Clustering from Data Streams

Joao Gama; University of Porto

abstract

Clustering is one of the most popular data mining techniques. In this article,
we review the relevant methods and algorithms for designing cluster algorithms
under the data streams computational model, and discuss research directions in
tracking evolving clusters.

Definition

Clustering is the process of grouping objects into different groups, such that the
common properties of data in each subset is high, and between different subsets
is low. The data stream clustering problem is defined as to maintain a contin-
wously consistent good clustering of the sequence observed so far, using a small
amount of memory and time. The issues are imposed by the continuous arriving
data points, and the need to analyze them in real time. These characteristics
requires incremental clustering, maintaining cluster structures that evolve over
time. Moreover, the data stream may evolve over time, and new clusters might
appear, other disappears, reflecting the dynamics of the stream.

Main Techniques

Clustering data streams requires a process able to continuously cluster objects
within memory and time restrictions (Gama, 2010). Following de Andrade Silva
et al. (2013), algorithms for clustering data streams should ideally fulfil the fol-
lowing requirements: (i) provide timely results by performing fast and incre-
mental processing of data objects; (ii) rapidly adapt to changing dynamics of
the data, which means algorithms should detect when new clusters may appear,
or others disappear; (iii) scale to the number of objects that are continuously
arriving; (iv) provide a model representation that is not only compact, but that
also does not grow with the number of objects processed (notice that even a
linear growth should not be tolerated); (v) rapidly detect the presence of out-
liers and act accordingly; and (vi) deal with different data types, e.g., XML
trees, DNA sequences, GPS temporal and spatial information. Although these
requirements are only partially fulfilled in practice, it is instructive to keep them
in mind when designing algorithms for clustering data streams.

Data Stream

I

Online

Data Abstraction

Summary Structures, Sketch,
micro-clusters

. Offline
Clustering

Figure 1: A generic schema for clustering data streams.

Major clustering approaches in data stream cluster analysis include:

e Partitioning algorithms: construct a partition of a set of objects into k
clusters, that minimize some objective function (e.g. the sum of squares
distances to the centroid representative). Examples include k-means (Farn-
strom et al., 2000), and k-medoids (Guha et al., 2003);

e Micro-clustering algorithms: divide the clustering process into two phases,
where the first phase is online and summarizes the data stream in lo-
cal models (micro-clusters) and the second phase generates a global clus-
ter model from the micro-clusters. Examples of these algorithms include
BIRCH (Zhang et al., 1996), CluStream (Aggarwal et al., 2003), and Clus-
tree (Kranen et al., 2011).

Basic Concepts

Data stream clustering algorithms can be summarized into two main steps:
data summarization step and clustering step, as illustrated in Figure 1. The
online abstraction step summarizes the data stream with the help of particular
data structures in order to deal with space and memory constraints of stream
applications. These data structures summarize the stream in order to preserve
the meaning of the original objects without the need of storing them. Among
the commonly-employed data structures, we highlight the feature vectors (Zhang
et al., 1996; Aggarwal et al., 2003), prototype arrays (Guha et al., 2003), coreset
trees (Ackermann et al., 2012), and data grids (Gama et al., 2011).

A powerful idea in clustering from data streams is the concept of cluster
feature - CF. A cluster feature, or micro-cluster, is a compact representation

of a set of points. A CF structure is a triple (N, LS, SS), used to store the
sufficient statistics of a set of points:

e N is the number of data points;

e LS is a vector, of the same dimension of data points, that store the linear
sum of the N points;

e SS is a vector, of the same dimension of data points, that store the square
sum of the N points.

The properties of cluster features are:

e Incrementality
If a point x is added to a cluster A, the sufficient statistics are updated
as follows:

LSy + LSy +x;554 (—SSA+332;NA <~ Nyg+1
e Additivity

if A and B are disjoint sets, merging them is equal to the sum of their parts.
The additive property allows us to merge sub-clusters incrementally.

LSc < LSy, + LSp; SSc + SS4+ SSg; No < Na + Np.

