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Abstract. The development of ETL systems has been the target of many research efforts to promote 
their implementation, addressing not only the time and effort required but also means to improve its 
final quality. In the last few years, we presented a pattern-oriented approach to develop these systems. 
Basically, a patterns is comprised by a set of abstract components that can be configured to enable its 
instantiation for a specific case, enabling its mapping to a specific physical format that can be used by 
commercial tools that support data migration processes implementation. Since ETL systems represent 
complex and very specific data transformation routines, they are considered error prone processes, 
even when using high-level components. Several operational requirements need to be configured and 
system correctness is hard to validate, which can result in several implementation problems. In this 
paper, a set of formal specifications in Alloy is presented to express the structural constraints and 
behavior of a slowly changing dimension pattern. Then, a specific Domain Specific Language was 
built and validated according to the specifications and constraints defined in an Alloy model, ensuring 
the correctness of the configuration provided, and enabling its translation to physical primitives in a 
consistent state. 
Keywords: Data Warehousing Systems, ETL Systems, ETL Patterns, Component-Reuse, Alloy, ETL 
Systems Formal Specification, and Domain Specific Language. 
 

1 Introduction 

The use of patterns is a recurrent practice in most software development areas, in which systems are 
frequently designed based on existing components, taking advantage of previous knowledge and 
experience. Nowadays, the importance of reusable practices and the design techniques that promote them 
is recognized, which contributes to higher software quality and to reduce the time and money spent in its 
implementation and maintenance. Additionally, patterns enforce the use of well-proven practices that 
represent the knowledge of broadly accepted standards or techniques [1], carrying the experience between 
projects and contributing to its final quality. Currently, software reuse is enhanced through the use of self-
contained patterns provided by software libraries, frameworks or service-oriented systems that can take 
the shape of simple functions to support simple tasks or of configurable components that can be adjusted 
to specific needs.  

The development of ETL (Extract-Transform-Load) [2] processes for Data Warehousing Systems 
(DWS) are a specific software area that addresses very specific needs representing a very critical 
component to any DWS [2]. Each DWS implementation serves its own user community with different 
ways of acting and thinking, linked to a specific set of business and decision-making processes supported 
by specific data models. These characteristics render them user specific data clients and even with 
standard solutions for DWS implementation (which happens often in areas such as telecommunications or 
retail), several adjustments need to be performed to the original data models to answer to the requisites of 
those decision makers. Additionally, ETL designers frequently deal with legacy systems that provide 
limited mechanisms for data extraction, data inconsistencies resulting from years of business change or 
evolution, and limited time-frames for data processing. All these require extreme care and concern from 
the ETL architects and software engineers in its planning, architecture, design, and implementation. 
Additionally, current commercial tools that support ETL/data migration implementation processes 
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provide specialized transformation tasks closely related to SQL operators. This approach contributes to 
the development of very complex processes comprised by hundreds of tasks, represented using 
proprietary notations and implemented according to specific architectures and philosophies. These 
practices are by nature error-prone and hard to maintain, resulting in inconsistent processes. Thus, and 
despite the effort of several specialists in the area, a simple and reliable approach to simplify this kind of 
processes is still missing. Since the development of ETL processes shares several development phases 
and typical problems related to the other types of software, we believe that a pattern oriented approach 
can be applied through the identification of recurrent procedures or techniques applied in common 
scenarios, identifying the cluster of operations needed and abstracting its behaviour to provide its 
instantiation for specific cases. These patterns can be applied to the whole ETL life cycle, supporting 
users both in initial development phases and in its physical implementation. Basically, an intermediate 
layer is provided to separate technical knowledge typically used in ETL commercial tools from the 
domain-knowledge used by decision-makers. To support the complexity of the knowledge involved and 
the application of each pattern to specific contexts, a first approach to formalize ETL patterns is also 
presented using Alloy [3], a declarative specification language that supports problem structural modelling 
and validation, helping to avoid process inconsistencies or architectural contradictions. 

Thus, and after a brief summary of related work in Section 2, we demonstrate (Section 3) the 
feasibility and effectiveness of a pattern oriented approach for ETL development based on the description 
and formalization of one of the most common used ETL techniques: the Slowly Changing Dimension 
(SCD) with history maintenance (SCD-H). The operational requirements are identified and the respective 
structural constraints and behaviour formalized using Alloy. Additionally, and based on the structural 
aspects identified, a Domain Specific Language (DSL) pattern instantiation, is shown to provide the 
necessary bridge to translate a SCD-H pattern to its correspondent execution primitives. Finally, in 
Section 4, we evaluate the work done so far, pointing out some research guidelines for future work.  

