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Abstract We present a novel approach of Stereo
Visual Odometry for vehicles equipped with cali-
brated stereo cameras. We combine a dense proba-
bilistic 5D egomotion estimation method with a sparse
keypoint based stereo approach to provide high qual-
ity estimates of vehicle’s angular and linear velocities.
To validate our approach, we perform two sets of
experiments with a well known benchmarking dataset.
First, we assess the quality of the raw velocity esti-
mates in comparison to classical pose estimation
algorithms. Second, we added to our method’s instan-
taneous velocity estimates a Kalman Filter and com-
pare its performance with a well known open source
stereo Visual Odometry library. The presented results
compare favorably with state-of-the-art approaches,
mainly in the estimation of the angular velocities,
where significant improvements are achieved.
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Técnico (IST) Lisbon, Lisbon, Portugal
e-mail: alex@isr.utl.pt
ORCID: http://orcid.org/0000-0003-3991-1269

Keywords Stereo vision · Visual Odometry ·
Egomotion · Visual Navigation

1 Introduction

Visual Navigation systems [2], have been subject
of important developments by the robotics research
community in the last decade. The use of low-cost
visual sensors (cameras) together with Inertial Mea-
surement Units (IMU) are becoming ubiquitous on
today’s modern mobile robots and pushing research on
high-performance algorithms for robot navigation.

The use of vision based methods in navigation
systems is justified by their ability to ground percep-
tion to static features in the environment and measure
the robot relative displacement with respect to those
features. Therefore, vision based methods are, in prin-
ciple, less prone to bias and drifts common in other
navigation sensory modalities like IMU’s and wheel
odometers.

In [30] VO was defined as the process of estimat-
ing a vehicle’s egomotion by using vision cameras
(Fig. 1). Cameras work as linear and angular velocity
sensors but, because they rely on the observation of
fixed points in the environment, they typically provide
measurements with less drift than IMU’s and wheel
odometers. Ultimately, the linear and angular veloci-
ties obtained from the egomotion estimation process
are integrated along time to provide the relative pose
of the robot with respect to some inertial frame. In
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Fig. 1 The INESC TEC camera calibrated setup and inertial navigation system. Illustration of a vehicle-like robot where the methods
of this paper could be applied (not actually used in the experiments)

this paper we focus on the visual egomotion estima-
tion process, since it is the most critical component of
a VO system.

Most of the research on VO employ sparse feature
based methods. These methods have the advantage
of being fast, since only a subset of image points
is processed, but depend critically on the features to
track between adjacent time frames, and are often sen-
sitive to noise and outliers. On the contrary, dense
(pixel based) methods combined with probabilistic
approaches have demonstrated higher robustness to
those source of errors. Domke and Aloimonos [5]
proposed a dense probabilistic egomotion estimation
method based upon epipolar geometry for describing
the motion of a camera. The method does not commit
feature matches between two images on adjacent time
frames, but instead computes a probability distribu-
tion over all possible correspondences. By exploiting a
larger amount of data, a better performance is achieved
under noisy measurements. However, Domke method
is more computationally expensive than standard fea-
ture based methods and only computes the direction of
the linear motion, but not the translation scale factor
(i.e., the amplitude of the linear motion).

To overcome such limitations, we use a dense prob-
abilistic method such as the one developed by Domke
and Aloimonos [5] but with three important contribu-
tions. First we add a sparse feature based method that
provides stereo vision information needed to compute
the translation scale factor. Second we implement a
fast correspondence method based on recursive Zero-
Mean Normalized Cross Correlation (ZNCC) scheme

for computational efficiency. Third we integrate the
obtained velocity estimates in an Kalman Filter able
to reduce the noise present in the instantaneous mea-
surements. Our proposed approach to perform stereo
egomotion combines a deterministic sparse feature
based method for obtaining depth estimation, with a
dense probabilistic egomotion approach that allows to
recover camera rotation (R) and translation (t̃) up to
a scale factor (α). For recovering the missing trans-
lation scale factor (α) we use a Procrustes Absolute
Orientation method, that takes registered 3D point
information from two adjacent time frames.

