent population. The criterion to make this substitution is as
follows.

First, it is checked whether this improved child is already
in the current population P . If it is, then the improved child
is eliminated. If not:

(a) If the improved child corresponds to a solution that is
unfeasible (i.e., UF is not zero), then it is only possible to
substitute an individual in the population that is also unfeasi-
ble. The substitution takes place if the degree of unfeasibility
(UF) of the mutated child is smaller than the UF value of the
unfeasible individual in the current population that has the
largest UF. If the UF of the mutated child is larger than the
largest UF of the unfeasible individuals in the current popu-
lation, then the mutated child is eliminated;

(b) If the mutated child is feasible (i.e., UF is zero) and
there are unfeasible individuals in the current population,
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Fig. 6 Typical active power
demand load curves of a
residential, b commercial and c
industrial

then the mutated child replaces the one with the largest
UF, that is, the most unfeasible individual in the current
population. If no unfeasible individuals exist in the current
population, then the mutated child replaces the worst of the
individuals in the population, provided that its fitness value
is smaller. If not, the mutated child is eliminated.

6.2.8 Stopping Criterion

The stopping criterion used in the SGACB is the same as the
one used in the CLONALG (Sect. 6.1.7).

7 Results

This section presents the results obtained from the applica-
tion of the CLONALG and the SGACB to the test systems
with 33 (Baran and Wu 1989), 84 (Chiou et al. 2005), and
136 (Zhang et al. 2007) nodes, and to the real system with
417 (Bernal-Agustin 1998) nodes. The CLONALG and the
SGACBwere implemented in C++ 6.0® (Borland C++). All
testswere carried out using aPCwith an IntelCore i7 3.1GHz
processor.

7.1 Configuration of the Used Demand Levels

In the all tests is considered an operation period of 24h,
and for each hourly period, a demand level was specified
for each node in the test systems. The demand levels were
organized into three sets: (a) residential, (b) commercial, and
(c) industrial. For each demand level, a typical load diagram
was specified, as illustrated in Fig. 6a–c.

In order to obtain one specific demand level, the load factor
of the final consumer at each node was multiplied by the
active and reactive powers associated with the typical load
curves. The selection of the type of consumer at each node of
the EDS was done in a random way, assuming that 60% of
the consumers were residential, 25% were commercial, and
15% were industrial.

The types of consumer defined for each bar of the EDS
can be found in Possagnolo (2015), where is detailed the data
of the EDS used in this paper.

Table 1 presents the load factors associated with each
type of consumer over the 24h of the operation period and
the cost of energy losses. Figure 7 shows how the cost of
energy losses varies across the 24-h period. In each hourly
period, these costs are multiplied by the active losses cal-
culated by the power flow routine in order to obtain the
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Table 1 Load factors of the consumers and cost of energy losses

Demand level Consumer kind Cost (US$/kWh)

Residential Commercial Industrial

1 0.3600 0.2838 0.0625 0.0650

2 0.2600 0.2973 0.1000 0.0650

3 0.2400 0.2838 0.0750 0.0650

4 0.2200 0.3108 0.1188 0.0650

5 0.2400 0.2938 0.1000 0.0650

6 0.4200 0.3378 0.0875 0.0650

7 0.5400 0.4054 0.1375 0.1100

8 0.5600 0.5270 0.3875 0.1100

9 0.5400 0.7297 0.7438 0.1100

10 0.5800 0.8311 0.7625 0.1100

11 0.4300 1.0000 0.9000 0.1100

12 0.4800 0.9595 1.0000 0.1100

13 0.5800 0.9324 0.6188 0.1100

14 0.5200 0.9595 0.6875 0.1100

15 0.4100 0.9730 0.7875 0.1300

16 0.4600 0.9595 0.7625 0.1300

17 0.4200 0.9730 0.8125 0.1300

18 0.4900 0.9189 0.8750 0.1300

19 0.7900 0.7838 0.6188 0.1500

20 0.9840 0.7162 0.3563 0.1500

21 0.9700 0.6622 0.2375 0.1500

22 1.0000 0.5811 0.1250 0.0650

23 0.5400 0.5000 0.1188 0.0650

24 0.4200 0.3229 0.0832 0.0650

Fig. 7 Cost of the energy losses (US$/kWh)

value of the objective function associatedwith each candidate
solution.

It should be noted that in this paper was used hypothetical
curves to the power load and cost of losses. This curves,
were obtained in the literature (Possagnolo 2015). In a real
situation, the distribution company should be able to estimate
all these data.

7.2 Parameters Used in the Algorithms

The results for all of the systems were obtained using the
parameters shown in Table 2.