2 Related work 

ETL modelling has been the subject of intensive research and many approaches to ETL implementation 
have been proposed, aiming to reduce system design complexity, produce detailed documentation, and 
provide the ability to easily communicate with business and end users. As far as we know, Köppen [4] 
firstly presented a pattern-oriented approach to support ETL development, providing a general description 
for a set of patterns, e.g., aggregator, history and duplicate elimination patterns. This work focuses on 
important aspects defining patterns for internal composition properties and the relationship between them. 
The authors distinguish between elementary and composite tasks, presenting composition properties to 
describing categories of tasks that precedes and proceeds the composite tasks. However, patterns are 
represented only at design level, lacking the identification of the main configuration components and how 
each one can be translated to code. With this work, we intend to go further, encapsulating behaviour 
inside components that can be reused. In fact, we propose a generator-based reuse approach [5] that uses 
a generator system that can be configured using a specific DSL describing the components of the pattern 
that should be used and how they work. The generator will produce a specific instance that can represent 
the complete system or part of it, leaving physical details to further development phases. �

In this field, it is also important to mention the work presented by many authors that represent 
important contributions to the area. Vassiliadis and Simitsis proposed a technique for the conceptual, 
logical and physical modeling of ETL processes [6], presenting a new set of elements specially designed 
to express ETL natural features. More recently, Akkaoui [7] presented a work based on MDA (Model-
Driven Architecture) for ETL process development, where a vendor-independent model (BPMN4ETL) 
for unified design and covering the automatic generation of source code for specific computer platforms 
using a meta-model based on BPMN (Business Process Model and Notation) is proposed. The bridge to 
execution primitives was explored using a model-to-text approach, supporting its execution through some 
ETL commercial tools. In subsequent works [8, 9], two important architectural layers were presented for 
the specification of ETL processes using BPMN: process orchestration, which can be accomplished by 
several BPMN elements, and data process operations related to some specific operations that allow for the 
manipulation of data coordinated by control process elements. The author also addressed the problematic 
of the maintenance phase of ETL life cycle, particularly when business requirements change. They 
extended the model-driven framework, not only to provide automatic code generation but also to improve 
ETL maintenance using model-to-text (using the so-called BPMN4ETL meta-model) and model-to-model 



transformations, respectively, to support both steps. The authors identify structural updates and provide 
strategies for handling schema changing.  

These and other related works [10–12] revealed very important aspects that were taken into 
consideration for the approach presented here. However, they fail to provide an integrated approach that 
focus on the complete ETL lifecycle and to take advantage of work preformed in initial development to 
implementation phases. Additionally, they focus on very granular tasks, resulting in very large and 
disorganized process that tend to reveal process inconsistencies and redundancy.  
 

3 ETL patterns: SCD-H pattern 

Patterns have been used in several software development areas as a way to help developers solve 
recurring problems, promoting the sharing of experience and knowledge obtained across several areas. 
Several types of patterns are identified and used by many authors, e.g., the design patterns commonly 
used to describe a specific problem and a possible solution and should be abstract enough to be reused in 
many different scenarios; or Generator-based patterns used to reuse algorithms and parameterized using 
specific domain languages that can be further interpreted and mapped to executable code [1]. Patterns can 
be viewed as a three-part rule expressing the context, the forces that typically occur, and how the solution 
[13] resolves the forces [14]. In the next paragraphs, a common ETL procedure is identified and 
formalized: SCD-H transformation pattern that is used to maintain changes in specific dimensions used to 
track records history. A common pattern structure, shared by general patterns for software development 
together with general guidelines for its representation, was used [14, 15]. The general description of the 
pattern is accompanied by a formalization in Alloy and its specification in a DSL developed to support 
code generation. 