This paper is an extension of the work conducted
by Silva et al. [31], with the addition of scale invari-
ant feature detectors (SIFT) and temporal filtering via
Standard Kalman Filter (KF) that increase the accu-
racy of our Stereo Visual Odometry method (here on
denoted as 6DP), as well as an extended compari-
son with other well known state-of-the-art methods
e.g LIBVISO [14]. We compare our mixed determin-
istic and probabilistic egomotion estimation approach
(6DP) against two well known state-of-the art ego-
motion estimation methods. First we evaluate 6DP
linear and angular velocities raw estimates (without
any type of filtering) against a 5-point algorithm.
The use of a dense probabilistic approach allows to
obtain better estimates of the rotation and transla-
tion up to scale factor when compared to the 5-point
implementation, but exhibits an unfavorable perfor-
mance in the translation scale factor (α) estimation.
Afterwards we have implemented a filtering approach
on top of the 6DP estimator and compared it with
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LIBVISO Visual Odometry Library [14], using a
standard dataset from this library. The dataset also
provides ground-truth information from the fusion of
IMU and GPS measurements. Results show that our
method presents significant improvements in the esti-
mation of angular velocities and a similar performance
for linear velocities.

This paper is organized as follows: In Section 2
related work regarding stereo VO is presented.
The 6DP algorithm implementation is detailed in
Section 3. Finally Section 4 and Section 5 contain
the experimental results and conclusions with final
remarks.

2 Related Work

Stereo VO consists of performing egomotion estima-
tion using as input the sequence of images acquired
from a stereo camera rig rigidly attached to the vehi-
cle or robot. One of the advantages of performing
VO estimation with a stereo camera configuration is
the ability to recover translation motion scale. Classi-
cal stereo VO algorithms estimate the 3D position of
observed image point features by using triangulation
between the left and right images. Then, relative cam-
era motion can be calculated through the alignment
of 3D feature’s position between consecutive image
frames.

Most of the work on stereo visual odometry meth-
ods was driven by Matthies et al. [18, 19] out-
standing work on the famous Mars Rover Project.
Their system was able to determine all 6-DOF of
the rover (x,y,z,roll,pitch,yaw) by tracking the motion
of 2D image keypoints between stereo image pairs,
as well as their 3D world coordinates. Afterwards, a
maximum likelihood estimation method was used to
compute motion between consecutive image frames.
Their method exploited robust techniques for out-
lier rejection such as RANSAC [6]. The Stereo VO
work performed on Mars Rover Project was some-
what inspired by Olson et al. [27]. The method
was developed as a replacement for wheel odom-
etry dead reckoning methods that were not able
to correctly estimate robot motion over long dis-
tances. In order to avoid large drift in robot position
over time, Olson’s method combined stereo ego-
motion estimation with absolute orientation sensor
information.

Among the different approaches to compute stereo
VO, two main categories have emerged in the liter-
ature, either based on their feature detection scheme
or by the way motion estimation is performed. Usu-
ally, motion estimation is computed using 3D Abso-
lute Orientation (AO) methods or Perspective-n-Point
(PnP) methods. Alismail et al. [1] conducted a study
on evaluating both AO and PnP methods for achiev-
ing robot pose estimation using only stereo visual
odometry, and concluded that PnP methods are more
accurate than AO methods. The AO methods consist
on 3D triangulated points estimation for every stereo
pair. Then motion estimation is solved by using point
alignment algorithms like the Procrustes method [7]
or Iterative-Closest- Point (ICP) method [29], such as
the one used by Milella and Siegwart [20] for esti-
mating motion of an all-terrain rover. Nister et al.
[25], were one of the first to develop a PnP algorithm
(3D-2D camera pose estimation), that could be com-
puted in real-time with an outlier rejection scheme.
The authors argue that minimizing the re-projection
error would benefit stereo VO method accuracy. Nister
et al. [24] also developed a Visual Odometry system,
based on a 5-point algorithm, that became the stan-
dard algorithm for comparison of Visual Odometry
techniques. This algorithm can be used either in stereo
or monocular vision approaches and consists on the
use of several visual processing techniques, namely:
feature detection and matching, tracking, stereo tri-
angulation and RANSAC for pose estimation with
iterative refinement.

Most of stereo VO methods differ on the way
stereo information is acquired and computed: sparse
or dense approaches. One of the most relevant dense
stereo VO applications was developed by Howard [10]
for ground vehicle applications. The method does not
assume prior knowledge over camera motion and so
can handle very large image translations. However,
due to the absence of feature detectors invariant to
rotation and scaling, only works on low-speed appli-
cations and with high frame-rate, since large motions
around the optical axis result in poor performance. In
[21] a sparse stereo VO method is presented. A closed
form solution is derived for the incremental move-
ment of the cameras and combines distinctive features
invariant to rotation and scale (SIFT)[16] with sparse
optical flow (KLT) [17]. Some other authors like Ni et
al. [12], minimize dependencies on feature matching
and tracking algorithms by simultaneously using an
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algorithm that computes feature displacement in both
cameras, together with a quadrifocal setting within a
RANSAC framework. Later on, the same authors [23],
decoupled the rotation and translation recovery into
two different estimation problems. Instead of using
the three-point method, they used a RANSAC two-
point algorithm for rotation recovery and a one-point
method for the translation recovery.