In Table 2, N is the number of antibodies/individuals in
the population, β is the cloning factor, ger is the number of
generations, n is the number of memory antibodies, d is the
number of antibodies that will be replaced in the metady-
namic process, ρ is the damping control parameter for the
exponential function, and iter is the number of iterations.

These parameterswere established after running a number
of trial tests. Several values were tested for each parame-
ter, and the value that provided the best performance was
selected. These tests were carried out until the most suitable
set of parameters for each distribution system was deter-
mined.

It must be noted that the parameters used in the CLON-
ALG to solve the test systems differed only in the number
of generations (ger) and the number of memory antibodies
(n), which demonstrates the robustness of this method. In the
sameway, the parameters used in the SGACBdiffered only in
the number of iterations (iter) and the number of individuals
(N ) in the population.

7.3 33-, 84-, 136-, and 417-Node Systems

The well-known 33-, 84-, and 136-node test systems and the
417-node real system had nominal voltages of 12.66, 11.40,
13.80, and 11.00kV, respectively.

Table 3 shows the initial and final topologies (i.e., before
and after reconfiguration) found using the CLONALG and
the SGACB approaches, along with the cost of energy losses
for eachEDS tested. In all tests, the initial andfinal topologies
represent a unique topology that should be used in the 24h of
operation of the EDS. For all of the tests, both algorithms led
to a reduction of between 10 and 31% in the cost of energy
losses.

In order to evaluate the performance of the proposed algo-
rithms, the CLONALG and the SGACB were each executed
30 times. In all executions, the algorithms found the best solu-
tion for all systems, but with a different number of iterations
and computational time.

Tables 4 and 5 present a statistical analysis performedwith
the number of iterations and the computational time required
for the 30 executions to find the solution for all of the systems.

Table 4 includes data regarding iTmax, iTmin, iTean, and
dev, representing the larger, the lower, the mean, and the
standard deviation of the execution time for the number of
iterations needed to find the best solution, respectively.

Table 5 presents four types of data. Tmax and Tmin are
the maximum and the minimum time, respectively, required
to find the solution, while Tmean is the mean time taken by
the 30 executions, and dev is the standard deviation of that
number, respectively.

Acomparative analysis of the data inTables 4 and5 reveals
the differences between the CLONALG and SGACB meth-
ods. The CLONALG was solved with fewer iterations and
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Table 2 Parameters used in the
algorithms

Parameters N β ger n d ρ

CLONALG 33-, 84-, 136-node systems 50 0.5 50 10 1 4

417-node system 50 0.5 80 30 1 4

Parameters N iter

SGACB 33-, 84-, 136-node systems 50 100

417-node system 80 200

Table 3 Results for the 33-, 84-, 136-, and 417-node systems

System Before reconfiguration After reconfiguration Reduction (%)

Topology Cost of energy
losses (US$)

Topology Cost of energy
losses (US$)

CLONALG
and
SGACB

33 33-34-35-36-37 187.86 7-9-14-28-32 128.81 31.43

84 84-85-86-87-88-89-90-
91-92-93-94-95-96

456.41 7-34-39-63-72-83-84-86-88-89-
90-92-95

410.53 10.05

136 136-137-138-139-140-
141-142-143-144-145-
146-147-148-149-150-
151-152-153-154-155-
156

288.50 7-38-51-54-84-90-96-106-118-
126-135-137-138-141-144-145-
147-148-150-151-155

256.89 10.95

417 1-5-15-16-26-31-53-54-
55-75-82-94-96-97-
106-107-119-136-138-
154-155-156-168-169-
177-179-194-195-201-
207-211-214-219-241-
256-258-282-297-302-
314-321-354-359-362-
364-385-388-395-396-
404-407-423-424-426-
431-436-445-446-449

637.88 1-2-13-15-16-26-31-40-41-50-59-
73-82-94-96-97-111-115-136-
146-150-155-156-158-163-168-
169-178-179-190-191-194-195-
209-230-254-256-267-270-294-
310-321-354-362-385-389-392-
395-403-404-423-424-426-436-
437-439-446-449-466

529.66 16.96

Table 4 Number of iterations
needed to find the solutions

Algorithm CLONALG SGACB

System iTmin iTmax iTmean dev iTmin iTmax iTmean dev

33 1 3 1.43 0.72 1 10 4.83 2.42

84 2 7 3.70 1.59 8 21 17.20 3.94

136 11 24 16.17 4.55 29 69 49.30 11.15

417 25 61 47.13 12.74 74 158 124.47 26.28

Table 5 Computational time
needed to find the solutions

Algorithm CLONALG SGACB

System Tmin (s) Tmax (s) Tmean (s) dev Tmin (s) Tmax (s) Tmean (s) dev

33 0.245 0.326 0.295 0.022 0.297 0.412 0.372 0.034

84 3.568 4.315 3.995 0.180 3.957 5.236 4.824 0.330

136 18.235 22.153 20.401 0.984 21.964 26.458 24.796 1.005

417 188.124 192.235 190.301 1.090 239.248 262.345 253.289 6.427

123



J Control Autom Electr Syst

Table 6 Comparison with the
literature

System Topology Cost of energy
losses (US#)