When a data warehouse is updated, some decisions must be considered in order to maintain a 
consistent view of its data. The SCDs embody well-defined policies that represent design patterns to 
support old and new data over time in a DW dimension context. Several types of SCD can be applied [2, 
16], each one considering specific scenarios. In this work, a specific strategy of SCD that preserves 
history using a history table is followed. Basically, this approach considers that a dimension is composed 
by two distinct tables: one stores up-to date dimension’s data and the other one stores the previous 
version of the record values. With this strategy all current and historical records are stored with no 
limitations and with low process complexity, since they are easier to compute than other approaches [17]. 
Below, a specific template is used to describe the SCD-H pattern: 

Name: Slowly Changing Dimension with history maintenance (SCD-H) 
Classification: Transformation pattern 
Problem:  In some cases, the dimension tables of a data warehouse store data that can change slowly 
over time. In such cases, there is a need to track these changes to support historical data reporting. 
How can current and historical data be properly stored? 
Context: The DWS are built based on the concept of temporal data. The facts stored in fact tables are 
linked to a specific date in which they occurred. Not only are fact tables related to the time dimension, 
but other dimensions can also be affected by the time, i.e., data can only be valid in a certain date 
interval. This means data from data sources can change to reflect a change in a point of time that 
should be preserved in a specific dimension, maintaining the consistency of the data warehouse. 
Solution: The SCD process begins when changed data is available to populate the target system. 
Typically, this data is stored using specific audit tables that store records comprised by attributes (Att) 
with history maintenance (SCDAtt) for a specific dimension table along with the operation 
(Operation) and the date (Date) that was performed, and the table surrogate key (Skey): 

 !"#$%&!%! =  !"#$, !"#$%%!,… , !"#!""! ,!"#$%&'(),!"#$   

Audit tables are used in the Data Staging Area (DSA) and provide to the SCD process the records to be 
processed according to the operation performed in source systems. When records are new (Insert), insert 
operations are triggered to the dimension table as current data, while the deleted records are marked as 
inactive in target dimension. A more complex process should be initiated for updated records, since the 
current versions of updated records should be transferred to history table (partially or totally, depending 
on the dimension table’s SCD specification). Depending on the needs, all or some of these operations can 
be registered in the system’s log file, identifying the record, the operation that was performed, the data 
source origin and temporal data. The quarantine table also plays an important role for SCD process, since 



can be used to process unexpected scenarios that don’t compromise all process operation. Structural 
errors or data entry errors can be redirected to quarantine tables that store all inconsistent records, 
identifying (at least) the record, the error occurred and the temporal data. These records can be posteriorly 
analysed by specific procedures or even manually in order to be reintroduced in ETL workflow or 
deleted, helping to identify important scenarios that can be useful to check ETL integrity. 

Additionally, log track techniques are used to recover from unexpected situations, since if some 
critical error happens, the process can restart only from the point when the error occurs, in particular 
when large volumes of data are involved. After processing all records, the audit table will be cleared and 
the records processed will be loaded into the target dimensional table.  
 

 
Figure 1. Class diagram for SCD pattern structure representation 

To support all these structural and operational constraints a specific model was developed and represented 
in Figure 1. This model represents a subset of the ETL patterns meta-model for the representation of SCD 
structure and the related objects that supports its structure. The SCD class is a specific type of 
transformations patterns that can be specialized in several types. Only two types are distinguished: the 
type 1 that holds no historical data (data is simply replaced) and history type described before. To support 
the SCD–H pattern, several metadata should be provided to produce pattern instances. The DataObject 
class represents the several types of data source/target objects that can be used: Audit table that holds data 
extracted from data sources and respective operation and time data, the Dimension in which current data 
will be stored, History that stores historical data, Quarantine that represents the object that will store non-
compliant data and Log objects that will store all operations performed. Each one of these objects will 
have fields from several types, revealing specific operational characteristics of each data object. For 
example, the dimension object should have Surrogate Key (SK) fields and descriptive attributes. 
Specifically for the SCD-H context, variation attributes should be specified and control fields to 
represent, for example, the state of each record (to signal active and inactive attributes). Thus, the SCD-H 
object should be configured using specific mapping that represents the association between data objects. 
This means that correspondences between fields of each data source should be defined according to the 
constraints defined for each mapping: the auditToQuarantine relationship represents the mapping 
between audit table and dimension table, which is related to the source of data and target dimension, the 
auditToQuarantine represents the mapping between dimension table and quarantine table to provide 
storage to the fields that for some reason could not be stored in target dimension and auditToLog that 
represents the relationship between audit table and target log object that will store the operations 



performed, including the non-successful operations. The dimensionToHistory and auditToHistory 
relationships are specified only for SCD specialization class, since represent specific features of SCD 

with history maintenance, representing the mapping between dimension fields to history dimension fields 
and audit table fields to history dimension fields, respectively. 