More recently the application focus of stereo VO
methods has moved from planetary rover applica-
tion to the development of novel intelligent vehicles
by automotive industry. Obdrzalek et al. [26] devel-
oped a voting scheme strategy for egomotion esti-
mation, where 6-DOF problem was divided into a
four dimensions problems and then decomposed in
two sub-problems for rotation and translation estima-
tion. Another influential work, is the one developed
by Kitt et al. [14]. Their method, is available as
an open-source visual odometry library named LIB-
VISO. Stereo egomotion estimation is based on image
triples and the online estimation of the trifocal ten-
sor [9]. It uses rectified stereo image sequences and
produces an output 6D vector with estimated linear
and angular velocities. Comport et al. [3] also develop
a stereo VO method based on a different geometry
estimation solution, the quadrifocal tensor. By using
tensor notation, the authors can compute motion using
2D-2D image pixels matches, thus yielding a more
precise motion estimation.

Stereo VO can be combined with other absolute
sensor information. Rehder et al. [28] developed a
stereo visual odometry method that combined visual
data with GPS and IMU information. The proposed
method consistently fused stereo visual odometry
information with inertial measurements and sparse
GPS information into a single pose estimate in real-
time. Kneip et al. [15] also proposed an alternative
tightly coupled approach with vision and IMU infor-
mation. Their strategy for continuous robust pose
computation is based on the triangulation of frame to
frame point clouds when there is sufficient disparity
among them.

More recently Kazik et al. [13] developed a frame-
work that performed 6-DOF absolute scale motion
with a stereo setup that copes with non-overlapping
fields of view in indoor environments. It estimates
monocular VO from each camera and afterwards scale
is recovered by imposing the known stereo rig trans-
formation between both cameras.

3 A Mixed Approach To Stereo Visual Odometry:
Combining Sparse And Dense Methods

In this paper we propose a method to estimate the
linear and angular velocities (V , W ) of a vehicle
equipped with a calibrated stereo vision setup. Let
the images acquired by the left and right cameras of
the stereo vision system in consecutive time instants
be represented as the 4-tuple Ik+1 = (IL

k , IR
k , IL

k+1 ,
IR
k+1), where the subscripts k and k + 1 denote time,

and the superscripts R and L denote the right and left
cameras, respectively. From point correspondences
between the observations in Ik+1 we can compute
the rigid transformation describing the incremental
motion of the setup and, thus, estimate its veloc-
ity at instant k, (Vk, Wk). Our method, denoted 6DP,
combines sparse feature based methods and dense
probabilistic methods [31] to compute the point cor-
respondences between the 4-tuple of images. While
feature based methods are less computational expen-
sive and are used in real-time applications, dense
correlation methods tend to be computational inten-
sive and used in more complex applications. However,
when combined with probabilistic approaches, dense
methods are usually more robust and tend to pro-
duce more precise results. Therefore we developed a
solution that tries to exploit the advantages of both
methods.

Our 6DP method, as schematically illustrated in
Fig. 2, can be roughly divided into three main steps:

– Dense Correspondence and Egomotion estima-
tion In order to be able to estimate egomotion,
first there is the need to compute correspondence
information between images Ik and Ik+1, where
k and k + 1 are consecutive time instants. For
egomotion estimation a variant of the dense prob-
abilistic egomotion estimation method of [5] is
used. By doing so, we establish a probabilis-
tic correspondence between the left images at
consecutive time steps, IL

k and IL
k+1, and esti-

mate camera rotation (R) and translation (t̃) up
to a scale factor (α), thus obtaining the Essential
Matrix (E) [9].

– Sparse Keypoint and Stereo Matching The
sparse keypoint detection consists on obtaining
salient features in both images a time k (IL

k , IR
k ).

To obtain the keypoints a feature detector such as
the Harris corner [8] or a SIFT detector [16] is
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used. The result is a set of feature points F L
k , F R

k

that will be used in a stereo matching proce-
dure to obtain point correspondence P 2k at time
k, and together with the Essential Matrix (E),
correspondences P 2k+1 at time k + 1.