A CF entry has sufficient information to calculate the norms

Ly =Y |LS,, — LSy,| and Ly = ,| > (LS4, — LS,)?

i=1 i=1
and basic measures to characterize a cluster:

e Centroid, defined as the gravity center of the cluster:

. LS
X0=—
0 N
e Radius, defined as the average distance from member points to the cen-
troid:
L2
Ro55 LS
N N

e Diameter, defined as the largest distance between member points:

2N x SS —2 x LS?
R:
N x (N -1)

When processing and summarizing continuously-arriving stream data, the
most recent observations are more important because they reflect the current
state of the process generating the data. A popular approach in data stream
clustering consists of defining a time window that covers the most recent data.
The window models that have been used in the literature are: the landmark
model, sliding-window model, and damped model (Gama, 2010).

Partitioning Clustering

K-means is the most widely used clustering algorithm. It constructs a partition
of a set of objects into k clusters, that minimize some objective function, usually
a squared error function, which imply round-shape clusters. The input param-
eter k is fixed and must be given in advance that limits its real applicability to
streaming and evolving data.

Farnstrom et al. (2000) proposes a Single pass k-Means algorithm. The
main idea is to use a buffer where points of the dataset are kept in a compressed
way. The data stream is processed in blocks. All available space on the buffer
is filled with points from the stream. Using these points, find k centres such
that the sum of distances from data points to their closest centre is minimized.
Only the k-centroids (representing the clustering results) are retained, with the
corresponding k-cluster features. In the next iterations, the buffer is initialized
with the k-centroids, found in the previous iteration and the incoming data
points from the stream. The Very Fast k-means algorithm (VFKM) (Domingos
e Hulten, 2001) uses the Hoeffding bound to determine the number of examples
needed in each step of a k-means algorithm. VFKM runs as a sequence of k-
means runs, with increasing number of examples until the Hoeffding bound is
satisfied.

Guha et al. (2003) present a analytical study on k-median clustering data
streams. The proposed algorithm makes a single pass over the data stream
and uses small space. It requires O(nk) time and O(ne) space where k is the
number of centers, n is the number of points and ¢ < 1. They have proved that
any k-median algorithm that achieves a constant factor approximation cannot
achieve a better run time than O(nk).

Micro Clustering

The idea of dividing the clustering process into two layers, where the first layer
generate local models (micro-clusters) and the second layer generates global
models from the local ones, is a powerful idea that has been used elsewhere.
The BIRCH system (Zhang et al., 1996) builds a hierarchical structure of
data, the CF-tree (see Figure 2), where each node contains a set of cluster
features. These CF’s contain the sufficient statistics describing a set of points
in the data set, and all information of the cluster features below in the tree.
The system requires two user defined parameters: b the branch factor or the

N

Figure 2: The Clustering Feature Tree in BIRCH. B is the maximum number
of CF's in a level of the tree.

maximum number of entries in each non-leaf node; and T the maximum diameter
(or radius) of any CF in a leaf node. The maximum diameter T' defines the
examples that can be absorbed by a CF. Increasing 7', more examples can be
absorbed by a micro-cluster and smaller CF-Trees are generated.

When an example is available, it traverses down the current tree from the
root, till finding the appropriate leaf. At each non-leaf node, the example follow
the closest-CF path, with respect to norms Lq or Lo. If the closest-CF in the leaf
cannot absorb the example, make a new CF entry. If there is no room for new
leaf, split the parent node. A leaf node might be expanded due to the constrains
imposed by B, and T'. The process consists of taking the two farthest CFs and
creates two new leaf nodes. When traversing backup the CFs are updated.

Monitoring the Evolution of the Cluster Structure

The CluStream Algorithm (Aggarwal et al., 2003) is an extension of the BIRCH
system designed for data streams. Here, the CFs includes temporal information:
the time-stamp of an example is treated as a feature. For each incoming data
point, the distance to the centroids of existing CFs, are computed. The data
point is absorbed by an existing CF if the distance to the centroid falls within the
mazimum boundary of the CF. The mazimum boundary is defined as a factor
t of the radius deviation of the CF; Otherwise, the data point starts a new
micro-cluster.