Although the pattern structure can be described in a straightforward manner in class models like the 
one from Figure 1, such is not the case for several richer structural constraints that specify the integrity of 
the pattern, which must be considered not only at the level of the pattern configuration but also by the 
operational behaviour of the pattern. To provide a simple and solid specification of the SCD pattern 
amenable to being automatically analysed, its description was embedded into a formal specification. Alloy 
is a lightweight formal specification language, whose Analyzer provides support for automatic assertion 
checking, within a bounded universe, by relying on off-the-shelf constraint solvers. The flexibility and 
object-oriented flavor of the Alloy language render it well-suited to specify and analyse software design 
models, addressing both complex structural constraints [18–20] and behavioral constraints imposed by 
transformations [21, 22]. An embedding of ETL pattern specifications into Alloy would not only provide 
a formal specification of their structure and behaviour, but would also allow their fully automatic 
verification, thus ensuring that the pattern preserves the consistency of the system. Figure 2 presents an 
excerpt of the Alloy specification of ETL patterns and related concepts, formalizing the meta-model 
structure and providing a new degree of detail to the class model presented in Figure 1. 
The class hierarchy can be easily described using Alloy signatures, that introduce sets of elements of a 
certain type in the model. Abstract signatures are used to describe abstract concepts that should be refined 
by more specific elements, which is the case of top-level signatures Field, DataObject and Pattern. These 
abstract signatures can then be specialised through extension into concrete objects, mirroring the 
hierarchy of the model from Figure 1. Signatures may contain fields of arbitrary arity, that will embody 
the associations between the different artefacts of the specification. For instance, similarly to the Figure 1 
representation, data objects represent repositories that are used to read and write data and contain a set of 
field declarations that is shared by its extensions: each DataObject element is related to a non-empty set 
of Field elements (imposed by the keyword some), that represent data fields used to represent records, 
and a set of SKField elements, used to express the SK fields. These can then be restricted by additional 
constraints through Alloy facts, like the one stating that every SKField is selected from the Field elements 

abstract sig Field{} 
sig SKField, ControlField, VariationField, DescriptiveField extends 
Field{} 
sig DateField, OperationField, ErrorField extends ControlField{} 
abstract sig DataObject{ 
    fields: some Field, 
    keys: some SKField, 
    (...) 
} 
fact dataobject { 
    all o : DataObject | o.keys in o.fields 
    (...) 
} 
pred consistentDataObject[s:State,o:DataObject] { 
    all r1,r2 : o.rows.s |  
        (all f : o.keys | f.(r1.values) = f.(r2.values)) => r1 = r2 
    (...) 
} 
sig Mapping { 
    inData: one DataObject, 
    outData: one DataObject, 
    association: Field -> Field 
} 
fact mapping { 
    all m : Mapping | m.association in m.inData.fields -> 
m.outData.fields 
    (...) 
} 
pred consistentMapping[s:State,m:Mapping] { 
    consistentDataObject[s,m.inData] 
    consistentDataObject[s,m.outData] 
    (...) 
} 
 

Figure 2. A basic Alloy specification for supporting ETL patterns 

 



of the data object. Signature Mapping represents the association between fields from two data sources, 
establishing the relationship between attributes from two different sources through the binary field 
association. Additional constraints impose, for instance, that a mapping is only valid if it associated fields 
from the input (inData) and the output (outData) data sources. Facts represent constraints that are 
enforced in the system; however, certain constraints should not be enforced but rather preserved by the 

ETL procedure: these denote the notion of correctness in the specification. The behaviour of the patterns 
should then be checked to assess whether they guarantee the consistency of the system. These predicates 
include properties like the uniqueness of the values in SK fields and the referential integrity between the 
SK fields of the data sources related by the mappings. 
Figure 2 represent the abstract specification of an ETL pattern, which is expected to be specialised by 
concrete patterns. The excerpt of such specialisation is presented in Figure 3 for SCD patterns. For 
instance, data objects are specialised, among others, into Audit and Dimension signatures, each containing 
specific fields that express the operational properties related to the audit and dimension sources used in  
SCD patterns. For audit objects, date fields specify the temporal data for the action performed in the 
source systems, operation fields the operation performed and variation fields specific version of data. 
Again, these fields are forced to be selected from the fields of the data object, providing a level of 
validation that class diagrams cannot express. Other relevant signatures, omitted in the figure, are 
specified in a similar manner, like those regarding the target and historical dimension and their respective 
constraints, as well as the log and quarantine objects. 