– Scale Estimation The missing translation scale
factor (α), is obtained by stereo triangulation with
the point correspondences at time k and k + 1,
(P 2k , P 2k+1), thus obtaining corresponding point
clouds P 3k and P 3k+1 with point match infor-
mation. Afterwards, we use an AO method like
the Procrustes method [7] to obtain the best align-
ment between the two sets of points and determine
the value of the translation scale factor (α). A
RANSAC algorithm [6] is used to discard outliers
in the 3D point cloud matches.

– Kalman Filtering To achieve a more robust ego-
motion estimation, we use a standard Kalman
Filter approach for the linear and angular velocity
estimates.

3.1 Probabilistic Correspondence

The key to the proposed method relies on a robust
probabilistic computation of the epipolar geometry
relating the camera’s relative pose on consecutive time
steps. This will speed-up and simplify the search for
3D matches on the subsequent phases of the algo-
rithm. Given two images taken at different times, Ik

and Ik+1, the probabilistic correspondence between
point x ∈ R2 in image Ik and point x′ ∈ R2 in image
Ik+1, is defined as a belief:

ρx(x′) = match(x, x′|Ik, Ik+1) (1)

where the function match(·) outputs a value between
0 and 1 expressing similarity in the appearance of the
two points in local neighborhoods.

Thus, all points x′ in image 2 are candidates for
matching with point x in image 1 with a likelihood
proportional to ρx(x′). One can consider ρx as images
(one per each pixel in image 1) whose value in x′ is
proportional to the likelihood of x′ matching with x. In
Fig. 4, we can observe the correspondence likelihood
of a point x in image IL

k with all matching candidates
x′ in IL

k+1. For the sake of computational cost, likeli-
hoods are not computed for the whole range in image
2 but just on windows around x, or suitable predictions
based on prior information (see Figs. 3 and 4).

Algorithm 1 6DP Method

Input: 2 stereo Image pairs
(
IL
k , IR

k

)
and

(
IL
k+1, IR

k+1

)
,

Erig (stereo calibration)
Output: (Velocities) V , W

Step 1. Compute the probabilistic correspon-
dences between images IL

k and IL
k+1,

ρx(x ′). Eqs. (1), (2), (3).
Step 2. Compute probabilistic egomotion, E.

Eqs. (7), (8), (9), (10)
Step 3. Compute sparse keypoints in images IL

k

and IR
k , F L

k and F R
k respectively. We

conducted experiments using both Har-
ris corners and Scale Invariant Features
(SIFT)

Step 4. Perform stereo matching in between fea-
tures F L

k and F R
k to obtain matches P 2k .

Step 5. Perform epipolar and stereo matching
between images IL

k , IL
k+1 and IL

k+1 ,
IR
k+1, respectively, to obtain point matches

P 2k+1.
Step 6. Stereo triangulate matches P 2k and

P 2k+1 to obtain corresponding point
clouds P 3k and P 3k+1, respectively.

Step 7. Perform Translation scale estimation
using an Absolute Orientation method
(Procrustes) to align point clouds P 3k

and P 3k+1. Use RANSAC to reject out-
liers. Eqs. (11), (12), (13).

Step 8. Estimate Linear and Angular Velocities ,
V and W Eqs. (14), (15), (16)

Step 9. Constant Velocity Kalman Filtering Eqs.
(17) and (18)

In [5] the probabilistic correspondence images was
computed via the differences between the angle of
a bank of Gabor filter responses in x and x′. The
motivation for using a Gabor filter bank is its robust-
ness to changes in the brightness and contrast of the
image. However, it demands a significant computa-
tional effort, thus we propose to perform the compu-
tations with the well known Zero Mean Normalized
Cross Correlation function (ZNCC):

Cx,y(u, v) =

∑

x,y∈NW

(f (x, y) − f̄ )(g(x + u, y + v) − ḡ)

√ ∑

x,y∈NW

(f (x, y) − f̄ )2
√ ∑

x,y∈NW

(g(x + u, y + v) − ḡ)2

(2)
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Fig. 2 6DP architecture

The ZNCC method allows to compute the correla-
tion factor Cx,y(u, v) between regions of two images
f and g by using a correlation window around pixel
x = (x, y) in image f and pixel x’ = x+(u,v) in image
g, being the correlation window size NW = 20. The
value NW = 20 is a compromise between match qual-
ity and computational cost that we found adequate

for this problem through our empirical studies, f̄ and
ḡ are the mean values of the images in the regions
delimited by the window size. This correlation factor
is then transformed into a likelihood match between x
and x’.