Reference Kind of analysis

33 7-9-14-28-32 128.81 Possagnolo (2015) Variable demand

7-9-14-32-37 134.30 Souza et al. (2015b) Fixed demand

84 7-34-39-63-72-83-84-86
-88-89-90-92-95

410.53 Possagnolo (2015) Variable demand

7-13-34-39-42-55-62-72-
83-86-89-90-92

417.29 Souza et al. (2015b);
Lavorato et al. (2012)

Fixed demand

136 7-38-51-54-84-90-96-106-
118-126-135-137-138-
141-144-145-147-148-
150-151-155

256.89 Possagnolo (2015) Variable demand

7-35-51-90-96-106-118-
126-135-137-138-141-
142-144-145-146-147-
148-150-151-155

272.96 Carpaneto and Chicco
(2008); Lavorato et al.
(2012)

Fixed demand

417 1-2-13-15-16-26-31-40-41-
50-59-73-82-94-96-97-
111-115-136-146-150-
155-156-158-163-168-
169-178-179-190-191-
194-195-209-230-254-
256-267-270-294-310-
321-354-362-385-389-
392-395-403-404-423-
424-426-436-437-439-
446-449-466

529.66 Possagnolo (2015) Variable demand

5-13-15-16-21-26-31-54-
57-59-60-73-86-87-94-
96-97-111-115-136-142-
149-150-155-156-158-
163-168-169-178-179-
191-195-199-214-221-
254-256-266-282-317-
322-325-358-362-369-
392-395-403-404-416-
423-426-431-436-437-
446-449-466

530.29 Souza et al. (2015b) Fixed demand

less computational time than the SGACB. However, both
methods found the same topology and therefore obtained the
same final value for the objective function.

7.4 Comparative Analysis with the Literature

Table 6 presents the best solutions available in the literature.
Comparisons were performed with the results considering
fixed and variable demands. To obtain the value of the cost
of energy for the fixed demands, the topologies presented in
these papers were used, along with the affinity/fitness func-
tion to obtain the value of the cost.

For the 33-, 84-, 136- and 417-node systems, both algo-
rithms found the best solutions reported in the literature, as
presented in Table 6. From these comparisons, it can be
concluded that the CLONALG and SGACB are efficient
methods because they arrived at the same solutions as the

best solutions found in the specialized literature. It should be
noted that there are few studies in the literature considering
variable demands, as presented in this paper, which makes
it difficult to conduct a more extensive comparison of our
results.

7.5 Comments about the CLONALG and SGACB
Methods

After carrying out the tests and obtaining the results reported
above were identified the strengths and weaknesses of the
proposed algorithms for solving the DSR problem with vari-
able demands. These are detailed below.

Strengths:

• The proposed algorithms showed excellent performance,
finding the same solutions as the best solutions reported
in the specialized literature;
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• Both algorithms require low processing time and a
reduced number of iterations;

• The CLONALG and the SGACB include efficient strate-
gies that enable the maintenance of population diversity
and keep the incumbent (i.e., the best solution found in
the process) within the population;

• The algorithms are robust and converged to the best result
in all tests that were performed.

Weakness:

• TheCLONALGrequires the settingof several parameters
in advance.

8 Conclusions

This paper presented two new approaches to solve the DSR
problem with variable demands using intelligent algorithms.
The algorithms were applied to identify topological config-
urations that would minimize the cost of energy losses in
radial distribution systems. When carrying out the tests, both
algorithms found the best solutions available in the literature.
The CLONALG achieved the solution using fewer iterations
and less computational time than the SGACB.

The CLONALGmethod ismore efficient due to the strate-
gies used to intensify the search in the solution space of the
problem. Nevertheless, the SGACB also found the solution,
despite the greater number of iterations, and so can be used
as an efficient alternative. The CLONALG and the SGACB
were stable and reliable in solving the DSR problem with
variable demands; for all performed runs, they found the
best solutions for all of the test systems. The results obtained
for all systems were compared to the solutions available in
the literature, thereby proving the efficiency of the proposed
methods.

This work contributes two new proposedmethods to assist
professionals in carrying out the planning and operation of
EDSs. It was concluded that the proposed CLONALG and
SGACBmethods for solving the DSR problem with variable
demands performed well, with efficiency, robustness, and
low computational time.
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