The pattern signature is then specialised to represent SCD patterns, containing the expected mappings, 
like auditToDimension, auditToQuarantine and auditToLog. These fields describe the relationship 
between the audit object used for the SCD process and the respective target repositories: a dimension 
object that will receive data from audit table, a quarantine object that holds non-conformed data that was 
excluded from the dimension object, and log object that will preserve all operations performed by the 
audit, dimension and quarantine objects. These mappings enable the preservation of variation, control, 
surrogate key and data fields between data objects, which are imposed by facts defined over both the SCD 
and the SCD-H signatures. For instance, for the dimensionToHistory, the correspondent mapping is 
established between a dimension object data as input and history object data as output. Additionally, 
several signature facts were used to enforce the correctness of each mapping, i.e., that the mapping 
associates fields of the same nature. This means that related fields are correctly mapped and that invalid 
relationships are avoided. 

sig Audit extends DataObject { 
    dateFields: some DateField, 
    opsFields: some OperationField, 
    varFields: some VariationField 
} 
sig Dimension extends DataObject { 
    dFields: some VariationField 
} 
fact dataobjects { 
    (...) 
} 
abstract sig SCD extends TransformationPattern{ 
    auditToDimension : one Mapping, 
    auditToQuarantine: one Mapping, 
    auditToLog: one Mapping 
} 
fact scd { 
    all scd : SCD { 
        scd.auditToDimension.inData in Audit 
        scd.auditToDimension.outData in Dimension 
        DateField.(scd.auditToDimension.association) in DateField 
    (...) 
} 
sig SCDH extends SCD { 
    dimensionToHistory: one Mapping, 
    auditToHistory:one Mapping 
} 
fact scdh { 
    all scd : SCD { 
        scd.dimensionToHistory.inData in Dimension 
    (...) 

} 

 
Figure 3. Basic Alloy specification to support SCD-H configuration 



  

A predicate is then defined to embody the notion of consistent SCD: in this case, this amounts to 
checking whether the mappings of SCD are themselves consistent, as defined above. This property can 
then be automatically processed by the Alloy Analyzer, either to simulate instances that conform to the 
specification or to check for the correctness of concrete instances. Figure 4 denotes one such random, 
consistent, instance generated by the Alloy Analyzer for SCD patterns. 

The specification presented in Figures 2 and 3 embodies the static constraints of ETL patterns. However, 
we are interested in checking the correctness of the process as data is collected from the sources and ETL 
procedures are executed. In Alloy, dynamic behaviour is encoded through well-established idioms, like 
the local state idiom followed in this work [3]. Roughly, a new signature State is introduced in the 
specification, that represents different states of the system, modelling the notion of evolving time. 
Artefacts that are expected to evolve in time are then appended with a State element, that will denote their 
value in each instant of time. In our scenario, only the data contained in each data object are expected to 
change (the structure of the data objects and the patterns is static). This dynamic version of the 
specification is presented in Figure 5, where a Row signature was introduced to describe the association 
between a Field and a specific Value. Data objects were then extended to contain a dynamic rows fields 
that denotes its data in each instant of time. An additional fact restricts rows to assign values to the fields 
of the parent data object. 

sig State {} 
sig Value {} 
sig Row { 
    values: Field -> lone Value 
} 
abstract sig DataObject{ 
    (...) 
    rows: Row -> State 
} 
fact rows { 
    all s : State, o : DataObject, r : o.rows.s | r.values.Value = o.fields 
} 
pred addToDimension [s,s': State, r,r': Row, scd: SCD] { 
    r in scd.auditToDimension.inData.rows.s 
    r' not in scd.auditToDimension.outData.rows.s 
    scd.auditToDimension.inData.rows.s' =   
        scd.auditToDimension.inData.rows.s - r 
    scd.auditToDimension.outData.rows.s' =  
        scd.auditToDimension.outData.rows.s + r' 
    all f : scd.auditToDimension.association.Field |  
        f.(r.values) = f.(scd.auditToDimension.association).(r'.values)  
    (...) 
} 
assert addToDimensionCorrect { 
    all s: State, s': s.next, scd: SCD, r: Row |  
        (consistentSCD[s,scd] and addToDimension[s,s',r,scd]) => 
            consistentSCD[s',scd] 
} 
check addToDimensionCorrect for 10 