CluStream can generate approximate clusters for any user defined time gran-
ularity. This is achieved by storing the CF at regular time intervals, referred
to as snapshots. Suppose the user wants to find clusters in the stream based
on a history of length h. The off-line component can analyse the snapshots
stored at time ¢, the current time, and (¢ — h) by using the addictive property
of CF. An important problem is when to store the snapshots of the current set
of micro-clusters. For example, the natural time frame stores snapshots each

I Year 1 Month 1 Day 1 Hour
12 Months 31 days 24 Hours 4 Quar,

L e \I\I‘\I\ -

t
Natural Tilted Time Window

Figure 3: The figure presents a natural tilted time window. The most recent
data is stored with high-detail, older data is stored in a compressed way. The
degree of detail decreases with time.

quarter, 4 quarters are aggregated in hours, 24 hours are aggregated in days, etc
(Figure 3). The aggregation level is domain dependent and explores the addic-
tive property of CF. Along similar ideas, Kranen et al. (2011) presents ClusTree
that uses a weighted CF-vector, which is kept into a hierarchical tree. ClusTree
provides strategies for dealing with time constraints for anytime clustering, i.e.,
the possibility of interrupting the process of inserting new objects in the tree at
any moment.

Tracking the Evolution of the Cluster Structure

Promising research lines are tracking change in clusters. Spiliopoulou et al.
(2006) presents system MONIC, for detecting and tracking change in clusters.
MONIC assumes that a cluster is an object in a geometric space. It encom-
passes changes that involve more than one cluster, allowing for insights on clus-
ter change in the whole clustering. The transition tracking mechanism is based
on the degree of overlapping between the two clusters. The concept of overlap
between two clusters X and Y, is defined as the normed number of common
records weighted with the age of the records. Assume that cluster X was ob-
tained at time ¢; and cluster Y at time t5. The degree of overlapping between

the two clusters is given by: overlap(X,Y) = % The degree of
overlapping allows inferring properties of the underlying data stream. Cluster
transition at a given time point is a change in a cluster discovered at an earlier
timepoint. MONIC consider internal and ezternal transitions, that reflect the
dynamics of the stream. Examples of cluster transitions include: the cluster

survives, the cluster is absorbed; a cluster disappears; a new cluster emerges.

References

Ackermann, M. R., Martens, M., Raupach, C., Swierkot, K., Lammersen, C.,
e Sohler, C. (2012). Streamkm++: A clustering algorithm for data streams.
ACM Journal of Experimental Algorithmics, 17(1).

Aggarwal, C. C., Han, J., Wang, J., e Yu, P. S. (2003). A framework for
clustering evolving data streams. In Proceedings of the 29th international
conference on Very Large Data Bases, pages 81-92. VLDB Endowment.

de Andrade Silva, J., Faria, E. R., Barros, R. C., Hruschka, E. R., de Carvalho,
A. C. P. L. F,, e Gama, J. (2013). Data stream clustering: A survey. ACM
Comput. Surv., 46(1):13.

Domingos, P. e Hulten, G. (2001). A general method for scaling up machine
learning algorithms and its application to clustering. In Brodley, C., editor,
Machine Learning, Proceedings of the 18th International Conference, pages
106-113, Williamstown, USA. Morgan Kaufmann.

Farnstrom, F., Lewis, J., e Elkan, C. (2000). Scalability for clustering algorithms
revisited. SIGKDD Ezplorations, 2(1):51-57.

Gama, J. (2010). KnowledgeDiscovery from Data Streams. Data Mining and
Knowledge Discovery. Chapman & Hall CRC Press, Atlanta, US.

Gama, J., Rodrigues, P. P.; e Lopes, L. M. B. (2011). Clustering distributed
sensor data streams using local processing and reduced communication. Intell.
Data Anal., 15(1):3-28.

Guha, S., Meyerson, A., Mishra, N., Motwani, R., e O’Callaghan, L. (2003).
Clustering data streams: Theory and practice. IEEE Transactions on Knowl-
edge and Data Engineering, 15(3):515-528.

Kranen, P., Assent, I., Baldauf, C., e Seidl, T. (2011). The clustree: Indexing
micro-clusters for anytime stream mining. Knowl. Inf. Syst., 29(2):249-272.

Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., e Schult, R. (2006). Monic:
modeling and monitoring cluster transitions. In Proceedings ACM Interna-
tional Conference on Knowledge Discovery and Data Mining, pages 706-711,
Philadelphia, USA. ACM Press.

Zhang, T., Ramakrishnan, R., e Livny, M. (1996). BIRCH: an efficient data clus-
tering method for very large databases. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 103—114, Montreal,
Canada. ACM Press.