ρx(x′) = Cx,y(u, v)

2
+ 0.5 (3)

Fig. 3 Image feature point
correspondence for ZNCC
matching, with window size
NW between points x and x′
represented in red and
green respectively
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Fig. 4 Likelihood of a point x in image IL
k with all matching

candidates x′ in IL
k+1, for the case of Fig. 3. Points with high

likelihood are represented in lighter colour

The ZNCC function is known to be robust to bright-
ness and contrast changes and recent efficient recur-
sive schemes developed by Huang et al. [11] render
it suitable to real-time implementations. The method
is faster to compute and yields similar results to the
implemented by Domke [5].

3.2 Probabilistic Egomotion Estimation

From two images of the same camera, one can recover
its motion up to the translation scale factor. Given
the camera motion, image motion can be represented
by the epipolar constraint which, in homogeneous
normalized coordinates, can be written as:

(x̃′)T Ex̃ = 0 (4)

where E is the so called Essential Matrix [9], a 3X3
matrix with rank 2 and 5 degrees-of-freedom and x̃, x̃′
the homogeneous coordinate representations of points
x and x′. Given a point x̃ in image 1, this expression
constraints the points x̃′ in image 2 to lie on line Ex̃,
thus it expresses the loci in image 2 that should be
searched for matches of points in image 1. It can be
factored by:

E = R
[

t̃
]
× (5)

where R and t̃ are, respectively, the rotation and trans-
lation direction of the camera between the two frames,

with t̃× the skew symmetric representation of t̃, as
defined in the following expression:

t̃× =
⎡

⎣
0 −t̃z t̃y
t̃z 0 −t̃x

−t̃y t̃x 0

⎤

⎦ (6)

To obtain the Essential matrix from the proba-
bilistic correspondences, [5] proposes the computation
of a probability distribution over the 5-dimensional
space of essential matrices. Each dimension of the
space is discretized in 10 bins, thus leading to 100000
hypotheses Ei . For each point x the likelihood of these
hypotheses is evaluated by:

ρ(Ei |x) ∝ max
(x̃′)T Ei x̃=0

ρx(x′) (7)

Intuitively, for a single point x in image 1, the likeli-
hood of a motion hypothesis is proportional to the like-
lihood of the best match obtained along the epipolar
line generated by the essential matrix. After the dense
correspondence probability distribution has been com-
puted for all points, the method [5] computes a proba-
bility distribution over motion hypotheses represented
by the epipolar constraint. Assuming statistical inde-
pendence between the measurements obtained at each
point the overall likelihood of a motion hypothesis is
proportional to the product of the likelihoods for all
points:

ρ(Ei) ∝
∏

x

ρ(Ei |x) (8)

Finally, having computed all the motion hypothe-
ses, a Nelder-Mead simplex method [22] is used to
refine the motion estimate around the highest scor-
ing samples Ei . The Nelder-Mead simplex method is
a local search method for problems whose derivatives
are not known. The method was already applied in [5]
to search for the local maxima of likelihood around
the top ranked motion hypotheses:

E∗
i = arg max

Ei+δE
ρ(Ei + δE) (9)

where δE are perturbations to the initial solution Ei

computed by the Nelder-Mead optimization proce-
dure.

Then, the output of the algorithm is the solution
with the highest likelihood

E∗ = max
i

E∗
i (10)
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3.3 Scale Estimation

By using the previous method, we compute the 5D
transformation (R, t̃) between the camera frames at
times k and k + 1. However, t̃ does not contain trans-
lation scale information. This type of information, will
be calculated by an Absolute Orientation(AO) method
like the Procrustes method.

Once the essential matrix between images IL
k and

IL
k+1 has been computed by the method described in

the previous section, we search along the epipolar
lines for matches F L

k+1 in IL
k+1 to the features F L

k

computed in IL
k , as displayed in Fig. 5.

Then, these matches are propagated to IR
k+1 by

searching along horizontal stereo epipolar lines for
matches F R

k+1. From stereo triangulation we compute
3D point clouds at instant k and k+1, respectively P 3k

and P 3k+1, with known point correspondence. Points

whose matches are unreliable or were not found are
discarded from the point clouds.