Figure 5. Excerpt of the Alloy specification for SCD-H pattern for dynamic behavior simulation 

Figure 4. SCD pattern instance generated by the Alloy Analyzer 



The evolution of the system is then modelled through declarative predicates that relate two different 
states. In this perspective, if the static components of the specification represented the pattern 
configuration, these dynamic components define the pattern behaviour based on those configurations. 
Figure 5 depicts, as an example, predicate addToDimension, that models the behaviour of the insert 
operation of the pattern, involving the audit and target dimension objects. Being declarative, these 
definitions are usually comprised by pre-, post- and frame conditions. In this case, the pre-conditions 
restrict the operation to be applied only if the surrogate keys of the audit row that will be processed do not 
exist in the dimension table (otherwise the update operation should be applied instead); the post-
conditions state that the row is removed from the audit table and inserted in the target dimension, 
preserving the data as defined by the associations of the SCD mappings; and the frame conditions state 
that every other artefact, like the history table, stay unchanged. The two states are represented by the s 
and s’ parameters of the predicate: whenever the rows field is annexed with the s elements it represents 
the data in the pre-state, while rows at s’ represents the data in the post-state. 

Once these operation predicates are defined, the specification can be automatically analysed by the 
Alloy Analyser to check whether they preserve the consistency constraints defined above, within a 
bounded universe. These are defined in the assert clause in Figure 5, that tests whether the execution of 
the addToDimension operation preserves the consistency of the system. The check command effectively 
instructs the Alloy Analyzer to verify this assertion for a specific scope. For our specification, the Alloy 
Analyzer has shown that the three defined operations indeed preserve the specified consistency 
predicates, providing an increased level of confidence on the correctness of the procedure. Additional 
constraints and level of detail can be added to the specification to verify more complex properties. 

 
Example 
To provide a better picture of the application of SCD pattern and its configuration, let us consider a 
simple dimension: Customer that stores information about clients data for a given telecommunication 
company (Figure 6). Specifically, the customer personal data are stored as descriptive data and 
telecommunication plan details are represent a variation attribute, preserving history about the plan that 
each customer had in some point of time. The history dimension stores all plan changes from the 
beginning of customer activity with the company. 
 

 
Figure 6. Case study data structures for the representation of a SCD-H scenario 

Basically, the SCD pattern should be configured to create a specific instance that will extract data from 
AuditTable and according to the operation applied in source systems, trigger a specific action: the insert 
operation performs the insertion of the new row to the Customer dimension and its deletion from the audit 
table, the update operation results in the insertion of the changed record from the Customer dimension in 
the CustomerHistory dimension, using the Date attribute from audit table to set the ExpirationDate 
attribute, and the delete operation updates the state of the deleted record in dimension Customer to 
inactive. This example represents only a simple version of the problem, since no quarantine or log objects 
were considered. 
 
Implementation 

Based on the Alloy specification, a specific generator engine can be used to support the generation of 
specific instances through the use of the Alloy Analyzer, validating the constraints previously defined 
(similar approaches for different domains were already presented [23]) or following a test automation 
approach base on unit tests [24]. However, to support code generation, an easy and understandable 
language should be provided to simplify the configuration of each component. In previous works [25, 
26], specific grammar components were describe to configure patterns metadata [25] using Xtext [27] 
framework. Thus, and based in the SCD-H pattern structure presented, Figure 7 presents a small excerpt 
of its configuration specifically for populating Customer and CustomerHistory dimension. The pattern 
configuration starts with an optional block that describes pattern description, using the Name and 



Description keywords inside of the Header block. Blocks are identified using braces as delimiters. Next, 
four mandatory blocks are used: input to configure how and which data that should be read, output to 
describe where transformed data will be stored, fields that describe the fields that will be selected for the 
Output block, and the options block that describes the internal components associated to the SCD-H 
pattern. For source and target block, specific keywords are used to configured, respectively, source and 
target repository: the data keyword to identify the source name and type to identify the nature of data 
source used (in this case, a relational table is used). The target keyword identifies the target output in 
which data will be loaded. For this particular pattern, two output repositories should be configured: the 
dimension and historic dimension using specific blocks for each one of them with the same configuration 
structure. The fields block should be also configured according to each target repository, i.e. specific 
mapping fields should be provided enabling data operations between data objects. The mappings between 
repositories can be defined in one of the two blocks (in this case were defined in dimension block). 
Finally, the options block reveals specific options applied to SCD-H pattern, for example, the key to 
identify the field or fields that represents the SK, and the operation parameter that identifies the field or 
fields that stores details about operations performed for a specific record. All this parameters are related 
to audit table repository metadata. While the DSL structure and syntax can be validated using Xtext 
framework, the generated instances and respective behaviour can suffer from several problems. For 
example, the surrogate keys uniqueness after data insertion or referential integrity between dimension and 
historical dimension after process update can be validated before physical execution. Alloy can be used to 
check model consistency through a process that translates DSL primitives to Alloy primitives to check 
design errors. A automated approach is planned as future work. 

Based on this configuration, the domain-level instructions can be used for the generation of a specific 
instance following the specific language rules. For that purpose, some Java primitives can be used to 
implement code generators to a specific language or specific file structure that can be interpreted by some 
commercial tool. In our approach, a set of composed tasks (patterns) can be used to create the full ETL 
package. Several classes of patterns can be used to create a complete process from data extraction to data 
load, using a visual layer that simplifies process coordination. In past works [28], the BPMN was used to 

use Transform.SCD.SCDH 
   header{ name=SCD-H description = ...} 
   source{ 
      data=AuditTable 
      type=RELATIONAL 
   } 
   target{ 
      dimension{ 
        data=Customer 
        type=RELATIONAL 
      } 
      history{ 
    data=CustomerHistory 
    type=RELATIONAL 
      } 
   } 
   fields{ 
     dimension{ 
  source.CustomerId = CustomerId 
  source.Plan = Plan 
  CustomerId=historic.CustomerId 
  Plan=historic.Plan 
     } 
     history{ 
  source.Date = ExpirationDate 
     } 
   } 
   options{ 
      keyField = CustomerId 
      operationField = Operation 
      (...) 
   } 

 
Figure 7. Excerpt of the SCD-H pattern configuration for the example provided in Figure 6 



work as a visual layer for patterns representation. Next, the BPMN model is enriched using the proposed 
DSL, providing the necessary elements to enable the code generation for each pattern used. Thus, the 
DSL configuration for each pattern should be checked to verify its correctness and then the correspondent 
mapping processes to execution primitives can be triggered. Both Xtext and Alloy provides java API’s 
that turn this process possible. The generation of code can be accomplished using a specific template-
generator language, such as referred in [26]. 

4 Conclusions and Future Work 

This paper proposed a pattern-oriented approach that allows the implementation of ETL processes with a 
higher level of abstraction. With the pattern-oriented approach presented, the knowledge and best 
practices revealed by several works can be put in practice using a set of software patterns that can be 
applied to the ETL development life cycle: from model representation to its physical implementation 
primitives. Such patterns can be used in software models, providing an excellent groundwork for process 
validation, allowing for the identification of the most important parts of a system to be built. A specific 
design pattern, the SCD-H, was identified along with its skeleton, representing its structure, constraints 
and behaviour according to specific rules. The presented approach keeps a specific template and instance 
as separated layers, since users need to provide data about data, i.e. users describe data repositories and its 
contents in structural terms and a specific generator will generate the respective code based on the 
primitives previously established and using specific data. The SCD-H pattern can be applied to any ETL 
scenario and to support this process, an excerpt of a formal specification in Alloy was presented, allowing 
pattern formalization through the use of the Alloy, which provides an automatic analysis that searches for 
false assertions through the generation of counterexamples. That way, patterns not only become easier to 
use than in the common granular approach, but can also be easily reused to produce better software, since 
models can be checked using a powerful simulation engine before its execution. This work represents a 
first attempt for formal specification using Alloy, representing static and behavioural specification for 
SCD-H. As future work, a more complete Alloy specification for ETL patterns is being developed, 
particularly in what concerns to behaviour formalization, assertion checking and exception/error handling 
scenarios that can occur. Additionally, several other patterns need to be formalized to provide a complete 
ETL package specification. A complete validation engine is also planned, translating the pattern 
configuration to Alloy models, allowing the ETL designers to seamlessly and automatically check the 
consistency of the developed patterns.  
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