3.3.1 Procrustes Analysis and Scale Factor Recovery

The Procrustes method allows to recover rigid body
motion between frames through the use of 3D point
matches, obtained in the previous steps

P3i
k+1 = R′P3i

k + t′ (11)

where i is a point cloud element.
In order to estimate the motion [R′, t′], a cost

function that measures the sum of squared distances
between corresponding points is used.

c2 =
n∑

i

∥∥P3k+1 − (R′P3k + t′)
∥∥2 (12)

Image IL
Tk

Image IL
Tk+1

0 200 400 600 800 1000 1200 1400
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Correlation matching between line E
s
 in IL

Tk+1
 and Harris Feature in IL

Tk

Fig. 5 Image feature point marked in colour green in image IL
k lies in the epipolar line (blue) estimated between Ik to Ik+1. The point

with higher correlation score, marked in red in image IL
k+1 is chosen as the matching feature point
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Performing minimization of Eq. (12) is possible
to estimate [R′, t′]. However these estimates are only
used to obtain the missing translation scale factor
α, since rotation (R) and translation direction (t̃)
were already obtained by the probabilistic method.
Although conceptually simple, some aspects regard-
ing the practical implementation of the Procrustes
method must be taken into consideration. Namely,
since this method is very sensible to data noise,
obtained results tend to vary in the presence of out-
liers. To overcome this difficulty, RANSAC [6] is used
to discard possible outliers within the set of matching
points.

3.3.2 Bucketing

For a correct motion scale estimation, it is necessary
to have a proper spatial feature distribution through
out the image. For instance, if the Procrustes method
uses all obtained image feature points without having
their image spatial distribution into consideration, the
obtained motion estimation [R′, t′] between two con-
secutive images could turn out biased. To avoid having
biased samples in the RANSAC phase of the algo-
rithm a bucketing technique [32] is implemented to
assure a balanced image feature distribution sample.
In Fig. 6 a possible division of the image is displayed.
The image region is divided into Lx × Ly buckets,
based on minimum and maximum coordinates of the
feature points. Afterwards, image feature points are
classified as belonging to one of the buckets. In case
a bucket does not contain any feature, it will be dis-
regarded. The bucket size must be previously defined:

in our case we divided the image into a 8 × 8 buck-
ets. Assuming we have l buckets, the interval between
[0...1] is divided into l intervals such that the width
(ith) of each interval is defined as ni/

∑
i ni , where ni

is the number of matches assigned to the ith bucket.
The bucket selection procedure, consists on retriev-
ing a number using a uniform random generator in
the interval [0...1]. The number that falls in the ith

interval, gives origin to the ith bucket being selected.
Finally, we select a random point of the selected ith

bucket.

3.4 Linear and Angular Velocity Estimation

To sum up the foregoing, we determine camera motion
up to a scale factor using a probabilistic method, and
by adding stereo vision combined with Procrustes esti-
mation method, we are able to determine the missing
motion scale α:

α = ‖t′‖
‖t̃‖ (13)

Then, the instantaneous linear velocity is given by:

V = αt̃
�T

(14)

where �T is the sampling interval:

�T = Tk+1 − Tk (15)

Likewise, the angular velocity is computed by:

W = r

�T
(16)

Fig. 6 Feature detection bucketing technique used to avoid biased samples in the RANSAC method stage. The image is divided in
buckets where feature points are assigned to and pulled according to the bucket probability
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where r = θu, the angle-axis representation of the
incremental rotation R [4].

Thus, using motion scale information given by
the Procrustes method, we can estimate vehicle lin-
ear velocity between instants k and k + 1. The AO
orientation method is only used for linear velocity
estimation (motion scale). For the angular velocity
estimation we use the rotation matrix R calculated by
Domke’s probabilistic method, that is more accurate
than the rotation obtained by the AO method.

3.5 Kalman Filter

In order to achieve a more robust estimation, we
also use a Kalman filter used to filter the linear and
angular velocity estimates having state equation X =
[V, W ]T , where V is the vehicle linear velocity, W

is the vehicle angular velocity. The constant velocity
Kalman filter [7] considers a state transition model
with zero-mean stochastic acceleration:

Xk = FXk−1 + ξk (17)

where the state transition matrix is the identity matrix,
F = I6x6, and the stochastic acceleration vector
ξk is distributed according to a multivariate zero-
mean Gaussian distribution with covariance matrix Q,
ξk ∼ N (0,Q). The observation model considers state
observations with additive noise:

Yk = HXk + ηk (18)

where the observation matrix H is identity, H = I6x6,
and the ηk measurement noise is zero-mean Gaussian
with covariance R.

We set the covariance matrices Q and R empiri-
cally, according to our experiences, to:

Q = diag(q1, · · · , q6) (19)

R = diag(r1, · · · , r6) (20)

where qi = 10−3, i = 1, · · · , 6, r3 = 10−3 and ri =
10−4, i �= 3.

The r3 differs from the other (r) measurement
noises values, due to the fact that it corresponds to the
translation on the z axis which is inherently noisier
due to the uncertainty of the tz estimates in the stereo
triangulation step.

4 Results

In this section, we present results of 3 implementa-
tions of the 6DP method. The first experiment com-
pares 6DP raw estimates using the Harris corner detec-
tor [8] as the sparse feature detector, here on denoted
as 6DP-raw-Harris and compares it against a native 5-
point implementation. Afterwards, we present results
of the other 2 implementations: (i) 6DP-raw-SIFT
where we replaced the Harris corner for a more robust
and invariant to scale detector (SIFT)[16]; (ii) 6DP-
KF that also uses SIFT features but this time inte-
grated in a Kalman Filter framework. The results of
both implementations are compared with the state-
of-the art visual odometry estimation method LIB-
VISO [14] using their dataset reference (2009-09-08-
drive-0021).

4.1 Computational Implementation

The code used to compute 6DP was written in MAT-
LAB as a proof of concept, without using any kind
of code optimization. The experiments were per-
formed using an Intel I5 Dual Core 3.2 GHz. For
the evaluation we used a section of the dataset [14]
reference (2009-09-08-drive-0021), which has been
used for benchmarking visual odometry methods in
other works against which we compare our method.
During our experiments several parts of the dataset
were tried and results were consistent across the
dataset. The dataset images have resolution of 1344
× 391, which consumes a considerable amount of
computational and memory resources (∼ 0.5MB per
point) making unfeasible the computation of all image
points using the Matlab implementation on standard
CPU hardware. Thus, the results shown in this paper
were obtained using 1000 randomly selected points in
image IL

k . The method takes about 12 sec per image
pair. Most of time is consumed in the first stage of
the implementation, with the dense probabilistic cor-
respondences and the motion up to a scale factor
estimates. The recursive ZNCC approach allowed to
reduce Domke Gabor Filter processing time by 20 %.

Even so, the approach is feasible and can be imple-
mented in real-time for use on mobile robotics appli-
cations. The main option is to develop a GPGPU
version of the method. Since the method deals with
multiple hypothesis of correspondence, and motion, it
is suitable to be implemented into parallel hardware.
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Fig. 7 Comparison of angular velocity estimation results
between IMS/GPU(red), 6DP-raw-Harris measurements (blue)
and a native 5-point implementation (black). The obtained 6DP-
raw-Harris measurements are similar to the data estimated by

the IMU/GPS, contrary to the 5-point implementation that has
some periods of large errors (e.g. the regions indicated with
arrows in the plots)
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Fig. 8 Comparison of linear velocity estimation results, where
the 5-point implementation (black) exhibits a closer match to
the IMU/GPS information (red). The 6DP-raw-Harris method

(blue) displays some highlighted outliers due to the use of the
Harris feature detection matching in the sparse method stage
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Fig. 9 Translation scale
factor comparison
between 5-point and
6DP-raw-Harris, where
the 5-point method exhibits
a more constant behavior
for the translation scale
factor estimation
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4.2 6DP-Raw-Harris vs 5-Point

In this section, one can observe results comparing our
approach versus the 5-point RANSAC algorithm [24].
Linear and angular velocities estimation results are
presented in the camera reference frame.

In Fig. 7, one can observe the angular velocity esti-
mation of the 6DP method, IMU/GPS information
and the 5-point RANSAC. We also show the Inertial
Navigation System data (IMU/GPS OXTS RT 3003),
which is considered as ”ground-truth” information.
The displayed results demonstrate a high degree of

Fig. 10 Number of
Features at different steps
of 6DP-raw-Harris and
5-point. SIFT features
display a more robust
matching behavior between
images. Contrary to Harris
Corners, most of the SIFTS
are not eliminated in the
RANSAC stage
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similarity between performance obtained using 6DP
and IMU/GPS information. Results obtained by 6DP
were performed without using any type of filtering
technique, thus the display of one or two clear outliers.
Most importantly, when it comes to angular velocities
estimation, the 6DP method performance is better than
the performance exhibited by the 5-point RANSAC
algorithm.

However, for linear velocities as displayed in Fig. 8,
the 5-point RANSAC algorithm implementation per-
formance is smoother than our 6DP approach, espe-
cially on the Z axis. As shown in Fig. 10, the 5-
point algorithm contains more image features when
performing Procrustes Absolute Orientation method

(after RANSAC) which may also explain the higher
robustness in motion scale estimation in Fig. 9, where
the 5-point algorithm displays a constant translation
scale value.

The results demonstrate complementary perfor-
mances, one more suitable for linear motion estima-
tion and the other more suitable for angular motion
estimation.

4.3 6DP-Raw-Harris vs 6DP-Raw-SIFT

The obtained results using 6DP-raw-Harris in the
translation scale (α) estimation were not sufficiently
accurate, mostly due to the use of the Harris corner

Fig. 11 Results for angular velocities estimation between
IMU/GPS information (red), raw 6DP measurements 6DP-raw-
SIFTS (blue), filtered 6DP measurements 6DP-KF (black), and
6D Visual Odometry Library LIBVISO (green). Even though

all exhibit similar behaviors the filtered implementation 6DP-
KF is the one which is closer to the ”ground truth” IMU/GPS
measurements (see also Table 1)
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Table 1 Standard Mean Squared Error between IMU and Visual Odometry (LIBVISO and 6DP-KF)

Vx Vy Vz Wx Wy Wz ||V || ||W ||

LIBVISO 0.0674 0.7353 0.3186 0.0127 0.0059 0.0117 1.1213 0.0303

6DP-KF 0.0884 0.0748 0.7789 0.0049 0.0021 0.0056 0.9421 0.0126

The displayed results show a significant improvement of the 6DP-KF method performance specially in the angular velocities
estimation case

detector. We modified the 6DP method, by replac-
ing the Harris corner feature detector [8] for the more
robust and invariant to rotation and scale SIFT detector
[16]. We can observe in Fig. 10 that SIFT features are
more stable after the RANSAC step when compared to
the Harris corner approach, and thus can provide more
accurate point correspondence between IL

k and IL
k+1.

4.4 6DP-KF vs LIBVISO

To illustrate the performance of the 6DP-KF method,
we compared our system performance against LIB-
VISO [14], which is a standard library for computing
6-DOF visual Odometry. We also compared our per-
formance against IMU/GPS acting as ground truth

Fig. 12 Results for linear velocities estimation, where the LIBVISO implementation and 6DP-KF display similar performance when
compared to IMU/GPS performance
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information using the same Kitt et al. [14] Karlsruhe
dataset sequences.

In Fig. 11 one can observe angular velocity estima-
tion from both IMU/GPS and LIBVISO, together with
6DP-raw-SIFT and 6DP-KF filtered measurements.
All approaches obtained results consistent with the
IMU/GPS, but the 6DP-KF displays a better perfor-
mance in what respects the angular velocities. These
results are stated in Table 1, where root mean square
error between IMU/GPS, LIBVISO and 6DP-KF esti-
mation are displayed. The 6DP-KF method shows
50 % lower error than LIBVISO for the angular
velocities estimation.

Although not as good as for the angular veloci-
ties, the 6DP-KF method also displays a better per-
formance in obtaining linear velocity estimates as
displayed in Fig. 12 and in Table 1. Overall, our 6DP-
KF shows an important precision improvement over
LIBVISO.

5 Conclusions and Future Work

In this work, we developed a novel method of stereo
visual odometry using sparse and dense egomotion
estimation methods. We utilized dense egomotion esti-
mation methods for estimating the rotation and trans-
lation up to scale and then complement the method
with the use of a sparse feature approach for recover-
ing the scale factor.

First, we compared the raw estimates of our 6DP-
raw-Harris algorithm against a native 5-point imple-
mentation without any type of filtering. The results
obtained proved that 6DP-raw-Harris performed bet-
ter in the angular velocities estimation but compared
unfavorably in the linear velocities estimation due to
lack of robustness in the translation scale factor(α)
estimation. On a second implementation, we replaced
the Harris feature detector with the more robust SIFT
detector, implemented a Kalman filter on top of
the raw estimates and tested the proposed algorithm
against a state-of-the-art 6D visual Odometry Library
such as LIBVISO. The presented results demon-
strate that 6DP-KF performs more accurately when
compared to other techniques for stereo VO estima-
tion, yielding robust motion estimation results, most
notably in the angular velocities.

The benefits of using dense probabilistic
approaches are thus tested and validated in a real

world scenario with practical significance. Despite
more computational intensive, dense methods produce
more accurate results than feature based methods
and are a competitive alternative to stereo egomotion
computation.

To overcome increased computational cost one
should, in future work, explore their potential imple-
mentation in parallel hardware such as a GPU.
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